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Introduction 

The context of row crop risk management continues to grow more complex.  While the 

magnitude of price and yield risk changes over time, the development of sophisticated risk 

management tools and complex government policies may improve growers’ ability to manage 

risk -- if these instruments are used correctly. Conversely, these instruments may actually 

increase risk exposure if used incorrectly.  Gone are the days when growers had access only to 

individual yield insurance and national triggered price programs.  In 1996, revenue insurance 

became available for many crop growers. For most major crops, the acreage covered by 

revenue insurance now far exceeds that covered by yield insurance. The 2008 farm bill 

created the complex risk policies of ACRE and SURE (Ubilava et al.). Mitchell et al. argue 

that ACRE, which subsumed multiple revenue risks and integrated with other risk 

instruments, was difficult for growers to understand and difficult for county USDA officials to 

implement.  Current farm bill proposals are now focused on various shallow loss programs 

such as Agricultural Risk Coverage (ARC), Stacked Income Protection Plan (STAX) and 

Supplemental Coverage Option (SCO) which layer risk protection on top of crop insurance.  

Thus, producers are likely to continue to be confronted with complex risk management tools 

which may overlap or leave gaps in risk protection.  Further, the decision becomes even more 

complex when one considers the possibility of also using futures or forward contracts. 

Implications for risk management education 

The additional complexity of the risk management context also challenges those who 

educate and advise crop producers on risk management decisions.  Simply interpreting the 

mechanics of SCO is not easy because of the complex design.  Furthermore analyzing the 

potential implications and choices a producer may make with such a product also involves 



stochastic analysis. In this paper we make the argument that while tremendous advances in the 

ability to model agricultural risk have been made, we are still constrained by a widespread 

lack of farm-level data.  This is particularly challenging given the nature of crop revenue risk.  

We argue this has significant implications for extension and educational programs.  

Frequently, those involved in working with crop producers are asked to advise 

producers regarding risk policy and risk management decisions.  The more complex the 

problem the more likely we will be asked for guidance.  Thus, it appears we are truly in a 

teachable moment.  Having said that, what approach should one take when asked for risk 

management recommendations?  Over the course of our careers the authors have seen a gamut 

of approaches that we describe as ranging from one extreme which essentially emulates the 

admonition from Hippocrates “ to first do no harm” to the opposite extreme that we 

characterize as “If they want it bad they will get it bad.”  Our premise in this paper is that we 

can improve producer risk management if the right approaches are taken, but caution is 

merited or we will mislead clientele with faulty analysis. 

Ultimately, our analysis follows the vein of literature taken by Peterson and Tomek 

where they evaluate marketing strategies given a 40-year lifetime for a producer.  They 

conclude there is little chance to discriminate between such strategies. In effect, large-sample 

inferior strategies may frequently appear superior in small samples.  We follow the flavor of 

their work, but use crop insurance and farm programs as the context rather than pricing 

strategies.   

Progress in modeling risk 

Risk research has moved dramatically forward in developing analytical tools but also 

in understanding risk behavior and perceptions. We now have spreadsheet software capable of 



computational techniques that required main frame computers 25 years ago.  This includes 

optimization packages and easy-to-use simulation packages that allow one to simulate 

multivariate mixed non-normal distribution which had previously been computationally 

difficult.  Progress on data has also been made.  Convenient databases providing NASS area-

level production and acreage estimates and prices can be downloaded quickly.  Long time 

series of weather data are available from NOAA, and futures prices are widely available from 

private sources.  All of these advances make it more practical to provide sound risk 

management analysis. 

What, has largely remained unchanged is that weather and other risks still drive crop 

yield risk and farm-level time-series yield data tend to be scarce and relatively short.  Given 

that farm level yield risk is central to assessing crop insurance participation, product options, 

unit structure, and coverage levels, this is a significant problem.  Further area products do not 

require farm yields, but assessing the efficacy of area products does.  In our analysis we focus 

on the implication of these short series on risk analysis 

The Law of Small Numbers 

At a conference addressing the modeling of agricultural risk decisions related to farm 

policy, it seems quite appropriate to remind ourselves of the truly seminal work of Tversky 

and Kahneman (TK) regarding cognitive errors individuals make when confronted with 

randomness.  This body of work was a significant reason why Kahneman was eventually 

awarded a Nobel Prize.  Further, this foundational work contributed to the explosion of 

economic research we now call behavioral economics.     

Tversky and Kahneman summarized this work as follows:  



“Thus far, we have attempted to describe two related intuitions 
about chance. We proposed a representation hypothesis according to 
which people believe samples to be very similar to one another and to 
the population from which they are drawn. We also suggested that 
people believe sampling to be a self-correcting process. The two beliefs 
lead to the same consequences. Both generate expectations about 
characteristics of samples, and the variability of these expectations is 
less than the true variability, at least for small samples. 

The law of large numbers guarantees that very large samples 
will indeed be highly representative of the population from which they 
are drawn. If, in addition, a self-corrective tendency is at work, then 
small samples should also be highly representative and similar to one 
another. People's intuitions about random sampling appear to satisfy the 
law of small numbers, which asserts that the law of large numbers 
applies to small numbers as well.” 

Thus, TK assert two tendencies among individuals which may lead to errors in 

assessing risk.  First, individuals tend to overestimate the degree to which a small 

sample represents the population and secondly they often believe that random 

processes are self-correcting when in fact they are not.  Rabin also investigated this 

phenomenon and illustrates its potential economic implications. The applicability to 

agricultural risk management seems quite clear.  We deal with random prices, yields, 

and weather that are drawn from distributions of various shapes and families.  In the 

case of yield and revenue associated with crop agriculture we get essentially one 

observation per year.  At that rate of stochastic revelation, small samples grow quite 

slowly into large samples.  While, it seems that the TK results would seem broadly 

applicable to those working with agricultural risk decision making, our search of the 

SCOPUS abstracting database finds that their paper is cited 445 times in refereed 

literature, but not once by an agricultural economics journal. 

Assuming for a moment that Tversky and Kahneman’s conclusions are 

applicable to row crop producers then what might we observe?  Several possible 



manifestations exist, but we would suggest a few likely scenarios.  First, farmers 

would put too much weight on an evaluation based on very small samples.  For 

example when it comes to farm policy, they might ask for analysis that “shows what 

the policy would have done if in place for the last five years.”  Or they may discount 

weather events that are known to have occurred with some frequency but that have not 

been experienced in recent times.  TK assertion of individuals perceiving self-

correction in random draws leads to the idea that ‘bad weather and good weather must 

average each other out. ”   

Systemic biases and heuristics being used in in statistically small samples has 

the potential to affect farm policy evaluations. Coble and Barnett have questioned 

whether errors in subjective probability assessment affects the demand for crop 

insurance and underlies the longstanding question regarding why subsidies have 

appeared necessary to attract participation in crop insurance.  While little has been 

done to investigate this issue in the context of crop insurance, a body of researches on 

cognitive bias in other lines of insurance purchase does exist. (Galarza and Carter; 

Shapira and Venezia; Johnson et al.)  

The final interesting point about TK’s paper was not so much addressing errors 

made by laymen.  Rather TK pointedly described errors made by scientists in doing 

their research!  The fundamental error was misjudging the sample size necessary to 

make a statistically valid inference.  This is a problem that has persistently plagued 

agricultural policy and insurance research.  However, we will note that TK focused on 

the fact that an insufficient sample size may lead to failure to reject the null hypothesis 

when in fact a larger sample would reject the null.  Thus, a strong motive exists to 



correct sample size if possible.  However, in much of the risk management literature 

optimization and simulation techniques are used and hypothesis tests omitted.  

Without these tests, there may be a lack of restraint on conclusions drawn from sample 

samples.    

Empirical Analysis 

In our analysis we investigate the implications of sample size on the evaluation of two 

simple crop insurance purchase decisions – individual coverage revenue insurance and area 

revenue triggered SCO.  To do so we appeal to a technique common in statistical literature – 

we evaluate how well a particular estimation or statistical procedure performs given 

hypothetical, but known distributions.  While we do not argue that we do know the true 

distribution of crop revenue for any particular crop/location, we generate data from a known 

distribution to investigate the implications of sample size on the modeling. 

For this analysis we use futures price from the Commodity Research Bureau (CRB) 

database and National Agricultural Statistical Service county yield data from 1975 through 

2011 for corn and soybeans produced in McLean County, Illinois, cotton produced in Bolivar 

County, Mississippi, and wheat produced in Wichita County, Kansas.  Futures price changes 

from the RMA preseason price period and the harvest time pricing period are used to measure 

price risk in a manner consistent with RMA pricing procedures.  Technological change has 

been repeatedly shown to strongly influence crop yield distributions thus county yields are 

detrended with a linear trend and relative residuals are used to model county yield risk.   

Farm yields, which are derived from detrended county yields, follow the formulation 

of Miranda (1991) as follows: 



(1) 𝐹𝑌! =   𝜇!" + 𝛽(𝐶𝑌! − 𝜇!")+ 𝜀!",! 

 

where:  

- ,t tFY CY  are farm yield and county yield at period t  

- ,FY CYµ µ  are respectively the mean value of farm yield and county yield 

- β  is a coefficient measuring the responsiveness of farm yield to the 

systematic factors affecting county yield.  

- ,FY tε  is idiosyncratic farm yield deviation. 

,FY tε  is assumed to be normally distributed 2(0, )FN σ .  An acre-weighted average of 

the sensitivity coefficient β  across all farms in a county will equal one which is the 

assumption for this analysis.  According to Coble and Barnett (2007), a grid search can be 

employed to estimate farm yield uncertainty by finding the Fσ  associated with ,FY tε  that when 

combined with county yield will produce farm yield variability consistent with 65% coverage 

level base premium that crop yield insurance purchasers are charged in the county. Base 

premium rate data is obtained from USDA/RMA databases.  

 Given the stochastic price, county yields, and idiosyncratic risk, parametric county 

and farm yield marginal distributions and price distributions are fit using a methods-of-

moments estimator.  Yields are assumed to conform to the Beta distribution family, while 

prices are assumed to come from a log-normal distribution.  Also, correlations among the 

three random variables are estimated using the time-series data.    We then use the 

multivariate simulation technique described in Anderson, Harri, and Coble to generate a large 

sample of 50,000 random draws to reflect the multivariate revenue distribution.  Then to 



evaluate the implication of small samples on the estimate of insurance rates, samples of 10, 

20, and 30 were drawn 50,000 times from the population of 50,000 observations to produce 

empirical estimates of premium rates. 

Two insurance designs were evaluated.  The first is that of revenue insurance and the 

second is a shallow loss design modeled after the supplemental coverage option in the House 

and Senate farm bill proposals (Chite et al 2013)   

Farm-level revenue insurance is modeled at coverage levels of 65 and 75 percent of 

expected revenue.  Indemnities for an individual producer, i, per planted acre are calculated 

as: 

(2)     𝑅𝑒𝑣𝐼𝑛𝑠𝐼𝑛𝑑𝑒𝑚!   = max 0, ( 𝐶𝐿!    xmax 𝐸𝑃,𝐻𝑃 x  𝐴𝑃𝐻!    − 𝐻𝑃  x  𝐹𝑌!   )     

where EP and HP are the pre-planting expected price and the harvest time price, 

respectively; CLi is the coverage level; and APHi is the farm’s actual production history 

(APH) yield.  Crop insurance premiums are subsidized at rates that vary by coverage level.  

The subsidy rates are 59 percent for 65 percent coverage and 55 percent for 75 percent 

coverage. 

Supplemental Coverage Option (SCO) would provide an indemnity payment when 

market revenue measured at the county level falls below 90 percent of the expected county 

revenue as determined from county yield histories and futures prices.  The payment size 

would be determined by the proportion of the range of the loss below 90 percent down to the 

nominal coverage level of the producer’s farm-level crop insurance.  The indemnity function 

for producer i in county c is:   



(3)  𝑆𝐶𝑂𝐼𝑛𝑑𝑒𝑚! =    min  (max 0,
(!.!!   !"#!

!"#$%&!
!.!!  !"!

, 1)   x   0.9−   𝐶𝐿!   x  𝐸𝑥𝑝𝑅𝑒𝑣! 

where 𝑅𝑒𝑣! is market revenue for the producer’s county, 𝐸𝑥𝑝𝑅𝑒𝑣! is expected revenue for the 

county and 𝐶𝐿! is the producer’s coverage level for farm-level revenue insurance.  All 

producers with the supplemental coverage would receive a payment when the county trigger is 

met but the amount of the payment would depend on an individual’s crop revenue insurance 

coverage level.   A producer would pay 30 percent of the actuarially-fair premium (70 percent 

subsidy) for this supplemental coverage.   

Results 

Table 1 reports the mean, standard deviation, and coefficient of variation (C.V.) for 

each of the crop/county combinations examined.  Note that the C.V. of McLean county corn 

and soybeans are generally lower than for Bolivar County cotton and Wichita county wheat.  

Also county revenue variability is lower than farm revenue in every case as aggregation 

generally dampens farm-level risk.  This has implications for SCO indemnity relative to RP as 

all else equal the county revenue is less risky than the risk level of the average farm in the 

county. 

Table 2 reports the simulation results for corn and soybeans in Mclean County Illinois. 

This location was chosen to reflect the low risk production region in the heart of the Cornbelt. 

Two insurance designs are modeled – individual coverage Revenue Protection (RP) and the 

Supplemental Coverage Option (SCO).  The upper section of the table assumes 75% coverage 

RP and a matching 90% to 75% SCO.  The lower section of the table assumes 65% coverage 



RP and a matching 90% to 65% SCO.  This variation is used to illustrate how the range of 

coverage affects the variability of the rate estimates.   

The first row of values report the large-sample mean indemnity per acre for each crop 

based on 50,000 random draws from the known multivariate distribution.   Note the corn 

premium/acre is generally higher due to a greater per acre crop value.  Note also that for both 

corn and soybeans the SCO expected indemnity exceeds the RP expected indemnity even 

when SCO covers a range of 15% versus the 75% range covered by RP.  These results are 

more extreme in the lower portion of the table when RP coverage drops to 65% and the SCO 

range widens.  This illustrates the fact that SCO covers a narrow range of liability but it is a 

range that has much greater probability than the extreme events in the lower tail of the 

distribution covered by RP. 

Below the mean premium per acre we report the standard deviation and coefficient of 

variation of the estimated indemnity per acre based on 50,000 replications of small samples of 

10, 20, and 30.  These results are meant to illustrate the effect of small samples on the 

accuracy of an estimated expected indemnity.  We focus on the C.V as it measures variability 

relative to the mean value.  The first result we note is that the RP premium estimate is always 

more variable than the SCO indemnity because of the RP rate being driven by infrequent but 

large loss events.  The variability increases as the RP coverage is dropped to 65% and the C.V 

exceeds 1.00 when the sample size is 10.   

We also note that increasing sample size from 10 up to 20 and 30 greatly reduces the 

error of the expected indemnity estimate.  The pattern is similar across both crops and 

coverage levels.  Increasing the sample size from 10 to 30 reduces the C.V of expected 

indemnity by at least 40 percent and by almost half when 65% RP is involved.  However we 



would note that even a sample size of 30 results in a fairly substantial C.V.  We note this as a 

sample size of 30 is typically far more years of data than we have at the farm level.  Thus, 

while being able to obtain 30 years of farm level data would be a relative jackpot of farm level 

yields; it would still result in substantial error in indemnity estimates for low risk counties. 

Table 3 is provided to compare the implications of other riskier regions to the low risk 

McLean Illinois case.  Here Bolivar county Mississippi cotton and Wichita county Kansas 

wheat are reported.  In general these results are consistent with that of table 1 except that the 

C.V. of the rate estimates is generally lower.  This illustrates that in a relative sense riskier 

regions are easier to rate given a small sample.  Intuitively, it is less likely that small sample 

will omit the deep loss that drives rates for low coverages and in low risk regions.         

In summary the results suggest while variation exists, small samples of 30 or less 

observations can lead to widely varying and potentially misleading analysis of risks that 

generally conform to those we examine in agricultural insurance and policy settings.  Note 

also that we have abstracted away from other complicating factors such as estimating yield 

trends, structural changes in agricultural markets, and moral hazard that may be induced by 

policy and cause changes in the probability density.  These issues also add complexity to 

appropriately modeling agricultural risk.  In the final section of the paper we suggest some 

possible approaches to address the small sample issue. 

Conclusions 

Given the small sample issues that are likely difficult to fully overcome, we suggest 

several approaches to conducting analysis of crop revenue risk management decisions.  First, 

we need to be ever vigilant of falling into the fallacy of the law of small numbers ourselves.  



Ultimately, this takes intellectual discipline to stop and consider if our analysis is tainted by 

this phenomenon.  Further, we should hold one another accountable for avoiding these errors 

when evaluating risk management analysis.  It is our perception that given the paucity of 

citations to TK’s work in our literature that we are not attuned to their early work or 

Kahneman’s more recent discussion of this topic and other potential cognitive errors in 

assessing risk.   

On a related note, we suggest that when using simulation or optimization packages to 

evaluate insurance and farm programs, we need to clearly acknowledge that often we are 

positing alternative estimators.  For example, if you evaluate the expected indemnity of a 75 

percent coverage RP insurance policy and compare the results to the rates offered by 

USDA/RMA, then your estimate and that of RMA are competing estimators of the same risk.  

Likewise if you use historical data to estimate price volatility and then compare this to the 

implied volatility from the Black-Scholes formula, you have two competing estimators.  Our 

econometrics training should tell us how to compare two alternative estimators, but it is not as 

often implicitly done that we assume one estimator is correct and deviation is error on the part 

of another estimator. 

In terms of our analysis that may be constrained by small samples, we see two primary 

means to mitigate the issue.  Both involve augmenting short time series with longer aggregate 

series of related data.  For example modeling a short time series of farm yields may be 

improved by using a relationship as specified in equation 1. If a longer series of aggregate 

data is available then less would be demanded of farm yield data.  In equation 1, farm yields 

are necessary to estimate β  and ,FY tε  but much of the yield risk is captured by the longer 

county yield series.   



A related approach to addressing the issue of short yield series is reported by Rejesus 

et al at this conference.  In this case a long time series of weather data is used to answer the 

question, what is the long-term probability of observing weather events like those observed in 

a particular year.  Here one is attempting to put unique weather events in the proper 

probabilistic context.  For example, were the weather events that occurred in Illinois during 

the 2012 crop year a one-in-thirty, one-in-50, or some other probability.  Climate division 

weather data is generally available back to 1895 for the entire U.S. and other sources may be a 

shorter series but more disaggregated.  

A fascinating additional possibility is to attempt to train producers to be more 

sophisticated risk assessors and managers.  Our tendency in outreach and extension programs 

is to focus on tools and results not the intellectual process used by the producer.  An 

interesting question whether we can teach producers to avoid certain behavioral errors in 

judgment.  To our knowledge this is a largely untapped area of research or extension in 

agricultural economics. 

 

  



References  
 
 
Anderson, J.D., A. Harri and K.H. Coble, (2009) “Techniques for Multivariate Simulation 
from Mixed Marginal Distributions with Application to Whole Farm Revenue Simulation.” 
Journal of Agricultural and Resource Economics 34(April):53-67. 
 
Coble, K.H., and B.J. Barnett, (2013) “Why Do We Subsidize Crop Insurance?” Invited Paper 
for American Agricultural Economics Meetings. Seattle, WA. .”  American Journal of 
Agricultural Economics 95(February):498-504. 
 
Rejesus, R.M. K.H. Coble, M.F. Miller, Ryan Boyles, B.K. Goodwin, T.O. Knight, 
“Accounting for Weather Probabilities in Crop Insurance Rating” Selected Paper prepared for 
presentation at the Agricultural & Applied Economics Association’s 2013 Crop Insurance and 
the Farm Bill Symposium, Louisville, KY, October 8-9, 2013. 
 
Commodity Research Bureau (CRB), 2012, url: http://www.crbtrader.com/. Cited 
05/27/2012. 
 
Congressional Research Service report R43076 “The 2013Farm Bill: A Comparison of the 
Senate-Passed (S. 954) and House-Passed (H.R.2642) Bills with Current Law U.S.” Ralph 
Cite, coordinator. July 19, 2013.  
 
Galarza, F.B. & Carter, M.R. Risk Preferences and Demand for Insurance in Peru: A Field 
Experiment. 2010 Agriculture & Applied Economics Annual Meeting. 

Johnson E.J., Hershey, J., Meszaros, J., & Kunreuther, H. (1993) “Framing, Probability 
Distortions, and Insurance Decisions.” Journal of Risk and Uncertainty, 7:35-51. 

Mitchell, P. R. Rejesus, K.H. Coble, and T.O. Knight.  (2012) “Analyzing Farmer 
Participation Intentions and Enrollment Rates for the Average Crop Revenue Election 
(ACRE) Program.” Applied Economics and Public Policy. 34(Winter):615-636. 
 
Kahneman, D “Thinking Fast and Thinking Slow.” New York: Farrar, Straus, and Giroux, 
2011 
 
Peterson, H.H. and W.G. Tomek, (2007)“Grain Marketing Strategies Within and Across 
Lifetimes,” Journal of Agricultural and Resource Economics 32(1):181-200. 
 

Rabin, M., (2002) Inference by Believers in the Law of Small Numbers, Quarterly Journal of 
Economics 117: 775–816. 
 
Shapira, Z. & Venezia, I. (2008). On The Preference for Full-Coverage Policies: Why Do 
People Buy Too Much Insurance? Journal of Economic Psychology, 29, 747-761. 

Tversky, A. and D. Kahneman. (1971). “Belief in the Law of Small Numbers, Psychology 
Bulletin, 76, 105-110. 



 
Ubilava, D., B.J. Barnett, K.H. Coble, A. Harri (2011) “The SURE Program and Its 
Interaction with Other Federal Farm Programs,” Journal of Agricultural and Resource 
Economics 36(Dec):630-648. 
	    



 

Table 1.  Summary Statistics for per acre crop revenue for the four crop/county combinations 
examined.   

 Corn Farm 
Revenue 

Corn County 
Revenue 

Soybean 
Farm 

Revenue 

Soybean 
County 
Revenue 

Mean 783.4 783.4 577.2 607.7 

Standard 
Deviation 

195.7 136.0 116.4 64.9 

C.V. 0.25 0.17 0.20 0.11 

 Cotton Farm 
Revenue 

Cotton 
County 
Revenue 

Wheat Farm 
Revenue 

Wheat County 
Revenue 

Mean 589.0 544.3 96.6 95.6 
Standard 
Deviation 

334.8 145.2 54.9 34.5 

C.V. 0.57 0.27 0.57 0.36 



Table 2. Effect of Sample Size on Revenue Insurance and SCO Premium estimates from 
Known Illinois Corn and Soybean Distributions  

 McLean Co Ill. 
Corn 

McLean Co Ill. 
Soybeans 

 (1) (2) (3) (4) 

 75% coverage 
CRC 

SCO 90% to 
75% 

75% coverage 
CRC 

SCO 90% to 
75% 

Mean 
Premium/Ac. 

23.13 28.33 10.94 11.13 

 Sample size 10 

Std Dev 18.46 14.18 10.03 7.39 
C.V. 0.80 0.50 0.92 0.66 
 Sample size 20 
Std Dev 13.15 10.07 7.04 5.19 
C.V. 0.57 0.36 0.64 0.47 
 Sample size 30 
Std Dev 10.76 8.24 5.72 4.22 
C.V. 0.47 0.29 0.52 0.38 
 65% coverage 

CRC 
SCO 90% to 

65% 
65% coverage 

CRC 
SCO 90% to 

65% 
Mean 9.96 33.56 3.60 11.46 
 Sample size 10 
Std Dev 11.16 18.21 5.06 7.83 
C.V. 1.12 0.54 1.41 0.68 
 Sample size 20 
Std Dev 7.93 12.96 3.53 5.50 
C.V. 0.80 0.39 0.98 0.48 
 Sample size 30 
Std Dev 6.48 10.60 2.84 4.48 
C.V. 0.65 0.32 0.79 0.39 
 

  



Table 3. Effect of Sample Size on Revenue Insurance and SCO Premium estimates from 
Known Mississippi Cotton and Wichita Wheat Distributions  

 

	   Bolivar Co MS Cotton  Wichita Co KS Wheat 

 75% coverage 
CRC cotton 

STAX 90% to 
75% Cotton 

 75% coverage 
CRC Wheat 

STAX 90% to 
75% Wheat 

Mean 
Premium/A
C 

60.31 33.66  $11.56 $5.55 

 Sample size 10 
Std Dev 30.97 12.37  4.63 1.77 
C.V. 0.51 0.37  0.40 0.32 
 Sample size 20 
Std Dev 21.97 8.68  4.01 1.53 
C.V. 0.36 0.26  0.35 0.28 
 Sample size 30 
Std Dev 17.93 7.06  3.27 1.25 
C.V. 0.30 0.21  0.28 0.23 
Sample Size 65% coverage 

CRC cotton 
STAX 90% to 
65% Cotton 

 65% coverage 
CRC cotton 

STAX 90% to 
65% Cotton 

Mean 39.89 43.74  $7.98 $8.02 
 Sample size 10 
Std Dev 24.20 17.50  3.67 2.73 
C.V. 0.61 0.40  0.46 0.34 
 Sample size 20 
Std Dev 17.17 12.32  3.18 2.36 
C.V. 0.43 0.28  0.40 0.29 
 Sample size 30 

Std Dev 14.01 10.01  2.60 1.92 
C.V. 0.35 0.23  0.33 0.24 


