

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

MICROCOPY RESOLUTION TEST CHART NATONAL BUREAD OR STANDAROS-1963.4

MICROCOPY RESOLUTION TEST CHART mational guneall of standards-1963-4

A Compulerized Systemanionly
 A Computerized System for Estimating and Displaying Shortrun Costs of Soil Conservation Practices

Daryll D．Raitt

$4 \cos ^{2}$促里年

A COMFUTERIZED SYSTEM FOR ESTIMATING ANL DISPLAYING SHORTRUN COSTS OF SOHL CONSERVATION PRACTICES, Daryll D. Raitt. Natural Resource Economics Division, Economic Research Service, U.S. Department of Agriculture. Technical Bulletin No. 1659.

Abstract

A computerized system is presented for estimating and displaying shortrun costs of alternative combinations of soil conservation practices for specific soils. Erosion rates, costs per acre, and costs per ton reduction of erosion are displayed in a schematic diagram that permits one to observe the cumulative effects of adding practices to an initial practice. Combinations of practices are ranked by the cost per ton reduction and cost per acre. The reduction in erosion versus cost per acre or per ton reduction can also be displayed. The model also computes the effects of incremental changes in underlying conservation input costs on per acre practice costs.

Keywords: Computerized system, economics of conservation, soil conservation costs, soil erosion, erosion control. conservation management, conservation practices, land treatment

Acknowledgments

The State and river basin staffs of the Soil Conservation Service, Columbia, Missouri, especially Dallas Schafer and John McCarthy, provided data and technical expertise for this report. Truman Wiles, graduate student, Agricultural Economics Department, University of Missouri, Columbia, did the computer programming. David Ervin, professor, Agricultural Economics Department, University of Missouri, Columbia, provided support and information.

Summary

The report describes a computer system which can be used for rapidly estimating and displaying the shorteun annual onsite costs of soil conservation practices by soil types. Basic inputs consist of crop budget data, engineering data, and soil erosion data. This information is entered for each type of soil and tocation and the computer outputs erosion rates, cosis per acre, and costs per ton reduction of erosion.

The base from which annual conservation costs are computed is continuous row cropping without conservation practices. Examples of output with the base crop of corn or soybeans as well as a combination of half corn and half soybeans are presented. Combinations of practices are ranked by cost per acre and cost per ton of reduced erosion.

Another capability is to graphically plot the reduction in erosion versus cost per acre or cost per ton. Erosion rates, costs per acre, and costs per ton reduction of erosion are displayed in a schematic diagram that permits one 10 observe the cumulative effects of adding practices to a single initial practice. The model also computes the effect of incremental changes in underlying conservation input costs on per acre practice costs.

Contents

Page
INTRODUCTION 1
INPUT DATA 2
Soil Erosion Factors 2
Soils Data 2
Crop Budgets 2
Terrace Costs 5
COMPUTER OUTPUT 8
Comparison of Conservation Costs 9
Display of Erosion Reduction Versus Costs 11
Comparison of Practice Sequence 11
Sensitivity Analysis of Other Input Costs 11
Use of Output 12
BIBLIOGRAPHY 12
APPENDIX-DATA SHEET FOR CONSERVATION PRACTICES 22

A Computerized System for Estimating and Displaying Shortrun Costs of Soil Conservation Practices

Daryll D. Raitt
Agricultural Economist

Introduction

Increased exports of food and fiber have placed heavy demands on our soil resources. fostering renewed concern about soil depletion. Economic dat a for analyzing the soil depletion problem and potential alternative solutions are needed by decisionmakers as they assess the extent of soil erosion, the adequacy of present policy and programs, and the economic and environmental impacts of soil erosion. The most basic of these needs is data relating costs of conservation practices to levels of erosion.

The number of alternative conservation practices available for reducing erosion is relatively small. Practices can be applied in various combinations and degrees, however, resulting in several alternatives for a given soil and location. Since erosion rales and conservation costs vary by soils and location, a large amount of information is required to consider all viable combinations and soils for an area. Computers are an efficient means for generating and displaying these conservation costs and erosion data.

This report describes a computer system developed for rapidly estimating and displaying the shortrun annual onsite costs of soil conservation practices by soil types. The system can also be used to estimate future onsite costs and benefits by projecting the underlying variables through time. The basic purpose of the system, however, is to provide a consistent method for estimating relative costs of various combinations of practices in reducing soil erosion. Data can be entered for a single type of soil representing a particular field or a soil group representing a broader aggregation of soils.

The computer system provides the following output for a particular soil:

- Comparison of conservation costs. Costs of incremental reductions in erosion are used to rank 50 combinations of soil conservation practices, providing a means to identify the least costly mix of practices for a given level of soil erosion.
- Display of erosion reduction vs. costs. Costs of erosion reduction for 50 combinations of conservation practices are plotted by levels of erosion reduction, providing a graphic display of dispersion.
- Comparison of practice sequence. Erosion rates and costs for 50 combinations of conservation practices are displayed in a manner permitting observation of the cumulative effects of adding various practices to a single initial practice.
- Incremented analysis of costs. Changes in costs of conservation can be estimated and displayed for incremental changes in underlying cost data. The system is flexible enough to provide a range of outputs for any change in inputs. This feature also permits periodic updating as underlying input costs, yields, product prices, or other variables change.

The explicit and systematic way in which data must be specified allows specialists from disciplines such as soils, agronomy, and engineering to constructively evaluate and improve the data base. The educational aspects of the system should be especially useful in working with farm groups. Groups can specify the variables for their particular situations and the cost and erosion data can be generated for various combinations of practices.

This report presents the basic data needs, operations, and capability of the computer system. The sources and form of basic inputs are indicated and examples of output are presented. A complete documentation of the computer programs is available from the author (see p. 12).

Input Data

Basic inputs consist of crop budget data, engineering data, and soil erosion datá (fig. 1). Crop budgets are used to estimate the net annual income per acre associated with various annual conservation practices. Engineering data are used to compute the annual cost of capital expenditures and maintenance per acre for practices such as terraces. Soll erosion factors are used to estimate the annual erosion rates per acre for each combination of conservation practices. These data are entered on the worksheet (app. A) for each type of soil.

Soil Erosion Factors

Gross annual sheet and rill erosion is defined as the tons of soil moved yearly by surface water and is estimated by a computer program using the
Universal Soil Loss Equation (USLE) (1):1 $A=R K(L S) C P$
where:
A = annual soil loss in tons per acre
$\mathrm{R}=$ rainfall factor
$K=$ soil erodabinty factor
$\mathrm{L}=$ slope length factor
$S=$ slope gradient factor
$\mathrm{C}=$ ecover factor
$\mathrm{P}=$ conservation practice factor
(LS) = slope gradient length
$(L S)=\left(\frac{L}{72.6}\right)^{M} \frac{430 X^{2}+30 X+0.43}{6.57415}$
Where:

$$
\begin{aligned}
m & =0.5 \text { if } S=5 \% \text { or greater } \\
& =0.4 \text { if } S=4 \% \\
& =0.3 \text { if } S=3 \% \text { or less }
\end{aligned}
$$

And:
$X=\operatorname{Sin} \theta$
$\theta=$ Angle of slope degrees

[^0]The factors for each soil type are entered into the computer from the worksheet forms (app. A). The R, K, and P factors are usually readily available from specialists at Soil Conservation Service (SCS) State offices. The L and S factors can be estimated by technicians for each soil type. Tbese factors can be quite precise when data are for a specific field or represent an average when a typical soil for an area is the unit of interest.

Separate C factors can be obtained from agronomists for each type of tillage practice and crop residue management practice being considered. Three types of tillage practices for corn and two for soybeans are considered in this example. The tillage practices are defined by the operations used in the crop budgets. Separate C factors are required for each crop, rotation, and set of tillage operations used in the system.

Soils Data

The contemplated use of estimates will determine the basic level of soils aggregation. For farm-level analysis, the basic soil mapping units might be used. A soil mapping unit is described as a portion of the landscape that has similar characteristics and qualities whose limits are fixed by precise definitions (2). The soil maps used by technicians working with farmers on conservation plans usually show the location and extent of the soil mapping units. For an analysis of larger areas, aggregations of soil mapping units may be used. For example, ten soil resource groups (SRG's) consisting of aggregations of soil mapping units were used to represent the range of upland soils in the Northern Missouri River Tributaries Basin Study. ${ }^{2}$ The soil mapping units in each SRG are relatively homogeneous with respect to crop yields. costs of production, and erosion hazards. The acreage and attributes (K, L, and S factors) of soils within SRG 124, the most prevalent SRG in the basin, are shown in table 1. Examples in this report are for this particular SRG.

Crop Budgets

The Oklahoma Crop Budget Computer Generator is used to estimate costs of production and net income for each crop and tillage operation (3,4). Use of a budget generator is not necessary to estimate annual practice costs but the systematic output facilltates documentation and provides details of

[^1]
Estimating Shortrun Costs of Conservation (schematic)

GROP BUDGET INPUT

SOIL LOSS INPUT

[^2]$S=$ slope gradient factor
$C=$ cover factor
$\mathrm{P}=$ conservation practice factor

Table 1-Attributes of soii mapping units aggregated to SRG 124,
Northern Tributaries River Basin, Missouri Northern Tributaries River Basin, Missouri

Land capability class	Soil name	Total inventory		K factor	Slope	Length of slope
		Acres	Percent		Percent	Feet
3E05	Lagonda SICL	449,641	0.253	0.37	0.070	282.6
3 E 05	Shelby CL	406,292	. 229	. 28	. 068	241.3
$3 \mathrm{E05}$	Adair CL	146,480	. 083	. 32	. 067	267.3
$3 \mathrm{EO5}$	Grundy SICL	140.618	. 079	. 37	. 070	300.0
3E05	Grundy SICL	119,818	. 068	. 37	. 030	300.0
3E05	Seymour SIL	62.987	. 036	. 37	. 067	227.7
3E04	Ladoga SIL	61,046	. 034	. 37	. 070	250.0
3 E 05	Mexico SIL	48,457	. 027	. 43	. 060	300.0
3E01	Winfield SIL	47,045	. 027	. 37	. 070	299.3
3 E 05	Grundy SIL	44,574	0.25	. 37	. 068	291.7
3 E 05	Pershing SIL	30,312	. 017	. 37	. 070	250.5
3 E 05	Adair CL	27,237	. 015	. 32	. 039	289.4
3 E 02	Lineville SIL	25,524	. 014	. 37	. 063	283.4
3 E 05	Weldon SIL	23,062	. 013	. 43	. 070	289.7
3 E 05	Lagonda SICL	21,533	. 012	. 37	. 040	295.6
3 E 05	Keswick L	21,495	. 012	. 37	. 080	200.0
3 E 05	Seymour SIL	17,982	. 010	. 37	. 030	300.0
3 E 05	Sampsel SICL	15,325	. 009	. 37	. 070	215.7
3 E 05	Greenton SIL	14,348	. 008	. 37	. 070	215.7
3 E 05	Gorin SIL	8,824	. 005	. 32	. 069	200.0
3E05	Pershing SIL	6,911	. 004	. 37	. 040	249.6
3 E05	Clarinda SIL	5,297	. 003	. 37	. 060	294.3
3E01	Audha MO	4,596	. 003	. 37	. 070	200.0
$3 \mathrm{E05}$	Lamoni SIL	4,392	. 002	. 32	. 030	250.0
3 E 04	Polo SIL	3,591	. 002	. 32	. 070	200.0
3 E 05	Kilwinning SIL	2,988	. 002	. 43	. 060	300.0
3E05	Sapp SIL	2,871	. 002	. 43	. 060	200.0
3 E 05	Sexton SIL	2,544	. 001	. 43	. 040	200.0
3 E 05	Colp SIL	2,164	. 001	. 43	. 062	279.2
$3 \mathrm{E05}$	Mexico SIL	2,071	. 001	. 43	. 030	304.0
3 E 02	Steinmetz SIL	859	. 000	. 37	. 070	300.0
3 E 05	Gorin SIL	729	. 000	. 32	. 040	300.0
3E05	Weldon SIL	583	. 000	. 43	. 040	200.0
3 E 05	Calwoods SIL	359	. 000	. 43	. 060	200.0
3E05	Clarinda SIL	325	. 000	. 37	. 030	300.0
3 E 05	Lamoni SIL	268	. 000	. 32	. 070	250.0
3 E 08	Seymour SIL	253	. 000	. 37	. 030	300.0
3 E 05	Colp SIL	164	. 000	. 43	. 040	300.0
3 E 08	Lagonda SICL	111	. 000	. 37	. 040	300.0
3 E 08	Adair CL	56	. 000	. 38	. 040	300.0
3E07	Sharpsburg SICL	25	. 000	. 32	. 030	300.0
Total		1,773,757	1.000			
Average ${ }^{1}$. 347	. 064	269.2

[^3]machine operations and inputs that are useful in synthesizing alternative management practices. All SCS S ate offices and most land-grant universities have access to a crop budget generator and have personnel familiar with the operation of the system. Once a basic crop budget for an area is generated, changes in inputs and yields to represent different soil types and management practices can be rapidly simulated.

Examples of output from the crop budget generator are presented in sample printouts 1 and 2 . Two other similar corn budgets representing minimum and zero tillage are required. The budgets represent the farming operations and inputs for the various practices. In general, conventional tillage consists of moldboard plowing, cultivation, and use of some herbicides. Minimum tillage consists of chisel plowing, less tiliage, and increased use of herbicides so that at least 2,000 pounds of top residue per acre are maintained. Zero tillage relies on chemicals for control of weeds and diseases and a 15 -percent increase in applied nitrogen (5). ${ }^{3}$ In practice, periodic tillage is recommended to prevent weed and disease buildup.

It was assumed that crop yields remain the same in the shortrun for all conservation practices. This assumption can easily be changed if information is available showing a significant difference in yields by conservation practices for a given soil. Input costs are for $1979-30$ and product prices are current normal prices published by the U.S. Water Resources Council (6).

Eight crop budgets were generated for this analysis. Budgets for wheat, alfalfa, pasture, and conventional tillage and minimum tillage soybeans were developed in addition to the three corn budgets.

The base from which annual conservation costs are computed is continuous row cropping without conservation practices. Conservation costs are computed by subtracting the net income associated with each practice or set of practices from the base net income. Continuous row cropping is used as the base because it usually results in the highest shortrun net income in the study area. The cost of practices involving changes in land use to rotations, pasture, or idle is the value of foregone income. The cost of practices such as minimum tillage, zero

[^4]tillage, winter cover crops, contouring, and terracing is reflected primarily by changes in input costs.

A summary of the net income and machine and labor costs from the various budgets is presented in table 2. The net income data are used to compute tillage and rotation costs. For example, the cost of minimum tillage is the difference in net income per acre between corn with conventional tillage (\$27.73) and minimum tillage (\$31.23), or $-\$ 3.50$ per acre. The negative value indicates that minimum tillage is $\$ 3.50$ more profitable than conventional tillage due to reduced costs of production. Minimum tillage of soybeans is even more profitable with savings of $\$ 13.72$ per acre. Zero tillage results in savings of $\$ 0.67$ per acre for corn but was not considered as a practical alternative for soybeans.

Cost of the rotation practice alone varies from \$0.27 per acre if used with corn as the base crop to $\$ 21.89$ per acre if the base crop is soybeans. The rotation used in this example is 3 years row crop, 1 year wheat, and 4 years alfalfa. This rotation was the most profitable of those alternatives with a forage or grass base which were considered. Other rotations can be easily substituted.

Contour and stripcropping costs are based on the field efficiency losses in machine and labor time. Ten percent of the machine and labor costs from the crop budgets was used to estimate contour costs and 5 percent was used to estimate stripcropping costs. These percentages can be changed to reflect alternative assumptions. The rotation is required before stripcropping can be practiced.

Seed, machinery, and labor costs for broadcasting rye as a winter cover were estimated at $\$ 9$ per acre. Cost of returning land to pasture is the forgone income or $\$ 20.94$ per acre if corn is the base crop and $\$ 55.54$ per acre if the base crop is soybeans. Similar costs for idling the land are $\$ 27.73$ for corn and $\$ 62.33$ for soybeans.

Terrace Costs

Annual terrace costs consist of an annual capital cosi for construction, a maintenance cost, and, if backslopes are permanently seeded to grass, a cosif for the loss of income on the backslopes. Parallel gradient terraces with tile outlets were the types considered in this example. Estimates of initial consiruction costs, annual capital and maintenance costs, and the percentage of area used

Sample printout 1-Summary of inputs and costs from crop budget generator ${ }^{1}$


```
* LB. OF ACTIVE INGREDIENT
OPERATIONS-SIIRED STALKS, PLON, DISK TWICE, FERTILIZE, PLANY, CULTIVATE,
```

[^5]Sample printout 2-Summary of machinery operations from crop budget generator ${ }^{1}$

CORN SRG 124
CONVENTIONAL TIL
84 BU YIELD

OPERATION	$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	DAİE	TIMES OVER	LABOR HOURS	MACHINE HOURS	$\begin{aligned} & \text { FUCL, OIL, } \\ & \text { LUB. REP. } \\ & \text { PER ACRE } \end{aligned}$	FIXED cosis PER ACRE
PICKUP 3/4 T.	10	NOY	0.05	0.080	0.050	0.21	0.18
PICKUP 3/4 T.	10	DEC	0.05	0.060	0.050	0.21	0.18
PICKUP $3 / 4 \mathrm{~T}$.	10	JAN	0.05	0.060	0.050	0.21	0.18
PICKUP $3 / 4 \mathrm{~T}$.	10	FEB	0.05	0.060	0.050	0.21	0.18
PICKUP 3/4 T.	10	MAR	0.05	0.060	0.050	0.21	0.18
MB PLOW 5-16"	5,32	APR	1.00	0.414	0.342	2.69	4.52
TARDEM DISK	5,40	$A P R$	1.00	0.191	0.153	1.03	1.84
DPY FERT. SPDR	4,66	$A P R$	1.00	0.207	0.171	0.97	1.43
PICKUP 3/4 T.	10	APR	0.05	0.060	0.050	0.21	0.18
TANDEM DISK	5,40	MAY	1.00	0.191	0.158	1.03	1.84
HARRON 3-SEC.	51	MAY	1.00	0.0	0.127	0.01	0.21
LIQ. FERT. SPDR.	5,69	MAY	1.00	0.310	0.257	1.71	2.47
PLANT W/FERT 6R	4,58	MAY	1.00	0.205	0.170	1.53	3.82
SPRAYER	4.72	MAY	1.00	0.320	0.264	1.51	2.39
PICKUP 3/4 T.	10	NIAY	0.05	0.050	0.050	0.21	0.18
ROW CULT. 6R	4,46	JUHE	1.00	0.211	0.175	1.02	1.54
PICKUP 3/4 T.	10	JUHE	0.05	0.060	0.050	0.21	0.18
PICKUP 3/4 F .	10	JULY	0.05	0.060	0.050	0.21	0.18
PICKUP 3/4 T .	10	AUG	0.05	0.050	0.050	0.21	0.18
PICKUP 3/4 T.	10	SEPT	0.05	0.060	0.050	0.21	0.18
SHREDDER $4 R$	4,92	OCT	1.00	0.281	0.232	1.32	3.15
SI COMB-CQRN $4 R$	19	OCT	1.00	0.393	0.327	3.59	25.86
TRUCK 2 T.	12	OCT	0.80	0.960	0.800	6.12	7.20
PICKUP $3 / 4 \mathrm{~T}$.	10	0 CT	0.05	0.060	0.050	0.21	0.18
TOTALS				4.404	3.781	25.05	58.44
* LB. OF ACTIVE OPERATIONS-SHRED MARCH 80 BASED	IMGRED STALK N CURR	ENT , PLON NT NO	$\begin{gathered} \text { DISK } \\ \text { HALIZE! } \end{gathered}$	TWICE D PRIC	$\begin{aligned} & \text { FERTIL } \\ & E S, 1979-1 \end{aligned}$	IZE, PLANT 80 COST	T, CULTI
BUDGET IDEHTIFICA ANHUAL CAPITAL MO	$\begin{aligned} & \text { ITION N } \\ & \text { OHTH } \end{aligned}$	MBER-	- 72	000000	12017		

[^6]for grass backsiopes are presented in table 3 for eight SRG's used in the river basin study. Note that three different terrace intervals are used on SRG 124 for the three types of tillage practices.

Annual costs for terraces for SRG 124 are $\$ 43, \$ 42$, and $\$ 37$ per acre for the three types of tillage practices assuming a 15 -percent annual charge for capital and maintenance. Actual cost data for recently constructed terraces from SCS field offices can be used to replace these estimates.

Computer Output

The objective of the computer output is to array the data so that the shortrun costs of reducing erosion by incremental amounts is readily discernible. Three basic printouts are generated and an additional program is available for simulating effects of incremental changes in basic inputs on conservation practice costs.

Table 2-Summary of practice costs for SRG 124, northwest Missouri

Item	Corn			Soybeans	
	Conven tional tillage	$\underset{\text { tillage }}{\text { Minimum }}$	$\begin{gathered} \text { Zero } \\ \text { tillage } \end{gathered}$	Conventional tillage	$\underset{\text { tillage }}{\text { Minimum }}$
	Dollars per acre				
Net returns:					
Without rotation	27.73	31.23	28.40	62.33	76.05
With rotation ${ }^{2}$	27.46	28.78	27.72	- 40.44	45.58
Tillage practice costs:					
Rotation alone	. 27	$\begin{array}{r}-3.55 \\ \hline 2.45\end{array}$	-.67 .68	21.89	-13.72 30.47
Tillage and rotation	. 27	-1.05	. 01	21.89	16.75
Machine and labor costs:1					
Without rotation	38.86	34.03	33.36	34.24	26.12
With rotation ${ }^{3}$	17.42	15.61	15.36	15.69	12.65
Contour costs:4					
Without rotation	3.87	3.40	3.34	3.42	2.61
With rotation	1.73	1.57	1.54	1.57	1.26
Stripcropping costs ${ }^{5}$	1.84	1.75	1.74	1.76	1.60
Winter cover costs	9.00	9.00	9.00	9.00	9.00
Terrace costs	43.00	42.00	37.00	43.00	42.00

[^7]
Comparison of Conservation Costs

The first printout ranks the 50 practice combinations by the cost per ton of reduced erosion (sample printout 3). The title indicates that the data are for corn as the base crop with a price of $\$ 2.31$ per bushel; the soil is SRG 124, input costs are for year 1978, and the area is land resource area (LRA) 109A in Missouri. The last column shows the cost per ton of reduced erosion and is computed by dividing the cost per acre (column 3) by the reduction in erosion (column 4). The second column indicates the remaining annual erosion in tons per acre for the various practices.

The three tillage practices-conventional, minimum, and zero tillage-are listed in column 5 and alternatives of continuous corn, rotations, or stripcropping in column 6. The rotation used in this example is 3 years corn, 1 year wheat, and 4 years
alfalfa. The program is written in such a way that other rotations can be easily substituted. It was assumed that stripcropping could be practiced only when the rotation was used. Terraces, contour farming, winter cover, or retiring land to other uses are indicated by 1 's in the respective columns. The alternatives of retiring land to pasture or idle are represented by P and I, respectively.

The lowest cost combinations of practices for incrementally reducing erosion can be traced by moving down column 2 to successively lower erosion rates. For example, minimum tillage alone would reduce erosion from 40.4 to 15.5 tons per acre at a negative cost (savings) of $\$ 3.50$ per acre. The next lowest combination of practices that would reduce erosion below 6.9 tons per acre is zero tillage and rotations with an erosion rate of 2.5 tons per acre and a cost of $\$ 0.01$ per acre.

Table 3-Estimated costs of parallel gradient terraces with tile outlets, northwest Missouri, 1979-80

Soil and practice			Construction			Cost			Grass backslope	
Soil resource group	Average slope	Tillage ${ }^{1}$ practice	Terrace interval	Cost ${ }^{2}$	Cost ${ }^{2}$	Tile	Total	Annual ${ }^{3}$	Width	Area
Code number	Percent	Code	Feet	Dollars per foot		-Dollar	r acre-		Feet	Percent
122	3.1	C	113	0.18	69	150	219	33	0	-
122	3.1	M, Z	126	. 18	62	150	212	32	0	-
104	3.8	C	113	. 19	73	150	223	34	0	-
104	3.8	M	126	. 19	66	150	216	32	0	-
104	3.8	Z	150	. 19	55	150	205	31	0	-
124	6.4	C	93	. 24	112	175	287	43	0	-
124	6.4	M	98	. 24	107	175	282	42	0	-
124	6.4	Z	150	. 24	70	175	245	37	0	-
106	7.1	C	93	. 26	122	175	297	45	0	-
106	7.1	M	98	. 26	116	175	291	44	0	-
106	7.1	Z	150	. 26	76	175	251	38	0	-
126	8.2	C	90	. 28	136	200	336	50	12	13.3
126	8.2	M,Z	150	. 28	81	200	281	42	12	8.0
108	10.8	C	90	. 33	160	200	360	54	15	16.7
108	10.8	M,Z	150	. 33	96	200	296	44	15	10.0
705^{4}	14.2	C,M, Z	90	5.76	368	300	668	100	21	23.3
$706{ }^{4}$	21.8	C, M, Z	90	${ }^{5} 1.21$	586	300	886	133	24	26.7

[^8]Sample printout 3-Ranking of conservation practices by cost per ton erosion reduction for base crop corn
REDUCTION IN EROSION TONS PER ACRE
SORTED BY COST PER TON REDUCTIOK, CORN, SRG 124 PRICE 2.31, 1978 COSTS, LRA 109A, MO

085	REMAINING EROSION TONS/ACRE	COST PER aCRE	reduction IN EROSION tons/acre	tillage PRACTICE	CROPPING SYSTEM	TERRACE	CONTOUR	WINTER COVER	retire	COST PER TON REDUCTION
1	40.4	0.00	0.0	CONV	CONT	0	0	0	0	
2	25.5	-3.50	24.9	MINI	CONT	0	0	0	0	-. 14045
3	6.9	-1.05	33.5	MINI	ROTA	0	0	0	0	-. 14045
4	12.0	-0.67	28.4	ZERO	CONT	0	0	0	0	-.03133 -.02362
5	7.7	-0.10	32.7	MINI	CONT	0	2	0	0	-. -.00306
6	2.5	0.01	37.9	Zero	ROTA	0	0	0	0	-. 0.00306
7	10.3	0.27	30.1	cordv	ROTA	0	0	0	0	0.00026 0.00898
8	3.4	0.52	36.9	MINI	rota	0	1	0	0	0.01407
9	1.7	0.71	38.7	MIHI	STRP	0	0	0	0	0.01836
10	0.6	1.75	39.8	zero	STRP	0	0	0	0	0.01836 0.04400
11	2.6	2.11	37.8	conv	STRP	0	0	0	0	0.04400
12	5.2	2.00	35.2	CONV	ROTA		1	0	0	0.05581
13	0.9	2.27	39.5	MINI	STRP	0	1	0	0	0.05677
14	1.3	3.84	39.1	CONV	STRP	0	1	0	0	0.09321
25	11.6	5.50	28.8	MINI	CONT	0	0	1	0	0.19104
16	20.2	3.87	20.2	CONV	CONT	0	1	0	0	0.19168
17	5.2	7.95	35.2	MINI	ROTA	0	0	1	0	0.22566
18	1.9	9.01	38.5	ZERO	ROTA	0	0	1	0	0.23390
19	1.3	9.71	39.1	MINI	STRP	0	0	1	0	0.24834
20	2.6	9.52	37.8	MINI	ROTA	0	1	1	0	0.25179
21	5.8	8.90	34.6	HINI	COHT	0	1	1	0	0.25730
22	9.0	8.33	31.4	ZERO	cont	0	0	1	0	0.26554
23	0.5	10.75	39.9	zero	STRP	0	0	1	0	0.26929
24	0.6	11.27	39.7	MINI	STRP	0	1	1	0	0.289592
25	7.7	9.27	32.7	coniv	ROTA	0	0	1	0	0.28383
26	1.9	11.11	38.5	Conv	STRP	0	0	1	0	0.38837
27	3.9	11.00	36.5	conv	ROTA	0	1	1	0	0.30120
28 29	1.0	12.84	39.4	COHV	STRP	0	1	1	0	0.32572
30	15.1 1.1	12.87 20.94	25.2 39.3	CONV	COHT	0	1	1	0	0.50990
31	1.1 0.1	20.94 27.73	39.3 40.3	RETI	0000	0	0	0	p	0.53323
32	30.3	9.00	10.1	CONV	COHT	0	0	1	1	0.68009 0.89109
33	0.9	38.55	39.5	zero	ROTA	1	1	0	0	0.97694
34	0.2	40.29	40.2	zero	STRP	1	1	0	0	0.97694 1.00324
35	4.5	39.67	35.9	ZERO	CONT	1	1	0	0	1.10471
36 37	2.1 0.5	42.52	38.3	MIHI	ROTA	1	1	0	0	1.10960
36 38	0.5 4.7	44.27	39.9	MINI	STRP	1	1	0	0	1.11036
39	0.8	46.84	35.7 39.6	MIMI	CONT	1	1	0	0	1.17268
40	0.7	47.55	39.7	zero	ROTA	1	1	0	0	1.18193
41	3.0	45.00	37.4	conv	rota	1	1	0	0	1.19803 1.20450
42	0.2	49.29	40.2	zero	STRP	1	1	1	0	1.22551
43	3.4	48.67	37.0	zero	CONT	1	1		0	1.31434
44 45	1.5	51.52	38.8	MINI	ROTA	,	I	,	0	1.32647
45	0.4	53.27	40.0	MINI	STRP	I	I	1	0	1.33175
45	3.5	50.90	36.9	MINI	CONT	,	I			1.37940
47	0.6	55.84	39.8	conv	STRP		1	1	0	1.40231
48	2.3	54.00	38.1	conv	ROTA	1	1	1	0	1.41658
49 50	11.8	46.87	28.5	CONV	CONT	1	1	0	0	1.64226
50	8.9	55.87	31.5	CONV	CONT	1	1	1	0	1.64286 1.77365

[^9]If only those practice combinations that limit erosion to a certain level are of interest. similar printouts which list only those combinations of practices with erosion rates below a given level can be printed.

A similar printout for soybeans as the base row crop on this same soil is shown in sample printout 4. Note that zero tillage has been eliminated as an alternative for soybeans and the base erosion rate for continuous soybeans [47.3 tons per acre) is higher than that for corn. Minimum tillage is also the lowest cost practice for soybeans with savings of $\$ 13.72$ per acre. However, the lowest cost set of practices that would reduce erosion to less that 5 tons is $\$ 18.35$ per acre and consists of minimum tillage, a ro' 'ion, and stripcropping.

Display of Erosion Reduction Versus Costs

The relationship between erosion reduction and costs can be illustrated by plotting the data (sample printouts 5 and 6). Erosion reduction is plotted on the horizontal axis and cost per acre on the vertical axis. The amount of erosion reduction necessary to meet the 5 -ton annual restraint is indicated by the dashed vertical line. Note that a cluster of practice combinations occur to the right of the vertical line and below a cost of $\$ 12$ per acre when corn is the base crop (sample printout 5). The same type of clustering occurs in the $\$ 18$ to $\$ 30$ range when the base crop is soybeans (sample printout 6).

A minimum cost supply function for reducing erosion can be constructed by connecting the lowest cost points for attaining less erosion. The supply curve is a step function because each practice is associated with a specific cost and erosion rate. All practices to the left of this function are economically inferior because they are more costly to those represented on the function. However, some of the more costly combinations of practices might be relevant from an individual farmer's viewpoint. The graph displays the dispersion of costs for various levels of erosion control and illustrates the rapid increase in costs associated with progressively higher rates of erosion reduction. A further capability is to represent different practices by different symbols. For example, if those sets of practices including terraces were of interest, a different symbol could be used in the graph for all those sets including terracing (sample printout 7).

Comparison ef Practice Sequence

To observe the cumulative effects of adding a succession of practices, the erosion-cost data are printed out in a schematic diagram (sample printouts 8 and 9 for corn and soybeans as base crops). Erosion rates, costs per acre, and costs per ton reduction are printed in blocks for each set of practices. The diagrams can be coded manually for easier visual interpretation. Boxes are shaded in those instances where erosion rates are 5 tons or less, annual costs are $\$ 25$ or less, and where the 10 least costly sets of practices occur. Such coding allows one to rapidly locate sets of practices meeting prescribed erosion and cost criteria. (In practice, one could use three distinct colors instead of the single shade. The printing process of this bullet in precluded use of colors.) For corn, it is readily observed that 5 of the 10 least costly sets of practices meet all three criteria while only three are met for soybeans.

The range in costs for the five least costly sets meeting all three criteria for corn is from $\$ 0.01$ to $\$ 2.11$ per acre and the range for three sets of soybeans is from $\$ 18.08$ to $\$ 19.61$ per acre. In both cases, only two single practices, retiring to pasture or idle, would reduce erosion to less than 5 tons per acre. ${ }^{4}$ At least two practices are required to meet the 5-ton limit and maintain land in row crop production.

Rather than using a single crop as the base, as in these examples, a diagram representing a base such as half corn and half soybeans could be printed if that is the typical cropping pattern for a particular soil (sample printout 10).

Sensitivity Analysis of Other Input Costs

Another capability is to simulate changes in conservation costs associated with assumed changes in basic inputs. In this example, energy costs for fuel, chemicals, and fertilizer were assumed to increase up to 50 percent by 10 percentage point increments (sample printouts 11 and 12). The resulting changes in costs of conservation practices are indicated. This type of analysis is useful in exploring the sensitivity of practice costs to changes in basic inputs.

[^10]
Use of Output

This system provides a means of collecting, storing, and displaying erosion and conservation practice cost data by soils and areas. Once collected and stored, the underlying basic data can be easily updated as conditions change or better data become available. Data collected at the field level can be used at the local level in working with farmers on

Bibliography

(1) U.S. Department of Agriculture, Soij Conservation Service, Procedure for Computing Sheet and Rill Erosion on Project Areas, Technical Release No. 51 (Rev.), Jan. 1975.
(2) Cosper, Harold R., Soil Toxonomy as a Guide to Economic Feasibility of Soil Tillage Systems in Reducing Nonpoint Pollution, ESCS Staff Report, Econ. Stat. Coop. Serv., U.S. Dept. Agr. Mar. 1979.
(3) Agriculture Experiment Station, Oklahoma State University, Operations Manual for the Oklahoma State University Enterprise Budget Generator. Research Report P-719. Stillwater, Okla. June 1975.
their conservation plans, at the State level for program planning and budgeting, and at the area, regional, and national level for program and policy analysis. A complete documentation of the computer programs for this system is available by contacting Daryll D. Raitt, ERS. U.S. Department of Agriculture, 705 Hitt Street. Columbia, MO 65201.
(4) Sleper, James R. and James B. Kliebenstein, "Budget Development Through the FEDS Budget Generator." Agriculture Economics Paper 1978-80, Univ. Missouri, Columbia, 1979.
(5] Smith, George E., Robert Blancher, and Robert E. Burwell, "Fertilizer and Pesticides in Runoff and Sediment from Claypan Soil." Missouri Water Resources Research Center, Univ. Missouri, Columbia, May, 1979.
(6) "Agricultural Price Standards, FY 1980," Information Memo, U.S. Water Resources Council, Washington, D.C., Dec. 1979.

Sample printout 4-Ranking of conservation practices by cost per ton erosion reduction for base crop soybeans

REOUCTION IN EROSION TDNS PER ACRE
SORTED BY COST PER TON REDUCTION, SOYBEANS, SRG 124
PRICE 5.96, 1978 COSTS, LRA 109A, MO

DBS	$\begin{aligned} & \text { REMAINIHG } \\ & \text { EROSION } \\ & \text { TONS/ACRE } \end{aligned}$	$\begin{aligned} & \text { COST } \\ & \text { PER } \\ & \text { ACRE } \end{aligned}$	REDUCTION IH EROSION TONS/ACRE	tillage PRACTICE	CROPPING SYSTEM	TERRACE	CONTOUR	WINTER COVER	RETIRE	$\begin{aligned} & \text { COST PER } \\ & \text { TON } \\ & \text { REOUCTION } \end{aligned}$
1	-	.	.	ZERO	CONT	0	0	0	0	-
2	-	.	.	ZERU	CONT	1	1	3	0	.
3	-	-	.	ZERO	CONT	0	0	1	0	.
4	,	-	.	ZERO	CONT	1	1	1	0	
5	-	.	.	ZERO	ROTA	0	0	0	0	-
6	.	.	.	ZERU	ROTA	1	1	0	0	.
7	.	.	.	ZERO	ROTA	0	0	1	0	-
8	.	.	.	ZERO	ROTA	1	1	1	0	,
9		.	.	ZEPO	STRP	0	0	0	0	-
10	-	.	.	ZERD	STRP	1	1	0	0	
11	.	.	-	ZERO	STRP	0	0	1	0	
12	.	.	-	ZEPO	STRP	1	1	1	0	
13	47.3	0.00	0.0	CONV	CONT	0	0	0	0	49891
14	19.8	-13.7	27.5	MINI	CONT	0	0	0	0	-. 49891
15	9.9	-11.1	37.4	HINI	CONT	0	1	0	0	-. 29714
16	14.8	-4.72	32.4	HINI	CONT	0	0	1	0	$-.24545$
17	7.4	-2.11	39.9	MINI	cont	0	1	1	0	-. 05294
18	23.6	3.42	23.6	CONV	COHT	0	1	0	0	0.14467
29	2.2	18.35	45.1	MINI	STRP	0	0	0	0	0.40705
20	4.4	18.01	42.9	MINI	ROTA	0	2	0	0	0.41991
21	17.7	22.42	29.6	CONV	CONT	0	1	1	0	0.42030
22	1.1	19.61	46.2	MINI	STRP	0	1	0	0	0.42473
23	8.8	16.75	38.5	MINI	ROTA	0	0	0	0	0.43506
24	3.0	23.65	44.3	CONV	STRP	0	0	0	0	0.53434
25	1.5	25.22	45.8	CONV	STRP	0	1	0	0	0.55102
26	6.0	23.46	45.2	CONV	ROTA	0	1	0	0	0.56873
27	1.6	27.35	45.6	MINI	STRP	0	0	1	0	0.59939
20	3.3	27.01	44.0	MINI	ROTA	0	1	1	0	0.61414
29	0.8	28.61	46.4	MINI	STRP	0	1	1	0	0.61593
30	12.0	21.89	35.2	COHV	ROTA	0	0	8	0	0.62117
31	6.6	25.75	40.7	MINI	ROTA	0	0	1	0	0.63268
32	2.3	32.65	45.0	COHV	STRP	0	0	1	0	0.72539
53	1.1	34.22	46.1	CONV	STRP	0	1	1	0	0.74166
34	5.9	30.89	41.3	MINI	CONT	1	1	0	0	0.74758
35	4.5	32.46	42.8	COHV	ROTA	0	1	1	0	0.75912
36	35.4	9.00	11.8	carlv	CORT	0	0	1	0	0.76142
37	9.0	30.89	38.2	COHV	ROTA	0	0	1	0	0.80758
38	4.5	39.89	42.8	MINI	CONT	1	1	1	0	0.93201
39	1.1	55.54	46.1	RETE	0000	0	0	0	P	1.20347
40	0.1	62.33	47.2	RETI	0000	0	0	0	1	1.32112
41	0.7	61.61	46.6	MINI	STRP	1	1	0	0	1.32182
42	2.6	60.01	44.6	MINI	ROTA	1	1	0	0	1.34461
43	23.9	46.42	33.4	CONV	CONT	1	1	0	0	1.38982
44	0.9	68.22	46.4	corvy	STRP	3	1	0	0	1.47058
45	10.4	55.42	36.9	CONV	CONT	1	1	1	0	1.50312 1.50973
46	0.5	70.61	46.8	MINI	STRP	1	1	1	0	1.50973 1.51943
47	3.5	66.46	43.7	CONV	ROTA	1	1	0	0	1.51943 1.52374
48	2.0 0.7	69.01 77.22	45.3 46.6	MINI COHV	ROTA	1	1	1	0	1.65673
50	2.6	75.46	44.6	CONV	ROTA	1	1	1	0	1.69117

See text for explanation of todes.

Sample printout 5-Reduction in erosion versus cost per acre for base crop corn

Sample printout 6-Reduction in erosion versus cost per acre for base crop soybeans

Sample priniout 7—Reduction in erosion for practices including and excluding terraces versus cost per acre for base crop corn

Sample printout 8-Remaining erosion, cost per acre, and per ton reduction of erosion for base copop corn (schematic)

Sample printout 8-Remaining erosion, cost per acre, and per ton reduction of erosion for base crop soybeans (schematic)

SOYBEANS			
LRA	$9 A$	SRG	
PRICE	124		
P.96	1979	cosTS	

Sample printout 10-Remaining erosion, costs per acre, and per ton reduction of erosion for base crops half corn and half soybeans [schematic]
MII CROP
0.50 CORK $\quad 0.50$ SOYBEAKS 1979 COSTS

PRACTICE COSTS PER ACRE WITH ENERGY COST INCREASES, CORN

				$\begin{gathered} \text { PRICE } \\ 1979-80 \\ \text { SRG } \end{gathered}$	2.31 24					
	PRESEHT COSTS	$\begin{aligned} & 10 \% \\ & \text { COST INCREASE } \end{aligned}$	$\cos T$	20% INCREASE	$\cos 7$	30\% IMCREASE	$\cos T$	40% IUCREASE	Cost	$\begin{aligned} & 50 \% \\ & \text { INCREASE } \end{aligned}$
MINIMUM TILLAGE	-3.50	-2.65		-1.80		-0.95				
ZERC TILLAGE	-0.67	0.56		1.79		3.02		-0.10		0.75
CORTOUR-CT	3.87 -0.10	4.02		4.17		4.32		4.25 4.47		5.48 4.62
TERRACE \& CONTOUR-CT	-0.10	47.89		17.87		2.85		3.83		4.81
TERAACE \% CONTOUR-MT*	46.87 41.90	47.02		47.17		47.32		47.47		47.62
TEREACE \& CGHTQUR-ZT*	39.67	42.88 41.03		43.87 42.39		44.85		45.83		46.81
WISTER CONER	3.67 9.60	41.03 9.00		42.39 9.00		43.75 9.00		45.11		46.47
ROTATION-CT	. 27	0.40		0.53		9.00 0.66		9.00 0.79		9. 08
ROTATION- Cl (-1.05	-0.62		-0.20		0.23		0.65		0.93 1.08
STRIP CRJPPING-CT*	0.01	0.58		$\frac{1}{2} .15$		1.72		2.29		1.08 2.85
STRIP CROPPIMG-MT*	2.11	2.21		2.41		2.61		2.81		3.01
STRIP CROPPING-ZT*	0.71	1.20		1.69		2.18		2.67		3. 16
RETIRE TO PASTURE*	20.74	2.39 17.01		3.02		3.66		4.29		4.92
RETIRE TO IDEE*	27.73	21.74		3.08 5.75		9.15		5.22 3.77		1.29 -2.22
CT: CONVENTIONAL TILL MT: MINIMUM TILLAGE zt: zero tillage										

Sample printout 12-Sensitivity of conservation practice costs to increase in energy prices for base crop soybeans

PRACTICE COSTS PER ACRE WITH ENERGY COST INCREASES, SOYBEANS

Appendix-Data Sheet for Conservation Practices

IDENTIFICATION	
County	Soil resource group.
Land resource area	Soil name
	Soil mapping unit \qquad

TERRACES

Type:
Spacing:
Construction cost: Tile outlet cost: Grass outlet cost: Other cost:
Total cost per acre:
Grass back slope width, if applicable, feet: \qquad

Appendix-Data Sheet for Conservation Practices-Continued

CROP BUDGET DATA								
Crop	Yields/acre			Product prices	Net income/acre			
	Conv.	Min.	Zero		Conv.	Min.	Zero	
Corn								
Soybeans								
Wheat								
Alfalfa								
Pasture								

END

[^0]: Thathaned mambers in parenthesiss relem to items listed in Bibliogt aphy.

[^1]: ${ }^{2}$ This study is currently underway as a cooperalive effort of the State of Missouri and the U.S. Department of Agriculture.

[^2]: - $\mathrm{R}=$ rainfall factor
 $K=$ soil erodability factor
 $L=$ slope length factor

[^3]: TWeighted by colal inventory acres

[^4]: ${ }^{3}$ About 15 percent more pitrogen is required with zero tillage to obtain yeleds similar to those wilh conventional or minimum tillage (5).

[^5]: Oulput from compuler program as cited in (3).

[^6]: TOulput from computer program as cited in (3).

[^7]: ${ }^{1}$ From budget generator. Machinery and labor costs include the following items: Iractor fuel and lube, tractor repair, equipnent fuel and lube, equipment repair, and machine labor.
 ${ }^{2}$ Net income for rotation RRRGMMMM computed as follows: row crop (R) net income $\mathrm{X} 0.375+$ wheat (G) net income (-17.24) X 0.125 * alfalfa (M) net income (38.44) X 0.5.
 ${ }^{5}$ Machine and labor cost for rotalion RRRGMMMM computed as follows: cost for row crop $\times 0.375+$ wheat cost $\{22.85\} \times 0.125$.
 'Contour costs are 10 percent of machine and labor costs.
 ${ }^{3}$ Stripcropping costs are 5 percent of machine and labor cosis. Stripcropping can be practiced only if a rotalion is practiced.

[^8]: ${ }^{3} \mathrm{C}=$ conventional tillage: $\mathrm{M}=$ minimum tillage: $\mathrm{Z}=$ zera tillage.
 ${ }^{2}$ Cost per fool based on $\$ 0.60$ per yard from Jim Gregory, Universit y of Missouri, Agricultural Engineering.
 Pased on 15 -percent amnual charge for capital and maintenance.
 -Terraces are nol recommended by SCS on these soils.
 -Pushup lerraces.

[^9]: See texl for explanation of codes.

[^10]: *The cost of retiring land to idle represents the nel income for the row crop continuously tilled with noconservation practices. This is the amount of forgone income if the land is idled.

