

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Studies on Dwarf Leaf Rust of Barley ${ }^{1}$
By M. N. Leyine, pathologist, Ditision of Cercal Crops and Diseases, Bureaut of Plant Yudustry, Soils, and Agricultwral Dngineering, Agricultural Researeh
 wrek, plant pathologist, Dominion Labornlory of Plant Irathology, Winnipeg, and Division of Botany and Plant Pathology, Science Service, Canada Department of Agricultare ${ }^{2}$

CONTENTS

Earlier work on physioloyte spe-

Charclination and consolidation plysiologic auces.

Yage		Pase
1	Races j.solater from North American collections \qquad	12
2	bividence of pathogenic mutations.	14
	Simmmary and discussion-------	15
4	Litcralure cited ---------------	16

INTRODUCIION
Thedrarferf rust of barley (Puccinia hordei Otth.) ${ }^{2}$ has had a elative sher history thus far as an agricultural problem in the

Sulmftel ${ }^{2}$. publication Janmury 21, 1952. Cooperative investigations of Didtion decereal Crops and Disenses, livereau of Plant Industry, Soils, and
 Deparmbit dagriculture; the Division of Elant Pathology and Botany, DeFirtment of erriculture, University of Nimnesota (Faper No. 2072); and the Wivision of Botuny and Phant Pathology, Science Service, Canada Department of

f athe authors express apprectiation of the interest of J. . . Cralgle, of the
 of Plant lathology, Wimipeg, a. A. ALeCall, formedy of the Burean of Plant - Industry, Soils, and Agricultural Engineering, and E. C. Stakman, of the University of Mimesota, in the investigation reported here, and of the cooperation
 rust specimens from diferent parts of Canada and the United States, and other essential materials and supplies.
${ }^{3}$ Less than at century ago this rust hat not been distinguished taxonomicaly from leaf rust on what, rye, and many wild grasses. Ot several names applied to it, $P_{\text {nceinia rabijo-vera (1)C.) Wint. was the one used most generally. While }}$ still considering the leaf most on Hordem sppr an integral part of P. rubigo-vara (DC.), Winter ($25, p, 218$) classified it as var. simples Kömicke. In vew of statements in the standard work just refermed to and others, Bisby ($1, p, 44$) emeloded that the name "simplex" had "validity only ats a variedy" mat Rriksson and Henming raised it to specifie rank "in 1894, by whieh time it had become a inter homonyw *** of 1 . simptex leeck, 1881." Mennwhile, in 1875, the bimomial P. anomalt Rostr. had been publishert ; and, necording to Bisby ($1, p$. 4i), "its epithet is to be accepted * * whless and until an carlier epithet might be found to have priority." Stevenson and Tolnson ($21, m, 372$) reported in 1046 that such an epithet had been found by Juchwald- Whe name Puctinia hordei Otth, had been published in 1871. This binomial is used in the present paper tentatively aud as a matter of expediency.

United States and Canada. I_{n} the United States, although it may have been present as early as $1899(5, p .10)^{1}$ and by 1911 had made its supearance in Iowa, California, Minnesota, Virginia, and Maryland ($(\delta, p .11$), it did not begin to cause serious losses until about 1935 (11, p. 21). That year a severe epidemic of this rust occurred in Minnesota, with intensities on Minsturdi (C. I. 1556) ${ }^{6}$ estimated as high as 55 percent at $5 t$. Paul and 85 percent at Waseca. In Camada, first collection of this rust was marle in 1022. The disease was not found again in the Dominion until 1927, when collections were made throughout southern Manitoba and southeastern Saskatchewan (4, p. 83). In 1047 Dickson ($7,1,57$) reported that "leaf rust of barley occurs extensively in both the winter and spring barley areas of the Eastern and Central United States. In this area the rust is found almost every season, and in some seasons it develops in epiphytotic form, especially in the southern spring-barley area."

Owine to intensified epidenics of dwarf leaf zust on barley, plant breeders in both the United States and Camada began work on development of resistant varieties. This resulted in a pressing need for further studies of physiologic zaces of the rust and their distribution in North America. A review of the literature on the subject forcetully indicated to the writers the urgent need for reinterpretation and codification of the accumatated data on this rust, which, in some cases, were confusing if not conflicting. Studies designed to meet his need were undertaken at the Federal Cereal Rust Research Laboratory, St. Paul, Mim., and the Dominion Laboratory of Plant Pathology, Winnipeg, Mantoba. Laboratory work involved in the project way carried out during the period 1940-49 at St . Paul and during the period 193049 at Wimnipeg. Most, it not all, of the barley varieties tlat at one time or another had been used-either in North America, in. Europe, or in Australia-as diferential hosts tor determination of physiölogical specializ tion in this rust were assembled and were sithjected to inoculation with hundreds of collections of dwarf leat rust received from various parts of the United States and Cmada. On the basis of results of this work and of published and umpublished findings of other investigators, the writers have prepared dielhotomous keys for the identifiction of physiologic races of the rust. This poblication presents these lieys and also data on the frequency of occurrence of the races isolated in the United States and Canada during the stady years and on mutations that oceured in the course of the laboratory work.

EARLIER WORK ON PHYSIOLOCIC SPECIALIZATION

Evidently sensing the latent threat of clwarf leaf rust to the babley crop in the United States, Mains (13) undertook the stroly of possible physiologic specialization in this fungus a duarter century ago. On the basis of the reactions of Oderbucker (C. I. 9t0) and other barley varieties, he demonstrated the existence of at least two physiologic races of Puccinia hordei in this country. In 1927, Taterhouse (\%3)

[^0]reported his results of testing an Australian culture of chwarf leaf xust on a number of barley varieties and hybrids. Analyzing these results, Mains (14) later suggested that the Australian calture constituted a third physiologic race. Independently of the aforementioned researchers, Brown and Newton (4) reported in 1020 the isolation of two barley leaf rust races in Canda. In 1931 Brown $(8,8)$ reported identifeation of a third and a fourth race of hordei in Canada. Also in 1931 Hey (9) published on the identification of eight different physiologic races of barley leaf rust in Germany. The batey varictics he used is differentinl hosts inchuded none of those theretofore used by investigators. In 1932 Mains and Martini (15) reported on the reactions of a great many barley vatieties in both greenhouse and ficid. In 1933 Firschhorn (10) published an account of a barley leaf rust rate in Argentina semingly different from the previously known races.
In awareness of the pioneering endoavors of her predecessors, Ronsclorif (18), in 1934, published results trom tests she had made with Hey's differential hosts plus 1 additional barley varicty. She had succeeded in isolating a minth race from German collections. Stakman and coworkers (20) pointed out the following year that, owing to the use of different test varieties for the detemination of physiologic races of leaf rust of barley, comparisons of maces isolated in different countries were extremely difficult if not altogether impossible. In the same year, Ronstorf (19) reported on the reactions of 15 barley varieties obtained from Mains to 5 German physiologic races of leaf rust. She found these barleys inadequate for differentiating the races she was studying, although some of them had served as adequate differentials in Mains' tests. Ronsdorf then made 3 single-spore isolations from a barley leaf rust collection she had obtained from Mains. Subjecting the 3 monosporous cultures to a test on 11 Germm test varieties, she found them to be of 2 physiologic races. On the basis of these results she concluded that the barley varieties Hey and she had selected as differential hosts for the dwari leaf rust were superior for that purpose to those used by Mains.
After testing a number of dwarf leaf rust collections on the set of diliterentials used by Hey and Ronstorf, Straib (3.3) concluded in 1936 that of the 11 varieties thas used only " were essential. Adding to these 1 South American variety and 4 varieties previously used by Mains med Martim, and using this set of 10 as differentials, Straib succeded in isolating 14 different races from 1 生 collections. Only 4 of the 14 races resembled races previously found in (iermany.
Strab's further endeavors to identify dwarf leaf rust races in Emope by use of batley varieties so used in the Enited States were no more successful than those of Ronsdorf. Using 14 varieties of batley previonsly used by Mains, straib differentiabed only a few of the 13 physiologic races tested. Brown, at the Dominion Laboratory of Plant Pothology, Wimipeg, Manitoba, used the same 14 barley varieties in testing 8 Canalian leaf rust maces. His mpublisheel results indicate that, these races were, in certiain respects, differentiable by some of the varieties he used. Brown also tested 4 of the ('amadian races on 10 barley varieties used by Ntraib ard suceeded in determining only 3 of the paces. Waterhouse (24) reported in 1038 that the Kinver barley variety possessed differentiating properties for dwarf leaf rust in

Australia, and that by use of this variety he had ascertained the existence of at least 2 physiologic races of Puccinia hordei in that country. Waterhouse made tests with a number of the varieties used by Mains, but found them of no value as differential hosts in Australia. The differential varicties used by German workers had not been available to Waternouse. D'Oliveira (16) isolated 11 new physiologic races from dwarf leat rust collections obtained in Great Britain, Portugal, and Spain. He used as differential varietics 7 of the 10 hosts chosen by Hey, the 1 added by Roisdorif, and 2 of those used by Mains. Johnson and Newton ($12, p .35 \mathcal{S}$) concluded in 1946 that becaluse "different groups of differential hosts were used by North American and European workers, it is not possible to make any compatison between the races present in the two continents." This observation. corroborating the one by Stakman et al. quoted above, might well have included Anstralia.

Evidence was tound in earlier reseateh that physiologic races of Puccinia hordei originate through hybridization in the necial stage and through motation in the uredial stage. D (Olivelat (10) selfed two known mees of leat rust of batcy on omithofolum umbellatum and obtained sir new physiologic races throngh this operation. When he crossed two known tates an additional mew race resulted. So tar these sem to be the only instances on record of production of new P. hordei races through selfing and artifinial hymakation.
In the earicer work on physiologie sperialization of the dwart leaf rust pathogen, it was asumed that the parasitic behavior of races in the wedial staye remained constant except for minor flactations caused by emironmental changes. Howerer, when Ronsiort (18) made tests with two race obtained from Hey the belavior of these tates was yery different from what it was in Hey's tests, under similar cultural conditions. Slae oflemerl no explanation for the differences. Strab (22) doubted that Ronsdorf had the same cultures Hey had worked with. Doliveirat (17) was the (irst to recognize and report a mutation in a race of dwarf leat mat of barley. The mutation he found, in a rate collected in England which he designated race 1.t, was a radical change in color and atwa a change in parasitism. D'Oliveira gave the resultant race the momber 23. Sutation may explain the Ronsdorf results just mentioned ant may acoment for certain liserepancies in the pathogenic behavior of physiologic maces of the dwate leat rust reported by Mains and Martini (25) whed others.

COORDINATION AND CONSOLIDATION OF PHYSIOLOGIC RACES

 of Pureinat hordristenm from the sewitivity of the orgalisin to the biotie and physimal envimment in which it is cultured. Mondarate amb relatively constant temperature and grood light are important. The writers have found that a fomperature flumating arond $20^{\circ} \mathrm{C}$.

 foum to be a most desirable medium for dearly delining different infection types, and spring barleys were preferted as differential howts. Ifonowygous diflerential hosts, manifesting homogeneous in-
fection typas and reacting consistently under a reasonable variety of conditions, are essential. Essential also are lucid description and classification of the various infection types, so that the types may be discerned and differentiated readily.
Through inoculation tests with all barley varieties previously reported as differentials, it was found that some of these varieties were not entirely adequate as such, some could be used interchangeably, some were essential and some critical, and others possessed auxiliary differential properties. Varieties found essential to keying out all authentic races of barley leaf rust thus far recorded in the literature or otherwise reported numbered 16. Of these 16 varieties, 9 were found to be critical for identification of outstandingly important races consolidated with races of lesser importance. The 16 varieties required for the identification of all authentic ruces are as follows:

[^1]The 9 differential varieties found to be critical in the identification of the racial complexes into which the ingredient races of barley leaf rust were consolidated are Speciale (C. I. 7536), Reka 1 (C. I. 5051), Sudial (C. I. 6489), Bolivia (C. I. 1257), Oderbrucker (C. I. 940), Quim (C. I. 1024), Egypt 4 (C. I. 6481), Gold (C. I. 1145), and Lechtaler (C. I. 6488). All 9 varieties possess the spring growth habit. For this reason they are most suitable for studies conducted in the North Central regrion of the United States and in the Western Provinces of Canada. Their usefulness as biological reagents in other parts of the world remains to be proved.
It became necessary to redefine the various infection types and to recoustitute the existing reaction classes, in order to facilitate ready and certain recognition of different physiologic races. Thus, infection types 0,1 , and 2 were incorporated into the resistant class (R), and infection types $\mathrm{X}, 3$, and 4 into the susceptible class (S). The mesothetic class (M), as such, was abolished. The new definitions follow: 0, practically immune--no uredia visible, pronomeed necrotic lesions or flecks may or may not be present; 1, extremely resistantminute uredia clearly visible, pustules embedded in well-defined necrotic areas: D, moderately resistant-small aredia abundant, necrotic lesions clearly defined but less extensive, green islands surrounded by necrotic halos may he present; X, variably mesothetic--conglomeration of uredia of diverse sizes and types tending to integrate, both necrotic lesions and chlovosis usunlly present; 3 moderately susceptibleuredia of medium size, usually slight chlorosis but no necrosis at infec-
tion centers; 4, extremely susceptible-ruedia predominantly large, necrotic lesions absent, chlorosis may be present.
Plus, double-plus, minus, and double-minus (equality) signs are used in comection with Arabic numerals to express gradations in severity of infection produced by a given race; the sign \pm indicates a range from plus to mimas. In the absence of pustules, necrotic flecks are represented by a semicolon, following a zero ($0 ;$); neerotic lesions by a period, following a zero (0.); and green ishands by a colon, following a zero (0).). The exponent ${ }^{\circ}$ stands for chlorosis; the exponent n, for necrosis.

The 10 barley varicties found to be essential as differential hosts were all used in the current study. Despite this, 3 pairs of very closely related races were automatically consolidaled. A comprehensive master key, presented as key 1 , was constructed after the tests and atter exammation of all available published or otherwise reported infection records. In each case only the initial recording, unaffected by later developments, was taken jnto account in the preparation of the master key. Because this key is presented here as of historical rather than practical value, it is not accompanied by an infection record of all the races involved in its make-up. A detalled infection record of the consolidated races on the 9 critical differential varieties is presented as table 1. The key for the identification of the known consolidated races is key 2.

Numerical designations of the antecedent races in both keys are preceded by authors'initials; the mumerical designations of the consolidated races are prefixed by the symbol UN (unified numeration). The sequence of It mumbers is harmonized with the order of dates of publication or discovery of the physiologic races under consideration.

Ker 1.-Key for identification of all physiologic races of Puccinia hordei Otth. thus far described by investigators

Reagtons of Difrerental Vabibters:	
Speciale resistand	
leka 1 resistant	
Sudan resisiant	
Cruzat resistant	
Chitern D) resistant	
Egypt 1 resistant	Nacenamizer or
Gold resistant-	C10, L20
Gold susceptible.	$\mathrm{Cl1}$
Egypt 4 susceptitsle	
Chah Mariout resistant	
Austral resistant-	C16, L 7
Austral susceptil)	B1, L5
Chab Mariout snseeptible	
Gold resistant.	C9, L18
Gold suserptibic	132, 1.8, M1
Chilesn D susceptible	32, $2, \mathrm{B4}$
Cru\%at susceptible	
Chilean D resistand	C15
Chilcun D susceplible	
Oderbrueker resistant	
Techitaler resistant.	413
Techialer susecptible	It
Oderbrneker suseeptibie	L1

See footnote at end of kes.

Kex 1.-Key for identification of all physiologic races of Puccinia hordei Otth. thuts far described by investigators-Continued

Reactions of Differential Fariettes-CoatinuedSpeciale resistant-ContinuedReka 1 resistant-CuntinuedSudun susceptible
Cruzat resistantRace mumber or
Bolisia resistantnumbiers :
Lechtaler resistant H7, L3
Lechtaler suseeptible F1, S1
Bolivia susceptible
Quinn resistant D14, D17
Quina susceptible D16
Cruzat susceptible L. 14
Reka I susecptibie
Sudan resistant
Crimat resistan \dagger[. 2
Crizat susceptible
Bolivia resistant
Lechtaler resistant B6
Lechtaler susceptible $\mathrm{L} 15, \mathrm{Sl}$
Bolivia sasceptible Bō
Sudan susceptible
Balivia resistant
Egypt 4 resistiant D21
Egypt + susecptible D23, $\$ 10$ D23, $\$ 10$
Bolivia suseeptible
Quinn resistant
Egypt 4 resistant D30
Egypt 4 susceptible
D26
Lechtaler resistant
D22
Samaria resistant D15
Quing suaceptible.
Lechtaler resistant D20, H8, R10
Lechtaler susceptithe
Bers resistant D18
Merg susceptible D19
Specinle susceptibleReka l reaistantSudan resistant
Crumat resistant
Bolivia resistant
Oderbrucker resistant L9
Oderbrucker susceptible L6
Bolivia susceptible H2, S 2
Cruzat stiserptible Li9
Bolivia susceptible
Quinn resistant D29, \$16
Cuinn susecptible HG, S12
Sudan sugceptible
Cruzat resistant
Bolivia resistant
Egypt if resistant
Gold resistant C19Golet susceptibie
Cl7
Lechaler resistant
Lechalar susceptible
Samaria resistant EL4, His. Rt
Samaria susceptible R5

See footuote at athd of ker.

Kex 1.-Key for identification of all physiologic races of Puccinia hordei Otth. thus far described by investigators-Continued

[^2]Table 1.-Infection record of consolidated races of Puccinia hordei Otth.

Unified-ulimeration race	Mean infection types 'on specified differentials ${ }^{2}$								
	Spe	Rika	Sdn	Bol	Odr	Qin	Egp	Gld	Lee
1-...-	$1++$	$1 \pm$	1	$1++$	$1 \frac{1}{1}$	0	$4+$	$4=$	
2....-	$3+$	1	$3+$	0 ;	$3+$	$1=$	3	0:	1
3	3-1	$4=$	1	4	$3+$	$1+1$	$3+\%$	3	$3+4$
4---	1-	1	$1=$	$1=$	1	$1=$	$4+$	1	- ${ }_{\text {1- }}$
5	$3++$	$3+$	0;	$2-$	$1++$	3	4	$3+1$	$3+$
6	0	$2+$	$3+1$	1	0	$1+\cdots$	$\mathrm{I}=$	4	4
7	4	1++	$1+$	$3++$	4	3	0 ;	4	4
8-...-	$\frac{1}{2}$	1	$3+$	$2 \pm$	$4-$	0	3	4-	4
9.....	4-	$1=$	$4-$	2	4	0	2	3	$4=$
10....-	$3++$	$1++$	$1++$	4-	4	4-	4	4	1-
11.	$1+$	1+	4	0 ;	4	$1=$	4-	$1 \pm$	$1++$
12	0	$4-$	4	3	2-	4	4-	$1 \pm$	2^{+}
13-1	$4=$	$3+1$	3]	4	0	$1= \pm$		4-
14.	4-	3	$3++$	$1++$	4	0 ;	3		4
15--	$1 \leftrightharpoons$	$3+1$	4	$2=$	0	3	$3+1$		4
16.	1++	$3+$	I-	0.	$1=$	1+ +	$3+$	3%	$3++$
17.	4	$2+$	4	$3+-1$	4	4-	4		$3+$
18.	4	3	4	1		0	0		$1=$
19.	4	$1=$	4	3	4.	0	$3+$		4
20.	4	$1+4$	2	$3++$	4	$1+ \pm$	4	...--	$3+4$
21.	4	4 -	4	2	4	3	$4=$		4
22	4	4-	4	3	4	$1=$	0.		4
23	4	$3+$	4	4	4-	3	$3++$		$3+$
24....	I-	1+	$3+$	$3+$	$1=$	1	İ		$3++$
25.-...	0	$3++$	4	$3++$	1-	I	4 -		$4+$
26.	0	0	4	$3 \pm X$	0	3	0		$3+$
27-...-	0	4	4	$3++$	$1=$	4	4		$3++$
28.-...	0	$3++$	4-	2	0	$3+4$	2-	--	$4-$
29	4	4	4	4	4	3-	0		3
$30 . \ldots$	4-	4	4	4-	4-	$1+$	4		$3+$
31--..-	0	4	4	4	1	2	4		2-
32.	$3+$	1	$3+$	$3+$	$3+ \pm$	$1+$	$3+1$	$1+$	$1++$
33.	0	$3+1$	4	4	0	1	0		
34	0 ;	3	1-	3	0 ;	$0:$	3		3
35	$0 ;$	3	1-	$0 ;$	0	0 ;	3	3	0
36	3	3	1	3	3	0 ;	3	$1+$	3
37.	$0 ;$	$1=$	$1 \pm$	0 ;	0	0	$2 \pm$	0 ;	$2-$
38....-	$1=$	2	0	$0 ;$	0 ;	$0:$	2 +	3 -	$3+$
39.	4 -	$2=$	$3+$	$1=$	$1=$	0 ;	$2 \pm$	$1=$	2-
40.	0 ;	$1+$	0 ;	$1=$	0 ;	$0 ;$	N	3	$3+$
	3	1-	$3+$	0 ;	3	$0 ;$	$2 \pm$	$3-$	$1+$
42	3-	$1-$	$3+$	0	3-	0 ;	2	$1+$	$1+$
43.	$1++$	1	$1+4$	1+4	$3+$	1-	$4 \pm$	$1+$	
44	$1 \pm$	3	$1-$	1	2-	1	4	1-	$1++$
45	$1+$	$1-$	$1 \frac{1}{1}$	$1+$	$1+$	1	$3 \div+$	$1++$	$3+$
46	$3+-$	$1+$	2	0	4-	t-	$3 i$	0 :	$1 \pm$
47.	$1=$	1-	$1++$	$0 ;$	2	0 ;	$1+$	1	1
48.	$1++$	0.	$3+$	0	2	0 :	$3+$	0 ;	0
49.	3	3.	$0 ;$	1-	$0:$	0.	3	$0{ }^{\text {\% }}$	t
30	3	$0 ;$	0.	0 ;	3	0	$3+4$	0	3
51.	3	$1+$	3	0 ;	$2+$	$1+$	3	$2+$	3
52.	3	3.	0 ;	0	1+	1	3	$1+$	3

1 Symbols for infection types and for gradations in severity of infection are defined on pp. 5-6.
${ }^{2}$ Bol $=1301$ ivia (C. I. 1257); Egp = Egypt 4i(C. I. 6481); Gld = Gold (C. I. 1145); Lee =Lechtaler (C.I. 6488); Odr=Oderbrucker (C. I. 940); Qin=Quinn (C. I. 1024); Rka=Reks 1 (C.I. S051); Sdn =Sudan (C.I. 6489); Spe=Speciale (C. I. 7536). These abbreviations are used for conventence in recording rust readinge.

Kex \%.-Condensed standard key for identification of oonsolidated physiologic races of Puccinia hordei Otth., embracing all races thus far described by investigators ${ }^{1}$

Reactiona of Diffreential Varietims:
Speciale resistant
Reka 1 resistant Undind.numeration
race numberderbrucker resiatantEgypt 4 resistant
Gold resistant-C10, L20 37
Gold susceptible-C11 33
Egypt 4 susceptible
Gold resistant
Lechtaler resistant-- $\mathrm{Bi}, \mathrm{B4}, \mathrm{C} 9, \mathrm{C} 16, \mathrm{~L} 5, \mathrm{~L} 7, \mathrm{~L} 13, \mathrm{~L} 18 \ldots$ 4
Lechtaler susceptible-L4 45
Gold susceptible
Lechtaler resistant- B2, L8, M1 1
Lech taler suscoptible-C15. 40
Oderbrucker susceptible-I 1 43
Sudan susceptible
Bolivia resistant
Oderbrucker resistant
Egypt. 4 resistant-H1, S1 6
Jgypt 4 susceptible-1. 14 48
Oderbrueker susceptible-H7, L3 11
Bolivia susceptible
Quinn resistant-D14, D17. 24
Quinn suseeptible-D16 26
Reka 1 susceptible
Sudan resistant
Bolivia resistantGold resistant-L244
Gold susceptible
Eechtaler resistant-B6 35
Lechtaler susceptible-L15, F 11 16
Bolivia suseeptible-B5 34
Sudan susecpibile
Bolivia resistant
Tuypt 4. resistant-D21 28
Egypt 4 suseeptible-D23, S10 15
Bolivia susceptible
Quinn resisiant
Jisyjut 4 resistant-D30 33
Firyot al susceptible
Lechatar resistant-m D2G 31
Techinfer susceptible-D $15, \mathrm{D} 22$ 25
Quinn susueptilsle
Tiechtuler resistant-D20, LIS, R10 12
Jechtaier susceptibie-D18, D19 27
Specinte suseeptible
Reka 1. resistanl
Sudan resisinat
Bolivia resishant
Oderbrueker resistant-10 47
Oderbrucker suseeptible
Tenhtuler resistant-... 6. 46
Tedhtaler susceplible-Tin 50
Bolivia susceptible
Quinn resistant-D29, S16 20
Quinn susceptible Bugyt 4 resistant-H2, S2 γ
Egypt 4 susceplible- $\mathrm{H} G, \mathrm{~S} 12$ 10 10

Key 2,-Condensed standard key for identification of consolidated physiologic races of Puccinia hordei Otth., embracing all races thus far described by investigators ${ }^{1}$-Continued
Reactions of Differmetial Varieties-Contilued
Speciale susceptible-Continued
Reka 1 resistant-Continued Cold
Sudan susceptible nameration
Bolivia resistant
Oderbrucker resistant nurnber
Bgypt 4 resistant-C14.-... 39
Egypt 4 susceptible-B20.............-..................................... $\quad 51$
Oderbrucker susceptible
Egypt 4 resistant
Gold resistant-C19... 42
Gold susceplible

Lechtaler susceptible-H4, $\mathrm{H} 5, \mathrm{R} 4, \mathrm{R} 5 \ldots \ldots . .$.
Egypt 4 susceptible
Gold resistant-C12, O13, C18, L16, M2........................ 2
Gold susecptible-H3, R3, 83.. 8
Bolivia susceptible
Quinn resistant

Lechtaler susceptible-S15.. 19

Reka I susceptible
Sudan resistant
Bolivia resistaut
Quinn resistant
I.echtaler resistan-L17 . .. 49

Guinn susceptible- 133, T,11...-. $\quad 5$
Bolivia susceptible
Gold resistant-137 $\quad 10$
Gold susceptibie-13s, 112, W1, W2................................. 3
Sudan susceptible
Bolivia resistant
Quinn resistant
Egypt 4 resistant
T,echtaler resistant-S14-..........----.-................... 18
Leehtaler susceptible-R2, S19.....---........................... 13
Eqypt 4 susecptible-R9, R11, S0.......................... 14
Cutinn susecplible-S17.-....... . . . 21
Bolivin susceptible
Quinn resistant
Erypt 4 resistant-S18.-. . . 22
Eyym 4 suserptible.--1)25. 30
Quinn susceplible

Egypt is susceptihle-D12, D28............................... 23
${ }^{1}$ Code numbers heretofore used as racina designations, which uppear in the identification columm of key 1 , appear in the varietai-reaction enlumn here. As in key $1, \mathrm{~B}=\mathrm{Brown}$ ot ni. $(2,3,4$, and unpublished results); $\mathrm{C}=$ Cherewick (unpublished restlest; $\mathrm{D}=\mathrm{D}^{\prime}$ Oliveirs (16); $\mathrm{H}=\mathrm{Hey}$ (0) $\mathrm{L}=\mathrm{L}$ Levine (unpublished resulta); $\mathrm{M}=\mathrm{Mains}$ (19, 14), and Mains and $\operatorname{Martini}$ (tō); $\mathrm{R}=$ Ronsdorf (18, 19); $\mathrm{S}=$ Straib $\left(229 ; \mathrm{W}^{\prime}=\right.$ Wnierlouse $(23,24)$.

RACES ISOLATED FROM NORTH AMERICAN COLLECTIONS

Many hundreds of isolates were studied during 1930-49 at the Manitoba and during 1940-49 at the Minnesota rust yesearch laboratory. Isolates that were fully jdentified totaled 357 , including 115 of Canadian and 242 of United States origin. These isolates grouped themselves into 26 consolidated races bearing unified numerations. The frequency of occurrence of the races and the geographic origin of the collections from which they were isolated are shown in table 2. All these 26 races have been found in nature. In addition to them, race 50 appeared as a mutant in a greenhouse culture that had been stored for several months in a refrigerator. Most common and most widely distributed in each of the two countries was race 4, which constituted 28.9 percent of the isolates obtained from United States specimens, 31.3 percent of those from Canadian specimens, and 29.7 percent of the grand total. Second most common in the United States was race 37 , isolates of which amounted to 21.9 percent of the total identified, and third place was held by race 47 , with 21.5 percent of all U.S. isolates jdentified. In Canada, second place went to race 2 , which made up 22.6 percent of the identified isolates, and third place to race 35 , with 7.0 percent of the Canadian total.

Of the 26 consolidated races isolated in either Canadn or the United States, 11 occurred, in various proportions, in both countries. These were UN races $1,2,3,4,5,16,37,44,46,47$, and 49 . It appears that UN race 3 occurs also in Australia and UN race 16 in Europe. Furthermore UN race 11, which was isolated twice in the United States, was present also among the isolates identified in Germany. With the exceptions just mentioned, there is little in common between known North American and European races of dwarf leaf rust of barley. However, there are as many consolidated races on one continent as on the other.

EVIDENCE OF PATHOGENIC MUTATIONS

In table 3 are recorded comparative reactions of 20 barley varieties to 2 isolates of Puccinia hordei before and after a period of approximately 2 yenrs at the St. Paul laboratory. The isolates had undergone some drastic changes in their pathogenicity during the period 1942-45. Both isolate 1 and isolate 2 were cultured for 12 successive uredial generations in the greenhouse season 1942-43, for 8 more generations in 1943-44, and for is generations in 1944-45. Between greenhouse seasons, the cultures were stored for several months in a refrigerator at about $6^{\circ} \mathrm{C}$. During the first 2 greenhonse seasons, or for 20 uredial generaiions, there cas no discernible change in the parasitism of either isolate; but for each of the 4 successive generations of the third senson, the behavior pattern of these isolates appeared quite differe:t in several respects from what ench was during the first 2 seasons of the experiment.
Tablan 3.-Pathogenicity of two isolates of Puocinia hordei Otth. observed at the Federal Cercal Rust Laboratory, St. Paul, in 1944-45 in comparison with their consistent parasitic behavior during the two preceding greenhouse seasons

Barley variety	C. I. number	Mean relative infection types ${ }^{1}$			
		Isolate 1		Isolate 2	
		1942-44	1944-45	1942-1944	1944-1945
Arghan 2.	6366	$3++$	0.	0 \%	1
Atestral.	(i4)83	$3++$	$3+$	$2 \pm$	4
Bavaria.	6395	$1 \pm$	$3++$	$1++$	$1 \pm$
Berg	6486	0 ;	3	1-	0
Polivia	1257	0 ;	0 ;	0	
Coast.	1430	$3+$	$3+$	$2+$	$3++$
Chilcan D.	1433	$1++$	$3+$	$2-$	$3 \pm$
Crumat.-.	0482	1++	34	$1 \pm$	$1 \pm$
Ergpt 4	(1)481	$4=$	$3++$	$3+$	
Flynn-	1311	$3+$	$3++$	$2++$	$4+$
Gold	1145	$1=$	0		$1=$
Grossklappige	(i485	4	$3+$	4+	4
Horsford..-	877	$4=$	3	$1 \pm$	0 ;
Kuban_	6480	$1-$	$0 ;$	$1=$	$1=$
Lechtaler	6488	1++	3	$1=$	0.
Oderbrucker	9.40	$4 \pm$	4-	$2=$	$1 \pm$
Quintr-....	1024	$1=$	$0 ;$	1t	0
Rekn 1--.	5051 6490	${ }^{2} \pm$	$\stackrel{0}{3}$	1-	${ }_{0}^{1-}$
Sudan----	6489	$4 \pm$	0.	$1 \pm$	$1=$

${ }^{1}$ Symbols for infection types and for gradations in severity of infection are defined on pp. 5-6.

Significant changes in the parasitic behavior of isolate 1 were very evident on the eight varieties Afghan 2, Bavaria, Berg, Chilean D, Cruzat, Lechtaler, Schladener, and Sudan. In the case of isolate 2, significant changes were observed on Austral, Coast, Chilean D, Cruzat, and Flynn. In general, the isolates had become more virulent on the varieties just listed; in the case of isolate 1, however, there was a shift in the opposite direction on Afghan 2 and Sudan. According
to its original behavior, isolate 1 was identified as UN race 11; it became UN race 50 as a result of mutation. Because of consolidation, isolate 2 maintained its identity as UN race 4 even after it had undergone the radical changes in pathogenicity just discussed; nevertheless, these changes, too, can best be explained as results of mutation.

A number of mutations appeared also at the Winnipeg laboratory. Four isolates that underwent such changes are listed in table 4. The changes appeared in uredial material of purified cultures of certain physiologic races of Pucinia hordei that had been stored for several months between two greenhouse seasons in a refrigerator at approximately 3° to $6^{\circ} \mathrm{C}$.
Table 4.-Pathogenicity of four isolafes of Puceinia hordei oth. observed at the Dominion Laboralory of Plant lathotogy, Winipet, in 1036-k7 and in 1947-48 in comparison with their consistent parasitic behavior during the preceding greenhouse scasom

Barloy yarioly	$\underset{\substack{\text { num } \\ \text { ber }}}{\text { B. I. }}$	Mean relative infection types :							
		Isolato 1		Isolate 2		[somate ${ }^{\text {- }}$		Isolate it	
		1951	$\begin{aligned} & 1946- \\ & 1947 \end{aligned}$	$\begin{aligned} & 19+10- \\ & 1947 \end{aligned}$	$\begin{aligned} & 1947- \\ & 1945 \end{aligned}$	$\underset{1017}{1956-}$	${ }_{1015}^{1947}$	$\begin{aligned} & 19.46- \\ & 1947 \end{aligned}$	$\begin{aligned} & 1047- \\ & 1048 \end{aligned}$
Austrai.	G483	$2+$	$2+0$	3-n	2里	$2+$	3--	$3-$	3 ± 8
Boliva.	${ }^{1257}$	$1=$	O;	\%	0	$0 ;$		0;	0
Chllean D-	2.433	$\stackrel{2}{8}$	${ }_{3}^{2-}$	${ }_{3}^{3-}$	10	$1=$	$2 \pm$	$1+$	$2 \pm$
Crazut.	6182	3	1+	2		2+		$1+$	$2 \pm$
Efypt 4	0481	x	3	3	$3+$		$3+$	$3+$	$3+$
Gold.	1145	3	$1=$	$1=$	$1=$	$1=$	$2 \pm$? $=$	$1=$
Kuban.	8450	$2+$	$1-$!	1*	$1-$		$1-$	1-
Eechtater.	6488	$3+$	$1+$	1-	1-	$1-$	$\underline{2 \pm}$	$1-$	
Oderbruck	903	0	10	0	$1=$	0	$3 \pm$	9	+
Quinn.	19391	0		${ }^{\text {a }}$	$1=$			$1 \times$	$1 \pm$
Reka :	5031	$1+$	$\stackrel{2}{+}+$	$1-$	1*	1.	1	$1+$	年
Speciale	7336	$0:$	$1=$	\%	$1=$	0	$3 \pm$):	$3+$
Sudmn..	G159	$0 ;$	1-	$1=$	\%=	$0 ;$	3	$1{ }^{\text {a }}$	$3+$

1 Bymbols for Infection types and for gradstions in severity of falection are deaned on pp. 5-8.
Isolate 1, after cold storage, showed a significant gain in virulence on Club Mariout and a significant loss on Cruzat, Gold, and Lechtaler ; isolate 2 gained some yirulence on Club Mariont and lost more on Chilean D; isolate 3 gained significantly in vivulence on Oderbrucker, Speciale, and Sudan, and lost significantly on no variety; isolate 4 underwent in a more sharply defined fashion the changes that took place in isolate 3. Isolate 1 changed from UN race 40 to UN race 4; isolate 2 remained UN race 4 regardless of the changes; and isolates 3 and 4 changed from UN race 4 to UN race 2.

SUMMARY AND DISCUSSION

Most, if not all, varieties of barley that at one time or another had been used as differential hosts for determination of the existence of physiologic specialization in barley leaf rust (Puccinia hordei Otth.) were assembled and subjected to inoculation with 357 isolates of this rust, of which 115 originated in Canada and 242 in the United States. It was found that some of the varieties were not entirely adequate as differentials, some could be used interchangeably, some were essential and some critical, and others possessed auxiliary differential properties. Varieties found essential to keying out ail authentic ingredient races of barley leaf rust thus far reported numbered 16; of these 16, 9 varieties were found to be critical for the identification of the con-
solidated races. The 9 critical diferentials are: Speciale, Reka 1, Sudan, Bolivia, Oderbrucker, Qumm, Egypt 4 , (iold, and Lechtaler.

On the basis of results of this work and a critical interpretation of previously recorded data, two dichotomous keys were constructed for the identification of physiologic races of the dwart leaf rust of barley. One of these, the comprehensive master key, enables the tracing of all essential ingredient races described by investigators. The other, the condensed standard key, is designed for practical identification of present and future racial complexes. It is bused upon the consolidation of ingredient races as determined by the reactions of the abovementioned set of 9 critical differentials. To avoid recurrenes of confusion, mumbers designating consolidated physiologic races have been given the prefix UN. The sequence of UN numbers is harmonized with the order of dates of publication or discovery of the physiologic rates under consideration.
Physiologic races incluted in the condensed standard key number 52. Of these, 26 were found in the North American collections. Very few of the known physiologir races of Puccinia hordei have been found on more than one continent, and many have been found in only ons country.

Pathogenic mutations occurred rather frequently in the course of the laboratory work of this study. Evidence suggests, also, that mutations occur under natural conditions. New physiologic races are uncovered each year in numbers that are strikingly large in proportion to the total numbers of isolates studied. Since observation of an aecial stage of the dwarf leat rust of barley in North America has not been yeported, it seems likely that the multiplicity of races existing on this continent stems from mutation.

Recent discovery of accia of dwarf leaf rust of barley on Ornithogalum pyrenaicum in Beitain by Dennis and Sandwith (6) and the finding by D'Oliveira (17) that many species of Ornithogalum contain strains congenial to Puccinia hordei indicate a need of further research in North America with reference to possible alternate hosts of this rust.

LITERATURE CITED

(1) Binm , G. R.
 117 pp. Imp. Myeol. Inst. Kew, Surtes.
(2) Mrown, A. M.

 1929: 58-60.
(3)
1031. invesitoations of the dyabe leaf hust of marmey fruocinia
 -- and Nrwton, M.
1929. Fhe bwarf teaf bust of baridy in westeme canaba. Camada bipt.

(Э) Carraton, M. \boldsymbol{A}.

1948. aidcima of harlicy must in hertam. Nutute 162 ; 461.
(7) Diokson, 3. G.
1947. Diseases of Fier.d crors. 420 jpp, illas. New York and Tondon,
(S) Frebsax, G. M., and Johnsor, E. C.
1911. the nusts of glains in the untem states. U. S. Dept. Agr., Bur. Plant Indus. Bul. 216, 87 pp, illus.
(9) Hay, A.
 simplex erikss. et henn. Biol. Reichsanst, f. Land u. Forstw. Arb. 19 (3) : [227]-261.
(10) Hirschiobs, J.
1933. dos boyas de fa cebada, nuevas para la argentina. La Plata Unis. Nac., Facaltad दe Agron. Rev. 19 (3): 300-397, fllus.
(11) Humphery, H, B., Stakanan, E. C., Mains, g. B., and others.
1935. the hests of cereal. chors. U. S. Dopt. Agr. Cit. $341,27 \mathrm{pm}$, illus.
(12) Joinson, T., and Newton, M.
 Bot. Rov. 12: $337-302$.
(13) Matas, E. IS.

192f, sithom in mest mesistaver. Jour. Jored, 17: [312]-325, illas.
(14)

(1ii) - and Martisi, M. L.

(16) DOhmelma, 3 .

(1i)

(18) Roxsmow, L.

(20) Smakma, L. C., Levide, M. N., Chetstensen, J. J., and Isennfek, K.
 rifes. Novi Aeta Leopoldina (n. s.) 3: [2s.1]-33; illus.
Stevenson, J. A., mal Johisos, A. g.

 essect. 1
(22) Straib, W, mon

 Rejchsanst. f. Land u. Forstw, Arb. (1030) 22 (1) : [43]-63].
(23) Watrmothe W. W.

192S. strimes in the mingripance of mesistance to fean bost, peccinla anomala mosth, in choshts of habery, f. Itog, hoc. N. S. Willes,

1030. some aspects of phombans in meenong yon hest mesistance in

Winger, G.

[^0]:
 ""C. 5 ," refors to accossion manbers of the Invisime of Cerend Crons and Disenses.

[^1]: Specinle, C. I. 7536 (Key's "Hordeum vulgare speciale").
 Reka 1, C. I. 5051 (Waterhouse's "Reka 1" and Hey's "Australische Recka"). Sudad, C. I. G489 (Hey's "Sudan" or "Aggyptische Sudan").
 (Iruzat, C. I. G4S2 (Straib's "Hordeum heanstichum pyramidatum Kcke.").
 (Chilean D, C. I. 14:3 (Mans' "Chilean D, C. I, No. 1443").

 Oderbrncker, C. I. 940 (Mains' "Oderbrucker, C. I. No. 940").
 (2um, C. I. 1024 (Mains' 'Qufnn, C. I. No. 1024").
 Hgypt 4, C. I. © 4 S1 (Runsdorf's "Aegyptisclie 4 zeilige").
 (Cmb Mariout, C. I. 261. (Mains" "Club Mariout, C. I. No. "661").
 Samaria, C. I. fum (Hey's "Samaria 4 zlg.").
 Berg, C. I. 6456 (Hey's "Triedrichswerther Berg W.-G.").
 Gold, C. I. 1145 (Mains', also Hrown's, "Gold, C. I. No. 1145").
 Lechtaler, C. I. 6488 (Hey's "Lichtis Lechtaler").
 Austral, C. I. (6483 (Straib's "Australische 2-zeilige"). Kinver, C. Y, 2361 (Waterhonse's "Kinver").

[^2]: Reagtions of Differential Vabhemes-Continued
 Speciale susceptible-Contimed
 Reka 1 resistant-Contimed
 \qquad
 Cruzat resistant-Contimued
 Bolivia resistant-Continued Egypt 4 susceptible ${ }^{\circ}$

 Club Mariout resistant Race number or Gold resistant Austral resistant ninnocrs: C 13

 Gold susecplible H3, R3, S3
 Club Mariout susecplible
 C12, 1.16, M2
 Bolivia susceptible
 D13, S13
 Cruzat susceplible
 Bolivia resistant

 Bolivia susceptible
 Lechtaler resistant
 Iechtaler susceppible.
 D27, L10
 Iechtaler
 Reka 1 suseeptible
 Sudan resistant
 Cruzat resistant.

 Cruant susceptible
 Bolivia resistant
 Bolivia susceptible
 Goid resistant--------------------------------------1 B7
 Gold susceptible
 Ginver resistant.. W2

 Sudian susceptible
 Bolivia resistant Quinn resistant

 Egypt 4 resistant

 Quinn susecplble
 S17
 Bolivia suscepible
 Quima resistant

 Quana susceptible

 bigypt 4 susceptible

 ${ }^{1}$ Capital letters prefixed to munbers signify anthorities as follows: $13=$ Brown et al. ($g, 3,4$, and unpublisherd results); $O=$ (herewick (unpublished results); $\mathrm{D}=\mathrm{D}$ 'Ohveira (16) ; $\mathrm{H}=\mathrm{Il}$ y (0) $; \mathrm{L}=\mathrm{L}$ evine (unpublished results); $\mathrm{M}=$ Mains (15,14), and Mains abd Martini (15); $\mathrm{R}=\operatorname{Renstorf}(15,19) ; \mathrm{S}=\mathrm{Straib}(22) ; \mathrm{V}=$ Waterhouse (2s, 2/4).

