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Abstract 

Urban Sprawl and Farmland Prices   
A theoretical model of farmland valuation is developed that allows urban sprawl to affect 

farmland values through the conversion of farmland to urban uses, shifts in production to higher-

valued crops, and the speculative effect of urban pressure on farmland values. This model is 

estimated using county level data in the continental United States. Evidence is found for all three 

effects of urban sprawl on farmland values, with a significant contribution of urban pressure on 

net agricultural returns around major urban centers. Ancillary evidence supports that the latter 

effect is attributable to shifts to high-valued crops.   

 

Keywords: hedonic determinants, land prices, spatial productivity, urban sprawl. 
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Urban Sprawl and Farmland Prices 
Urban sprawl and land use has become a major policy issue since the 1980s. The expansion of 

urban areas has led to a reduction in the amount of farmland around many major metropolitan 

areas along with a reduction in prime farmland, and rangeland (Imhoff et al.; Greene and Stager). 

This increased farmland demand for urban uses has led to higher farmland values over time, 

particularly in areas of rapid urban growth (Shi, Phipps and Colyer). This paper investigates 

whether urban sprawl has also affected the productivity of farmland close to urban centers by 

increasing the share of high-valued crops resulting in higher farmland prices. 

The effect of urban sprawl (e.g., population, income) on farmland prices have been 

investigated by several studies (i.e., Chicoine; Shonkwiler and Reynolds; Mendelsohn, Nordhaus 

and Shaw; Shi, Phipps and Colyer). Recently, several studies have used the urban growth model 

of Capozza and Helsley (1989) to examine the effect of urbanization on farmland values at the 

parcel (Cavailhes and Wavresky) and county level (Plantinga and Miller; Hardie, Narayan, and 

Gardner; Plantinga, Lubowski, and Stavins). Hardie, Narayan, and Gardner applied the model at 

the county level to six Mid-Atlantic States. Their results indicate that the response of farmland 

values to changes in development is more elastic and greater in rural counties, while response to 

changes in farm returns is inelastic and relatively uniform for rural and urban counties. Plantinga, 

Lubowski, and Stavins use the stochastic version of the model (Capozza and Helsley 1990) to 

decompose farmland values into rents from agricultural production and future land development 

at the county level of the United States. Their results suggest that option value associated with 

irreversible and uncertain land development is capitalized into current farmland values. 

The idea behind the urban growth model of Capozza and Helsley (1989) as well as other 

models of urban sprawl (i.e., Arnott and Lewis; Wheaton; Brueckner) is that current farmland 
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values represent the present value of future agricultural and potential development rents. This 

formulation assumes that the return to agricultural production initially exceeds the return to 

urbanization for a period of time until the value of urban use increases enough to trigger 

conversion. As a result, land far enough from a city sells for its discounted rents from 

agriculture, while farmland close to the urban-rural boundary sells for a premium that is equal to 

the present value of anticipated increases in rent after the land is converted to urban use. 

Proximity of farmland to urban centers may not only affect the development component 

of farmland values but may also increase the productivity of farmland by reallocating production 

from commodity-oriented agriculture to higher-valued alternatives. That is, urban-growth could 

increase the share of area-specific, high-valued crops, such as fruits, vegetables, and horticultural 

crops, and reduce land in commodities such as corn, wheat, and soybeans. This phenomenon is 

apparent in Table 1, which presents the share of high-valued crops for groups of counties ranked 

by their 1997 accessibility index. The accessibility index is a measure of urban pressure that 

increases as the population weighted distance to urban centers decreases.1 From this table it is 

apparent that counties that are more accessible have a larger share of high-valued crops.  

The shift to high-valued crops increases the profitability of agriculture, which in turn 

accentuates the increase in farmland values from urban pressure. Thus, urban pressure also 

affects the anticipated rents from agricultural production. Differences between the two effects 

have implications for the farm sector. Increased farmland values that result from increased 

opportunity for conversion implicitly increase the opportunity cost of farmland. This increased 

opportunity cost could then result in reduced competitiveness and productivity for agriculture 

adjacent to urban areas. However, increased farmland values resulting from changes in the crop 

portfolio towards higher-valued crops represent increased productivity for farms close to urban 
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areas. The novelty of this paper is the examination of the effect of urban sprawl on agricultural 

returns and, in turn, the isolation of this effect in determining farmland values. 

This paper investigates the effect of urban sprawl on farmland values in the United 

States, explicitly accounting for the effect of urbanization on farmland productivity and the rents 

from future farmland development. In the next section we develop a theoretical approach for this 

decomposition. We assume that at each point of time, farmland may be converted into urban use 

or remain in agriculture. Each event is modeled as a Poisson probability that depends on 

population and on the distance from the urban center. Following the insights of von Thunen we 

develop a theoretical formulation showing that higher farmland values close to urban centers 

may be related to shifts in production to higher-valued crops. We then rely on Brueckner to 

model the effect of urbanization on the development component of farmland. Unlike the 

formulations of previous studies, our formulation includes three relationships: one for farmland 

pricing, one for returns to agriculture, and one for development rents. This specification isolates 

the relative contribution of urban pressure to returns to agriculture and the contribution of urban 

pressures through the conversion of farmland to urban uses. We then apply our model to county 

data of the contiguous United States. The results are presented in the following two sections. 

Finally, we discuss the results and implications of our estimates. 

Modeling Conversion of Farmland and Productivity 

Let T  be a stochastic variable that denotes the moment of farmland conversion to residential 

land. In all moments after T  land remains in residential use. Following the formulation in urban 

growth models (Capozza and Helsley 1989), farmland value at time t  and location δ  reflects 

both the discounted economic rents from farming plus the discounted rents from urbanized 

farmland if urbanization occurs: 
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( , ) ( , ) ( , )
T

rs rs
A t AG U

t T

V t E e R s ds e R s dsδ δ δ
∞

− −⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∫ ∫              (1) 

where ( , )AGR s δ  is the net return to farmland in period s  at location δ , δ  is a vector of spatial 

coordinates, ( , )UR s δ  is the net return to urbanization in period s  at location δ  (including the 

cost of conversion), r  is the discount rate, and [ ].tE  is the expectation operator conditional on 

information available at time t .  

Suppose that farmland will be converted with probability dsλ  in the interval ds . If 

0λ =  conversion will never occur, while if λ →∞  conversion occurs instantly (λ  can take any 

non-negative value). Using the Poisson distribution the probability of farmland remaining in 

agriculture at a given moment s  (i.e., implying that the conversion did not happen until that 

moment) is se λ− . The probability that farmland converts into residential uses in moment s , is 

given by se λλ − . Since we are interested in cross-sectional changes in farmland values (as in 

Plantinga, Lubowski, and Stavins) we assume for the moment that net agricultural rents are 

constant over time ( ( , ) ( )AG AGR s Rδ δ=  for all s ). We also assume that returns to urbanization 

are constant over time ( ( )UR δ ).2 Solving for the value function of the second term in Equation 1 

the farmland value at time t  and location δ  can be written as 

( , ) ( ) ( )
rs

rs s s
A AG U

t t

eV t e R e ds R e ds
r

λ λδ δ δ λ
∞ ∞ −

− − −= +∫ ∫             (2) 

Next, we assume that the arrival rate λ  of the Poisson process depends on a parameter θ  

related to agglomeration (i.e., population) and on the distance δ of the parcel of farmland to the 

central business district (CBD) of the urban place ( )( , )λ λ θ δ= . An increase in population is 

expected to have a positive effect on the probability of urbanization, while an increase in the 

distance to the CBD is expected to have a negative effect on the probability of urbanization.3  
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Since rents per unit of land decline at a decreasing rate with distance δ  from the CBD of 

the urban place (Muth), we assume that a similar specification holds for the probability of 

urbanization per unit of time. O’Kelly and Horner use a similar specification to measure 

accessibility or the relative potential of a given location. Hence, we adopt the following 

specification for the arrival rate 

( , ) θλ θ δ
δ

=                  (3) 

The expected value of the Poisson process is given by (1 )λ  and defines the expected time of 

urbanization for a specific parcel of land. The expected time to urbanization decreases as 

distance to the CBD decreases or as population increases. Taking into account the above 

specification for the arrival rate, Equation 2 becomes 

( ) ( )

( )
( , ) ( , )( , )( , ) ( ) ( )

( , ) ( , )

t r t r

A AG U
e eV t R R
r r r

λ θ δ λ θ δλ θ δδ δ δ
λ θ δ λ θ δ

− + − +⋅
= +

+ +
           (4) 

Evaluating this expression at 0t =  yields 

( )
1 ( , )(0, ) ( ) ( )
( , ) ( , )A AG UV R R

r r r
λ θ δδ δ δ

λ θ δ λ θ δ
= +

+ +
            (5) 

The intuition behind Equation 5 is consistent with economic theory. The first part of the 

equation represents the discounted value of net agricultural returns. As in the standard farmland 

pricing formula, the value of farmland is an increasing function of the net return to agriculture 

and a decreasing function of the discount rate. The second term in the right-hand side of 

Equation 5 is the discounted expected returns to development, which have a positive effect on 

the farmland value. Moreover, both terms depend on the speculative component of farmland 

values as captured by the probability of conversion ( , )λ θ δ . Comparative statics on Equation 5 

lead to the following proposition: 
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Proposition 1. If bδ  defines the distance from the CBD to the boundary of urban place, then 

farmland values in equilibrium are characterized by the following properties:  

(a) If 0θ +→  or δ → +∞  then 0λ +→ , which implies that 
0

lim (0, ) ( )A AGV R r
λ

δ δ
+→

= , b∀ ≥δ δ . 

(b) If θ → +∞  or 0δ +→  then λ → +∞ , which implies that lim (0, ) ( )A UV R r
λ

δ δ
→+∞

= , bδ δ∀ < . 

(c) Ceteris paribus, an increase in the instantaneous probability of conversion results in a 

smaller percent of farmland value contributed by net returns to agriculture and to a larger 

percent contributed by the net returns to urbanization, since bδ δ∀ ≥  we have that 

( )
( )2

( ) ( )(0, ) 0U AGA R RV
r

>

<

−∂
= =

∂ +

δ δδ
λ λ

. 

The proof of the proposition is straightforward with the exception of Proposition 1.b where we 

have applied L’ Hospital’s rule and in Proposition 1.c where we assume that net returns to 

urbanization are always positive, for every δ . Proposition 1.a indicates that in locations with 

low population density or that are far from the CBD, the probability of conversion is zero and so 

the value of farmland should only be reflected by the discounted net returns to agriculture. If the 

land is located within the CBD ( bδ δ< ) then it has been converted into urban uses and its value 

is reflected by the discounted net returns to urbanization (1.b). Given that the probability of 

conversion λ  has also been defined as the accessibility of a given location to the CBD, then 

from Proposition 1.c we have that the effect of accessibility to the value of farmland depends on 

the relationship between net returns to agriculture and urbanization. Specifically, if net returns to 

agriculture are negative or if the net returns to urbanization are greater than the net returns to 

agriculture, then an increase in the accessibility (δ ↓  or θ ↑ ) of farmland will lead to an increase 

in its value. However, for farmland at a given location bδ δ> , where the net returns to 

agriculture are greater than net returns to urbanization, an increase in accessibility will result in 

lower farmland values. 4  
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Equation 5 allows for a cross-sectional decomposition of the current farmland value into 

agricultural and development components. Following the insights of von Thunen and Ricardo, 

farmland at different locations will have different net returns to agriculture because of 

differences in soil characteristics, suitability for crops with different market values, and 

proximity to urban centers. The latter implies that net returns to agriculture are endogenously 

determined in Equation 5.  

Effect of Urban Pressure on the Return to Farmland 

To model the effect of urban pressure on the agricultural component of farmland values, we 

construct a profit function formulation consistent with the von Thunen effect of distance from a 

central place that explicitly accounts for heterogeneity in soil characteristics of different parcels 

of land and climate. Under the von Thunen formulation, higher-valued crops with relatively high 

transportation costs are grown in proximity to urban areas. As the distance to the central place 

increases agriculture becomes increasingly commodity focused.  

Profit at the farm level, accounting for the spatial variation in farmland prices and 

differences in soil quality, is given by 

( )

( ) ( )

, , , ,

0 0 0

max ( ) ' '

( , , , , ) 0

r
Uy x A K D

A

p y w x rD e R

st f y x A K S
K K A A V D D

τ δ −− − − −

=

− + − = −

           (6) 

where p  is a vector of output prices, y  is a vector of outputs, w  is a vector of input prices, x  is 

a vector of inputs, r  is the interest rate on farm debt, D  is the level of farm debt, (.)f  is a 

multiproduct production function, A  is the acres of farmland, K  is the level of intermediate 

assets, S  denotes soil characteristics, AV  is the value of farmland, )(δτ  is the transportation cost 

associated with each commodity, δ  is the distance from the parcel of farmland to the CBD and 
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the subscript zeros denote initial levels. As the multiproduct production function is written in an 

implicit form, we assume that 0<xf , 0<Af , 0Kf < , 0<Sf  and 0>Yf , where the subscripts 

denote partial derivatives. 

From this formulation, we develop the marginal value of each unit of output given the 

transportation cost and the marginal value of farmland. The marginal value of each output is 

( ) 1
( , , , , )( ) 0i i

i i

L f y x A K Sp
y y

τ δ μ∂ ∂
= − − =

∂ ∂
            (7) 

where 1μ  is the shadow value on the production constraint (the Lagrange multiplier for the first 

constraint in Equation 6). Equation 7 yields the standard relationship that the marginal rate of 

transformation between two products equals the inverse of their price ratios. Note that increases 

in the transportation cost for each commodity implies a relative reduction in the output of that 

commodity. Equating the shadow value of production across all outputs yields 

( ) ( )1 1
1

1

( ) ( )
( , , , , ) ( , , , , )

n n

n

p p
f y x A K S f y x A K S

y y

τ δ τ δ
μ

− −
= = =
∂ ∂

∂ ∂

            (8) 

Differentiating the shadow value with respect to distance then yields 

1

( )

0( , , , , )

i

i

f y x A K S
y

τ δ
μ δ
δ

∂
∂ ∂= − ≤

∂∂
∂

              (9) 

as long as the transportation cost is an increasing function of distance. 

Turning to the value of farmland, the first-order condition with respect to debt implies 

that 2 rμ =  (where 2μ  is the Lagrange multiplier for the second constraint in Equation 6). 

Substituting this result into the first-order condition with respect to land values yields the 

standard Ricardian equation for farmland values 
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1
( , , , , )

A

f y x A K S
AV

r

μ ∂
−

∂=              (10) 

Since the partial of the multiproduct production function with respect to land is negative, 

Equation 10 is the same value as found in Equation 5, if conversion to urban use never occurs. In 

particular, we are interested in specifying the net return to agricultural activities in Equation 1 as 

1
( , , , , )( )AG

f y x A K SR
A

δ μ ∂
= −

∂
             (11) 

Merging the results of Equations 8 and 11, we have 

( ) ( )( ) ( , , , , )( ) ( )( , , , , )
i i i

AG i i

i

p dyf y x A K SR pf y x A K S A dA
y

τ δ
δ τ δ

− ∂
= − = −

∂ ∂
∂

        (12) 

where the last derivative is evaluated at the optimal point of production. 

Given the results from Equation 9 we conclude that the net return to farmland is a 

decreasing function of the transportation cost and distance to the market. In addition, the value of 

farmland is an increasing function of the relative productivity of farmland. Specifically, 

( , , , , )

( , , , , )
i

i

f y x A K S
dy A

f y x A K SdA
y

∂
∂= −

∂
∂

             (13) 

The solution in Equation 13 assumes that all agricultural products are produced continuously 

throughout the region. The formulation in Equation 6 could be changed to guarantee that only 

non-negative quantities of crops could be chosen. This would transform the problem into a 

Kuhn-Tucker optimization problem. The point is that not all crops would meet the marginal 

value condition in Equation 8. Hence, low-valued crops would not be grown close to urban 

places. This an important finding since it implies that higher values of farmland close to urban 

places are not entirely explained by agglomeration but instead may also be related to increased 

productivity as farmers shift their production to high-valued crops suitable for the specific area. 
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While the intuition of the von Thunen formulation appears sound, our formulation 

explicitly recognizes two caveats. High-valued crops are assumed to have the highest 

transportation costs. Undoubtedly this assumption would be justified by the value of freshness in 

delivering produce. However, improvements in transportation technology and infrastructure have 

flattened the von Thunen plane. In addition, differences in soil quality, climate, or economies of 

scale may be sufficient to offset transportation cost advantages. 

Determinants of the Development Component of Farmland Values and Aggregate Model 

We impose additional structure on the farmland valuation model by specifying the determinants 

of the net return to urbanization. Following, the open-city model of Brueckner, we assume that 

the preferences of urban residents can be represented by the utility function ( , , )l nlU C C P , where 

lC  is consumption of land, nlC  is consumption of a numeraire non-land good and P  is urban 

population. Assuming that individual land consumption is fixed at one unit per person the budget 

constraint becomes u nlR C k M+ + =δ , where M  denotes income, UR  is urban land rent, and 

kδ  is the commuting cost from a residence to the CBD of the city, with bδ δ≤  denoting this 

distance. Solving for this utility maximization problem, the returns to urbanization should satisfy 

( , )U UR R Pδ=                (14) 

where urban land rent is a decreasing function of distance to the CBD. The effect of population 

on urban rent can be either negative or positive depending on whether the disamenity effect 

(Brueckner) is greater or lower than the positive effect induced by increased demand for land. 

Consequently, Equations 5, 12 and 14 specify a recursive system of equations that form 

our empirical model of farmland valuation across space. This farmland valuation model is at the 

parcel level of analysis, where farmland is located around a monocentric city and farmers 

commute their products to the CBD of the city. Further, we have assumed that distance to the 
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CBD, net returns to agriculture, and development are constant over time. Since our empirical 

analysis is based on two years of county data with each county containing both residential and 

agricultural land, we convert this model into a county model where multiple cities may be 

observed and allow rents and distance to change over time. Therefore, we consider the following 

farmland valuation model at time t  and location δ  

( ) ( ) ( )( )1( , ) ( ), ( ) , ( ), ( ), ( ) , ( ), ( )A A UV t F R t S t R t P t M t t t=δ δ δ λ θ δ         (15) 

( )2( , ) ( ), ( )AGR t F t S t=δ δ              (16) 

( )3( , ) ( ), ( ), ( )UR t F t P t M t=δ δ              (17) 

Following Plantinga, Lubowski, and Stavins we define ( , )AGR t δ  as the average (per acre) net 

return to agriculture in the vicinity of δ . Thus, ( , )AGR t δ  is county-specific. Similarly, ( ),AV t δ  

and ( , )UR t δ  are defined as the average farmland value (per acre) and net return to development, 

respectively. The probability of conversion ( , )λ θ δ  has been defined as a function of population 

and distance to a CBD. We replace the simple distance measure δ  with an accessibility measure 

that accounts for the average distance of any given location in a county to multiple cities and is 

weighted by the population of each city.5 A similar measure is used by O’Kelly and Horner. In 

Equation 16, ( )S t  denotes the average soil characteristics in the county, while in the net returns 

to development, Equation 17, we include residential income ( ( )M t ) as an exogenous variable to 

relax the homogeneous income assumption. 

Empirical Analysis 

The theoretical model developed above is the basis for our econometric model, which we apply 

to county data for the contiguous United States. We employ two cross-sections of observations 

for the Agricultural Census years 1992 and 1997. To control for differences between these years 
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due to changes in interest rates or other variables that have a common effect in all observations, 

we use a time-specific fixed-effects approach. That is, we include a year dummy variable that 

allows for a different intercept for each year of the sample. To correct for inflation we converted 

all the economic variables to real 2000 dollars using the personal consumption expenditures 

component of the implicit GDP deflator. The data were collected from the Census of Agriculture, 

the Census of Population and Housing, the Economic Research Service of the United States 

Department of Agriculture, the National Climatic Data Center, and the Bureau of Economic 

Analysis. Details for the source and nature of the data are provided in the Appendix. 

Since we lack data on key variables such as net returns to agriculture or development and 

farmland value at the parcel level for counties in the United States, we estimate the model 

outlined above using county level data for the 1992 and 1997 agricultural census years. 

However, we recognize that a parcel level analysis would provide more variation, since 

aggregate county level data may not be representative of the soil characteristics, land values and 

returns to agriculture, especially for very large counties.6 Yet, we support our specification with 

results of Clark, Fulton, and Scott who suggest that land markets in different regions of the 

country may be quite different implying that a cross-sectional comparison should be performed. 

Thus, results of studies at the parcel level of analysis for a specific region cannot be generalized 

over all the counties in the United States. 

The first equation of our econometric model is based on Equation 15 and decomposes the 

farmland value for county i  in year t  into agricultural and development components 

0 1 2 3 4( , ) ( , ) ( , ) ( , ) ( ) ( , )A AG VV i t a a R i t a H i t a AC i t a N t u i t= + + + + +         (18) 

where ( , )AV i t  is the average market value of farmland and buildings in county i  in year t  (in 

dollars per acre); ( , )AGR i t  is the average net returns from agriculture including government 
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payments (in dollars per acre); ( , )H i t  is the median value of single-family houses (in dollars); 

( , )AC i t  is the index of accessibility of any given location within the county to the nearest urban 

centers (within 50 miles); ( )N t  is a dummy variable which takes the value 1 for the year 1997 

and 0 for 1992; and ( , )Au i t  is a random error term that follows a spatial autoregressive process. 

Given the implicit non-linearity of Equation 5, all variables in Equation 18 are transformed in 

logarithmic form except for the year dummy and the net returns to agriculture ( )AGR . The latter 

variable was specified as linear, given the existence of negative net returns to agriculture for 

many counties for both years in the sample. Further, this specification allows for separability 

between the agricultural and development components of farmland values. 

Since demand for housing is the most important use of urban land (Brueckner and 

Fansler) we used the county median value of single-family homes without a business on the 

property, as a proxy for the returns to urbanization at the urban fringe.7 By using this variable we 

make an implicit assumption that single-family homes are constructed at the urban boundary. 

This proxy serves also in capturing implicitly the cost of converting farmland to residential use, 

since its value reflects both the price of the land and the house. 

The probability of conversion measure, ( , )AC i t , for each county i  is a population-

weighted sum of inverse distances within 50 miles of any given location in the county. Formally, 

we let sAC  be the accessibility at location s  in county i , θ  the population at area j , and define 

sjδ  as a matrix of straight-line distances between area centroids. Then the accessibility index of 

area s  in county i  is given by 1

,
s j sj

j j s

AC θ δ −

≠

= ∑ . To impose a threshold to delimit which areas 

may count in the area’s accessibility index, we specify a maximum radius of 50 miles (see 
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O’Kelly and Horner). The county accessibility index ( , )AC i t  is then an average value for all 

locations s  in the county. 

The second equation of our econometric model relates the average net returns to 

agriculture to the full set of productive and locational attributes of the farmland in the county. 

This equation is 

0 1 2 3 4 5( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )AG RR i t b b AC i t b S i b PIr i t b PDSI i t b N t u i t= + + + + + +      (19) 

where all variables are specified as linear; ( , )AGR i t , ( , )AC i t  and ( )N t  are the same variables as 

in Equation 18 but now ( , )AC i t  is linear; and ( )S i  is a vector of soil characteristics8 that 

captures effects due to soil properties and quality across counties (see Table 3). To further 

control for heterogeneity across counties we included the percent of irrigated acres ( )( , )PIr i t  

that is expected to have a positive effect on ( , )AGR i t . In addition, climatic differences across 

counties are captured by the Palmer Drought Severity Index ( PDSI ). In particular, for each year 

in the analysis we incorporated for each county 3 average values of the PDSI  that correspond to 

the planting, harvesting and fallow seasons. 

The explanatory variable of primary interest in Equation 19 is the distance to the markets 

where producers ship their products. If there was a single market, distance could be measured by 

actual transport cost or physical distance. However, in a region such as United States it is 

generally unknown who supplies whom (Benirska and Binkley). Thus, we use the accessibility 

index in each county as a measure of distance. Since this index is a measure of urban pressure 

within 50 miles of any given location in the county, it should matter mostly to high-valued crops. 

However, a comparison across counties will show how urban pressure affects net returns to 

agriculture. 
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As shown in the previous section, returns to urbanization are conditional on income, 

population and distance to the CBD. Thus, based on Equation 17, a log-linear specification for 

returns to urbanization is given by: 

0 1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( ) ( ) ( , )HH i t c c M i t c AC i t c DPD i t c N t c RD i u i t= + + + + + +        (20) 

where ( , )H i t , ( , )AC i t and ( )N t  are the same variables as in Equation 18, ( , )M i t  is the median 

household income in county i  at time t , and ( , )DPD i t  is the average residential population 

growth rate in county i  during the five years preceding 1992 and 1997. To control for 

unobserved differences across counties that affect property values, we included a set of nine 

regional dummies ( )( )RD i  which represent the geographical and historical development of the 

United States (Theil and Moss). We used the Lower Mississippi region (Alabama, Arkansas, 

Kentucky, Louisiana, Mississippi, Missouri and Tennessee) as a base. All the variables were 

specified in logarithmic form, except for the residential population growth and regional 

dummies, which were specified as linear.  

The comparison between the impacts of urban pressure on productivity versus the effect 

of urban sprawl is captured by the coefficients on accessibility in Equations 19 and 20. For 

instance, if increased accessibility causes a change in the relative crop mix, or in the price for a 

particular crop, this effect will be manifested through coefficient 1b  in Equation 19. However, if 

the impact of accessibility comes only through urbanization, it will be captured in the 2c  

coefficient in Equation 20. Also, the direct effect of accessibility on farmland value is captured 

by coefficient 3a  in Equation 18, while coefficient 2a  captures the opportunity cost of farmland. 

The system of Equations 18-20 is block-recursive and is estimated with 3010 counties for 

each year, resulting in a total of 6020 observations. Writing this system in a compact form 
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Y ZB U= + , with [ ]E U U′ = Σ              (21) 

where Y  contains the variables ( , )AV i t , ( , )AGR i t  and ( , )H i t , Z  contains the explanatory 

variables in Equations 18-20, B  the stacked parameters of the three equations, and U  the 

stacked disturbances.  

Tests for diagonal Σ  such as the likelihood-ratio test and Breusch-Pagan test (Greene, pg. 

621) rejected the null hypothesis that Σ  is diagonal at the 0.01 level of confidence. Since Σ  

must be estimated, a system estimator such as three-stage least squares (3SLS) or an iterated 

SUR is more plausible (Lahiri and Schmidt). 

Given the cross-sectional nature of the data and the results of other spatial studies of 

farmland values (Benirschka and Binkley, Hardie, Narayan, and Gardner, and Plantinga, 

Lubowski, and Stavins), we allow for spatial autocorrelation of errors. Specifically we assume 

that the disturbances are determined by the following first-order, spatially autoregressive process 

( ) *U W U Uρ= ⊗ +  or *
k k k ku Wu u= +ρ , , ,k V R H=           (22) 

where ρ  is a 3 3×  diagonal matrix containing the spatial autocorrelation parameters kρ , U  is 

the spatially autocorrelated matrix of residuals, W  is a 2 2n n×  (where 3,010n =  is the number 

of counties in each year) contiguity matrix summarizing all the information about the spatial 

structure of the data, and *U  is the matrix of uncorrelated residuals. Since our model is a 

balanced panel of two years the weight matrix W  is defined as  

0
0

n

n

W
W

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

W  is constructed so that the ( , )i j  element of nW  is one if counties are contiguous and zero if 

not. Further, all diagonal elements of nW  are set to zero implying that counties are not 

contiguous to themselves. 
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A Cochrane-Orcutt transformation of Equation 22 yields  

( ) ( ) *I W Y I W ZB U− ⊗ = − ⊗ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ρ ρ            (23) 

where * 0E U⎡ ⎤ =⎣ ⎦  and * *
2nE U U I⎡ ⎤′ = Σ⊗

⎣ ⎦
. Parameter estimates can be obtained by maximizing 

the likelihood function. However, this estimator is not computationally feasible for large 

numbers of observations. To estimate the system we use the stepwise generalized spatial 3SLS 

estimator (GS3SLS) developed by Kelejian and Prucha. First, we apply a two-stage least squares 

(2SLS) to Equation 18. Equations 19 and 20 were estimated by ordinary least squares since there 

is no endogeneity problem in these equations. Second, the residuals of each equation are then 

used to estimate the spatial autoregressive parameters kρ  with a generalized moments procedure. 

While the asymptotic distribution of Vρ  is unknown, the spatial autocorrelation coefficients of 

Equations 19 and 20 follow an asymptotic normal distribution.9 Third, using the estimate of ˆkρ  

the system is transformed (Equation 23) and the disturbances of this tranformation are used to 

estimate Σ̂ . Fourth, this Σ̂  matrix is used to estimate the GS3SLS specification.10 

Empirical Results 

The estimated coefficients for the farmland equation are presented in Table 2. Before correcting 

for spatial autocorrelation the adjusted 2R  of this equation is 0.75, indicating that this 

specification explains most of the variation in farmland values and that the likelihood of omitted 

variables is small. However, in the presence of spatial autocorrelation, the adjusted 2R  has a 

limited interpretation (Anselin). The estimated spatial autocorrelation for Equation 18 is 0.097.11 

The estimated parameters for each effect on farmland prices in Equation 18 are 

statistically significant at the 0.01 level of confidence and have the anticipated signs. Farmland 

values increase in response to an increase in the net return to agriculture, the median house value, 
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and the accessibility index. The dummy variable for 1997 is negative indicating that farmland 

values declined from 1992 to 1997 after all other factors are taken into account. However, since 

the estimated parameter is not statistically significant at any conventional confidence level, we 

conclude that farmland values at the two census years remained constant after adjusting for 

external effects, such as differences in net returns to agriculture and urban pressure. 

Taking into account the semi-logarithmic form of Equation 18, the interpretation of the 

magnitude of the estimated parameters differs. Since farmland values, median single-family 

house values, and accessibility in Equation 18 are specified in natural logarithms, the respective 

parameters presented in Table 2 denote elasticities. However, given that the return to agricultural 

assets is specified as a linear variable in Equation 18, its coefficient is dependent on the scale of 

the endogenous variables. Hence, the estimated coefficient on the net return to farmland implies 

that a $1 increase in the net return on farmland will cause farmland values to increase by 

$5.81/acre given a sample average price of farmland of $1,572/acre. This estimate is similar to 

the results of Plantinga, Lubowski, and Stavins who find that on average, a $1 increase in net 

agricultural returns causes farmland values to increase by $5/acre. 

The direct effect of development opportunities in farmland values is captured by UR  

which denotes the median value of a single-family home in the county. Its coefficient indicates 

that a one percent increase in the median house value results in a 0.40 percent increase in 

farmland values. Thus, at the sample average, a $1,000 increase in the median house value 

results in a $9.07/acre increase in farmland values. 

Further, a one percent increase in the accessibility index results in a 0.22 percent increase 

in farmland values (Table 2). Since distance to urban centers appears in the denominator of the 

accessibility index, this result implies that farmland values close to urban areas are higher than 
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farmland values in rural areas, even after differences in the median house values have been taken 

into account. This result is also consistent with the findings of Archer and Londsdale who found 

that farmland values in metro-adjacent (metropolitan) counties were about one-third (three times) 

higher than farmland values in rural areas from 1978 through 1992. This persistence, apart from 

differences in median house values, may be attributed to the speculative demand for 

development (i.e., the differences in the probability of conversion, or ( , )λ θ δ  in Equation 5). 

Table 3 presents the estimated coefficients for the hedonic specification of the net return 

to agriculture specified in Equation 19.12 The 2R  of the estimates without correcting for spatial 

autocorrelation is 0.28, which is analogous to the 2R  found in hedonic studies (0.22-0.55) using 

county-level data for different States of the U.S. (e.g., Miranowski and Hammes; Palmquist and 

Danielson; Roka and Palmquist). The estimated spatial autocorrelation coefficient Rρ  is 0.101 

and assuming an approximate standard normal distribution, the z -statistic for this coefficient is 

36. The latter implies that the null hypothesis of no spatial autocorrelation can be rejected at any 

conventional level of confidence. 

Urban pressure can affect the value of farmland by affecting the productivity of farmland 

(i.e., through changes in the crop portfolio). The results in Table 3 support the significance of 

this effect. The estimated parameter for the effect of accessibility on the net return to agriculture 

is positive and statistically significant at the 0.01 level of confidence. Numerically a one percent 

increase in the accessibility index causes the net return to agriculture to increase by 0.17 percent. 

In dollar terms based on an average accessibility index of 163.25, a one percent increase in 

accessibility yields a $12.90/acre increase in net returns to agriculture. Linking this result to the 

discussion above, a one percent increase in accessibility implies a $74.95/acre (or 4.8 percent) 
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increase in the value of farmland independent of urban pressure from conversion or the 

speculative demand for farmland for eventual conversion. 

The soil characteristics and Palmer Drought Severity Index in Equation 19 capture 

differences in land quality and weather, respectively. Most of these estimated coefficients are 

statistically significant at the 0.01 level of confidence and have the expected sign. Increases in 

cation-exchange capacity, soil texture, bulk density, permeability, and soil depth are associated 

with increased net returns to agriculture. Net returns to agriculture are also an increasing function 

of the percent of farmland irrigated at the 0.01 level of confidence. A one percent increase in the 

share of farmland irrigated increases the net return to agriculture by $3.74/acre. Finally, the 

estimated coefficient for the 1997 dummy variable of $23.00/acre is statistically significant at the 

0.01 level of confidence. This estimate indicates that net returns to agriculture were significantly 

higher in 1997 than in 1992 even after such factors as increased urban pressures and differences 

in weather (through the Palmer Drought Severity Index) are taken into account. 

The estimated coefficients for the inverse demand for housing, depicted in Equation 20, 

are presented in Table 4. Before adjusting for spatial autocorrelation, the 2R  is 0.82 indicating 

that the specification explains most of the variation in house prices even with cross-sectional 

data. After correcting for spatial autocorrelation, the estimated spatial autocorrelation coefficient 

Hρ  is 0.102 with a z -statistic of 51, and so the null hypothesis of no spatial autocorrelation can 

be rejected at any reasonable level of confidence. 

All the coefficients presented in Table 4 have the anticipated sign and are statistically 

significant at the 0.01 level of confidence. A one percent increase in the median household 

income yields a 0.82 percent increase in the median value of a single-family house, while a one 

percent increase in accessibility increases the median house value by 0.10 percent. In addition, a 
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one percent increase in residential population growth leads to a 4.12 percent increase in single-

family house values. 

The results presented in Table 4 also indicate regional differences in the effect of house 

values on farmland values. The estimated dummy variable for the Pacific region implies that the 

median house values in that region are $41,538 higher than single-family house values in the 

Lower Mississippi region (the region in the intercept) with all other factors held constant. The 

dummy variable for the New England region indicates that median house values are $35,301 

higher in New England than in the Lower Mississippi region. Thus, farmland values are higher in 

both the Pacific and New England regions than in the Lower Mississippi region due to 

differences in the return to urbanization, all other factors held constant. 

Finally, the estimated coefficient on the dummy variable for 1997 indicates that house 

values were significantly higher in 1997 than in 1992. This effect persists despite accounting for 

changes in other factors (i.e., changes in median income and population growth) and inflating 

both 1992 and 1997 median single-family house values to 2000 dollars. 

The Effect of Urbanization on Productivity and Land Values 

The model estimated in this study allows for the decomposition of the effect of urban sprawl on 

farmland values into three components: the effect of changes in non-farm opportunities as 

captured by the median house value variable in Equation 18, the speculative component of urban 

pressure as measured by the probability of conversion (i.e., accessibility coefficient in Equation 

18), and the effect of urban pressure on productivity through changes in the crop portfolio (i.e. 

accessibility coefficient in Equation 19). In this section we examine the relative magnitude of 

each effect on farmland values, as well as the effect of urban sprawl on net returns to agriculture. 
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To determine the relative contribution of accessibility (i.e., von Thunen effect) compared 

with the effect of soil quality attributes in the determination of net returns to agricultural assets 

we divide the expected value of Equation 19 into two components 

0 2 3 4 5

1

ˆ ( , ) ( , ) ( , )
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( )
ˆ( , ) ( , )

AG AG AG

AG

AG

R i t R i t R i t

R i t b b S i b PIr i t b PSDI b N t

R i t b AC i t

= +

= + + + +

=

          (25) 

where ( , )AGR i t  is the net return to agriculture that is explained by soil quality and climatic 

information, ( , )AGR i t  is the net return to agriculture that is explained by the von Thunen or 

productivity effect of urban pressure, and ˆ ( , )AGR i t  is the expected return to agricultural assets 

from both sources13. 

Table 5 presents the state-level net-return on agricultural assets for each component 

ranked by the relative share of the von Thunen effect. These results indicate that the von Thunen 

component of net returns to agriculture is generally higher for states in the Northeastern region 

of the United States. This result is consistent with the general precepts of our model. Higher-

valued agriculture appears more likely in the Northeastern region due to increased access to 

several large cities. For example, the estimate for New Jersey indicates that 41.9 percent of net 

returns to agriculture are attributable to increased market access. Similar results hold for states 

adjacent to the Northeastern region (e.g., Ohio with 23.3 percent, Michigan with 16.9 percent, 

Indiana with 15.5 percent, Virginia with 15.7 percent, and Tennessee with 15.5 percent). 

South Dakota is an anomaly with 19.2 percent of net returns to agriculture explained by 

proximity to urban areas. To explain this anomaly we note that South Dakota has the lowest 

expected return to agricultural assets (of $4.8/acre). Thus, even though the effect of proximity to 

urban areas is the second lowest in the sample ($0.9/acre), the relative share of value attributed to 

the von Thunen effect is large. 
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The spatial effect of urban pressure on net returns to agriculture at the county level is 

depicted in Figure 1. Consistent with the results in Table 5, the urban effect of net returns to 

agriculture exceed 30 percent for most counties in the Washington, D.C. to Boston corridor. 

Other areas of significant urban pressure on net agricultural returns include the Pittsburgh, 

Toledo, Detroit regions of Pennsylvania, Ohio, and Michigan, the area between Chicago and 

Milwaukee of Illinois and Wisconsin, and the Dallas, Austin, Houston area in Texas. 

Interestingly, urban areas in California, Florida, Oregon, and Washington cast a relatively small 

footprint on net returns to agriculture despite the share of high valued crops in each area. In these 

cases the presence of high-valued crops are attributable primarily to hedonic characteristics of 

the region (i.e., soil and climatic of the region) and not the presence of urban areas. 

To examine the relative dollar per acre magnitude of each effect on farmland values we 

define four measures. We define the response of farmland values with respect to a one percent 

change in, net returns to agriculture 1( )ε , median house values 2( )ε , speculative component of 

urban pressure 3( )ε , and urban pressure through changes in productivity 4( )ε  as: 
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3 3

4 1 1
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We estimate these elasticities for each county and aggregate the county estimates to the state 

level by using the share farmland in each county.  

Table 6 presents the results of each component along with the current farmland values 

(denominated in real 2000, $s/acre) and ranked by the percentage change in median house 

values. As in the rankings of the effect of accessibility on net returns to agriculture, farmland 

values in the Northeastern United States are more sensitive to changes in the urban sprawl 
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components. New Jersey is the most sensitive where a one percent change in accessibility 

increases farmland values by $15.46/acre followed closely by Connecticut with an increase of 

$13.83/acre, Rhode Island with an increase of $13.75/acre and Maryland with an increase of 

$12.14/acre. In addition to their sensitivity to urban sprawl components, farmland values in these 

states are also sensitive to changes in net returns to agriculture. For example, a one percent 

change in net returns to agriculture causes an increase of $59/acre in farmland values in New 

Jersey, a $34/acre increase in farmland values in Connecticut, and a $43/acre increase in 

farmland values in Rhode Island. 

For many states on the top of the list, a one percent increase in net returns to agriculture 

will increase farmland values by more than a one percent increase in median house values. For 

instance, in New Jersey a one percent increase in median house values will increase farmland 

values by $28/acre, while a one percent increase in the net returns to agriculture will result in a 

$59/acre increase in farmland values. However, the pure agricultural (soil quality and climate) 

effect is smaller if one accounts for the effect of urban sprawl in farmland productivity and in 

turn to farmland values. That is, the response of farmland values to accessibility through net 

returns to agriculture is also large, mainly for the Northeastern United States. For instance, a one 

percent increase in accessibility is associated with a $28/acre increase in farmland values through 

net returns in New Jersey, a $15/acre increase in farmland values in Connecticut, a $16/acre 

increase in farmland values in Rhode Island, and a $15/acre increase in farmland values in 

Massachusetts. Thus, increases in farmland values from net returns to agriculture are not only 

connected with differences in soil productivity but also with urban pressure in the specific area.  
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Discussion and Implications 

This analysis examined the effect of urban pressure on farmland values nationwide, explicitly 

accounting for three effects of urban sprawl: changes in non-farm opportunities, speculative 

effect of urban sprawl, and conversion to high-valued agriculture. Traditionally studies of 

farmland values have emphasized the role of farmland as a factor of production. Following this 

formulation, farmland values have been modeled as the discounted returns to agricultural 

production. More recently, several studies have emphasized the effect of urban pressure on 

farmland values. These studies typically focus on the impact of converting farmland to urban 

uses on farmland valuation. This study blends the two approaches by examining the effect of 

urban pressure on the net returns to agriculture as well as through conversion to urban use. 

Thus, our study makes two important contributions in the literature. First, we provide a 

theoretical justification and empirical evidence on the effect of urban sprawl in net returns to 

agriculture. We start from the standard formulation of farmland values in urban growth models, 

as the present value of future returns to agriculture and potential development rents. Unlike 

previous studies we assume that at each point of time there is a Poisson probability for 

conversion of farmland. This probability of conversion depends on population and distance from 

urban centers and reflects the speculative component of the effect of urban sprawl. This analysis 

provides a model for the value of farmland that depends on three components: net returns to 

agriculture, median house values, and probability of conversion. It is apparent from this 

formulation that both net returns to agriculture and to future development are endogenous. Thus, 

using the concept of von Thunen we show that there is a potential for farmland located close to 

urban centers to convert into higher-valued crops. That is, the increased market access of these 

areas implies not only reductions in transportation costs (which are small) but also to conversion 

to high-value crops. A first indication of this result was given in Table 1, which shows states 
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with higher values of accessibility have a larger farmland share of high-valued crops. Figure 1 

reveals that the urban component of net returns to agriculture has a substantial share in areas 

located close to urban centers. For instance, the urban effect on the net agricultural returns 

exceeds 30 percent for most counties in the Washington, D.C. to Boston corridor. Other areas of 

significant urban pressure on net agricultural returns include counties around major urban centers 

in Pennsylvania, Ohio, Michigan, Illinois and Texas. 

The possible differences in urban effects on farmland values (e.g., the effect of increased 

farmland values due to conversion rather than increased returns) raise several issues. For 

example, urban effects manifested only in the conversion of farmland into urban uses increase 

the wealth of farmers without increasing their income stream. The only way for farmers to access 

this increased wealth is either through selling farmland or by borrowing against the increased 

asset values. However, increases in farmland values that result from changes in the crop portfolio 

accrue through increased net returns to agriculture. In the first scenario, an increase in farmland 

values from increased demand for farmland in urban use implies an increase in the opportunity 

cost of production agriculture. In the second scenario urban pressure results in increased returns, 

which enhances the farmer’s profitability and productivity.  

The second contribution of this study is the decomposition of these effects in determining 

farmland values along with the effect of the speculative component of urban sprawl and the 

effect of net returns to agriculture. We found that at the sample average, a $1 increase in the net 

return on farmland will cause the farmland values to increase by $5.81/acre, while a $1,000 

increase in median house values increase farmland values by $9.07/acre. The speculative 

component of urban sprawl is also significant, a one percent increase in the accessibility index 

results in a $3.45/acre increase in farmland values per acre. Concerning the effect of the 
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accessibility index on net returns to agriculture, a one percent increase causes the net return to 

agriculture to increase by 0.17 percent. In dollar terms, a one percent increase in accessibility 

yields a $12.90/acre increase in net returns to agriculture and a $74.95 /acre increase in the value 

of farmland independent of direct urban pressure for conversion or the speculative demand for 

farmland for eventual conversion. The latter effect is mostly evident in the Northeastern United 

States where farmland values are more sensitive to changes in the urban sprawl components. In 

those States, an increase in farmland values from net returns to agriculture is not only connected 

with differences in soil productivity but also with urban pressure in the specific area.  

While our analysis provides a new method to decompose the effects of urban sprawl in 

farmland values, it is still based on a static, cross-sectional framework. A topic for future 

research would be the inclusion of the present model in a dynamic framework. Further, we have 

shown that it is possible for an increase in the probability of conversion to lead to a decrease in 

farmland values. It was justified by a potential negative externality effect, such as competition 

over natural resources or pollution through increased population. Although, our data do not 

support this effect at the county level of the United States, it may be evident in a parcel of land 

level of analysis. 
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Endnotes

 
1 A formal definition is provided in the Empirical Analysis section of the present paper. 
2 Although returns to development are expected to be increasing over time, alternative 
specifications allowing for linear rate of changes in returns to urbanization or as a composite 
term consisting of a spatial and a temporal component that follows a Brownian motion (Capozza 
and Helsley 1990) led to an intractable model. In the econometric specification of the model the 
assumptions of constant returns to agriculture and urbanization will be relaxed. 
3 Since we focus on changes in the value of parcels of farmland in different locations we assume 
that distance δ  is exogenous with respect to time. An endogenous formulation of the distance 
(i.e., ( )tδ ) would be more plausible but it would unnecessarily complicate the analysis. 
4 In this formulation it is possible to get a negative effect on farmland values when AG UR R> . A 
possible justification is negative externalities, since an increase in the probability of conversion 
could also imply increased pollution and competition over natural resources. This is an 
interesting topic but beyond the scope of this paper, and so it is left for future research. 
5  This accessibility index has been developed by Breneman at the USDA using Geographical 
Information Systems (GIS) county data. 
6 We would like to thank one of the reviewers of this paper for this comment. 
7 While a per-acre median house value would be more plausible for the model, we lack data on 
the mean lot size and the value that this lot represents in the median house value. Such data are 
reported only for the four main census regions of US. Thus, as in Hardie, Narayan, and Gardner, 
we used median house values. 
8 The same data set of soil characteristics was utilized for both years in the sample. 
9 See Kelejian and Prucha: http://www.econ.umd.edu/~prucha/STATPROG/OLS/desols.pdf . 
10 The procedures were written in Gauss and are available by the authors upon request. 
11 To test for the fragility of the estimated parameters, we estimated the system of equations 
including dummy variables for each of the ten USDA/ERS production regions in the farmland 
value equation. Neither the estimated coefficients from Equation 18 nor the estimated spatial 
autocorrelation coefficient change significantly with this respecification. Thus, the estimated 
coefficients presented in Table 2 are robust with respect to regional specifications. 
12 Again, to test for the fragility of the estimated accessibility coefficient, which is the main 
variable of interest, we estimated the system of equations including dummy variables for each of 
the ten USDA/ERS production regions in the net returns to agriculture equation. The estimated 
coefficient did not change significantly with this respecification.  
13 We include the intercept and year-dummy terms in the effect of soil characteristics, since any 
other specification would yield implausibly large von Thunen components for many rural and 
greatly agricultural counties. For a similar justification see Plantinga, Lubowski, and Stavins. 
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Table 1. Share of High-Valued Crops, Ranked by Accessibility Index 

 1997 1992  

Number of 
Counties 

Accessibility 
range 

Average share of 
high-valued crops 

Average share of 
high-valued crops 

Accessibility 
Change 

84 7492.8 - 1005.7 0.202 0.185 0.101 
122 996.2 - 500.5 0.124 0.115 0.150 
384 493.6 - 200.6 0.092 0.085 0.146 
572 199.5 - 100.0 0.050 0.043 0.124 
815 99.9 - 45.0 0.035 0.030 0.104 
940 44.9 - 0.47 0.016 0.015 0.070 

Note: Quintile grouping of the counties does not alter the qualitative results. 
 

 

Table 2 Generalized Spatial 3SLS Estimates for the Farmland Value Equation 

Variable Description 
Coefficient 

estimate Standard error 
Dependent variable:  Logarithm of farmland value ( , )AV i t , ($/acre) 
 Intercept 1.4021a 0.2228 

( , )AGR i t  Net returns to agriculture ($/acre) 0.0037a 0.0001 
ln( ( , ))H i t  Median single-family house value ($) 0.4021a 0.0216 
ln( ( , ))AC i t  Accessibility index (see text) 0.2223a 0.0067 
Year Year dummy, 1997=1 -0.0118 0.0205 

Vρ  Spatial autocorrelation coefficient 0.0972  
adenotes statistical significant estimate at the 0.01 level of confidence. 
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Table 3 Generalized Spatial 3SLS Estimates for the Net Agricultural Returns Equation 

Variable Description 
Coefficient 

estimate Standard error 
Dependent variable:  Net Returns to Agriculture ( , )AGR i t  ($/acre) 
 Intercept 48.1907a      14.4112 
AC  Accessibility index (see text) 0.0789a 0.0035 
text  Soil texture (index) 3.6493a 1.3312 
catex  Cation exchange capacity (meg/100g) 0.4066c 0.2660 
ph  Soil reaction (pH) -13.8290a 1.7549 
om  Organic matter (%) 1.1201c 0.8674 
tfact  T-factor erosion tolerance (index)  0.1689 1.2197 
calcarb Calcium carbonate (%)  -0.2435 0.4875 
wattabd Water table depth (inches) -9.5319a 1.3591 
bulkd  Bulk density (grams/ccm) 41.5655a 8.4489 
perm  Permeability(inches) 4.5167a 0.8364 
slinity  Salinity (mmhos/cm) -5.3150a 1.7122 
drainage  Drainage (index)  -0.0331 1.1777 
soild  Soil depth (inches)  0.7751a 0.2172 
rock3  Three-inch rocks (%) -0.1199 0.3961 
PIr  Irrigated acres (%) 3.7443a 0.1387 
PSDI1  Palmer index – Planting season -3.6486b 1.5812 
PSDI2  Palmer index – Harvesting season -0.9827 1.1719 
PSDI3  Palmer index – Fallow season 1.1570 1.7241 
Year  Year dummy, 1997=1 23.0089a 5.5553 

Rρ  Spatial autoregressive coefficient 0.1007  
a ,b and c denote statistical significance at the 0.01, 0.05, and 0.10 level of confidence, 
respectively. 
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Table 4 Generalized Spatial 3SLS Estimates for the House Value Equation 

Variable Description 
Coefficient 

estimate Standard error 
Dependent variable:  Logarithm of Median House Value ( , )H i t  ($) 
 Intercept 1.8576a 0.1554 
ln( ( , ))M i t  Median household income ($) 0.8271a 0.0155 
ln( ( , ))AC i t  Accessibility (index) 0.1000a 0.0031 

( , )DPD i t  Residential population growth 4.1281a 0.1885 
NEN Dummy for New England region 0.5066a 0.0287 
MAT Dummy for Middle Atlantic region 0.2115a 0.0223 
SAT Dummy for South Atlantic region 0.1825a 0.0165 
GLA Dummy for Great Lakes region 0.1219a 0.0155 
NCE Dummy for North Central region 0.0944a 0.0171 
SCE Dummy for South Central region 0.0770a 0.0175 
MOU Dummy for Mountain region 0.4520a 0.0182 
PAC Dummy for Pacific region 0.5961a 0.0230 
Year Year dummy, 1997=1 0.0218b 0.0098 

Hρ  Spatial autoregressive coefficient 0.1021  
a and b denote statistical significant estimate at the 0.01 and 0.05 level of confidence, 
respectively. 
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Table 5 The Contribution of Soil Productivity/Quality and Von Thunen Components to the
1997 Values of US Net Agricultural Returns, by State (in Real 2000, Dollars per 
Acre) 

State 

Soil productivity/quality 
component 

($/acre) 

von Thunen 
component 

($/acre) 

von Thunen share of net 
returns to agriculture 

(percent) 
New Jersey 125.6 90.4 0.419 
Connecticut 80.0 54.7 0.406 
Rhode Island 115.8 66.2 0.364 
Massachusetts 110.0 58.2 0.346 
Maryland 97.1 41.5 0.299 
Pennsylvania 76.4 27.2 0.262 
Ohio 69.8 21.2 0.233 
South Dakota 3.9 0.9 0.192 
New York 80.3 16.7 0.172 
Michigan 95.5 19.4 0.169 
Virginia 70.0 13.1 0.157 
Indiana 89.7 16.5 0.155 
Tennessee 67.5 12.4 0.155 
Arizona 21.0 3.8 0.154 
Delaware 157.5 26.4 0.144 
New Hampshire 102.1 17.1 0.143 
Kentucky 65.0 10.6 0.140 
South Carolina 81.5 12.7 0.134 
North Carolina 106.8 16.3 0.132 
Illinois 85.1 12.9 0.131 
West Virginia 58.0 7.9 0.120 
Alabama 68.8 8.9 0.114 
Texas 44.9 5.7 0.113 
Oklahoma 36.7 4.7 0.113 
Wisconsin 87.9 10.9 0.110 
California 161.2 18.8 0.104 
Florida 182.3 20.5 0.101 
Vermont 59.4 6.7 0.101 
Georgia 98.2 9.9 0.091 
Missouri 78.6 6.4 0.076 
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Table 5 The Contribution of Soil Productivity/Quality and Von Thunen Components to the 
1997 Values of US Net Agricultural Returns, by State (in Real 2000, Dollars per
Acre) (continued) 

State 

Soil productivity/quality 
component 

($/acre) 

von Thunen 
component 

($/acre) 

von Thunen share of net 
returns to agriculture 

(percent) 
Iowa 69.8 5.4 0.072 
Minnesota 74.0 5.7 0.071 
New Mexico 21.5 1.5 0.066 
Washington 59.1 4.2 0.066 
Colorado 57.4 4.0 0.065 
Louisiana 125.4 8.1 0.061 
Utah 50.6 3.0 0.056 
Maine 99.3 5.3 0.051 
Mississippi 117.4 6.2 0.050 
Oregon 61.9 2.9 0.044 
Kansas 68.4 3.0 0.043 
Arkansas 174.6 5.7 0.032 
Montana 16.9 0.6 0.032 
North Dakota 32.9 0.9 0.028 
Wyoming 26.0 0.6 0.024 
Idaho 125.0 2.8 0.022 
Nebraska 90.0 2.0 0.022 
Nevada 66.7 1.1 0.017 
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Table 6 The Contribution of Urban and Agricultural Components to the 1997 U.S. Farmland 
Values, by State (in Real 2000, Dollars per Acre) 

Change in Farmland Value ($/acre) in 2000 from 1% Change in 

State name 
Value of 
Farmland  
($/acre) AGR  

($/acre) 
UR  

($/acre) 

Speculative 
Urban pressure 

($/acre) 

von Thunen 
($/acre) 

New Jersey 6,956 58.99 27.97 15.46 27.98 
Connecticut 6,221 34.47 25.02 13.83 14.97 
Rhode Island 6,186 43.09 24.88 13.75 15.79 
Massachusetts 5,462 38.31 21.97 12.14 15.00 
Maryland 3,316 17.94 13.34 7.37 6.45 
Delaware 2,784 19.26 11.20 6.19 3.18 
California 2,768 21.40 11.13 6.15 2.59 
Pennsylvania 2,501 10.63 10.06 5.56 3.59 
New Hampshire 2,385 11.49 9.59 5.30 2.03 
Florida 2,372 20.09 9.54 5.27 2.34 
Illinois 2,235 8.47 8.99 4.97 1.36 
North Carolina 2,186 10.11 8.79 4.86 1.57 
Indiana 2,172 8.83 8.74 4.83 1.49 
Ohio 2,150 7.74 8.65 4.78 2.02 
Virginia 2,027 6.52 8.15 4.51 1.26 
Tennessee 1,901 5.72 7.64 4.22 1.12 
Iowa 1,786 5.06 7.18 3.97 0.39 
Michigan 1,756 7.93 7.06 3.90 1.67 
Vermont 1,595 3.95 6.41 3.54 0.43 
Georgia 1,575 6.46 6.33 3.50 0.86 
South Carolina 1,572 5.45 6.32 3.50 0.89 
Kentucky 1,525 4.51 6.13 3.39 0.79 
Alabama 1,513 4.46 6.09 3.36 0.60 
New York 1,350 5.72 5.43 3.00 1.46 
Wisconsin 1,309 4.98 5.26 2.91 0.69 
Washington 1,271 3.89 5.11 2.82 0.41 
Louisiana 1,268 6.16 5.10 2.82 0.47 
Maine 1,257 5.00 5.06 2.79 0.36 
Minnesota 1,225 3.82 4.93 2.72 0.39 
Arkansas 1,216 7.99 4.89 2.70 0.29 
West Virginia 1,150 2.90 4.62 2.56 0.41 
Missouri 1,125 3.83 4.52 2.50 0.37 
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Table 6 The Contribution of Urban and Agricultural Components to the 1997 U.S. Farmland 
Values, by State (in Real 2000, Dollars per Acre) (continued) 

Change in Farmland Value ($/acre) in 2000 from 1% Change in 

State name 
Value of 
Farmland  
($/acre) AGR  

($/acre) 
UR  

($/acre) 

Speculative 
Urban pressure 

($/acre) 

von Thunen 
($/acre) 

Mississippi 1,105 5.06 4.44 2.46 0.28 
Idaho 1,070 5.97 4.30 2.38 0.16 
Oregon 1,009 3.40 4.06 2.24 0.42 
Nebraska   683 3.20 2.75 1.52 0.10 
Colorado   648 1.81 2.61 1.44 0.15 
Oklahoma    641 1.10 2.58 1.42 0.16 
Texas   628 1.35 2.53 1.40 0.29 
Kansas   608 1.69 2.44 1.35 0.12 
Utah   607 1.82 2.44 1.35 0.20 
Arizona   469 1.61 1.89 1.04 0.18 
North Dakota   422 0.55 1.70 0.94 0.02 
Nevada   413 1.71 1.66 0.92 0.04 
South Dakota   366 0.18 1.47 0.81 0.02 
Montana   309 0.32 1.24 0.69 0.01 
Wyoming   234 0.36 0.94 0.52 0.01 
New Mexico   208 0.24 0.84 0.46 0.02 
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Note: Counties with white color indicate missing observations, and the label defines the urban share of net returns to agriculture. 

 
Figure 1 Estimated Share of Urban Influence on Net Returns to Agriculture
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Appendix: Data Sources and Variables Definition 

( , )AV i t  is the average market value (dollars) of farmland (all land in farms) and buildings in 

county i  per unit of land (acres) in 1992 and 1997. These data are reported in the Census of 

Agriculture 1997 as a county average (dollars per acre). ( , )AV i t , as all the economic variables 

were converted to real 2000 dollars using the personal consumption expenditures index (PCE). 

( , )H i t  is the median value (dollars) for specified owner-occupied housing units in 

county i  in 1992 and 1997. It consists of the owner-occupied single-family homes on less than 

10 acres without a business or medical office on the property. These data were taken from the 

decennial Census of Population and Housing (Summary Tape File 3), which are reported in 1990 

and 2000 at the county level (http://factfinder.census.gov). We used the House Price Index 

( HPI ) provided by the Office of Federal Housing Enterprise Oversight (OFHEO) and linear 

extrapolation and interpolation to project the 1990 and 2000 values to 1992 and 1997. This index 

is reported quarterly at the state level (http://www.ofheo.gov/) and tracks changes in the price of 

single-family homes. A median lot size for single-family homes is not available at the county 

level but only at the four regions of U.S. and so any attempt to project these lot sizes in order to 

get the median house value per acre would add considerable measurement error. 

( , )AGR i t is the average net return (dollars per acre) to agriculture in county i  in 1992 and 

1997. The data were taken from the Agricultural Census and ( )AGR i  at time t  is computed as 

( ) /i i i iTR TC GP A− − , where iTR  is the dollar value of all agricultural products sold, iTC  is the 

total farm production expenses, iGP  are the total government payments received by farmers and 

iA  is the approximate land in farms (acres). 



 41

( )S i  is a vector of soil characteristics in county i  and is the same for both years in the 

sample. It was obtained from ERS and a formal definition of each variable can be found at the 

website of the National Resources and Conservation Service (http://soils.usda.gov/) of the 

USDA. PIr  is the percent of irrigated acres in each county as reported in the Agricultural 

Census. 

PDSI is the palmer severity drought index, for county i , where we have estimated 3 

average values for each county at a given year corresponding to the planting (April-July), 

harvesting (August-November) and fallow season (December-March). This is a water balance 

index that considers water supply (precipitation), demand (evapotranspiration) and loss (runoff) 

for each county. It was obtained from the NCDC at ftp://ftp.ncdc.noaa.gov/pub/data/cirs/ and is 

reported by climatic divisions of each state.  

( , )M i t  is the median household income in county i  in 1992 and 1997 (in dollars). These 

data were taken from the decennial Census of 1990 and 2000, where are reported in 1989 dollars 

for the year 1990 and in 1999 dollars for the year 2000. To find the corresponding 1992 and 

1997 median household incomes we used as an index the per capita personal income ( PCI ) in 

each county of the US for all the years in the period 1989-2000. These data were available online 

at the Bureau of Economic analysis website, through the Regional economic information system 

(REIS) cd-rom (http://www.bea.gov). We followed a similar interpolation as in the case of 

median house values.  

( , )DPD i t  is the average residential population growth rate in county i  during the five 

years preceding 1992 and 1997 and it was normalized in people per 1000 acres in each county. 

Data on county residential population were taken from the Census cd-rom (USA Counties 1998) 

for the period 1987-1997. Then for each county we divided total county population by the total 
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land area (in 1000 acres) available for the Agricultural Census. To estimate the growth rate of 

residential population in 1992 and 1997, we used the arithmetic mean of the growth rate for five 

years before the years in question. 

RD  is a set of regional dummies as were classified in Theil and Moss (2000). 

Specifically, it consists from the following regions: New England (Connecticut, Maine, 

Massachusetts, New Hampshire, Rhode Island, Vermont), Middle Atlantic (Delaware, Maryland, 

New Jersey, New York, Pennsylvania), South Atlantic (Florida, Georgia, North and South 

Carolina, Virginia, West Virginia), Great Lakes (Illinois, Indiana, Michigan, Ohio, Wisconsin), 

North Central (Iowa, Minnesota, Nebraska, North and South Dakota), South Central (Kansas, 

Oklahoma, Texas), Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, 

Wyoming), Pacific (California, Oregon, Washington) and the lower Mississippi region that was 

dropped as a base. 
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