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Abstract 
The determinants of the technical efficiency (TE) of adopters and non-adopters of soil and 
water conservation (SWC) technologies in the upper Rwizi micro-catchment of south-western 
Uganda are compared using cross-sectional survey data from 246 smallholder farmers. A 
Cobb-Douglas stochastic production frontier and a probit selection model fitted to generate 
inverse Mills ratios for adopters and non-adopters are used in the analysis. On average, the 
adopters of SWC technologies were found to own more land and livestock and to obtain more 
output per unit of land than their non-adopter counterparts. In addition, adopters exhibit 
higher average TE than non-adopters. Banana production technology in the upper Rwizi 
micro-catchment exhibits decreasing returns to scale, and determinants of TE include 
education, adoption of SWC and distance to markets. Smallholder farmers in the micro-
catchment who adopt SWC technologies attain higher productivity. 
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1. Introduction 
 

Stagnant or declining agricultural productivity has been registered in sub-Saharan Africa 
(SSA). In SSA, both crop output and yield growth lag behind population growth, with 
declining per-capita crop yields (Cornia 1985; Sanchez & Leakey 1997; Diao et al. 2010). 
The decline in crop yield is attributed to land degradation, which is a result of various factors, 
among others soil erosion, nutrient mining, and the inability of smallholder farmers to adopt 
technologies that enhance soil conservation and soil fertility (Bojö 1996; Mbaga-Semgalawe 
& Folmer 2000).  
 
In Uganda, high rates of land degradation have been reported in areas categorised as land 
degradation ‘hotspots’, including the south-western highlands, the eastern highlands, the 
Lake Victoria crescent and parts of the northeast (Nkonya et al. 2005; NEMA 2007, 2009). 
Limited use of soil fertility-enhancing inputs such as mineral fertilizers by smallholder 
farmers has also been reported (Pender et al. 2001). Soil nutrients are lost as a result of soil 
erosion, leaching and harvesting practices, especially in the case of root crops (Wortmann & 
Kaizzi 1998; Isabirye et al. 2007). Soil fertility depletion results in a loss of Uganda’s natural 
soil capital, and in reduced agricultural productivity, incomes and food security (Bekunda 
1999; Pender et al. 1999; Bagamba 2007). Soil fertility mining in Uganda is among the 
highest in SSA, estimated at 70 kg/ha per year for nitrogen, phosphorus and potassium 
(Stoorvogel & Smaling 1990; Nkonya et al. 2005). 
 
Average crop yields at the farm level are much lower than yields attained at research 
institutes in Uganda (Nabbumba & Bahiigwa 2003; Pender 2004). This wide discrepancy is 
attributable to differences in management, limited use of productivity-enhancing technologies 
and continued soil mining (Bekunda 1999). These low yields imply that returns to factors of 
production are diminished. The ratio of measured output to the maximum potential output is 
referred to as technical efficiency (TE) (Aigner et al. 1977; Bravo-Ureta & Pinheiro 1993; 
Quisumbing 1996; Coelli et al. 2005; Mayen et al. 2010). Similarly, technical inefficiency 
(TI) is the extent to which observed output deviates from the potential maximum output 
(Battese & Broca 1997). Knowing the extent and potential sources of TI is an important pre-
condition for targeting prescriptions and interventions to address problems (Sherlund et al. 
2002). TE is estimated using either panel data or cross-sectional data fitted to stochastic 
production frontier (SPF) functions (parametric methods) or non-parametric approaches 
through linear programming (data envelopment analysis) (Battese & Coelli 1995; 
Quisumbing 1996).  
 
In this paper we investigate productivity differentials associated with the adoption of SWC 
technologies in banana production in the upper Rwizi micro-catchment using a Heckman 
procedure to correct for self-selection of households into adopters and non-adopters. We use 
probit models from which inverse Mills ratios (IMR) are generated for adopter and non-
adopter groups. The IMRs are used as regressors in a Cobb-Douglas SPF, estimated using 
maximum likelihood estimation (MLE) techniques. In addition, we account for variation in 
TE and the returns to scale parameters, and predict TE scores in banana production. The 
remainder of this paper is organised into four sections. A review of production frontier 
estimation is contained in section two. Section three outlines the data, section four presents 
the methods, and the results and discussion are in section five. Finally, section six contains 
the conclusions and implications of the study. 
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2. Stochastic Production Frontier 
 
Various methods have been used in the measurement of the TE of farm enterprises. TE can 
be estimated using either one-step or two-step approaches. In the two-step method, the 
production frontier is estimated first, and then the TE of each firm is determined. The derived 
TE variable is then regressed against a set of factors that influence the farm’s efficiency 
(Kalirajan 1981). However, the two-step method has been criticised for lack of consistency in 
the assumptions about the distribution of the inefficiencies (Battese & Coelli 1992; 
Kumbhakar & Lovell 2000; Binam et al. 2004). Kumbhakar et al. (1991) suggested that the 
inconsistency is fixed by estimating all the parameters using a one-step procedure. The one-
step procedure was adopted for this study. TI effects are defined as a function of farm-
specific factors and used directly in the MLE, employing the half normal distributional 
assumption for TI. Output-oriented TE is measured as the ratio of actual output to the 
maximum possible output (Quisumbing 1996; Mayen et al. 2010). Any deviation from the 
maximal output is considered to be due to the random component reflecting measurement 
errors, statistical noise and farm-specific TI components (Coelli et al. 2005; Ogundele & 
Okuruwa 2006), and a farm that operates on the production frontier has a TE of 100% 
(Mayen et al. 2010). 
 
The analysis of TE involves two components. The first component considers the estimation 
of a stochastic production frontierthat serves as a benchmark upon which to estimate the TE 
of producers (Kumbhakar & Lovell 2000). The objective of the first component is to estimate 
the efficiency with which producers allocate their inputs in the production process. According 
to Kumbhakar and Lovell (2000), the second component concerns the incorporation of 
exogenous variables, which are neither inputs to the production process nor outputs of it, but 
which nonetheless exert an influence on producer performance. The incorporation of 
exogenous variables in the second part enables us to explain the observed variation in TE 
among the producers. These exogenous variables represent the production environment that 
the producers face and are believed to be beyond the control of the individual farmers. 
Examples of exogenous variables that explain variation in TE include degree of competitive 
pressure, network characteristics, form of ownership and various managerial characteristics 
(Kumbhakar & Lovell 2000). Moreover, these exogenous variables may influence the 
structure of the technology by which conventional inputs are converted into output(s). 
 
TE is affected by a wide range of factors, ranging from farm-specific to village-specific 
factors (Bagamba 2007). Other authors have pointed out that farm-level inefficiency is 
associated with management experience, education, family size and composition, farming 
experience, proximity to markets and credit (Bravo-Ureta & Pinheiro 1993; Chiang et al. 
2004; Binam et al. 2004; Bäckman et al. 2011). Education of the household head has been 
reported to increase TE, since educated households tend to have more access to information 
and thus are more able to utilise new technologies to attain higher efficiency levels in 
production (Battese & Coelli 1995). Access to agricultural extension closes the technology 
and management gaps of small-scale farmers. Consequently, access to agricultural extension 
plays an indirect role in contributing to potential output by reducing the TI of farmers through 
improving managerial ability and efficient utilisation of technologies (Dinar et al. 2007).  
 
3. Data 
  
Data for this study were collected in a cross-sectional household survey in the upper Rwizi 
micro-catchment of south-western Uganda between 2010 and 2011. The survey participants 
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consisted of 246 randomly selected smallholder banana farmers in nine sub-counties in the 
districts of Mbarara, Bushenyi and Ntungamo (Mugonola et al. 2012). This region has high 
agricultural potential, and with high rainfall it is prone to soil erosion and land degradation 
(Grisley & Mwesigwa 1994). Variables used in the analysis are defined in Table 1 and in the 
following discussion.   
 
Table 1: Variables in the SPF, probit and inefficiency effects models 
Variable Model Definition 
SWC  A Adoption of SWC (1: yes; 0: otherwise)  
Log-ban  SPF Natural log of value of banana output (UGX) 
Log-asset SPF Natural logo of value of productive assets (UGX) 
Log-land SPF Natural log of land in banana (ha) 
Log-labor SPF Natural log of value of labour (UGX) 
Manure SPF Manure use (1: yes; 0: otherwise) 
Total land A Total land owned (ha) 
Total output A Natural log of total output (UGX) 
TLU A Tropical livestock unit 
Famsize A Number of people in the household  
Age A/TI Age of household head (years) 
Edu A/TI Education level of household head (years) 
Farmexp A Farming experience (years) 
Sex A/TI  Gender of household head (1: male; 0: female) 
Income A/TI Main source of income (1: agric; 0: otherwise) 
Credit TI Access credit (1: yes; 0: otherwise) 
Ext A/TI Access to extension (1: yes; 0: otherwise) 
Travelag TI Travel time to agricultural parcel (minutes) 
Travelmkts TI Travel to time markets (minutes) 
TLU A Tropical livestock units 
Subcounty SPF/A Of respondent (where 1 = Bukiro, 2 = Bubaare, 3 = Rwanyamahembe,  

4 = Rwengwe, 5 = Bugamba, 6 = Kyangenyi, 7 = Rugando, the omitted or 
reference variable, 8 = Ndeija, 9 = Itojo) 

Dummy-eros A Dummy variable for severe erosion (1: yes; 0: otherwise)  
Note: A is adoption model, SPF is stochastic production frontier model, and TI is inefficiency effects model. 
 
 
The value of output Y: Banana (Musa spp.) is the major staple food crop for most of Uganda, 
and the country is the largest producer and consumer of bananas (10.5 million tons per 
annum) (FAOSTAT 2006). It is mostly in banana production that farmers apply SWC 
technologies. The gross value of output of each household is derived by multiplying each 
household’s physical production (yi) by the farm-gate price (pi) at the time of the study: Yi = 
piyi.  
 
Value of labour for banana production (Lban): This variable includes all labour supplied for 
banana production activities during the season. The amount of labour is the sum of labour 
supplied by the family (lf) and any hired labour (lh) measured in man-hours. The average 
local wage rate (w) is used to determine the value of agricultural labour by multiplying the 
total number of man-hours1 by the average local wage rate: Lban = w∑ (lf + lh).  
 
Capital: This variable consists of the monetary book value of tools and equipment owned. 
The tools and equipment are depreciated to determine their book value using the straight-line 

                                                 
1 A day’s work in the study area is five hours and the total man-hours are calculated using the formula: One 
adult male working for one day equals one man-day; one adult female or one child working for one day equals 
0.75 and 0.5 man-days respectively (Battese & Broca 1997).  
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method of depreciation. These book values are aggregated to arrive at the overall physical 
asset profiles of the households.  
 
Land: This variable is the total land area (Ha) allocated to banana production. Farmers select 
land for a particular crop based on its inherent fertility potential, past experience, and local 
indicators of land suitability to crop-specific production requirements. Farmers rely on soil 
colour, stoniness, depth and natural vegetation as determinants of underlying fertility 
potential (Gowing et al. 2004).  
 
Soil conservation dummy: A dummy variable is used to capture whether farmers have any of 
the SWC technologies on any of their parcels of land, such as grass strips, retention ditches, 
agro-forestry techniques, and so forth. 
  
4. Methods 
 
An SPF was estimated, defining for each farm i the maximum output and a set of inputs as 
(Kumbhakar & Lovell 2000; Coelli et al. 2005; Mayen et al. 2010):  

)1()exp();( iii vXfY 

 
where 

iY is the maximum feasible stochastic output obtained from the ith farm that uses a 

vector of inputs, Xi and vi are statistical random errors assumed to be independently and 
identically distributed N(0,σv

2) (Binam et al. 2004; Sipiläinen & Oude-Lansink 2005; 
Ogundele & Okuruwa 2006; Bäckman et al. 2011). The actual production on the ith farm is 
modelled as follows: 

)2()exp( iii uYY  

 
where exp(-ui) is the measure of observed output-oriented technical efficiency (TEi) of the ith 
farm, where TEi ≤ 1 implies that ui ≥ 0. When ui equals zero, the ith farm is technically 
efficient and realises its maximum possible output. Therefore TEi in the SPF framework can 
be defined (Battese & Coelli 1992; Coelli et al. 2005) as the ratio of the observed output to 
the corresponding frontier output, conditional on the levels of inputs used by the ith farm: 
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By substituting equation (1) into equation (2) and taking the log of both sides, we get: 

)4();(lnln iiii uvXfY  
 

where ui is a one-sided non-negative random variable representing the TI on the ith farm 
(Binam et al. 2004; Ogundele & Okuruwa 2006; Bäckman et al. 2011). TEi = e-u and TE is 
bounded by [0, 1]; when ui = 0, then TE = 1 and production is said to be technically efficient. 
Otherwise production is inefficient. The term ui can take on various distributional forms, 
ranging from the half normal distribution with zero mean and the truncated normal 
distribution, to truncated (at mean, μ), or be based on a conditional expectation of the 
exponential (-ui), or have gamma distribution (Bravo-Ureta & Pinheiro 1993; Kumbhakar & 
Lovell 2000). The model for TI effects by Battese and Coelli (1995) is used to estimate and 
define TI as: 

)5(iii zu  
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where zi is vector of the explanatory variables of TI effects; δ is a vector of unknown 
parameters to be estimated; ηi are unobservable random variables; and ui is defined by the 
half normal distribution with zero mean and variance, σu

2 (Kumbhakar & Lovell 2000; 
Chiang et al. 2004). The parameters, δ, indicate the impacts of the variables in z on TE. A 
negative value for any δ means that an increase in the variable improves TE and vice versa. 
The null hypothesis that the TI effects are not random is expressed by H0: σu = 0. Accepting 
the null hypothesis that σu = 0 indicates that σu

2 is zero, and thus the term ui should be 
removed from the model, leaving the specification that can be consistently estimated by 
ordinary least squares (OLS) (Coelli, 1994). In addition, the null hypothesis that the impact of 
the variables in vector z in equation (5) on the TI effects is zero is given by H0: δ` = 0, where 
δ` denotes the vector δ, with the constant term δ0 omitted (Battese & Broca 1997). The MLE 
of the parameters of the model is parameterized as 22222 / vusuv and    (Aigner et 

al. 1977). 
 
4.1 Model specification 
 
In this paper we adopt an approach used by Savadogo et al. (1994) but, instead of fitting a 
production function, we estimate the Cobb-Douglas2 (C-D) SPF, to determine productivity 
differentials in terms of average TE and factors that explain variation in TE of adopters and 
non-adopters of SWC technologies. We estimate and compare the results of the C-D SPF 
using the specification: 

 )6()(lnlnY
4

1
0 iiiiiik

k
ki zvX   



 

where Yi is the value of banana output; Xi1 is land under banana production; Xi2
 is the value 

of labour for banana production; Xi3 is the book value of the productive assets; Xi4 is manure 
use (1: yes; 0: otherwise); Гi = IMR for adopters and non-adopters; β0, βi, δ and γi are 
parameters to be estimated; and vi is the idiosyncratic random error. 
 
The model for the TI effects from equation (5) is: 

)7(FamsizeTravelagTravelmktExtEduFarmexp 6543210 iiu  
 

where the variables are as defined in Table 1. 
 
The individual household’s decision on whether or not to adopt a technology is dependent on 
the expected benefits from their actions. The decision to adopt SWC technologies can be 
calculated as follows: 
 

)8(),......,2,1(,* NiDWSWC iiii  
 

where SWC* is an unobserved latent variable underlying the household’s decision to adopt 
SWC. The observed dichotomous variable SWC has the value 0 for SWC* ≤ 0 (non-
adoption), or 1 for SWC* > 0 (adoption of SWC). Wi refers to household socio-economic 
characteristics and institutional services (Table 1), Di is a dummy for the presence of severe 
soil erosion on the farm, and θ and γ are parameters to be estimated. The probability that an 
individual household adopts SWC technology is: 

                                                 
2 Our choice of the Cobb-Douglas production frontier is motivated by the fact that it is simple to estimate and 
fulfils the strong monotonicity condition desirable for the output-oriented measure of TE (Kumbhakar & Lovell 
2000).  
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)9(][]0Pr[)1Pr(  iiiiii DWDWSWC   

 
where ][  ii DW   is the standard normal cumulative distribution function (Evans & 

Schwab 1995).  
 
Using equation (9) and the estimated parameters (θ and γ), the IMR corresponding to self-
selection of the households into adopters or non-adopters is generated (Savadogo et al. 1994). 
Self-selection arises because individuals self-select into certain behaviours or programmes, 
thus participation is not determined randomly (Wooldridge 2009). Initially, equation (9) is 
estimated and the resulting values of the vector θ are used to compute the vectors of the 
IMRs, Γ1 and Γ0 for adopters and non-adopters. The second step is to estimate the SPF by 
including the IMRs (Γ1 & Γ0) as regressors. A test of significance of Γ1 & Γ0 determines the 
relevance of the selectivity model (Sipiläinen & Oude-Lansink 2005).  
 
4.2 Endogeneity 
 
While we use a discrete probit model to correct for the self-selection of smallholder farmers 
into adopters and non-adopters of SWC technologies, some of the regressors are potentially 
endogenous. Endogeneity arises if the decision to use observed inputs is conditioned on the 
unobserved attributes (Jacoby 1992; Evans & Schwab 1995). For instance, land size may be 
correlated with land quality characteristics and hence may not be exogenous (Quisumbing 
1996). Therefore, any estimation techniques that do not adequately correct for these 
unobservable variables may result in biased estimates (Sherlund et al. 2002). Due to a lack of 
suitable instruments, we are unable to correct for endogeneity in some of the regressors. We 
estimate five C-D SPF models. Model I presents results of the SPF and TI effects for the 
pooled sample, model II presents results of the SPF, TI effects, SWC adoption dummy and 
instrumental probit residuals, while model III presents results of the SPF and TI effects and 
the SWC adoption dummy. In the last two models, IV and V, the SPF, IMR and TI effects are 
estimated for the adopters and non-adopters.  
 
5. Results and Discussion 
 
The results for the adopters and non-adopters of SWC and the pooled sample in the upper 
Rwizi micro-catchment are presented in Table 2. The sample has 246 observations, consisting 
of 116 adopters and 130 non-adopters. The book value of tools and equipment, the value of 
banana output, the TLU and land allocated to banana cultivation were significantly higher for 
the adopters than their non-adopter counterparts. The average time of travel to markets was 
significantly higher for the non-adopters than the adopters.  
 
The mean differences of the remaining characteristics are not significantly different across 
the two groups (Table 2). For instance, Famsize does not differ across adopters and non-
adopters. This implies that the adopters and non-adopters roughly had the same amount of 
family labour available.  
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Table 2: Description and summary statistics of variables   
Variable Adopters 

N = 116 

Non-adopters 

N = 130 

Mean diff Pooled  

N = 246 

Age 46.4 (1.3) 45.4 (1.3) 1.0 (1.8) 45.9 (0.9) 

Edu 5.9 (0.4) 5.6 (0.3) 0.3 (0.5) 5.8 (0.2) 

Famsize 7.0 (0.3) 6.9 (0.2) 0.1 (0.4) 6.9 (0.7) 

Farmexp 24.3 (1.3) 22.6 (1.2) 1.7 (1.8) 23.4 (0.9) 

Log-land 0.5 (0.1) 0.4 (0.1) 0.1 (0.1)* 0.4 (0.05) 

Log-asset 10.3 (0.1) 10.1 (0.1) 0.2 (0.1)** 10.2 (0.04) 

Log-labor 10.5 (0.1) 10.6 (0.1) -0.02 (0.1) 10.6 (0.03) 

Log-ban 12.8 (0.1) 12.4 (0.1) 0.4 (0.1)*** 12.6 (0.1) 

TLU 2.8 (0.7) 1.3 (0.3) 1.6 (0.7)** 2.0 (0.4) 

Travelag 30.8 (3.2) 31.1 (2.8) -0.3 (4.2) 31.0 (2.1) 

Travelmkt 76.6 (4.7) 94.0 (7.0) -17.4 (8.7)** 85.8 (4.3) 

Note: Numbers in parentheses are standard errors; ***, ** and * imply significance at 1%, 5% and 10% 
respectively; variables are defined in Table 1.   
 
5.1 Results of the C-D SPF 
 
The results of the different C-D production frontiers, I to V, are presented in Table 3. These 
models are all estimated using MLE techniques, assuming the half normal distribution for the 
TI effects. Moreover, a likelihood ratio test confirms the presence of stochastic TI and 
warrants SPF estimation techniques.   
 
The probit selection models used to generate IMR fit the data well. Predicted residuals from 
the probit modelling were used as regressors in frontier model II (Table 3). The probit models 
adequately fit the data, with a 70% correct prediction of adopters and non-adopters. The 
results of the probit models are not presented, but are available upon request. 
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Table 3: Results of Cobb-Douglas SPF function estimation for the pooled sample, adopters and non-adopters in the upper Rwizi micro-
catchment 
Variable Model I 

N = 246 
 

Model II 
N = 246 

 

Model III 
N = 246 

 

Model IV 
N = 116 

Adopters 

Model V 
N = 130 

Non-adopters 
Constant 7.97 (1.250)*** 7.53 (1.09)*** 7.82 (1.23)*** 11.25 (1.11)*** 8.74 (1.05)*** 
Log-land 0.33 (0.078)*** 0.32 (0.070)*** 0.32 (0.080)*** 0.35 (0.070)*** 0.33 (0.070)*** 
Log-labor 0.26 (0.102)* 0.24 (0.088)*** 0.27 (0.100)*** 0.16 (0.090)* 0.16 (0.090)* 
Log-asset 0.23 (0.085)*** 0.23 (0.072)*** 0.23 (0.083)*** 0.10 (0.08) 0.10 (0.073) 
Manure 0.15 (0.103) 0.06 (0.092) 0.15 (0.100) 0.02 (0.10) 0.04 (0.09) 
Sub county1 0.20 (0.210) 0.45 (0.189)** 0.070 (0.210) 0.61 (0.18)*** 0.63 (0.19)*** 
Sub county2 0.37 (0.210)* 0.71 (0.177)*** 0.44 (0.202)** 0.71 (0.18)*** 0.75 (0.19)*** 
Sub county3 -0.10 (0.220) -0.17 (0.173) -0.11 (0.211) -0.28 (0.18) -0.31 (0.19) 
Sub county4 -0.22 (0.212) 0.04 (0.181) -0.18 (0.210) 0.18 (0.19) 0.19 (0.19) 
Sub county5 0.32 (0.207) 0.41 (0.171)** 0.34 (0.200)* 0.40 (0.18)** 0.31 (0.18)* 
Sub county6 0.11 (0.205) 0.40 (0.177)** 0.15 (0.200) 0.48 (0.18)*** 0.50 (0.19)*** 
Sub county8 0.67 (0.22)*** 1.10 (0.220)*** 0.72 (0.220)*** 1.33 (0.19)*** 1.35 (0.20)*** 
Sub county9 0.17 (0.198) 0.56 (0.175)*** 0.22 (0.194) 0.83 (0.18)*** 0.81 (0.19)*** 
IMR Na Na Na -1.37 (0.14)*** 1.41 (0.16)*** 
Log likelihood -286 -247 -282 -244 -247 
Wald chi-square 125*** 172*** 133*** 290*** 267*** 
Note: Numbers in parentheses are standard errors; ***, **, * imply significance at 1%, 5% and 10% respectively;   
Na = not applicable; variables are as defined in Table 1. 
 



AfJARE Vol 8 No 1  Mugonola et al. 

22 
 

In models I, II and III land, labour and productive assets all significantly (1%) and positively 
influence banana output among smallholder farmers, except for labour in model I, at 10%. 
Based on these results, a 1% increase in land allocated to banana production is likely to 
increase the value of banana output by 0.32%, a 1% increase in the value of labour is likely to 
increase the value of banana output by 0.27%, while a 1% increase in productive assets is 
likely to result in a 0.23% increase in the value of banana output ceteris paribus. The results 
of models I, IV and V are different in terms of significant variables. The partial elasticity of 
banana output with respect to land is significant (1%) and positive in these three models, but 
the partial elasticity with respect to assets is not significant in models IV and V (Table 3). For 
adopters and non-adopters, the partial elasticities of banana output with respect to labour and 
assets are equal at 0.16 and 0.10; with labour significant at 10%, but insignificant for assets 
(Table 3, models IV &V). The partial elasticity of manure is not significant, although 
positive, in all models. This finding suggests that the manure quantities being used are 
insufficient to have any meaningful impact on banana output.  
 
In addition, banana output varies from one sub-county to another, relative to the base case 
(sub-county 7). Banana output is significantly higher in sub-county 2 and 8 in model I, and in 
sub-counties 1, 2, 5, 6, 8 and 9 in model II. However, banana output declines in sub-county 3 
(although not significant) relative to the base case sub-county 7. This result is not surprising, 
because livestock keeping predominates in sub-county 3, with limited banana production. 
Similarly, sub-county 4 is relatively dry and hilly, with limited banana production except in 
the valley bottoms. 
 
The results of model IV and V further indicate that the self-selection of smallholder farmers 
into adopters and non-adopters is an issue (Table 3). The coefficient on the IMR is significant 
(1%) and negative for the adopter sub-sample, but positive and significant (1%) for the non-
adopters, thus estimating the SPF without accounting for self-selection leads to selectivity 
bias. 
 
5.2 Determinants of technical efficiency 
 
The TE of the various models is presented in Table 4. Factors that influence the TI/TE 
include adoption of SWC technologies, age, level of education, sex of the household head, 
agricultural extension, income source, credit access, distance to agricultural parcels and 
distance to markets. The factors that consistently show negative signs include education, 
access to agricultural credit, distance to agricultural parcels and adoption of SWC 
technologies in models II and III. Increasing these factors with the negative signs increases 
technical efficiency (decreases technical inefficiency) with varying levels of significance. 
Education level is particularly significant, given that more educated farmers have higher TE. 
However, the negative sign of travel time to agricultural parcels is counterintuitive, as TE is 
expected to decrease with increasing travel time to land parcels from the homestead. As the 
travel time increases it becomes cumbersome to transport bulky inputs like manure and 
mulching materials. On the other hand, travel time to markets is consistently positive and 
significant across all the models (Table 4), indicating that TE decreases as it becomes more 
time consuming for the household to reach markets.  
 
Using the pooled sample in model I, average TE is calculated to be 51%, which implies that, 
with no distinction between adopters and non-adopters, the farmers produce 51% of the 
maximum attainable output on average. With 49% of output lost due to inefficiency, there is 
great potential for improvement, provided the farmers allocate their production inputs 
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efficiently. Comparison of average TE between adopters and non-adopters of SWC 
technologies also reveals that the mean difference in TE is about 7%, at a significance level 
of 1% (using a two sample t-test), with the adopters being more efficient than the non-
adopters.  
 
5.3 Returns to scale and elasticity of production  
 
The elasticity of production with respect to land, labour and productive assets, and the returns 
to scale in banana production for the adopters and non-adopters of SWC and the overall 
sample for banana production in the upper Rwizi micro-catchment are given (in Table 5), 
based on the coefficients in Table 3. The partial output elasticities are in the same range for 
both adopters and non-adopters. However, the partial elasticity for labour and productive 
assets in the overall sample models is bigger than the corresponding values for the adopters 
and non-adopter models (Table 5).  
 
The sum of the elasticities of production of land, labour and productive assets is less than one 
for the adopters, non-adopters and overall sample, indicating the existence of decreasing 
returns to scale (DRS) in banana production in the upper Rwizi micro-catchment (Table 5). 
DRS arise where proportional changes in all inputs in production result in less than the 
proportional change in output.    
 
Table 5: Returns to scale and elasticity of production for banana in the upper Rwizi 
micro-catchment 
 Elasticity of production Returns to scale 
Model Log-land Log-labour Log-assets  
Model I 0.33 0.26 0.23 0.82 
Model II 0.32 0.24 0.23 0.79 
Model III 0.32 0.27 0.23 0.82 
Model IV 0.35 0.16 0.10 0.61 
Model V 0.33 0.16 0.10 0.59 
Note: Variables are as defined in Table 1. 
 
 
5.4 Robustness tests 
 
Various tests were used to test the robustness of the SPF models. These tests include 
likelihood ratio tests, the lincom test and linktest, and t-tests for individual coefficients and 
average TE of adopters and non-adopters of SWC technologies. The chi-square tests confirm 
the presence of TI in the production structure, and therefore fitting an SPF with TI effects is 
appropriate. This implies that the use of OLS techniques is insufficient to account for the 
variation in output, because some of the variation is due to TI and statistical noise in the data. 
Moreover, the results suggest that the variation attributable to TI is larger than that from 
random statistical noise. Further, with a chi-square of 5.98 (p = 0.0144) we reject the null 
hypothesis of constant returns to Scale (CRS). Indeed, in all five models the null hypothesis 
of CRS is rejected at the 10% significance level.  
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Table 4: Results of TI effects model estimation and determinants of TE in the upper Rwizi micro-catchment 
Variable Model I 

N = 246 
 

Model II 
N = 246 

 

Model III 
N = 246 

 

Model IV 
N = 116 

Adopters 

Model V 
N = 130 

Non-adopters 
Probit residuals Na -12.2 (2.34)*** Na Na Na 
SWC Na -0.07 (0.43) -0.65 (0.240)*** Na Na 
Age 0.001 (0.009) -0.002 (0.015) 0.003 (0.0088) 0.0002 (0.01) 0.001 (0.01) 
Edu -0.037 (0.034) -0.12 (0.065)* -0.0357 (0.036) -0.10 (0.04)** -0.08 (0.04)** 
Ext -0.004 (0.271) 1.78 (0.555)*** -0.021 (0.276) 0.92 (0.33)*** 0.92 (0.32)*** 
Sex 0.344 (0.301) 1.80 (0.580)*** 0.48 (0.309) 1.55 (0.56)*** 1.20 (0.43)*** 
Income -0.830 (0.313)*** 1.27 (0.585)** -0.67 (0.318)** -0.21 (0.37) -0.57 (0.34)* 
Credit -0.249 (0.266) -0.04 (0.455) -0.19 (0.271) -0.29 (0.31) -0.45 (0.28) 
Travelag -0.005 (0.004) -0.013 (0.006)* -0.004 (0.004) -0.005 (0.004) -0.001 (0.004) 
Travelmkt 0.006 (0.002)*** 0.005 (0.002)* 0.006 (0.002)*** 0.01 (0.002)*** 0.006 (0.002)*** 
σv 0.46 (0.06) 0.46 (0.060) 0.460 (0.06) 0.449 (0.06) 0.412 (0.06) 

Mean TE 0.511 0.706 0.518 0.584 0.556 
Note: Numbers in parentheses are standard errors; ***, **, * imply significance at 1%, 5% and 10% respectively;   
Na = not applicable; variables are as defined in Table 1. 
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6. Conclusions  
 
In this paper we determined the productivity differential between the adopters and non-
adopters of SWC technologies in banana production in the upper Rwizi micro-catchment of 
south-western Uganda. Since adoption decisions are dependent on the farmers and may not 
be entirely random, a Heckman procedure for correcting self-selection bias was used. After 
generating the inverse Mills ratios for the adopter and non-adopter groups, SPF functions 
were fitted to determine the factors affecting TE.  
 
The results of the C-D SPF show that TE gains of 49% are possible in smallholder banana 
production. The smallholder farmers exhibit high levels of inefficiency in banana production, 
obtaining on average 51% of the maximum potential output. Further, the land area has the 
highest production elasticity among adopters and non-adopters. The production elasticities 
are in order of decreasing magnitude from land to labour and, finally, productive assets.  
 
That the banana production technology in the upper Rwizi micro-catchment exhibits DRS 
implies, ceteris paribus, that the smallholder farmers in the upper Rwizi micro-catchment are 
in a production stage at which they should not just be adding more traditional inputs to 
banana production. That is, other land quality-enhancing inputs are needed to further improve 
the productivity of the existing traditional inputs. For example, the adoption of SWC 
technologies enhances the productivity of smallholder farmers in the upper Rwizi micro-
catchment. That is, adopters of SWC are significantly more efficient than their non-adopting 
counterparts.  
 
In analysing the sources of TI, two factors have consistently shown the same signs across the 
different models. These are education level and distance to markets. Education level 
positively impacts on TE, presumably because farmers who are more educated more easily 
learn about and adopt new technologies and efficiently allocate production inputs. Thus, in 
the longer term, increasing the education level of the banana producers could increase their 
TE.   
 
Our results further reveal that TI is also positively correlated with increasing travel time to 
markets. This indicates that the farther away smallholder farmers are from markets, the lower 
their TE in banana production. Improved market access enables smallholder farmers to 
acquire the production inputs and improved farm-gate prices that could act to incentivise 
them to embrace land improvement technologies. Therefore, a shorter term programme for 
improving TE could be to improve infrastructure to reduce travel time to markets. 
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