

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

on Mass Flightsts and Other Activities of the Miģratory Grasshopper

BY J. R. PARKER, R. C. NEWTON, AND R. E. SHOTWELL
U. S. DEPARTMENT OF AGRICULTURE

TECHNICAL BULLETIN NO. 1109
Washington, D. C.

For sale by the Superintendent of Doctuments, [T. A. Government Printing Office, Washingtou 25 , D. C. - Price 20 cents

Observations on Mass Flights and 0ther Activities of the Migrratory Grasshopper ${ }^{1}$

BY J. K. PAREER, R. C. NEWTON: AND R. L. SHOTWELI. ENTOMOLOGISTS, ENTOMOLOGY RESEARCH BRANCH AGRICLLTLRAL RESEARCH SERTICE

TThe most spectacular and extensive mass flights of crashoppers in the Thited States and Canala for over half a century fook place durng the sumbers of 103 , 1033. and 104. The most recent precious flights exceeding them in density and divance ocrurred from 3854 to 1 nit. when great strame of the lionky Momatain arass-
 plains past of the Rocky Moumtans in Montana. Wrominer, and Colorado and migrated eistrard to the Mi-wisipui Yalley and sonthward to Texas. The ppecies in the 19m, 1930. amp 1941 Hight: mas
 onomic workers in (nthoptera nom lehere that modiount.s spretus
 4. $)^{2}$. Since solitary and gregation- phases are not enstomarily
 stnonym of miticumus mit xirothes. In this bulletin this gra:s-hopper will be called m+xiranu:.

Most of the 193 m flighte corginated in mortherentral sourh Dakota. The heariest flights were to the nombest into western North Intath, eastern Montma, and southern saskathewam: to the moth into nom theastern Sorth Ihakota, northwertem Mimesuta, and whthern Manitoba: and to the southwest into southrestem somth Iakora, northwestern Jebraska, and easern Wyming. Flight: in 1930 started within the areas inraded by the 1 角 swarms, and for the most part were in the same general directions as in the prevon year. Sporadic Hights from areas incaded by ton migrants wecuryed in $19+0$, but were of less importance than the thights in 1 ab, and 1930.

During the rears when chese Hights orcured ostensire data on the seasonal derelopment and habits of nu cirtious were gathered by the Bureau of Entomolory and Pbat Qummime. A smmary of these data. together with information supplied by entomos, gists in the

[^0]States and Canadian Provinces where fights took place, is presented in this bulletin. ${ }^{3}$

The zones where flights originated, the main migration routes, and the areas where eggs were deposited in greatest numbers are shown in figure 1.

METHODS OF OBTAINING DATA

The Jong-distance mass flights of 1038 were unespected and were not studied in detail because of other work in progress. Data regarding them are therefore of a general nature, consisting for the most part of reports of fights, areas invaded, and extent of damage. No attempt was made to classify the 1933 fights, and such terms as "light," "moderate," and "heary" merely reflect the impressions of the persons reporting them. In the fall of 1938 survers were conducted to delmit the areas where mirenatory swams lake egas and to determine the babitats mos commonty selected for eqg laying, and in 1939 and 19.to studies were made of mexirunes flights in several States.

In 1939) and 1940 areas known to be heavily infested with eggs laid by imading swams of the previons year were assigned to individual workers for the season. Repeated observations were nade at fixed stations througriout each area to ohtain data on eger, nymphal, and early adult populations, seasonal development, behavior, and prevaling conditions. All thights observed were recorded, together with information on location. date, hour, temperature, sley conditions, wind direction, trye and direction of fight, and other pertinent data.

The point of the compass towavd which most members of a swam were traveling was recorded as the fight direction. When there was no unifom directom and many individuls flew in cireles close to where they took ofl, the flight was recorded as milling.

Flights were classified as low or high according to whether the grasshoppers were flying less or more than $\frac{\pi}{3}$ feet above the ground. and Hight deusity was rated as light molerate, or heary. To determine the density of fight an observer cupped his hands ore his eyes, glanced at the edge of the sum, ind made a rough extimate of the number of grasshoppers be could see without further movements of the hands or licad. Ratings for the number seen were as follows: Leess than a hundred, light ; Severil humdred, moderate : and many hundred, heary.
Its soon as mass flights started in a centain study area, observation etations were ser up in adrance of the flights and at right angles to their general direction. Counts of adults were made at these stations

[^1]

Figure $1,-$ Main migration routes and areas of homiest egg laying by mexicanus in 1988 and 1930.
before fights reached them. and any sudden increase thereafter indicated the arrival of an invading swam. As soon as one line of observation stations was reached by flights, mother was established a known distance in adrance and across the general direction of the last migration observed. In this way it was possible to measure population increases due to flights and the time taken by swams to cover known distances. This method was particularly effective in Montana, where adult numbers before flights were very low.

Nymphal, adult, and eger-porl populations were classified as normal, light, threatening, severe, or very severe, as shown in table 1 (Shotwell 9).

Table 1.-Classificution of nymihat. adult. and eqg-pord populations. of grasshoppers in large fellds

Classification	$\begin{aligned} & \text { Nymphis per } \\ & \text { sguare yard } \end{aligned}$	$\begin{aligned} & \text { Alolts per } \\ & \text { stuare yard } \end{aligned}$	Gigy pods per square foxit
Yormal	0-9	0-3	0-0. ${ }^{\text {+ }}$
Eipht---			
Sireatenim	40-7)	[10-31	2. 0 0-3.9
Very severe	$80+$	$32 \div$	$4.0+$

Changes in distribution and population density PRECEDING 1938 FLIGHTS

The general area in which mass flights of nuxirumus originated in 1938 included the nor theastern counties of South I mkota and the southeastern countios of North Dakota, east of the Missouri Niver and between U. S. Mighways Nos 10 and 14. Normally this species is of minor economic importance in this area and in the 1934 survey it composer only 17 percent of the adult grassboppers in erops and 20 percent of those in range vegetation. In 1 ns mexicanus began to increase, and in that year composed 50 percent of the grasshopers found in crops. The percentage in mageland remaned about the same as in 19.34 . By 1936, 60 percent of the grasshoppers in crops and tu percent of those in range veretation were meximmus. Severe intestations developed in leadle, Faulk, Fand, and Hyde Cometies in South Dakota, and threatening infestations were found elsewhere.
In the suring of 1937 very severe infeutations of nymphs hatched at many spots throughout Beadle, Brown. Clark, Day, Faulk, Hand. Hyde, spink, and Suly Combies in Soulh Jakota. Ground dispersal of these heavy emy-instar eoncentations resulted in high late-instar popnlations thronghout these counties. Light local flights and grombd dispersal early in the adult stage resulted in a spreat to suromoding combties previonsly only lighty intested. By late summer adults were present in threateming nambers thronghont most of northeastern and north-central Sonth Iakota and in a few adjacent counties in North Dakota. In collections at this time mexicumus made up to percent of the populations in crops and :og percent of those on rangelund.

The general spread of adults throuphont the area was followed by unusually warn weather in September and Oetober. This was highly favorable for exgr laying and consequently very severe egr-pod infestations were deposited throughont 83 comaties eat of the Missouri River. In a surver in which five 1 -square foot samples were taken in each of $26+$ fields. egry pools were found in 15 out of every 16 samples. examined.

The upsurge in micricumes popatations from 1934 to 1938 is thought to have been due to drought. Native grases were greatly reduced and became interepersed with annal weeds, ant much land formerly in small grabs watefotle after cop failures and became weedy. Depleted yange and wedy idhe land are favored habitats of mexicunus. and the increasol arreates of both during the dronght pooved many
 in the sping and enty fall wat favohle for the survical of newly

RLCHTS Ni 1938

Seasonal Sevelopment and Ihabits Before Flights

 in mommons numbers in the wortherental comenes of sonth Jokota and in adjacent cometies of Noth Dakota in the sumer of lops. Fathing began in the last halif of dpril, when daty maximmo tem-
 hatrh contimed theoghent Mas. when the temperatme and precipitation were ahout normal. Satchine was abont sol perent complete

 thout The la hat on Jame dhmon of the popalation was stil] in the

 nemply all were mhlas.

Nymphe hathed in ereatest mambers in small grams field mareins. ialle hamb and depleted mane Patehes of peppergrass in ide land and depleted range contamed the heariest concentations, whinh

 beencontolled. Batine omby partally stoppedthe invading nymphs.
 nombers of mymphe cmatorned to adolts in and amond cropped lamd. Howerer. only a small portion of the mompho that hatehed in fande and ide land mover huts erops. 'The others fed on weeds and

Alults took to the ar in low disprest Hights on the first hot days after getting then whes. Many when flights were reported from
 while driving though Jant, Jyde, and sully (ounties in morthrentral South Dakota. (ropes are wh as rexeladion in ramere and idle hand were beginning to suffer from dronght, and all regetation had
been greatly reduced by the feeding of grasshoppers during very severe infestations. The day was hot, the temperature reaching $90^{\circ} \mathrm{F}$. at $10 \mathrm{a} . \mathrm{m}$. By that time the shady sides of fence posts were black with grasshoppers trring to escape the hot sum. Weeds, grass stems, and grain stems were bending from the weight of grasshoppers trying to get as far as possible above the hot ground. Most of them were fourth- and fifth-instar nymphs, but approximately 25 percent were recently transformed adults. At $11: 30 \mathrm{a} . \mathrm{m}$. with the temperature at 99° a light breeze started to blow. Adults immediately swirled out of the drying regetation and hew in all dixpections from 1 to 25 feet above the gromd. As soon as the breeze died down, they settled to the ground and then climbed as high as possible on recretation or sought the shady side of fence posts. Only a few conld be seen high in the air against the sum. Several similar local flights were seen the same day. All of them started when a light breeze rippled regetation and stopped when the wind died down.

Time, Origin, and Directions of Flights

There is general agreement that the first long-distance mass flights of mericams in South Dakota in 193S oreured during the hast few days in June. The only reference to fights on a particular date during this period was found in an umblished report of G. I. Gilbertsen, South Dakota State leader in grasshopper control for 1038, which contains the following statement: "There was a substantial migration of mericunus from our state in a northwesterly direction on Jme 2 S ." Since temperatures from June $2 \overline{7}$ to $2 \overline{7}$ were below those later found farorable for fights, it seems probable that June 28 was the date of the first major flight.

On Tuly i swarms of mericunus bome on winds from the southeast were seen at Mandan, Diekinson, and Beach in sonthwestern North Dakota and in the southeastern counties of Montana. The approximate air miles from Ifichmore in the South Dakota area where flights started on June -25 to points where beroming fights were seen on Jnly 1 are as follows: Mandan 16.: Dickinson 200: Beach e6s: and Fallon County, Mont., 240 . T'sing the 265 miles to Ieach as the longrest discrance travelod in t days gives an areage of of miles per day. This is faster than the progress of more closely ohserved bater fights in 1038 and 1939 , but it rond have been acconiphished by 5 hours of daily flying with favorable winds of 10 to 18 miles per hour on all \pm days.

Mass fights ont of north-central South Dakota ocemred whenerer weather was fawombe during Jaly and the first 2 weeks in August. The boundaries of the gone in which they originated are not well known but are approximately those shown in ligure 1. All of one rounty and parts of five adjacent combies in Low 1)akota were very severely imfested before fights stared in south Dakota and have been meluded within the zone where fights origmated. There are no reeorls of flights ont of them before the amial of swams froms South Dakota, but it is kown that flights occureed later and that lowa popuJations were greatly redned berenss of them.

Once a heavily infested lowality was invaded by migmats it become impossible to determine the composition of deputing swarms, but it seems certain that morennus adults from may loralities must have
joined the migrants. It is known that the more mature grasshoppers were continually dropping out, and if their numbers had not been replaced swarms could not have progressed for humdreds of miles without marked decreases in size.

There were many general reports that 1938 flights occurred on very warm days and that swarms were carried by prevailing winds. Definite data on the effect of wind direction and temperature were obtaned by Munro a33d Saugstad (7). On July 17, 1938, they released about 100,000 marked grasshoppers, most of which were mexicanus, in southeastern North Dakota. During the next 29 days specimens were recovered in northern and northwestern parts of the State, some of them having traveled at least 215 miles. Winds from the south and southeast prevailed during 18 days of the period, and the average daily maximum air temperature was $80.9^{\circ} \mathrm{F}$. For the remaining 11 days, which included 7 in July and 4 in August, prevailing winds were from the north and northwest and the average daily maximum temperature was 79°, or 10.9° cooler than when the wind was blowing from the south and southeast.

The prevailing wind directions and the arerage daily maximum temperatures for Huron on the eastem edge of the South Dakota flight zone from July i to August 14, when most of the flights from that area took place, are shown in table 2 .

Table 2.-Preraiting wind divertions and arerage daily marimum temperatures at II uron, S', Dak., from July 1 to August 14, 19.38

Wind direction	Duration	Average daily maximum temperature
North.	Days ${ }_{10}$	${ }^{\sim} F \cdot{ }_{87.3}$
Northeast	1	84.0
East.	1	78.0
Southeast.	11	93.0
South.--	8	38.3
Southwest.	5	89.8
West.....-	5	89.2
Northwest.	4	86.7

The prevalence of winds from the south and southeast on 19 days when temperatures were highest and fights were most likely to occur exphins their general direction to the north and northwest. This does not mean that individual swarms traveled in only one direction. Swarms in South Dakota traveling northwest toward southeastern Montan conld have been diverted to Wyoming by northerly winds or to western and central North Dakota by winds from the south or southrest.

Swarms of mexicanus from the source in noth-central South Dakota and south-central North Dakota, flying north and northeast, reached the northeastem cometies of North Dakota in the last 2 weeks

$$
324270^{\circ}-55-2
$$

of July and moved into northwestern Minnesota and south-central Manitoba in the first 2 weeks of August.

South-central Manitoba municipalities bordering Rolette, Towner, Cavalier, and Pembina Counties in North Dakota were most heavily invaded. Severe to very severe infestations, attributed to flights, were found throughout the Pembina River system in surveys conducted by Canadian entomologists.

Other swarms traveled across northwestern North Dakota and mtered southwestem Manitoba and southenstem Saskatchewan. Flights reached halfway to the international boundary by July 10. Camadian entomologists reported heary flights into southwestem Manitoba on July 15, 23, 25, 29, and August 1. These flights progressed about 100 miles further north during the first 2 weks in August and left serere infestations of adults in the southwestern municipalities of the Province. The swarms entering southeastern Saskatchewan at the same time continued northrard for about the sime distance.

Swarms moving through southwestern North Inakota entered M[ontam on July 1 and produced very severe infestations in the castern counties. Their progress across eastern Montana has been described by Mills (0), whose nitp is reproduced in figure 2 .

Some of the swarms that entered easterio Xontana continued their flights into Saskatchewan. They began crossing the Camadian bordel on Iuly 1it, and when flights terminated about August 15 they had reached the South Saskatchewn River Valley.

The swarms that entered Salskatchewan from Diontana and North Dakota left moderate to very severe infestations in all the municipatities south of the South Saskatchewan and (2n'Lppelle Divers except in the southwestern corner of the lrowince.

The distance to the South salkatehewn River from the place the flights started in Sonth Dakota is appoximately atamiles, which is the greatest known distance traveled l, swams in 1988.
 reported by Willis (1.2), who veleased 18,500 painted grashoppers at Thee points in enstem Montana and one point in northwestern North Dakota during the fight perior of July 1!-2. F Fontell were recovered 30 to 230 miles from the points of belease ; x tateled 1 orthwest. 3 northeast, 2 snuthwest, and 1 north. Thee were recovered in southern Saskatchewion 230, 206, and 1 so mikes from rele:ise points. after 15, 16 , and odays, respectively. One specimen released at Wilatux. Mont., was captured the next day 30 miles to the northenst at Beach, N. Dak. Another, released at Williston. N. Dak., was taken of days later 200 miles to the southwest at Jordan. Nont.

Large swarms of mexienuts. permably originating in noth-central South Dakota, cane into the Black Itill: of western South Dakota and the northeastern combiess of Wroming diming the first 2 werks of Tuly and were followed be sataller swams on faverable flying dass
 tinue across Wroming, hut flew south to sette in large numbers throughont the Black Jinls, the extreme matem coum ies of Wyoming, and in smaller numbers in the extreme western combies of Xehaskat.

The wind-divection data for Haron, 5 . Dak.. presented in table 2 show only 2 days from Jnly 1 to Angist 1 if when the wind was from the east or nor theast. It there fore does not seem likely that swarms

Fracre 2.-Progress of invading swarms of mexicanus arross eastern Montana in Tuly 1038 (after Mills 6).
entering the Black Hills, eastern Wyoming, and western Nebraska could have followed a direct westerly or southwesterly route. It seems more probable that they had been carried from north-central South Dakota to southwestern North Dakota on winds trom the southeast and had then encountered northerly winds, which diverted them to the south.

Apparently few large swarms traveled any great distance directly east or south from their origin. No reports of flights in these directions were made by field supervisors of the Fedem grasshopper control project or by entomologists in the States that would have been invaded if such flights had extended beyond their borders. At Huron, S. Dak., there were S days favorable for flight to the east and south from July 1 to August 14. The wind was favorable from the west on 3 days and from the north on 5 days when maximum daily temperatwes ranged from 0° to $98^{\circ} \mathrm{F}$.

That some flights to the east and south did oecur, at least within South Dakota is indicated in correspondence from E. C. Severin, entomologist for the South Makota Agricularal Experiment Station.

Since the egg survey in the fall of 1938 did not show any heavg infestation of mearicanus cgys directly traceable fo eastern or southern flights from north-central South Dikota, it seems evident that they were of minor importance compared with fights to the north, northwest, and west, which were followed by heavy egg deposition in the areas where gravid females finally settled.

Changes in Local Pophations Due to Flights

Only a few estimates of changes in local mexicames populations due to 19 ? flights miderwent repeated shifts in mombers. Xormal and light infestations of 1 to a per square yark were often suddenly increased to very severe infestations of the or more by the first invading swarms. If conditions were favorable tor fying, these swams moved on within a few days, leaving only slight increases over the original numbers. Later invading and depurting swarms also caused local populations to fluctuate throughout the flight period. The permanent increases were greatest mear tire ond of the flight, whon many females ceased flying and bergm eggy laying.

Onc of the athors spent several days in castern Montana when the first flights of the were in progress. Grasshopper infestations before invasion were noneconomic, and crons were good. Incoming swarms were olseved in the late alternoms setthing in liekls of well-headed whent in numbers sufficient to bend man stems to the ground and populate entire fields with several homded grasshoppers per square yart. If such dense swams moved on the next day, damage to crops was slight ; if they memaned for sereral days or were followed immediately by other incoming swams, crops were often completely destroyed.
(hatges in populations on shaty areas were recorded at Mandam, Dickinson, and Beach in sonthwestern North Yakota. These areas were 4 miles long by 2 miles wide, and inchated farm, pasture, and range lands. They were repentedy invaded by swams of mexicanus from the south and southeast during July. The observations are
summarized in table 3. These figures represent average populations for the entire 8 square miles of each area, but do not show the heavier concentrations in small grains, which were almost completely destroyed at Dickinson and suffered losses of 50 percent at Beach and 33 percent at Mandan. Before the flights the population on the Beach area was approximately half as large as at Dickinson and Mandan, but when they were over residual populations were nearly the same on all areas.

Tabre 3.-Changes in grasshopper populations in southeestem North Dakota due to fights of mexicams, 1938. Average number per square yard

Tocation	Before flights (June 2S-30)	Buring fights (July 15-20)	After flights (Augist 1-3)
Mandin_	4. 2	10.0	5. 6
Dickinson	4.4	18.0	5. 4
Beach.	2.3	12. 0	5. 0

Mills (6) published maps showing increases in grasshopper numbers in eastem Montana counties due to fights of meaicanus during the first 2 weeks of July 1938. Tis data are summarized in table 4. Population figures are based on counts made in habitats where grasshoppers were most likely to be found.

Table 4.-Changes in grasshopper popmiations in custern Montanas counties due to fights of mexicanus during the period July 1-14, 1038. Average number persquare yurl

County	Before migration (Func 25-30)	Alter migration (July 12-14)	Increase
Carter	10	12	2
Powder River.	3	G	3
Fallon..-	4	9	5
Wibaux-	2	10	1.
Custer-	2	39	28
Dawson..	10	$4 \overline{4}$	37
Mrcone. -	3	54	51
Prairic.	3	0.3	52
Richiand.	8	61	53
Rosebud.	9	(64 138	${ }^{55}$
Garfield	1	138	

Egg Deposition

Some migrant females laid egrgs during the last 2 weeks of July and the first 2 weeks of August, but peak egg laying did not begin until about August 15, atter neatly all fights had ceased. Temperatures were above normal during August, September, and October, and egg
laying continued until October: 20 in some localities. According to E. G. Davis (mpublished data), the main egg-laying period of meancumus on the Mandan, N. Dak., stady area extended from August 15 to October 20 in 1938 as compared with an average period of August 18 to September 30 from 1937 to 1943.

Since egg deposits on study areas at Mandan, Dickinson, and Beach, N. Dak., were more in line with adult numbers during filghts than with smaller populations atter flights were over, it seems certain that some migrant females laid eqges and then joined swams that moved to other localities. The more usual thing was for gravid females to drop ont of swams and lay all their egres in ome locality. Consequently epge deposition in a locality was proportional to the number of females in the swam that were ready for egg laying, being heaviest where the flight terminated.
In the tall of 1938 surveys were conducted to determine the habitats most commonly selected by migrant, mexicanus females for exg laying. The results of such surveys in Montana, North Dokota. Nebraska, South Dakota, and Wroming are summarized in table 5 .

Tabre 5.-Distribution of mexicamus eqgs by habitat, fall of 7938 (from N゙hotectll 10)

Habitat

There were fewer poxis por suare foot in open range than in other habitats, but large number were somet mos tomal. (ireatest numbers oremred where native grasese bad been partially rephaced by anmal weeds, such as Russian-histle and popporgrass. Heavy eger concentrations wew somethins fomd in conpacted drift soil around sagebrush and cactus. Since the spots where lampe nombers were found comprised onty a small portion of the total range acteage surveyed, the momber foud there did not materially increase the average for the open ange. The large numbers found in weeds showed that very severe infestations might derelop if the tange became serionsly depfeted by drought, soil cosion or orergrazing by livestoek or grasshoppers.

An anutal habient selected for eger laying by migrant females was diserevel in the spring of 1930, when great numbers of myphs were Fomed in the siver bothous and breaks of the Missour and Little Missond Rivers in the bediands of western North jakota. Few mericanus nymph were found in open grastands where gramagrass was dominant bot many wer ionnd in mixed stands of bluestem, bluegrase, and
 along dry creek beds, conde leftoms, draws, and river bottoms. From 00 to 500 per square yard were common in the edges of brush and ser-
rounding grasses. Most of the infestation extended onls a rod or two into the grasses. but often the nymphs were found all through the brush if it was not shaded by trees.

The close association of the nymphal infestations with patches of snowberry and rose bushes left no doubt that migrant females of the previons year had gathered there for egge laying. Previons to $19: 38$ no such concentration of eggs in bruh of any kind had erer been seen by persons with many yeats of experience in studying moxicunas in the northern Great Plains.
Handforl (5) reponted a similar untenal concentration of eggs in the bottom lands of the I'embina River in somhern Manitoba after swarms of meximbus: from the Chited Ntates had infaded that area in 1938.
Sereral reasons for the musul concentrations of eggs in and near brush in coulees, draws and ricer botome are suggested: (1) Females dropping out of swan were heary with eggs and were forced to deposit them at once in an area devois of the crmped and idle lame where eggs are usually laid in greatest mumber. (-3) mowbery and rose bushes applied green fond and ecape from high ground temperatures, (3) soil shaded by the bruth was softer ant more faromable for eqger laying than surrounding arombl and it) warmeremaned settled for longer pexiods of egeg laying beathe light wind needed to initiate fights were less frequent than on higher mprotected ground.
Exg laving by migratory wamm of wh chome in the [nited States was heariest in the followng areas: (1) Fastem Montanand western North Dakota: (2) northwestern Mmesota and northeastern Touth Dabota: and (3) southwesterm Sonth Dikota. northwesterm Nebraska and eastem Wroming. In ('anadi eqg laying was heariest in routhem Manitoba and sonthem sakatemem. The boundaries of the Toited states arean were determinel bregr survess in the fall of ighs and nymphal surreys in the pring of 1 pan. In Hanitoha and saskat flewan these areas were based manly on fall egr survers. The areas -hown in houre 1 represent only the kiown serere and yery severe infestations, ant their bomdarien are only apmoximaty correct. Severe infestations often gradually dedined from one locality to another so that it was difficult to erablish a bomdary between them and threatening inferations.

FLIGHTS IN 1939

The mase fights in 1 lan are discosed by georraphical areas in the Fhited Stater where swarm of mo, cirthus ladd egre: in greatest numbers in 193 on the wow in tigurs 1.
The most data were obtaurd in eastem Montama and western Corth Dakota, becanse one member of the project was a study migratory pepulation-throughout the season. Other members spent considemble the within and arom the area in emasetion with other dutios. Contitions in Arontana were paticularly favomble for stadying hights. The bemmatien of heary ege depreition be 1908 swatms wete better tofited that in other areas. and the remainter of the state was or lightly infested that lys) wams rouk be easily spotted aud followed from one locality to another.

One person was detiiled to study fights in southwestern South Dakota, northwestem Nebraska, and eastern TJoming. but he had less assistance than was available in the Montana-North Dakota area.

No special plans were made tior studying fiights in northwestern Minnesota and northeastern North Dakota. All data for this area were obtained from State grasshopper-control leaders.

Information on flights from the Thited States into Alberta, Saskatchewan, and Manitoba was obtained from Camadian entomologists.

Seasonal Development

Eastern Montana and Western North Dakota

The main hatch started on May $\overline{5}, 2$ weeks earlier than normal, and was 90 percent complete by June 1. Nymphal development was retarded by cool, wet weather duwing the third week in May, but no reduction in uumbers was noted. The tirst adults were seen the first week in June, and by July i orer 90 percent of the population was adult.
Northwestern Minnesota and Northeastern North Dakola
Fatching started the lirst week in May and was 00 percent complete by June 1. The first adults were seen on June 3, and ly July 15 over 90 percent of the population was in the adult stage.
Southwestern South Dakota, Northwestern Neloraska, and Eastern Wyoming
Fatching began the last week in April, was general during the first week in May, ind was practically complete by June 1 except in the Black Fills. where hatching and nymphal development were 7 to 10 days later. The first adults were seen on May 30. I3y July 1 from 7 a to 9 percent of the population were adults excent in the Black Hills, where 1 to 15 percent were adults.

Where Greatest Numbers of Nymphs Hatched

Eastern Momana and Western Norlh Dakota

As predicted by the eqge survey in the fall of 1038. grasshoppers hatched in large numbers in idle hand, small grains, and field margins. The maximon numbers per squre yard were 140 in field margins. 115 in dide land, and 65 in small grains.

In the river botfonss draws, and coulees of the Yellowstone, Missouri, and Little Missouri Rivers from 50 to 500 nymphs per square yard were common in and around clumps of rose and snowberry bushes.

In rangeland more grasshoppers latehed than was indicated by the fall egry survey. Fow were found in good stands of gramagrass and sedge, which are dominan over nuch of the mane, but very severe infestations occurred where some of these plants had been kilted and replaced by weeds beatse of overgrazing and drought. Weed patehes of less than 1 square yard frecquenty harbored several hundred nymphs, and in laruer pathes there were sometimes as mmy as 1,000 per square yard.
Nymphis were much more abundant in western wheatgrass and needlegrass than in gramagrass and sedge. Infestations were particularly severe, 50 to 500 per square yard, in creek bottoms and draws
where these grasses had remained green and attractive for egg laying during the 1038 flight period.

Large numbers also hatched in drift soil aromd sagebrush and prichlypear cactus. These habitats comprised only 10 to 25 percent of the vegetative cover, but they produced enough young grassioppers to cause heary infestations of entire sections of rangeland.

Field men making frequent observations in eastern Montana estimated that the average nymphal population in approximately 8 million acres of rangeland in that weat was ar least 50 per square yard.

Northwestern Minnesota and Northeastern North Dakota

Large numbers of grasshoppers latched in small arains, alfalfa, cutover land, pastures, and in botom land along the Red River. Average nymphat populations in various habitats were not reported, but extensive control operations were employed to protect crops.
Southwestern South Dakcta, Northwestern Nebraskat, and Eastern Wyoming
Small grains were the most important crops and comprised the tarerest acreage of nymphal infestations. It their peak nymphs averaged 60 per square yard in helds and 500 in their margins. Small grans seeded in unworked stubble were more heavily infested than when planted in deeply plowed land. In reedy idle land and alfalfin popa\}ations were higher than in small grains, but infested acreages were smaller. Aremge numbers per simare jard wore in in ide hand and 115 in affalfa.

Ifeaviest concentrations of nymphe were found in the mountan hay meadows and pastures of the Black Hills, whete they averaged 600 per sounce yard and frequently exceeded 1 , oth per suare yard. Rangefand was not hearily infested exepod in mall areas adjacent to infested crops or idle lind.

Damage by Nymphs and Their Food Preferences

Eastern Montana and Western Norti Dakots

Nymphal infestations in small grains were not so common as in other habitats, but when present they were usually very severe and destroyed most of the crop unless control measures were employed. Many grainfields not originally infested were repeatedly invaded by nymphal mipration from heavily infested range and idle land. and some crops were destroyed in spite of several applications of bait.

Bluegrass was prefered to all other grasses and was the most severely injured. Little of it ever reached the flowering stage, and by the midde of J me most of it was eaten to the roots. Western wheatgrass suffered about 50 -percent foliage damare and almost complete loss of seed. Damage to needlegrass foliage and seed was slightly less than to western wheat rrass. Sedge foliage and seed heads were only slightly damaged. Gramagrass was injured the least of all the grasses. Its Jeaves often remained uneaten when grasshoppers had destroyed all other verretation. Some of its early flower heads were eaten, but it blooms later than most grasses and by the time it was in full bloom nymphs lad transformed to adults and had left the area.

Of the ammal weeds, peppergrass and Russian-thistle were preferred to all others, but the hatter was eaten readily only when newly

[^2]sprouted and a few inches in height. Dry Russian-thistle plants were eaten when no other food was a railable.

Sagebrush was frequently defoliated and the bark eaten, leaving ouly bare, dry twigs. The foliage of wild roses. rabbitbrush, and snowberries was eaten. and they were often stripped of their bark. Blooms of the pricklypear cactus were eaten almost as soon as they formed, and flesty leares were frequently so gonged out that they shriveled and tumed black.

Southwestern Soukh Dakota, Northwestern Nebraska, and Eastern Wyoming

Small grains were favorite foods. am many tields of barley. oats. and spring-seeded wheat were completely destroyed. It was estimated that the harest of small grams for the area as a whole was reduced 25 to 35 perent and hat losses date to grasshopper damage would have been twice at large if eontrol measures had not been employed.

Alfulfa was eaten more readily than sweetclover, and rields were reduced 10 to 15 percent. Timothy. erested wheatgrass brome, and other mountain meadow grases in the Jlack IIlls were all so sererely attacked that practieally mo hay was harrested.

Of the common range grasses, bluegmes, wertern wheatgrass and needlegrass were preferred: gramarats was seldom eaten. Dimage to range was severe in spots, but a verased only 10 to 20 percent.

Weeds most commonly fed upon were liusitathistle peppergrass. lambsquarers, sunftowers, and dock. Gumweed and steletouweed remained meaten even when other fook was scaree.

Sagebrush. rose bushes, and smowbery often were fed upon and were sometimes stripped of foliage and bark.

Aymphal Miyrations

Eastern Montana and Western North Dakota

N゙ymphs hatehing from exges laid by fanales in the lo3n flights showed a greater tendency to migrate than did nymphs in locajities: where fights had not occurred for several years. First-instar nymphs dispersed into surrounding regetation without forming bands. Later instars frequmby natedne in bamb in chameterithe migratory fashion. some bands mored from idle land and depleted ringe into small grains, and others lefr gramields atter they had destroyed the crops. Xearly all mitrations were towad greener or more abmdant regetation. but somethases they left held. where there was phenty of green food and mored to less favorable enviroments. The direction of migrations on lerel ground was generally ipwind. In rolling terrain baids deft ritges and slopes and moved to lower, more nearly level Jand without regam to wind direction. sijowly howing small streams did not reat their progress or change their course. The young frassikopers merely hopqed into the water, swam rapidly across, and continued on their way.

Migrations started when air temperatures first ranged from 6 sin $^{\circ}$ to 5\% F. and the sky wis clear, and stopued when the temperature dropped below br" or the siy became overcast. Bands traveled at the rate of about 1,10 mile per hour.

Southwestern South Dakota, Northwestern Nebraska, and Eastern Wyoming

Migrations of young grasshoppers were common on clear days when the temperature was $68^{\circ} \mathrm{F}$. or higher. Moremente were mostly from idle land and field margins to small grains and alfalfa. Most of the migrations observed were upwind toward more surculent or more abundant food. Marching bands of mexicame were not joined by other kinds of immature grashoppers, even when they passed through places where other species were numerous. A fer memicanus bands were interspersed with newly transfomed adults of the same species.

Dates, Locations, Directions; and Intensities of High Flights

Eastern Momana and Western North Dukota
Flights became frequent as soon as 25 to in percent of the mexiranus populations became adult. Less time tras spent in meliminary lot milling flights than in 1938 . Sewly transformed adults seemed to have inherited a migratory urge am wob to the air whenever temperature and rimde were favomble, eren when favaite foods and shade were arailable.

The first thights observed in Dontana mere in Posebid County on Tune - 0 . Firs Hights in North Inkota were reen in Mcrienze. Stark, and Mercer comites on Jome vi..2. All of them were within the area of heary eqg denosition by 143 , warms. Siwams continued to Hy out of the area mint July ${ }^{2}$. when it bemme amost completely devoid of meviconhe infestarions if seohomic ingertance. Swarms mere sighted in adjarent prephons manfested localities during the last duy of fune and contimed to more m varions directione on faror-
 1 , and the last one of any importance was serm on Lugust 29 .
luring the flight perion thl fetalled obuervations were recorded on Hight lin arogres within the one where they originated or the localities that they inraded. This does nor mean that $b=1$ separate swams trere seen. Diffrent peromnel monetimes wherved the same wame on one tay in one localiy and on other days as it moved to another lowatity. The lexation. direction, and intensity of the fights: sberersed ate shom in figure 3.
()f the toral numbur of ob-arrations in this area, ot percent were rlassitied as heavy, it perent as moterate. and by percent as light. Twelve fermat ownmed during the las in days in June. ss percent
 heary and imoterate tharhto took plare bet ween Tune -0 and July 1%. No heary hachte and anty fon mondraff thohte were obserred after Lugent 1.

Winds were variable during the Hiatht period and swarms were carried in all directions. With othe exreption. whiph might be explained by mosible ditfrence in drection of upper and Iorer air currents, all fights, excfpt those chasitied as milling, were in the same direction as the low-hel freviline wind. Of the observed Gights to various points of the comphot. the directions were as follows:

Fraure 3.-Fights of mexicanus observed and recorded in 1939.

Seventy percent of all heavy flights, those most important in populating previously uninfested areas, were toward the west or northwest. In Montama the progress of heavy flights across the northcentral part of tha state was easily followed for apposimately 235 miles from the startine point in eastem Montana. The invading swams failed to reach the foothinls of the Rocky Mountains, the western limits being the eastern parts of Teton, Pondera, and Toole Counties. The Ifighwood, Little lielt, and Big Lnowy Momtains in Cascade, Jndith basim, and Fergus Counties roughly delimit the southern boundary of the hearily invaded area. The progress of swarme as ther mored acrose north-central Montana is shown in figure 4.

Aecording to (tanalinn entomologiste, mericanus swarms started crossing the Montana-Canadim boriler in the southeast comer of Dberta on Jnly 9 , and by Inly 17 had reathed the South Siskntehewan River Valley where ilights maminted. This part of Jlberta, hike north-central Montmat bad had no economic intestation of mericomas before the flights, amd the progress of wwarms could be easily followed by the sudder increases in pronlations left in their path. From where fights origimated in Montana to where they terminated in Alberta is approximately 360 miles. the longest
 hatf as far assome swams tiveled in 1 !em.

Feary fights from Montana also ratered sombwestem saskatchewan on Faly ?, the same day that somtheastern Aberta was first invaded. Prevously there had been moeomomic infestation of meriramm in this part of saskatemewn. but by . July er approximately : 2,50 sfuare miles had become theateningly to severely infested. Most of the flights into this area temmatat betore or on reaching the Sonth Saskatclewan River about 110 miles north of the
 north.

Southeastern saskatchewn was alse intaded on faly of swams fon northeastern Montana and worthwestern North Dakota. These flights continued on favorable days duriner dua rest of July and extended to the Quilppelle liver approximates 100 miles north of the intermationa? boundary. Increases in local populations due to flights were not so well distributed or so large as in sonthwestern Saskatehewan, hat theratening to severe infestations of adale migrants were common throughout the southemstern comer of the Province. This part of Saskatchewan was invaded by flights of mexicanus from the Trated siates in 1934 , and ecomomic minestafion: of this species were present before the 1039 flights becam. Some of the 1930 fights may have originated within the Provine bint it is certan that many of them came from Montana and North inikota.

In Montunand western North Inakota the heaviest and most frequent flights to the west, northwest and north were hollowed most closely by field persomel. Some lifghts towacd other points of the compass were observed within the zone of origin, and several were seen in adjacent terriopy but they were not followed in mough detai] to chart their progress and litale is known about their final destination. It seems probable that hights heavy enough to couse a sudden increase

in local infestations and injure crops would have been reported by landowners or comty agricultural agents. Since this was not the case, it is assumed that flights other thin those to the west, northwest, and north were of minor impertance.

Northwestern Minnesnta and Northeastern North Dakota

It appears that light inightsbegran in both States about Tume 2.), when approximatoly 10 perent of the mexicomas popubation was adult. The tirst heary flights reported occurred in the Red River Valley on July when sil percent of the population was adult. ITeary flights were reported in Marshall. Kittson. and Jobl Countes in Mimmesota
 from Jily 16 to 23 . Shome were from North I akota into Mimnesota and others in the opusite dibertion. There were hem fights from Gramd Forks Comaty into Marhall aml Polk Commes from Lugust
 Q1, and 24 settled in previonsly humbected yedions of Larshah, Pobk, Pembington, Red Lake. Mahmomen, and Becker. ('omaties in Dinmesoch.
 and Dembina (ountios in mortheasern Xomb Jakota were frequent during July and Augus. The hermon ofoly 10 , when swarms from (avalier ('omaty wore seen erosing the international bomotary along the Pembina liver. Norleate to severe infertations rexilting from gegrs Jaid by lajn migrants from North Inkota were present in the (omadian section of the I^{2} mhina Kiver swtem before fights started. Meary lighte foms Nond Dakota to the morth and northwest on Tuly
 become very severe and greatly increased the size of the area infested.
 dramage to the uorth and nombwor and were enteriner districts that

 progresed borthward to the Ansimbome fiver and northweswad

I heavy fieht from Mantoh into North dokota was oherreal in Rolette (ionity on dugust 13 .

Southwestern Soutla Dakota, Nordhwesters Nehmaka, and Eastern W'yominy

The firat lights oberved in Nehraska were on hune 21 , in Wroming

 Heay fights originated within the zone of heare cerg teposition by warms that came from noriberentmb touth Iakota in 193 s . Their soures were in the wothern half of the black Ilills in Jawrene and Pemmonton ('oumties, South)akota: Box Butte, Sioux, Dorrill, and Soots Bhaf Commies, Nehmaka; and castorn WYoming.

From the first observed tlight on the et to Dugust ex when dights were over. obserations were made at 102 phaces within the zone where they originated, as shown in firme :3. (of the total mumber of high
 moderate, and $4 . \quad$ pereme wew light. No heary fights were sem before June 27 or after duly 37 . Eighty perent of thllights oberved
occurred during this periocl. Only 7 moderate and 10 light flights were seen between. Fuly 18 and August 22.
Thirty-four flights were classed as milling. They took phace on hot days when winds wore very liuht, intermittent, and variable in direction. During milling flights local populations shifted constantly, and in some of them grasshoppers could be seen taking off and landing in about equal mombers, Lt such times they tended to concentrate in spring wheat. oats. and bapley. which offered an abundance of green food.

When light wimb blew temaly in one direction. swams took to the air even when green fool was plentiful. and traveled with the prevaling wind. The numbers of thyhts observed traveling in various directions were as follows: Xorth 3. nomthente 2. east 0. southeast 18. south 10. southwest 11. west 9. and northwest 15. The flights to the west and northwest attracted no attention outside the zone of orgin. and no heary egg deposits cond le definitely attributed to them. The 5 flights going north and northeast likewise attracted no attention. Flights to the sontheast. south. and southwest represented 51 percent of all the direct iomal hights observed. These flights were seen as they progressed through the ronthern sections of the zones of origin, where some of the swathe set led for eqger laying: others kept on moving and invaded new terriony to the sonth.
Swarms carried to the sonth and somthwest invaded the irrigated sections of (olorato along the eastern sompe of the Rocky Moustans. Flights into this area were noticed from June 27 to July 21. Large increases in mexicumux monbers were reported in irrigated crops from Fort Collins in Larimer Connty to Bonlder in Bouder County and smaller inereases as far south as La Duma in ()tero County.
Swams traveling south entered not heastern Colorato, where thes increased infextations in irrigated erops in the Sonth Phatte River Talley. Other swams setted in dry rangeland south of the river and later moved west ward to the already insaded irrigated section from Fort Collins to Boulder.
Swarms tying to the sontheast were seen in southwestern Nebraska, and some of them may have contimed imo westem Kanas, where heary flighte were reported during the lirst 10 days of Tuly. Since large mumbers of mexicumw were present in Kansas before flights oceured. it couk not le delmitely detemined whether they were of local origrin or from distant sourees.

Changes in mexicanus Populations Due to Flights

Montana

Data on changes in merternus popalations due to thights were obtained more pasily in Momtana than in oher States. perious to fights mearounus numbers were extromely low in central and northcentral Montam, and any sudden increases due to flights from the very heavily infested area in eastem Montana were easily recognized.
Efstmates of the mubers of merictumus adukts before, doring, and after fights were obtained by establishing stations in infested places in eastern Montana where hights originated. between zones where they originated and where Dley terminated, and in north-central Montant where they terminated. The changes in populations at some of these stations ame shown in table 6 .

Table 6.-Numbers of mexicanus adults per square yard before, during, and after flights at stations within the three Montuna zones, 1339

In eastern Montana the numbers ranged from 25 to 60 per square yard before flights, dropped sharply as a result of flights during the frist 10 days in July, and by July 24 , when flights within the area were over, did not exceed 2 per square yard at any station.

At stations between the zone where flights originated and the one where they terminated the numbers before flights were noneconomic and did not exceed 5 per square yard at any station. During the fight period numbers increased and decreased erratically through a range of 4 to 100 per square yard. Larger numbers were often seen in fields not used as observation stations. Alternate arrivals and departures of swarms sometimes increased or decreased local populations by several hundred per square yard within a few days. Most of the migrants eventuaily moved on, and by the third week of August, when all flights were over, the arerage population, computed from observation at all stations, was 4.2 per square yard as compared with 2.2 before flights.

In north-central Montana where flights terminated, numbers before flights ranged from 0 to 2 per square yard with an average of only 0.8 . Populations increased at all stations during July as a result of flights from the enst and southenst and reached their highest numbers in late July and early August. On August 2-4 infestations ranged from s to 35 per square yard with an average of 17 . There were no flights from the east and southeast after Lugust 4, but light to moderate fights originated within the already invaded zone at irregular periods until August 22 . These flights redistributed populations within the zone and extended its western boundary 25 to 40 miles. As a result of these changes and the dying of spent grasshoppers, populations on August 17-10 had declined to 4.2, which was still 3.4 more than before the zone was invaded.

The changes in populations shown in table 6 confirm the following conclusions drawn from observations of flights while they were in progress and of swarms after they settled for egg laying: (1) Flights from the zone of origin reduced populations within it from very severe to noneconomic infestations: (2) intermittent flights between the zone of origin and the area where they terminated resulted in sharp temporary increases in local populations, but when flights were over, numbers were only slightly higher than before fights; and (3) in the zone where flights temmated previously noneconomic infestations increased to severe infestations and remained in this category for several weeks after the last fight.
During the serond wepk in Fuly. 15 observation stations were solected in Glacier, Pondera, Teton, and Cascade Counties at points 40 to 50 miles west of the terminal \%one. at that time heavily populated by mexicanus mignants. The invarled zone expanded slightly to the west after the middle of the month. but no fights were seen at or west of any of the new stations and no significant increases were recorded. Average numbers of mexicumus adalts per square yard were as folbows: 0.5 on July $14,0.4$ on July $20,1.4$ on August 3, and 1.3 on August 17. The slight increase may have been due to stray migrants from the heavily infested zone.

These estimates are nearly the same as those recorded before flights in the intermediate zone in Petroleum, Mnsselshell, and eastern Fergus Counties and in the terminal zone in Choutea, Hill, and western

Fergus Counties. All of them show the extremely low level in central and north-central Montana counties before they were invaded by swarms from eastern Montana. Lo, numbers also prevailed in eastern Montana just before it becrme hervily populated by migrants from Sonth Dakota in July 1938 (see table 4 , p. 11).
It is evident that natural factors were holding local populations to noneconomic numbers in Montana during both years and that no severe outbreak would have occurred except for the mass migrations from other States.

Southwestern South Dakota, Northwestern Nelrruska, and Eastern Wyoming

Flights out of this area did not drain it so completely of mexicanus adults as they did eastern Montana, but nearly all very severe and severe infestations were reduced to threatening or light (table 7).

Wlights from one locality to tuother within the zone of origin sometimes caused increases of 10 to 50 grasshoppers per square yard (table 8). Most of these swarms mored on again within in few days. Increases due to fights were most common in northwestern Nebraska.

Reliable data on increases in numbers caused by swarms after they left the zone of origin are arailable for only one locality. In the vicinity of Fort Collins, Colo., populations in irrigated crops were very low before flights and only about 40 percent of the grasshoppers were mexicanus. A sarrey of this locality on July 21 after fights were over showed that mexicanus comprised 95 percent of the populations, and the following numbers per square yard were recorded: Alfalfa $4 \bar{i}$, barley 3n, and oats 20 .

Crops Damaged by Adult Migrants

North-Centrul Montana

The areas in easteru Montana in raded by 19:38 fights were predominantly rangelands, and there were few chances for swarms to choose between range plants and crops. The new districts invaded in 1939 included large acreages of wheat. barley, oats, fax, alfalfa, and sweetclover: Swarms tended to settle in these crops in preference to surrounding rangeland.

Crop injury was comparatively light in the intermediate zone, where swarms settled for a few days and then moved on. In Blaine, Chouteau, Fercus, Iill, and Liberty Counties, where flights terminated, crop injury was frequently severe in spite of repeated baitings. Immature small grains were stripped of their foliage, and heads of ripening grain were caten or cat off. Flax bolls vere cut off, and new growth in recently cut affalfa fields was seriously injured. Harvesting in hate July and early August saved many of the crops. Successive observations at stations within the 5 counties showed crop damage by adult migrants to be as follows: Wheat 15, oats 7.5 , flax 10, and alfalfa 10 percent. There was practically no damage to range vegetation.

Northwestern Minnesota and Northeastern North Dakota

As in Montana, migrants settled in small grains, fiax, alfalfa, and sweetclover in preference to range vegetation. Severe damage was prevented by extensive baiting operations and early harvesting.

Table 7.-Numbers of mexicanus adults per square yard before, during, and after fights at stations within the zone where fights originated, 1939

State and county	Habitat	Observation station	Before flights	During flights	After flights
Nebraska: Box Butte Kimball	Wheat	1235	June 16, 100	$\begin{aligned} & \text { July 5, } \\ & \text { July 55, } \\ & \text { July 5, } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { July } 20,25 . \\ & \text { July } 20,1 . \\ & \text { July 20, } \\ & \text { July 19, } \end{aligned}$
	Barley Wheat		June 16, 50		
			June 16, June 30,		
Sioux	Idle land...----------		Junie 17, 50	June 30, 10	
South Daknta:					July 20, 10.
Custer	Range_-.-.-.....-.		June 17, 30		July 21, 2.
Lawrence	Hay meadow	678			July 13, 5.
			June 21, 150		July 14, 15.
Pennington	.do.	9	June 21, 150		July 14, 20.
Wyoming:		10			Juy 14, 20.
Crook	Wheat		June 26, 25		July 14, 5.
Converse	Wheatgrass	11	June 27, 60		July 18, 8.
Goshen-	Idle land		June 27, 40		July 19, 1.
	Barley-	13	June 28, 75	$\text { July } 7,10$	
Weston	Wheat	14	June 26, 100	July 7, 35-......	July 19, 10.
Niobrara	Rye	16	June 27,20	July 7,25	July 18, 3.

Table 8.-Numbers of mexicanus adults per square yard before and after flights at stations in northwestern Nebraska, 1939

County	Habitat	Observa- tion tion station	$\begin{aligned} & \text { Before } \\ & \text { fights } \end{aligned}$	After flights
Siour	Wheat.-		June 28,5 .	
Dexes-	-do---		June 28, 2	July 3, 25.
Sootts Bluff	Alfaifa--	4	June 28,	Juy ${ }^{4,36 .}$
Kimball	Wheat--	5	June 29, 3	July $\overline{5}, 50$.
Cheyenne	Oats.---	6	Jute 29, 2	July $5,25$.

Southwestern Sounh Dakota, Northwestern Nehraska, and Eustern Wyoming
Green crops were eaten in preference to range plants. Early harvesting of small grains plus a well-organized control program prevented serious crop damare. Increased damage due to flights within the zone of origin was estimated as 10 percent for small grains and 5 percent for alfalfa. Damage by migrants was less than expected because of the tendency of swarms to keep moving and eventually leave the zone. This was in marked contrast to the behavior of the swarms that entered the zone in 1938, which caused severe damage to crops wherever they settled for egg laying.
Only a few estimates are arailable on crop damage by migrants after they left the zone of origin, but it is known that they injured crops in the southwestern comer of the Nebraska Panhandle and in northeastern Colorado. The increased damage due to flights into Kimball, Cheyeme, and Deuel Counties in the Nebraska Pamandle was 25 percent in small grains, 15 in alfalfa, and 12 in corn. Similar estimates for damage caused by flights into northeastern Colorado were 15 percent in alfalfa, 5 in small grains, and 5 in corn. Damage in both areas would have been much greater if control measures had not been employed.

Ovarian Development and Time of Egg Laying

Eustern and North-Central Montana

In Montam ovarian development was followed throughout the flight period. Observations were made at 134 stations within the zone in eastern Montana where flights originated, 33 in the internediate zone which grasshoppers passed through before laying many egrs, and 97 in the zone where they deposited the most eggs. At each station the contents of the abdomens of 5 to 10 females were remover and examined. The degree of ovarian development was roughly chassified as follows: None, if the egrs were not visible in the oviducts; slight, if they were visible but less than one-fourth of full size; moderate, if they were one-fourth to three-fourths of full size; and mature, if three-fourths to full size.

The progress of ovarim development in the three zones is shown in table 9.

Table 9.-Pereentage of eggs of mexicanus fight females in different degrees of development in three Montana zones, 1939

Period	Zone of orimin			Intermediatezone		Zone of heavy egg deposition	
	None	Slight	Moderate	Slight	Moderate	Moderate	Mature
June 20-26	80	20		100			
June 27-July 3	54	46		87	13		
July 4-10--	38		14	50	50	100	
July 18-24.				50 80	50	72	80
July 25-31.				80	20 100	70	30
Aug. 1-7.						64	36
Aug. 8-14							
Aug. 15-21						51	49
Aug. 22-2S						15	85

No females with mature errs were found within the zone where flights originated. an indication of almost complete exodus of mearcanus shortly after reaching the adalt stage. Females with moderate ovarian development were found in the intermediate zone in increasing numbers from fome 27 to July 81 , but none were found with mature eggs. This sepms to explain the extremely low egg populations found in the intermediate zone in the fall of 1039 . Femajes with mature eggs were found in the zone of heavy egg deposition on July 11-17. This was only a few days after swarms first arrived and about 3 weeks after flights started in eastern Montana. The percentage of females with mature eggs increased to 36 by August $1-\overline{6}, 40$ by Aurust $15-21$, and 85 by August $22-28$.

Eggs of flight females in both the intermediate zone and the zone where they settled for egy laying were more fully developed than those of nonflight females in noninvaded counties nearby.
Mating became general by the last week in June and continued throughont the summer. Mating occurred from early morning until late evening over a temperature range from 68° to $105^{\circ} \mathrm{F}$., but most commonly from $10 \mathrm{a} . \mathrm{m}$. to 3:30 p. M. between 75° and 95°.
In the heavily invaded counties of north-central Montana eqge laying was observed on fuly 15 , within a few days after the arrival of the first swarms. Heavy egg laying was in progress by August I, continued until September 15, and then fell of rapidy as the adults died in late September and early October. Toge surveys made in 30 fields showed 0.6 edgy pod per square foot from August 15 to 2.2 and 1.15 from September 20 to 30. This indicates that approximately halt of the eggs were laid by Auqust 15-2.2. A third survey in November showed no increase over the Scptember counts.

Egrg deposition was observed throughont the temperature range of 72° to $100^{\circ} \mathrm{F}$. and occurred most frequently between $10 \mathrm{a} . \mathrm{m}$. and 4 p. m.

Northwestern Minnesota and Northeastern North Dakota

No observations on ovarian development were made. Oriposition was first observed on Tuly 11. became greneral by July 20 , continued heary until September 1. and was practionly complete by september 15.

Southwestern Soulh Dakota, Northwestern Nebraska, and Eastern Wyoming

Th mumerous comparisons throurhont the area firm June ${ }^{2} 1$ to Tuly 1 , egrg development in thatht females was invariably more adranced than in nomilight temales. From 50 to to jement of the flight females carred moderately to fully matured egens as compared with only 10 pereent in monflight females.

Egrg deposition hergan the last week in June. increased sidghty
 estimated that en perent of the mericame females were ready to lay egess. Heary erge laging combined thremeh the remander of Jaly and all of Aurust.

Areas Where the Host Eygs Were Laid

North-Central Monama
Edres were laid in greatest mumbers in and around the aroped helds where migmats comgregated when dights temmmated. Jrabitats tavored for eger layng were winter and sping wheat, fax. alfalfa, field marrins: roadsides, and weeds idle land. Spring and winter wheat comprised the hargen arreate in eroms and wat the greatest soure of equs. Weedy crian stubble contained more agers than dean
 fiehl margins was abot the sane as in liehls, an unasual handing. Few

Eger: were deposited mon hatily thrmohout the eropred sections:
 of Teton. Jondera, Toote, ame l'hillips (ounties. The most leavily infered aman are whom in ligure 1.

 square foot in large liedds constifutes a severe infertation. The arerare of t .1 found in IIll Comty was the highes for any county in the Thited States in I (e:?).

A special survey was condurfed in Novenber to determine the number of eque pods per square foot in the zone where fights origrimated, in newly invalded tempory, and in localities shighly herond the limits of the 1020 flights. The resilts of this surver are shomen in farure $\overline{0}$.

Thger-pox infestations were about as would be expected from the adale pophations shown in table 6 . No egras were found in (xarfeld County, ont of wheh morly all the adnle flew betom the femakes were ready for erg laying. "Ergs were obtaned at only one of the

[^3]stations in Petroleum County, which was passed over but not heavily populated by flights. Egg counts were high in Fergus, Iill. Choutean, and Liberty Counties, where migrants settled in greatest numbers. Simifar counts probably would have been obtained in the northern third of Blaine County if it had been inchuded in the survey. The average number of egg pods per square foot dropped sharply in the zone between the most heavily invaled area and the western limits of flights and was of noneconomic importance at all stations adjacent to but begond the western limits.

The unasually low eqr r-pod counts fornd outside the zone invaded by flights again emphasize the fact that matural factors were holding mexicanus to noneronomic numbers and that Montana wond have had no major outbreak in 1930 had not overwhelming numbers entered the State by flight in 2938 .

Northwestern Minnesota and Northeastern Nortia Dakota

No detailed studies of flights were made: so there is no definite information as to where swarms laid exges in createst numbers. It is known that there were many flights within the area aud some into surrounding tervitory on the east, west, and north, but they did not drain the area so completely of its merreans population as did fights in eastern Montama and western North Dakotu. Population increases catsed by fights imo newle invaled areas were dificult to measure because of the existence of light to heratming imfertations in many places before fights occumed. It is therefore imposible 10 state definitely whether mexietume eggs found within the gone where flights originated or in newly invaded territory were laid by local or by flight grasshoppers.
The 1939 monal exg surey showed severe to very serere exg infestations in the same counties where eggs were laid most heavily in 1935 and equality severe infestations in nearby rounties where few egus were laid in 19:3s. The newly and howily infested areas were in the following counties: l'emington. Red Jake, Polk, Mahomen, and Berker in Minnesota and Ramsey, Nelsm, Sleele, Grigrs, Eddy, Foster, and Wells in North Dakota.

Southwestern South Dakota, Northwestern Nebraska, and Eastern W'yoning

Flights qreatly reduced moxirames adult populations, and fall egor infestations were mumh lighter than in Ifass. In the comties listed in cable - infestations ranged from severe to very severe in 1938 and from light to threatening in 1939. Average redictions in numbers of efg pods per symare foot were as follows: Soullwestern South Dakota 1.4 to 0.5, northwestern Nebraska 1.2 to 0.5 , and eastern Wyoming 1.2 to 0.2. The greatest percent reduction in eastern Wyoning corresponds to the more complete evacuation of that area by flights.

North-Central Colorado

Severe epge infestations were found in Thd, Larimer, Boulder, Adams, and (Gippin Counties in north-central ('oborado. It is believed that a lage number of the ergs were lajd by mexicomus migrants from Nebraska, south Dakota, and Wroming, whin invaded this area in July and August. The boundures of severe minestation are shown in figure 1.

Canadian Provinces

Information on Canatian zones of hearidet equg deposition by mericonus migrants from the lonted states is based on the annat fall survers by entomologists in the invaded Provinces.

In Aberta very severe infotitions were fond in the extreme sonthenstern conner of the leporinere. This infuntation was joined on the

 square foot, the highes ever remmen in stakatehewan. This eom-

 usually heary eqg deporit-in erain -thble to the fact (hat only about one-fifth of the land was muder mhtantom. Migrants settinge in

 Tinited itates.
 wan are shown in ligum 1 .

FLIOHTG AN I9.10

 meventeri.

Alontana

 Jume 10 (0.25.

 after getting their wings.

Plans were made in June for obserring fights and determining changes in populations due to them. Stations were set up within the most heavily infested area in morth-central Montana in all the counties surrounding it, and in representative arricultural districts in eastem. southern, and westem Montan-a total of 1,01 tations. Nymphal infestations were estimated in fone, and smyeys we made at \pm-week intervals in fuly and Angut for the purpere of detecting iny suddent changes the to Hights. Egy rarrey were made from (evober th to Novembers.

Flights began on Juy :3 am eomtimed when weather was faromble math Lugust 30. During this period 1.2. recorde were made of thights in progress within the zone where they orghated or in athacent localities. This comprase with :* 1 records made in the same general area in 1939. The lowation, intmity, and direction of these lights are shown in ligure 6.
Tine and live-tenthe percent of the dights were chasibied as heary, 16.5 pereent as moderats, and ats perent as light. Heary and modprate flights composed only $2-$ bereh of all hights as compared with (4) pevent in tom. Heary and mondente fights were most frequat

 direction to previlime low-level wimls. Directions of the 132 flights oberved were io fullow-

There were fewer fight- to the wet amb northent than in 1238 and 1939. Only 29 peresint of the 190 lights were in these directions ats compared with 41 perem in leme. Fonty perent of all Hights were

 west were partienlly the sthe ar in 1 mat.

The firs invaion of now torritory bexean on July 13. when light fights ressed the eothern bommary of the area into previousty
 all fights were ower, the newly inated \%one extended 10 to 31 miles beyom the wemen and wothswam bordere of the zone of ongin and 10 to 60 miles beyon ite southem borlers. Nealy all the thights within the newly invaded zone were light, and repeated surcess at observation stations dishesid no molesate or severe infestations of adults due to fights. I? 1 ts of Big I Lom, Stillwater, Treasure and Yellowsone (obintion were ineluthe in the invald tome in sonthem Montant, even thong wo detailed hight oheryations were recorded. Observers other than thow making the detaind thath stadies reported

 increase local pophlations abow their ligh prelight ratimgs.

Figure 6.-Flights of moxicanus ohserved and recorded in Montana in 1940.

Flights from Montana into Camada and in the reverse direction occurred. but they did not materially change mexicanus populations on either side of the intermational boumdury.
Flights into the inraded zone did not drain the zone of origin so completely of its mexicamus populations as did fights out of the hearily infested zone in eastern Montana in 1930. Instead of flying out of the zone so 1 eavily infested in 190, many of the swarms were carried by parable and miemittent winds to rarious points within it. (If the lis2 flights observed in 1940, only 24 perrent wre in the newly invaded zone and some of then were sem returning to the zone where they origimated.
Populations within the zone where flights started slifted constantly from fuly 3. when fights begran. Whtil Lugut 3, when all moderate and heavy fights were over. In ablult surrey conducted from August 5 to 10 diselosed no serere or very spere infestation at any of the observation stations within this \%one on: in the zone newly invaded by fights. Tomal or light popmations were foum at most stations. but theatening infestations (s to 15 per square yard) were found in two areas. One was in Jondera and Teton (ounties along the westen border of the zone where flights started and the other was in Cascade and Judith Basin Counties ionong its southem border.

Ege surveys were made durng ()ctober and Xovember at all observation stations within the zone where fights onigmated and in the inraded zone. Eger pods were found in fiedte at only is of the 89 etations surveyed. At only one station did the expe pods exceed 1 per stuare foot. The average for the st stations wat ue pod per spuate foot, which constitutet a nomal rating with no therat of pconomic infestation the following year.

In the fall eqge survey very few sereve and no wery serere infestations were found in counties where flights started or in sounties invaded by flights. Blame. Chomenur. Firqus. Hill, and Liberty Comties in nonth-cemtal Montana had a light intentation of u.5 egg pood per square foot as rompared with a werere infestation of -2.3 per spare foot in 1939 . Fill coonty had a nomal infestation of at egge pol per suare foot in contrast to a very severe infestation of it. per squate foot in 193, when it wats the wethervily reg-inferfed eomty in the Tuited siates.
Flights to uninfexted areat had seme eflect in reducing populations within the zone so heavily intested in the spring of 10fu, but major credt for the protedion of wops, redaction of lights, and prevention of heary erg deposilion mast be given to the shate-Federal control (:ampign. Whechberan hay enand contimed untilfaly en. Approximately $2=$, ont tons of bat were used on about 2 million acres of cropland. Enormous mumbers of nymplis were killed, and the batte against adults was comtimed for 2 wepks after they began to fly. Jfad there been no control campaign, it seems certain that crop losses would have been mudy greater, that the invalded one womd have been much harger, and that sergs would have beendejosited in sulfegent numbers to canse severe and very severe infertations the next year. This campaign ented the gratshoper theat to Montan agricultore, which began when swams entered eastern Montana in 1938.

Western North Dakota

Western North Dakota is not shown in figure 1 as an area where mexicanus migrants haid eggs most hearily in 1939. Severe egre infestations were found in parts of 13 counties in the fall egg survey, but there was no proof that most of the egras were laid by migrants. It seems certain that some of them were laid by progeny of the swams that invaded this area in 193S. A brief review of developments in 1940 will therefore be given.

Destruction of egos by predators and tillage as well as unfarorable weather during the hatching and nymphal periods, held populations to much lower numbers than expectech.

Cool weather and atins prolonged the hatching period, which extended from May ev io Jme 18 in southem connties and from June 11 to July 20 in northem counties. Nymphal mortality was high, and there were few migrations from field margins and idle Jand into crops.

Adults appeared the line week in Juty and by the end of July $\overline{6}$, percent of the population was adult. İight to threatening infestations developed in some localities during sugust, but crop damage was slight.

Flights occurred fiom July 12 until September. Host flights were light and cansed no major changes in popuhation.

Egrg deposition beran about Larust 6 and was practically over by September 20. No definite areas of severe or rery erere ege infestations were found.

Northwestern Minnesota and Northeastern North Dakota

 many localities within the atea where were were latid most heavily in
 hater than in 1930 . Iatching berats on May 15 and was 95 percent romplete by July 1. Approximately tionerent of the egge hatched cluring June.

Dewly hatehed monples wer most ahmotant in grain stubble, legumes, lied margins, ide land, dry lake berls, and pastures. At the height of their abmanance concentiations renched lön per aquare yard in fields and 200 per sumare samd in their marrins. Sumbers at 103 observation stations in Minmesota and North I batota aremged is per square yard in fields and $2!9$ per squate yat in manoms.
First adults of mrimamas were seen on Jume !a, and by June 30 they were common throughout the area. On buly 15 approximately fo percent of the population was adult.

Light dispersal fighats legan on Thly 9 in Nelson County in North Dakota. Simikn flights were seen in name of the counties within the area on favomble days diming the remmader of July and the first half
 oplus bivittatus (Siay) were olsempd in lembina, Ramsey. Nelson, and Grand Forks (onnties in North Jakota and Jittson, Marshall, and Polk Counties in Mimmesoth. Flights ware to the northwest, and grasshoppers from fields with only light infextations, as well as those from heavily infoesed fields, pontributed to the hights. Noderate to heavy fights of mequroun from North Imkota into Kitteon, Marshall, and Polk Counties in Minnesota were also obsered on August 15 and
16. The general effect of all flights was to disperse populations throughout the area rather than to concentrate them in restricted localities. No long-distance mas: fights into counties outside the originally infested area were reportel.

Egre deposition begran the last week in July and contimed mil October.

According to the 1940 fall gag surver, the extent and severity of mexicanus egy infestations were amost the sime as in 1039. Xone of the threatening or serere infestations fomad could be definitely attributed to flights into the area and as far as known none resulted from flights out of it.

Southwestern South Dakota, Northwestem Nebraska, and Eastern TVoming

Fatching of mexicunus beeran the first week in Nay and was nearly completed by the first week in tme.
The 1939 fall exgr surver nhowed a much lighter infestation than the prerious year, but still it indicated threateming conditions for :nost of the area in 19t0. Nymph hateben in matler numbers than expected. and there were further decreases in population from matural canses as the seatson ahranced. Nymph hatched in greatest nombers in alfalfa but, escept for a few lichts, infestation- were light. Small grains. Which were the man smue of nymbat infestations in 1989. were practicully free from gra-hoppers in 1940 .

- Ldults appeared the firct wed in June amb by the 20 th of July 90 percent of the pophation was in the adult staige. What infestations were momal whight. Xa fight. were observed.
 the area were boneconomic.

North-Central Colorato

Infertations in this area did not develop to the extent indieated by the 1039 foll perg surves: Symph hatched in threatening numbers in aftabfa fielts durng May mit weather comditions duriug the momphal period were mfaromble and adult popalations were mostly noneconomic. Xo fights were observed, mod no threatening or severe eger infestations were fomb in the 1 sun fall survey.

Cantadian Prowinces

Nherta
In July there were light to mokerate flights to the north and northwest from the sonthristern come of the lrovine where esegs were
 Rocky Momatains to the west and slighty bevond he Jed Deer River Talley to the noth. Ther were staterm so thing that no severe
 surey. Weather combition- during the late wammer and carly fall were not faromble for cer hange and it is denthat whether the few eggs laid mate any significant differene in 1011 grasshopper numbers.

Saskatchewan

Many nymphs hatched in the southwestern corner of the Province, where eggs were laid most heavily by 1939 migrants, but their numbers were greatly reduced by extensive baiting operations. Some adults survived, and there were light to moderate flights to the north and northeast. Few adults remained in the aren so heavily infested originally, and no economic erge infestations were found there in the fall of 1040. Flights reached as far north as the South Saskatchewan River Falley, but little egg hying occured in the invaded areas.

Manitoba

Light to moderate dispersal fights occured locally within the general area invaded by swams of mexiconats from the United States in 1939. but there were no reports of heary egg deposition by migrants in any well-defined areas.

OTHER OBSERVATIONS ON FLLGHTS

Observations on takeolls, low fights, and more detailed descriptions of high fights and their terminations are based on studies in all areas where fights oceured.

Takeoffs

The begiming of cither a low or high flight is called a takeoff. Takeofs occured on clear days when the air temperature first approached $80^{\circ} \mathrm{F}$. if winds were favorable and grasshoppers were inclined to fiy. None were obserred below 75°, and out of 38 recorded observations only 6 flights started at air temperatures below 80°. The time of takeof raried from $9: 30 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$. but was most often between 11 a. m. and I p. m.

Wind was the final stimulus needed to get grasshoppers into the air. The most favorble wind was a gentle, intermittent breeze (2 to $4 \mathrm{~m} . \mathrm{p}$. h.), strong enough to futter the leaves of trees and sway blades of grass and heads of grain. Takeofls also occurred when there was a gust of wind up to $5-10 \mathrm{~m}$. p. h. and that soon slowed to $2-4 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It the wind was imperceptible on blowing more than $10 \mathrm{~m} . \mathrm{p}$. $\mathrm{h}_{\text {. grasshoppers usully remamed on the ground. Every }}$ obsegver remarked on the effect of wind in starting fights.

Takeoffs started with a fer individuals rising here and there in short fights and then retuming to the gromd. These early risers semed to incite others to dight, and harger numbers rose with each slight breeze or gust of wind, until all adults inclined and able to Hy were in the air. The time taken to complete a takeoff varied creatly. When the temperature rose slowly and winds ware intermittent with prolonged calm periods, a takeof sometimes continued for several hours; when the temperature rose rapidly and calm periods were shorter, it was sometimes completed in half an hour. Swams that had been fiying for several days or weeks took off more quickly than those begiming their flight. Swarms that had settled during the day bectuse of unfavorable conditions took off more guickly when conditions again became favorable than on their first flight of that day.

Adults that were roosting to escape a high ground temperature took off less readily than nomroosting adults. Roosting occurred on extremely hot days when winds were either too low or too strong to complete the takeoff that usually starts when the air temperature first approaches $80^{\circ} \mathrm{F}$. Roosting was recorded 15 times between July 10 and August 4, 1.989, at air temperatures ranging from 93° to 100°. It generally took place between $11 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$., the time of day when the air temperature usually reached its maximum. In the absence of dense vegetation grasshoppers sought the shady side of fence and telephone posts or climbed as high as they could on sparse vegetation. After a short period of roosting, they became sluggish and paid little attention to moving objects. They could be picked by hand from posts, and flew only a few feet when flushed from regetation by a person walking through it. Roosting was observed while ligh flights were in progress, but roosting adults rarely took off to join them. They remained motionless during light, intermittent winds that would have induced takeoffs earlier in the day, but sometimes they took off when dislodged by strong gusts of wind.

Mif. mexicanus flers always take off into the wind. They can make some progress against winds up to $10 \mathrm{~m} . \mathrm{p}$. h., but they generally turn and fly downwind with their bodies at a slight angle to it. When they are flying with a light wind (2 to 5 m. p. h.), their speed is 10 to 12 miles per hour. This was determined by timing an automobile driven just fast enough to keep up with grasshoppers flying parallel to it.

When the sky was completely overcast, mexicanus did not take off even when the temperature and wind were favorable.

Low Flights

In 1930, of 610 flights recorded in Montana and western North Dakota, 21 percent were classed as low, or within approximately 25 feet of the ground.
Low flights were of four types-(1) flights of recently matured adults that remained low even when conditions for high flights were favorable, (2) preliminary flights that later changed to high flights, (3) preliminary flights that failed to become high flights because of unfavorable conditions, mend (4) very low upwind flights toward green vegetation.

Adults with newly developed wings engaged in desultory low flights for several days, even when the temperature and wind were favorable for high flights. Low flights of this kind occurred for several weeks while the remaining nymphs were transforming to adults. Many of them took place during light winds of variable direction. The grasshoppers flew aimlessly in all directions, with many settling and others rising. The general effect of these flights was to redistribute adult populations without material expansion of the area originally infested. If the wind freshened slightly and blew in one direction while low milling flights were in progress, swarms streaned away with the wind without increasing their licight above the ground. Grasshoppers in flights of this nature resembled large wind-driven snowflakes. Swarms carried by winds in low flights seldom flew more than a few miles before settling.

During the fight period of well-matured adults low flights always preceded high flights. When one of these low flights was firsi seen, it was inpossible to predict whether it would develop into a high flight or stop before that stage was reached. When skz, teruperature, and wind conditions remained favorable, these low fiphts generally developed into high flights, but if any one of these factors became unfavorable, flights stopped hefore they could be classed as high.
The change from low to high fights was usually gradual, sometimes requiring hours to complete. Becurse of limited personnel and time, it was considered inadvisable to follow each low flight until it changed to a high flight or until it terminated because of urtavorable flying conditions. Low flight ratings were therefore based on 10 - to $30-$ minute observation periods. It is the anthors opinion that about half the observed low flights of well-matured adults developed into high flights.

A few very low flights were seen moving upwind toward green crops. The following description of one of these unusual flights is taken from the field notes of F. D. Butcher:
A high fight of M. mexiconas settled in the Brinkman, Montana Study Area between 3 nad 4 p. m. on July 27 , 1939. At $4: 151$ noticelf a heary flight across clean sumber fallow into the fare of a southeastern wind to the naryin of a wheatichd. These srasslompers were close to the grount, my estimate being that none were higher than 40 inches and probabls out--hati of them were lower than 15 inches. Upon reaching the margin of the wheatiedi, most of them landed iud almost immediatels started fecling. This is the first Hight of this kind I have seen and I womder if' it may exphain some of the trementons poputations we are encountering at fleld margins.
F. E. Skoog wituessed a similar Hight in Sheriden County, Mont., on July 18, 1039:
Fight grasshoppers setted indiscriminately over 100 atres al cath powed
 place, the morement Jeing trom the plowed land. hewidd, foward a meer wheat:-
 landed in the maxin where they mumbere 100 to 500 pres sume gad.
Such low fights are hard to see and were probably more firequent than indicated in the reports.

High Flightz

The changeover from low to high flights was a gradual process rather than a sudden unsurge of an entire low-flying swarm. It took place most quickly when the air tenperature was above $85^{\circ} \mathrm{F}$. and when winds were gusty but not over $10 \mathrm{~m} . \mathrm{p} . \mathrm{l}_{1}$. Such gusts of mind appeared to stimulate grasshoppers to greater flight effort and rising. currents of warm air assisted in carrying them mpard. Under these conditions the changeover was sometincs completed within 30 minutes. When the air temperature remained at $80^{\circ}-85^{\circ}$ and winds were less favorable, 1 to 3 homs might elapse before most of the grasshoppers were flying higher than feet.
At the beginning of high flights a few grasshoppers could be seen rising above their fellow fliers, and their upward progress could be followed for at least 150 feet. They were followed by others in increasing numbers until only a few remained within 25 feet of the
ground. Tiewed from the ground, heavy high flights had no visible limitation. Myriads of grasshoppers were in view as high as unshaded eyes could see. By cupping the hands over the eyes and looking toward the edge of the smo one conld see still higher myriads streaming by on steady winds or circling on variable light winds. Against the sun they looked like specks of glittering metal.
No one knows how high the buman eye can follow grasshoppers in fight or the maximum height reached by swarms, but Nills (6) stated that airplanes encountered swarms in Montama at 7,000 and 11,000 feet during the mexicunus fight in July 1938.

Fight Terminations

Temperature and light were the most important ecolowical factors in stopping flights. The lowest air cemperature at wheh flight termination was observed was $\mathrm{t} 9^{\circ} \mathrm{F}$. She this is approximately the sume temperature at which the first takeof or ars on days when other conditions are favorable, it may be assumed to be close to the lowest temperature at which flights occur.

When the temperature declined gradually from 85° to $79^{\circ} \mathrm{F}$. in the late afternoon and winds were light, mexicunus adults drifted slowly to the ground and landed without twonge into the wind. Ender such conditions the settling process sometimes continued for 30 to $45 \mathrm{~min}-$ utes. No flights continued later than several hours before sunset, even when the temperature remaned above 79° until after sunset.

Flights terminated abrupty at any time during the day when there was a sudden clrop in temperature or when clouds obseured the sun. Under these conditions grasshopers fokded their wings and plummeted to within 25 to :30 feet of the ground, where they spread them again and landed into the wind. Oceasionally stay individuals were seen desceading in the same mamer when flights were in full progress and flying conditions were excellent. This was observed most frequently when swams were passing over green crops.

Flights usually terminated when ground winds exceeded $20-95$ m. p. h., but sime strong winds generally brought lower temperatures it was impossible to determine what siopped the digh.

STRUCTURE AND COLORATION OF ADULT MIGRANTS

Athough the flights of maxiranus in 1038 and 1939 resembled the more extensive flights of the extreme migratory phase that occurred from 1874 to 1877 , there was no similarity in size, wing length, or coloration between the 1983-39 adult migrants and the population tomerly called spretus. According to Rehm, as quoted by Faure (2) :

The only characters which secm to be of value in semating spobehs from mexicunts are the greater size, relatively lourer wings. and slighty more expanded posterior bart whe themon of the former. Nimute characters in the form of the cerci the the aper of the sub-genital plate were given br Scudder as aditional features, hat these appear to be hadividat fluctuations appearing as regulariy in true merromas.
In earlier outbreaks of maxicamus in Montana specimens were oceasionally taken that closely resembled sppetus (Parker 8). They were larger, had longer wings in relation to body length, and were lighter
in body coloring than normal meaicanus adults. Some of them were then subnitted to Morgan Hebard, one of the foremost systematic workers in Orthoptera. in the United States, who expressed the following opimion: "We believe it wiser to consider these specimens representative of mexicanus showing divergence toward spretus in size and wing length."
It was expected that specimens resembling spretus would be found among the 1938 and 1939 migrants, but none were taken. They may have failed to appear because of prevailing low temperatures and abundant succulent food during most of the nymphal period. Parker (8) found that specimens of mexicanus reared exclusively on green succulent food such as l'radescantia were smaller and had shorter wings than those reared on a mixture of green food and dried alfalfa leaves. Parker, Shotwell (11), and Brett (1) reported that mexicanus and Melanoplus different. ubis (Thos.) were much darker in color when reared at low rather than at high temperatures. Brett also found that mexzicanus was smaller when reared at low temperatures.

The effects of low temperatures, frequent rains, and highly succulent regetation on the stracture and coloration of mexicanus adults were noted in eastern Montana in 1939. The main nymphal period for mexicanus extended from May 15 to June 21 . Weather records for Miles City, Mont, show 22 days during this period wheu precipitation exceeded 0.01 inch and during the first 3 weeks in June only 7 days when the masimum temperature exceeded $68^{\circ} \mathrm{F}$, the lower limit of grasshopper activity. Occasional breaks in the bad weather allowed nsmphs to feed and develop without marked decreases in numbers, but adults were darker and smaller than the 1938 migrants from South Dakota and the 1940 migrants in north-central Montana. A few, 1 or 2 percent, were depruperate; their wings did not extend beyond the tips of the abdomens, and their bodies were one-fourth to one-half shorter than the body of the avernge mexicanus adult. The unfavorable conditions during the nymphal stage did not suppress the migratory urge, for ald adults few out of the area shortly atfer getting their wings.

INCREASES IN CROP LOSSES AND CONTROL COSTS DUE TO FLIGHTS

Flights of mericunas greatly increased crop losses and the cost of grasshopper control in the invaded areas. Estimates of these increases obtained from entomologists in the States and Provinces where flights occurred are shown in table 10. Some increases resulted from flights of mexicanus from eastern Wyoming into northem Colorado and from north-central Montina into sontheastern Alberta in 19:0. Since they were difficult to estimate and of minor importance compared with those in other states and lrovinces, they are not included in table 10.

Increases in crop losses totaled $\$ 58,599,240$ and increases in the cost of control amomited to $\$ 3,930,40$. No estimates of damare to range grass are available, but it is known to have been great, particularly in 1938 and 1939.

Tama 10.-Inerases in crop 7osses and control costs due to fights of mexicanus, 1988-40

State or Province	Tucreases in crop losses			Increases in control costs			Total of both items
	1938	1130	19.10	1038	1939	1940	
Minnesota.	\$378, 444	\$1, 221, 02.4	\$186, 108	885, 009	\$3888,714	\$133, 782	\$2, 694, 041
Montana	6, $17.4,108$	2, 810, 56.4	2, 112,518	50, 166	(990, 267	942, 399	13, 600, 382
North Dakota	1.17.1, 019	-913,403	135. 2196	45, 172	70, 775	6, 397	2, 351, 032
South Dakota.	2, 734,827	2, 883,545	2.15, 029	$330,19 \%$	52.1, 860	30, 653	10, 015,219
Wyoming	- 150 , 000	417, 000	11, 700	18,402 3,055	73, 3038	12, 2150	$4,183,214$ $-922,143$
Manitoba	45, 000	5332, 980	10, 305		0, 0000		597, 285
Saskatehew	16,500, 000	7, 800, 000	$3,800,000$	5, 000	10, 000	50,000	28, 165, 000
Total	34, 115, 690	17,312,508	7, 161, 0.12	043, 048	2,110,233	1, 184, 889	62, 528, 316

Crop losses in Canada and the C"nited states would have been much greater had it not been for the Federafly financed control program on idle land and roadsides conducted by thic Surena of Entomology and Plant Quarantine in 10\%9 and 19+0. This program supplemented the cooperative eflorts of prirate, State, and Federal agencies engaged in controlling grasshoppers in crops by batings 5000,376 acres of roadsides and idfe land heavily infested with merictanes nymphs. If this had not been done, conntless millions would have moved into crops. taken their toll. matured. and greatly increased the size and number of swarms that moved into Canada.
It is regreftable that the extremely heary infestation in the zone where fights originated in 1935 was not reduced nolliciently to prevent fights. It now seems probable that halif a million dollars spent in controlling grasehopers in range and idle crophand in 14 counties in North and South l hakota in the spring of 1935 would have prevented ald major long-distane Highte. Fallure to do this was due latgely to the low value of the land needing treatment. the lacts of insecticides and equament for quists treatmont of harge acreapes of uncropped land, and the fact that no exteinswe dights had securred in recent years to serve as a warming.

FUTURE FLIGHTS

What of the future? It semin retain that history will repera itself and that future droughts will reshl in tare areares of depleted range and idle land, increased m, ciran ws pomations, ant theats of Yong-distance mass flights.

Future threats can be nef with more phent insedicides and better: methods of applying them than ware arabable in 19ws bulky bats
 sprays applied by arphanes. The acte now trated in hours by arcraft reguired days to cover be eromblmathines. Experience ganed since $19+0$ has proved that it is a somed partiop to control nomigra-
 there is no theat of leng-a listane mars flights. la view of the fact

 seems ineoncervable.

scmmaty

 Huronghour the southeasterin rommes of Nom Dakata and the nowtheastern comatios of South Daketa. which hegan in 1935 amd resulterl
 year were hemiest and most widespent in a pronp of 9 counties in northecentral South Jakota and in $\overline{5}$ aljacent counties in North Dakota.

that attacked crops were killed by baiting. but still larger numbers in range and idle land became adults and were the main source of migrants.

Mass flights out of the zone of origin started in late Tone and continued on days favorable for flying until dugust 15 . Swarms trareled in the same directions as the prevaingr wints, which were mamly to the northwest and north, when temperatures were highest and hights were most likely to oceur.

Swams moring across sonthwestern Nortl Dakota continued into eastem Montana. Some of them erentually reached the South Saskatchewan River in (anada apmoximately ati air miles from where they started. Other swams flying northiwest inraded northwestem North Dakota, southwescern Manitobn, ami sonheatern Saskatchewan. Swams flying nowh amd nombeat settled in northeastern Jorth Inkota. northwestem Ximestat and sonth-central Manitoba.
 their fights in southwem somth Jokom, worthertem Nehraka. amp eastrm TVyoming.

Ege depesition by migrants in los, was hearient and most extensive in eatem Nontana ant westem Corth Dakota; northwertern Mime-

 and sutherm Saskatehewan.
 in all aras where eges were had mon hearily in obss. Swams from eastern Montama and western Nombl bakotia invaded a large area in
 bera. Some of them trateled apmoximately ena an mike. Nwams

 Colomado.

 renterl Colonalo, abl wotheastern Aberta and sothwestern Sindatchewan.
In 19 th mass fights were les important than in 193 s and 19%. They
 revere enough to proture major fights in 1911.
()ther observations were mande on ilights. Flights started on clear hass when the ais temperature tinct apmonhen so F. if winde were fi vorable and adults had an ure tomigrate. The time of takeoll was most often be ween 11 a. m. and 1 f. m. What was the hal stimulus needed to get migrants info the air. The mont favorable wind was a gentle, intermitent hreege. Migrans anally took wit into the wind and then emed and bew widn it. When they were flying with a light
 very fow and inwind loward greern wops.

 the sun. On clear, wam days swams difted slowly to the ground
several hours before sunset, even when the air temperature remained above $\bar{i} 9^{\circ}$ until after sunset.

Crops were injured in all the arens invaded by migrants in spite of large-scale control campaigns waged arainst diem. Entomologists in the States and Provinces most heavily invaded estimated that crop losses were increased $\$ 58,589,246$ and that control costs were $\$ 3,930,00^{\circ}$ more than they would have been had no flights occurred.

LITERATURE CITED

(1) Breit, Cenables II.
1947. anternelaty mifecti of food, temperatobe, and himidity on the developameat of the leaselt meratory ghassimpele, melano-
 Agr. Expt. Stal. Tech. Bul. T-26, $\overline{5} 0$ pp.
(2) Fatore, Jacobus C.
1933. The phases of the nocky moentain foctst milanoplus mext-

(3) Hasveram, R. H.
1940. deg deposits of a tipe rot ustaliy puodecet by melanoplos mexicants mexiganue (Sadss.i Ls manitoba. Canad. Eut. 7 $\overline{2}$: $23 \overline{7}$.
(4) Hebamb, Morgat.
1929. the orthorprat of comorado. Proc. Acad. Nat. Sci. Phila. S1: 303-105.
(5)
1034. Fin permaptera and orthorpera of hemnors. 111. Nat. Hist. Surrey liul. 20: 125-279.
(6) Mills, Hariow IS.
1930. Montana insecor Pests foll 193 and ig3s. Mont. Agr. Expt. Sta, Bul. 366, 32 pm .
(7) Munbu, J. A., and liaftertab, Stametet.

103s. grasshopper mightion in north bakota. N. Dak, Expt. Sta. Bimo. Bul. 1: $4-5$.
(8) PanKer, J. İ.

29:30. some efeects of tempehatere and moistire thon melanoplus

(9) Shorwell, Romsirt L.
1938. bome ploblems of the nindal ghasheopher stryey. Jour. Econ. Ent. 31: 5i3-733.
(10)
 break. U. S. Bur. Ent. and Ilant Quar., Insect Pest Survey Bul. 19: 179-270.
(11)

10t]. fife histomes and hantrs of some grasshoppels of economic masfortance of the great plafis. U. S. Dept. Agr. Tech. Bul. 744, H. pm .
(12) Whlis, H. R.
1939. painting for detehmination of ghabshorper fligerts. Jour. Econ. Ent. 32 : 401-103.

[^0]: ${ }^{4}$ Submitted for publication September 9, 1974.
 ${ }^{2}$ Iealic nambers ia Iarenthesens rofer to Literacure Cited, p. 46.

[^1]: ${ }^{3}$ The following fremons sumblied sobe of the information neer in this bulletin: Field notes ant remots-3. M. Breman, F. D. Butcher, A. W. Bnzidks, Ros Chambertain, Stewart clare, E. G. Daris, D. G. Demang, W. E. Dove, J. A. Gilett, Aber Mihelir, F. A. Murton, F. E. Skoog, L. A. Spain, E. S. Telford, E. R. Tinkham, and (latite Whethat of the former Bureat of Entomology and Pant Quarantine; weremondence from State entomologists in Minnesota, Mmitha, Neluaska, Nerth Takoin, and Sonth Dakoia-T. L. Ahmodt, O. A. Bare, Gray Butcher, Waye redberg. (9. I. Gibertsen, F. B. Mills, and H. C.
 flights in Aherta, Manioba, aml Sawathewan-R. D. Birl, K. M. King. L. G. Patatm, and H. L. Seamans. The anhors are uiso grateful to A. B. Gurney and Clande Wakeland for reviewing the manascript.

[^2]: 32424 $6^{\circ}-50-3$

[^3]: Fiaure 5.-Number of egg pods per square foot laid by mexicanus swarms in Montana in 1039 (special survey).

