

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Toward an Analytical Framework for Resource Allocation

in Fisheries with Multiple Users

M. S. van Bueren ${ }^{\#}$, R. K. Lindner ${ }^{\#}$, and P. B. MeLeod ${ }^{\text {n }}$
A paper presented at the 40 th Anmual AARES Conference, Melbourne, 1996

Introduction

Many fisheries in Australia and overseas are being placed under increasing pressure by a diverse range of user groups. These groups, which include commercial fishers, anglers, aquaculturists, miners, tourist operators, indigenous people and developers. all compete for a share of access to fish stocks and their associated environments. Owing to society's changing values and demands, and the relative scarcity of fish, conflicts over the use of fishery resources are becoming complex and acute. This has led to the question of what constitutes an equitable and efficient allocation of resource to each user group.

Although economies is a useful discipline for assessing policies dealing with fisheries resource allocation. very few empirical studies have been undertaken in Australia. Most researchers have limited their efforts to comparing commercial operator's gross value of production with total expenditures of recreational fishermen via an economic impact analysis. Only a handful of studies estimate the average net economic benefits of angling. and even fewer attempt to elicit the marginal value of a fishing day or an extra fish caught. A more comprehensive suite of studies have been undertaken in the United States, but it is generally recognised that more research is necessary to improve our understanding what influences angler's utility from fishing.

This study focuses on resource sharing in the West Australian Salmon and Herring fisheries. Both of these fisheries are subject to considerable community pressure to reallocate access from commercial fishermen to anglers, as demonstrated recently by the WA Recreational Fishing Advisory Committee's proposal to buy-back commercial salmon licences on behalf of the wider angling fraternity.

The primary objective of the study was to assess the net economic benefits of allocating a greater quantity of salmon and herring to the recreational sector, and what this action would cost in terms of lost commercial value. A related aim was to define more clearly the strengths and limitations of a variety of survey techniques for eliciting recreational values. A secondary objective was to develop bioeconomic models of the commercial salmon and herring fisheries for examining their economic

[^0]0 Department of Economics and Commerce, University of Westen Australia, Nedlands WA 6907
efficiency under current management arrangements, and to assess the merits of alternative management strategies.

This paper deals solely with the valuation of recreational fishing, as this is the more difficult and interesting component of the cost-benefit study. Only 'use' values are estimated, thereby neglecting the values that non-users in the community, such as conservationists, may hold for the resource. While the results from this study are not conclusive, they have provoked some new questions and insights that require further research.

Background to the WA salmon and herring fishevies.

Australian salmon (Arripis trutfaceus) and Australian herring (A georgianus) are caught on the south and lower west coasts of Westem Australia (VA) as they migrate on their spawning run from castern Australia (Figure 1). The commercial fishery is a limited entry fishery comprising 34 licences, each of which is allocated to a specific beach. Each operator is restricted to fish at the shoreline with beach seine or trap nets. Stocks can only be fished over a limited season during which time licensed operators have exclusive use of the beach. The size of each commercial fishery, both in terms of catch and gross value of production is small, relative to other finfish fisheries in WA (Figure 2). Stocks of salmon are thought to be in good condition, but there is some doubt about the health of hering stocks due to significant inereases in recreational and commercial cateh over the last 15 years (Lenanton, 1994).

Salmon is regarded by anglers as a "prize" fish, because it is relatively difficult to catch and also puts up a good fight. Herring is a much more common fish, but nevertheless is good eating and it tends to forms the 'backbone' of recreational fishing in southern WA. Recreational fishermen currently have open access to both fisheries, and bag limits are the main restrictions in place. The West Australian Fisheries Department has recently completed a creel survey of anglers, which has estimated the total size of recreational effort and catch associated with the salmon and herring fishery. For salmon, recreational catch is small relative to commercial harvest but for the herring fishery, the recreational catch comprises a significant proportion of total catch in the metropolitan region (Figure 1).

It is thought that commercial fishing is unlikely to be having much impact on the abundance of salmon stock available to the recreational sector. Instead, it is considered that stocks are more greatly influenced by environmental factors such as the Lecuwin Current (Lenanton et al, 1991). In the case of herring, it is unknown what impact commercial harvests on the south coast have on recreational catches further north towards Perth.

The competition between anglers and commercial operators therefore appears to arise mainly out of misconceptions and distrust of each other's activities rather than true competition for catch. This is not to say that commercial fishermen do not reduce angler's utility from the fishing experience. It is well acknowledged in the literature that catching fish is only one aspect of the recreational fishing experience, so it is conceivable that commercial fishing may conflict with some of the other goals of recreational fishermen.

Figure 1: Map showing the regions if Western Australia where salmon and herring are fished commercially. Estimates of commercial and recreational catch for the south west, southern, and south cast coasts are also shown.

Pigure 2: Production and gross value or Western Australia's main finfish fisheries. Data are three year means (91/92-93/94) from ABARE (1994).

ATheorctical ModeL of RecreationaL Kishing

It is easy to observe that the net economic benefits of commercial fishing are direetly related to the size of harvest and the cost efficiency with which fish are caught. For recreational fishing, the relationship between stock size, catch and economic benefits is not so obvious. It is not sufficient to use expenditures associated with recreational fishing as the sole measure of economic benefit, because these only represent the minimum value that anglers attach to their sport. In cost-benefit analysis it is necessary to quantify the economic surplas net of what people spend to go fishing. The size of aggregate benefits, or consunter surplus, is then determined by nultiplying benefits per angler by the total number of angler days.

Anderson (1983) provided a theorthal base for analysing the size of economic surplus from ree tutional fishing. He proposed that an indisidual's marginal value for the total fisting experience, measured in 5 day, decreases with each additional day that he'she goes fishing over the course of a year (Pigure 3). For simplicity, the margmal costs of fishoge are assumed to remain constant across all days fished. In a more comples model, where anglers have a choice of fishing sites to visit at varying distances from their place of residence, this assumption would no doubt be violated. Amberson's simple nowel of modividual demand for fishing days can be expressed by the following equation

$$
\begin{equation*}
p=P(d . h(D, 4, p) \tag{10}
\end{equation*}
$$

where
$\mathrm{P}=\quad$ individual's net marginal willingness to pay for a fishing day (\$'day).
$\mathrm{d}=$ days spent fishing by the individual
$D=\quad$ sum of angler days by all individuals. such that $D=\Sigma d_{\text {; }}$
$h(D)=$ the relationship between the average number of fish caught per day and the total amount of recreational itshing effort by all individuals.
$\mathrm{p}=\mathrm{a}$ vector of cost, price, and income parameters, including fishing expenses and the price of fish if available on the market.
$q=a$ vector of envirommental and social factors concerning the fishing experience.
In equation (1.0) above, catch rate is treated as a quality aspect of the fishing experience and is incorporated as a "demand slifter". It is a function of the total number of days fished by all individuals in the fishery. The shaded area in Figure 3 represents the consumer surplus from " d " days of recreational fishing with a catch rate of 1 fish per day. An improvement in catch rate to 2 fish per day shifts the demand curve upwards and increases net bencfits accordingly.

Fig. 3: Demand curve for recreational fishing days.

No. days fished

Figure t: Demand curve for eatch

No. fish per day.

Anderson points out that it is impossible obtain a market denand curve for fishing days by summing individual demand curves because aggregate effort in the fishery impacts upon the catch rate experienced by the individual. The adverse impact of each individual's effort on fishing quality is known as a congestion or stock externality. He overcomes this problem by developing a family of market demand curves Each curve represents aggregate demand for fishing days when all individuals assume a fixed level of aggregate effort in the fishery, and therefore a fixed catch rate. This model adequately demonstrates the stock externality, because with an expansion in effort, extra benefits from higher participation in fishing are traded off against fishing days with lower catch rates.

For the purposes of resource allocation, policy makers are particularly interested in the recreational value of incremental changes in fish catch. Other quality aspects of the experience are no doubt important in determining the size of angler benefits, but cateh rate is of primary interest to managers because of biological considerations and the impact that a reallocation policy may have on the welfare of commercial operators. Most of the published theory on marginal values for fish examines the benefits from incremental improvements in daily catch rate. For example, Lal et al, (1992) hypothesise that for the nth fishing day of the season, the marginal value of catch rate will decline with successively higher levels of catch per day. The demand curve for catch rate is dependent upon the cumulative number of days an individual has fished in the season (Figure 4).

A related, but quite different hypothesis, is that the marginal value of fish caught on the nth fishing day of the season declines with each additional fish caught over the duration of that day. This value is likely to depend not only on the number of days fished so far in the season, but also upon the number of fish caught on previous days of the trip. There is little theory in the literature on this aspect of recreational fishing.

Samples and Bishop (1985) and Johnson and Adams (1989) extend our conceptual understanding of how anglers value lishing at the margin by expressing angler preferences for catel rate and number of trips in a utility maximising framework. Using this approach, the angler's optimisation problem is to:
$\operatorname{Max} \cup[S(F, W, Q), T, Z, X]$
subject to:
$\left(\mathrm{P}_{\mathrm{Q}}^{*} \mathrm{Q}\right)+\left(\mathrm{P}_{\mathrm{S}}^{*} \mathrm{X}\right) *\left(\mathrm{P}_{\mathrm{t}}^{*} \mathrm{~T}\right)<\mathrm{Y}$
where:
I() = he angler's utility function
S :- daily catch rate which is a function of F, W and Q.
$F=\quad$ stoch size, treated as an exogenous variable
W : a vector of other exogenous variables affecting catch rate eg. weather and regulations.
Q. a vector of goods and services purchased by the individual that are used as inputs in producing a fishing trip (endogenous factors).
$1=$ the number of fishing trips per year
7. the vector of factors that influence other quality aspects of the fishing expenmee besides catch rate (e.g se ner and congestion)

X a wetor wher goods and service:
$I_{y} . P_{\lambda}$, and P_{γ} are the price vectors associated with Q, λ, and T respectively and Y is angler income

The indirect utility function associated with equation (2.0) is given below by equation (3.0). The zero superscript indicates that all parameters are intial values. V() gives the maximum utility achievable at any particular set of prices, exogenous inputs, exogenous quality factors and angler income. Cateh rate does not directly enter into the function but is determined by F and W.

$$
\begin{equation*}
\mathrm{V}^{0}=\mathrm{V}\left(\mathrm{P}_{\mathrm{Q}}{ }^{0}, \mathrm{P}_{\mathrm{X}}{ }^{0}, \mathrm{P}_{\mathrm{T}}{ }^{0}, \mathrm{~F}^{0}, \mathrm{~W}^{0}, \mathrm{Z}^{0}, \mathrm{Y}^{0}\right) \tag{3.0}
\end{equation*}
$$

The cost minimising outlay to achieve V^{0} is given by an expenditure function E , where $\mathrm{E}^{0}=\mathrm{E}\left(\mathrm{P}_{\mathrm{Q}}{ }^{0}, \mathrm{P}_{\mathrm{X}}{ }^{0}, \mathrm{P}_{\mathrm{T}}^{0}, \mathrm{~F}^{0}, \mathrm{~W}^{0}, \mathrm{Z}^{0}, \mathrm{~V}^{0}\right)$. The welfare effects of an exogenous shift in catch rate can be measured using a Hicksian compensating measure of welfare which is defined as the amount of compensation, paid or received, that will maintain the individual at his initial utility level, V^{0}, given that the individual is allowed to adjust his consumption bundle after the change. Willingness to pay for an improvement in eatch rate, affected through a change in F or W , is equivalent to a compensating variation (CV) measure of welfare and can be defined in terms of the expenditure function as follows where the new levels of F and W increase catch rate:
$C V=E\left(P_{Q}{ }^{0}, P_{X}{ }^{0}, P_{T}^{0}, F^{0}, W^{0}, Z^{0}, V^{0}\right)-E\left(P_{Q}{ }^{0}, P_{X}{ }^{0}, P_{T}, F^{0}, W^{0}, Z^{0}, V^{0}\right)$

The ehallenge for empirical research is to develop valuation methods for eliciting the size of consumer surplus or compensating varation received by anglers from a day of fishing, and the size of welfare gain brought about by incremental improvements in quality aspects of the lishing experience.

Non Manket Valmation Methodology

As there is mo market for recreational salmon and herring fishing, the economic value of these species to anglers camot be easily estimated. Two teelmiques have been used extensively in the literature for valuing recreational fishing, the contingent valuation mehod (CVM) and the travel cost method (TCM). Fach technique has several variants, but essentally the contingent valuation method uses a hypothetical maket to elicit an individual anglers willingness to pay for a day of lishing or an improvement in lishing quality. The value proffered by the respondent is therefore contingent upon a hypothetical maket

In contrast, the tratel cost method imputes a demand corve for fishing days by regessing the mmber of usits an individual makes to a lishing site oser the course of a vear gamst the thatel cost metred by the mdividual, wheh acts as a surrogate price. A number of other explanatory rariables, such as site quality and income, are ustually included in the regression to capture varation in visitation rate Wuh a multisite travel cost techmque it is possthle to estimate an average value of consumer surplus tor those anpler's who visit the sites in question. Variations in catch rates acruss sites are often used to value marginal benefits from an ineremental improsement in cath

There is no consensus in the literature as to which method is the most appropriate for valung recreatonal fishing. Both techniques are subject to a variety of biases, the relevant ones of which are referred to in proceeding sections of this paper. Contingent valuation has the advantages of not being conlined to valuing fishing at specifie sites, and of eliciting willingness to pay via direet questioning rather than inferring values from lishermen's hehaviour. However, because the teelmique relies upon a hypohetical market, it may produce invalid benefit estimates if the recreational 'good' is poorly defined, or if the respondent includes a wider range of experiences in hisher valuation than intended by the question.

The travel cost method does not suffer from hypohetical bias, but past studies have shown that consumer surplus estimates are particularly sensitive to the functional form chosen to fit the model. In addition, multicollinearity between regressors has commonly being found to be a problem and this makes it impossible to test the influence that salmon or herring eateh may have on the demand for fishing.

To achieve the objectives of this study, a method was needed for valuing salmon and herring eatch as distinet from the whole recreational expetience. The recreational value of increases in catch rate at the margin have been calculated in a variety of ways by previous studies, and include both travel cost and contingent valuation techiques (Table 1). Owing to the deficiencies of the TCM at valuing particular aspects of a fishing experience, CVM was chosen as the primary method in this study for estimating the recreational value of the salmon and herring resource. A model of total willingness to pay for a day of fishing was constructed, then partially differentiated
curve for each species. In addition, CVM was used to ask fishermen directly for their marginal willingness to pay for a preferred eatch of salmon and herring.

Table 1: Commonly used procedures for estimating the marginal value of catch rate in recreational fishing studies.

Procedure Used	Example studies
Partial differentiation of a contingent valuation or nutt site travel cost	Stanniford and Siggins (1991) regression model with respect to cath rate, which is included as an explanatory variable in the model. This produces a demand curve for
Milon (1991) catch rate, and assumes averge values for all other variahles.	Withead (1993) Bishop et al (1990) Loomis (1988)

Many studies adopt more than one techmique to value the same good, thereby constituting a test of convergent validity. While this is a sensible approach, estimates obtained by using the TCM and CVM methods can not be compared directly as each method is measuring different underlying theoretical constructs. CVM produces a Hicksian income compensated demand curve while the travel cost method yields a uncompensated Marshallian demand curve. This being the case, the TCM method should produce a larger benefit estimate than CVM (Bateman, 1993). Carson et al, (1995) analysed 616 comparisons of the two techmiques and his results are consistent with this theoretical expectation. Nevertheless, it is still considered useful to employ both methods for checking the validity of benefil estimates obtained by each method, so our study adopted both an individual TCM and a CVM method for generating welfare values for recreational lishing.

Survey Methods

A face to face survey was administered to a sample of recreational fishermen for collecting the necessary data for use in the TCM and CVM models (Appendix 1). Prior to conducting the survey, the question format was tested using a focus group comprising club anglers. A trial period with anglers on the beach was also conducted before commencing the survey. The survey was designed so as to minimise the variety of biases which are often associated with social survey techniques. In particular, some of the common biases relating to contingent valuation were controlled as follows:

- Information bias. Background information about the purpose of the survey was given prior to questioning and all respondents were given identical information.
- Part-whole bias. In order to avoid anglers valuing a much wider collection of goods* than desired, they were asked to recall a specific fishing thip, or day of fishing. In most cases this corresponded with the day/trip on which they were previously interviewed by the Fisheries Department.
- Starting point bias. An open-ended contingent valuation format was chosen in order to eliminate starting point bias which can be problematic with payment card mehods.
- Poyment vehicle bias. Many anglers in WA are hostile towards the introduction of a general recreational fishing licence. For this reason, trip costs were used as a payment vehicle in the open-ended contingent valuation questions. Trip costs included all expenses which could be attributed to the fishing experience, as numinated by the respondent. Costs included travel, accommodation and direet input costs such as bait and ice. Boat ownership costs were excluded.
- Budget constrom hias. Before posing the willingness to pay question, respondents were reminded of their budget constraint by asking what their income was, and What proportion of their income was typically spent on fishing as opposed to other sports and hobbies

Willingness to pay for a day of fishing, net of expenses, was elicited using the following open-ended contingen valuation questions:

[^1]3. If yes, how much could costs rise to before you decide that your fishing experience on this trip was not worth the expense?

A further three contingent valuation questions were posited to elicit the value of salmon and herring at the margin-

1. Would you have preferred to catch some (more) salmon/herring?
2. If yes, how many in a day would have satisfied you?
3. If you had been fortunate enough to catch this number of salmon/herring, would this have increased the value of the trip above the amount stated prevlously? If so, how much?

The marginal value of fish was calculated by dividing the change in value of the actual trip by the change in the number of salmon/herring caught.

Smmpling Mchnal

Two hurdred anglers were randomly drawn from a data base of approximately 600 telephone contacts of individuals who had recently been interviewed by the WA Fisheries Department's creel survey. Details of the sampling procedure are summarised in Figure 5 below.

Figure 5: Flowehart showing how the sampling frame was obtained.

survey results

Amalysis of Willinguss to Ray Responses.

The flow chart below (Figure 6) shows how respondents answered the contingent valuation section of the questiomaire. Of the sumple of 97 recteational anglers, 13% were unable to give a dollar volue for their fishing experience and were subsequently removed from the sample. Nearly the same proportion of people (10%) gave a zero bid which either constituted either a protest at the idea of having to pay for fishing, or a 'true" zero bid. All zero bids were retained in the sample, such that mean willingness to pay was calculated from a sample of 84 fishermen.

Respondents were willing to pay, on average, $\$ 27$ per day of fishing over and above their mean expenditure of $\$ 21 /$ day, giving a total value of $\$ 48 /$ day (Table 2). There is a great deal of variation about these means, as illustrated by a frequency distribution plot of willingness to pay bids (Figure 7). The distribution tends to be skewed towards zero, with approximately 85% of respondents bidding $\$ 45$ or less for a day of fohing. Because several high bids lift the mean in is more infomative to use the median bid of $\$ 1500$ as a measure of fishermen's net economic surplus. It is not unusual for contingent valuation to yield skewed bid distributions (Mitchell and (asson. 1989).

Figure 6: Fowehart showing liow respondents answered the willingness to pay questions relating to the actual fishing experience and those relating to preferences for a greater entel of herring and salmon.

Tabte is Smmple mons and medints from the conthgent whaton smrvey, Standard errors in paronthesis. (nmample size)

Item	Mean (SE)	Medion	\square
Expenditure (\$day)	\$21.41 (20.13)	\$14.50	84
Net Willingness to Pay (\$/day)	\$27.36(48.96)	\$15.00	84
Margimal Value of Salmon (\$/hish)	\$5.55 (13.02)	\$0.00	51

Figure 7: Frequency distribution plot of the tependent variable; the willagess to pay. Snmple she equals St observithons.

Respondents who gave a non-zero bid for the 'uctual' fishing experience were questioned at further length about their preferences for more (some) salmon and herring. 69% of these people said they would have preforred to catch more (some) salmon and 47% wanted more (some) herring. As expeeted, salmon were sought after in small quantities, reflecting their status as a prize fish, while proferred catches of herring were much more liberal. Most people were content with only one or two salmon per day (medianw1), while the preferred median number of herting was 12 per day.

The relative scarcity of salmon compared to hering also meant that people were willing to pay greater amounts for additional salmon than herring. Or the 51 respondents who said they would have prefered to entel more (some) salmon, only 16 were prepared to pay more than their bid for the actual trip. Including zero and non*zero bids, the metn marginal value of salmon was calculated to be $\$ 5,55 /$ /ish and
the median was zero. This is not a very reliable measure of salmon's value beenuse of the high standard error ($\$ 13.02$). In the ease of herring, only one respondent was willing to pay for their preferred number of fish. The most probable reason for such a large number of zero bids is that anglers are reasonably satisfied with their current catches of herring and further increases in catel may only marginally improve their utility from fishing. This is not to say that herring are not a valuable vecreational species. The marginal value of the first few herring caught on a day out fishing may be very high, bur this was not measured by the survey.

In general, only a small proportion of the total sample were prepared to pay more for their preferred number of lish. It is suspected that many respondens made an ex ante valuation of fishing rather than an er post valuation of their actual trip, despite apeated reminders that we were only interested in valuing the specifie trip in question. By making an ex ame bid, respondents had already included the possibility of catching more salmon or herring into their initial bid.

Net Willinguess To Pay Model

It is postulated that a fisl. man's total willingness to pay for a day of fishing net of trip expenses is explaned by five main groups of variables, including:

1. Wealh of the respondent
2. The average number of fish caught per day of the trip.
3. The respondent's degree of specialisation in the spont.
4. The respondent's comsmptive orientation. ie. whether or not catching fish are an essential part of making a lishing trip satisfying.
5. Quality of the fishing experience other than eatch.

Net willingness to pay was the dependent variable in the model, and a description of the independent variables belonging to cach of the five main groups listed above is provided in Table 3. An index capturing the consumptive orientation of an individual has been included because previous studies have found that willingness to pay tends to be greater for those fishermen who regard catching fish to be non-essentual for making the fishing trip satisfying (Fedler and Ditton, 1986). The logic behind this is that those anglers who gain satisfaction from a wider package of experiences whilst fishing are likely to have their expectations fulfilled more often than those who are only concemed with eatching fish. It is debatable whether this attitudinal variable is determining willingness to pay, or whether it is simply another proxy for the dependent variable.

Sociological research has also found that a fisherman's degree of specialisation tends to influence willingness to pay via the effects that specialisation has on an individual's consumptive orientation. Bryan (1977) found that as people become more specialised in fishing, their appreciation of the fishing experience grows beyond just the thrill of eateling fish. Hence it is more likely that highly specialised anglers will have a greater willingness to pay, for the same reasons outlined above.

Dependent Variable:

$\mathrm{WTP}=\quad$ Net willingness to pay for the whole fishing experience (\$/day).

Explanatory Variables and their expected signs:

Wealth Variables:
twe \quad INCOME $=\quad$ Annual income of respondent.
+ve Employ $=$ Employment status of respondent (1 is employed; 0 unemployed or retired.)

Fish Catch Variables:

twe SALM Respondent's mean daily catch of salmon over duration of trip.
+he HERR Respondents mean daily cateh of herring over duration of trip
the ALLFISH Respondents mean daily catch of all fish over duration of trip
"Specialisation Level" Variables:
+ve GEAR = The total estimated value of all fishing gear possessed by the respondent.
twe ACtivity - 1 if fishing was the primary activity for the respondent on the visit: 0 otherwise.
+se CLUB - $\quad 1$ if respondent is a member of an angling club, 0 otherwise.
Consumptive Orientation Variable:
-se SA1sFY.: An index measuring whether or not fish catch is essential for making a fishing trip satisfying or enjoyable. Scale ranging from catch being incidental (3) to essential (15).
Quality of Expericnce Variables (other than catch)
+ie HRSFISH = The average number of hours fished at the site per day of the trip
+ve WEATHER $=$ Respondent's recall of the suitability of weather and sea conditions for lishing on a scale ranging from poor (1) to excellent (5).
-ve CONGEST:= Number of other people on the beach. (From creel survey).
-ve PROBS = An index derived from a summation of 5 responses, each of which measures whether or not the respondent perceives there to be a problem at the fishing site. The 5 problems relate to roads, facilities, pollution, crowding, commercial fishemen. index ranges from no problems at all (5) to severe problems (25).

Trip Expense Variable:
-ve TRIP $=\quad$ The amount of money spent by the respondent on the fishing trip, including travel expenses (\$/day).

Fishing trip expenses were also included in the model, as the dependent variable is net of trip costs. It was thought that net willingness to pay should be higher for less expensive trips, as the individual's fishing costs comprise a smaller proportion of his/her total benefit.

An examination of the frequency distribution plot of the dependent variable (Figure 7) reveals that the majority of respondents gave a net willingness to pay bid of $\$ 40$ per day or less but there were two bids which exceeded $\$ 200$ per day. These bids were deemed to be extreme outliers and they were consequently removed from the data set, reducing the total number of observations to 82 . Mean willingness to pay for this smaller dataset is $\$ 20.57 /$ day with a standard error of $\$ 22.18$.

Before developing a regression model, correlations between variables were analysed (Appendix 2a.). Willingness to pay appeared to be influenced positively by trip expenses (TRIP) and the number of herirs fished (HRSFISH) with correlation coefficients of 0.301 and 0.234 respectively. The sign on trip expenses is contrary to expectations and may indicate that the payment vehicle used in the survey (travel costs) has introduced starting poimt bias, meaning that people based their bid for the actual trip arbitrarily on the size of trip costs. A weak negative correlation (-0.202) was observed between the fishermen's consumptive index (SATISFY) and willingness to pay, consistent with theory. The catch variables are not strongly correlated to willingness to pay.

A decision was made to remove ALLFISH and EMPLOY from the model as these variables were strongly correlated with HERR and INCOME respectively. This was done so as to reduce multicollinearity in the regression model.

A general linear model of willingness to pay with all 12 explanatory variables was estimated by ordinary least squares using the software package Microfit V3.0 (Pesaran and Pesaran, 1991). Estimates of the general specification (model A) are given in the first column of Table 4. The coefficients of the catch variables, which are of particular interest in this study, do not have significant t ratios. The variables TRIP and SATISFY have significant coefficients at 10% and 5% significance level respectively, but the regression is not signilicant. The diagnostic tests also indicate that there are problems with functional form, normality and heteroscedasticity. As such the general model is not an adequate specification.

In order to improve the specification, the non-significant site quality and specialisation variables were excluded to produce model B. A nested test of model B against the general model was performed to check the validity of excluding these variables, which yielded a significant F statistic at 10% indicating that it was acceptable to exclude the variables.

Model B proved to be a better specification, with a significant F statistic for the regression, although heteroscedasticity and misspecified functional form are still present (Table 4). As catch rate of salmon and herring did not appear to be influencing willingness to pay, it was decided to remove these variables. A variable deletion test confirmed that this was a sensible decision. The subsequent specification, called model C, had a better adjusted R^{2} value of 0.128 , but the diagnostic tests reveal that there are still problems with the specification.

Table 4: Estimates of the general specification and three alternative models. Absolute tratios are given in parenthesis, ($\mathrm{nm}=82$)

Regressors	Modela General Specification	Model B Site quality and specialisation variables removed	ModelC Model B with catch and wealth variables also removed.
Intercept	16669 (0.881)	$16.668(1.445)$	$19.840(2.216)^{* *}$
Salm	-0.902(0.269)	$-1.586(0.506)$	
Herr	$0.139(0366)$.0216(0062)	
Gear	-0003(0738)		
Trip	$0269(1867)^{*}$	$0326(2.263)^{* *}$	$0.282(2372) * *$
Satisfy	$-188511985)^{*}$. $1767(-2087)^{* *}$. 1724 (2.087)**
Weather	-0531(0214)		
Income	$1130(0.740)$	$0694(0.501)$	
Club	$5201(0684)$		
Congrest	-0 225 (0.942)		
Actury	4906 (0486)		
Probs	-0434(0.236)		
Hrsfish	$2803(1558)$	2355 (1.473)	$2.161(1.528)$
Descrintive statistiss and Diagnostic Tests			
R bar squared	0.046	0.099	0.128
SE	21.663	21.058	20.713
Pustatistic	$F_{123}=1.328$	$F_{(0,3)}=2.482 * *$	$F_{(3,36)}=4.967^{* * *}$
Punctional Form	6.550 ***	6.005 **	4.246**
Normality	69.507 ***	62.219***	$62.852^{* * *}$
Heteroscedasticity	12.632***	14.330***	14.058**

* denotes significant at 10%, ** at 5% and *** at 1% or less.

The diagnostic tests are for functional form misspecification (Ramsey's RESET test), nomality (asymptopic chi-squared test), and heteroscedasticity (asymptopic chi-squared test)

It is acknowledged in the literature that contingent valuation and other social survey techniques tend to produce low R^{2} statistics. Hanley (1990) recommends that a minimum R^{2} value of 0.2 should be used, white Mitchell and Carson (1989) suggest an R^{2} value of 0.15 as a minimum. Based on these criteria, the net willingress to pay model reported in this study is not adequate for producing a reliable nteasure of recreational benefit. The most likely explanation for the fow explanatory power is that importan variables whel capture attitudimal and bifestyle characteristies of the individual have been omitted. In addition, it is suspected that two weaknesses of the survey method contributed to the poor model fit. Firstly, the use of trip costs as a payment vehicle appears to have introduced starting point biss, and secondly, respondents did not seem to confine their bids to a specific trip but rather made an ex ante valuation of fishing in general. This could accoun for why site quality and cateh rate cariables were non-significant

Travel Cost Model

An indivedual TCM was use thestmate the mean value of consumer surplus from recrational fishing across at sites A tripgenerating function was built by recording the travel costs and vontatom ; ates for individuats to each site and pooling over all stes It is postulated that the number of visits per year taken by an augler to a partocular fishing ste (the dependen variable) is related to the following:

1. the direet costs of fishing and travel to the site

2 attribute of the respondent
3. quality attributes of the site

The trip enst varrable (TC) was taken oo be the proportion of diect costs which are atributable to the fishoge experience at the site as nominated by the respondent, plus the opportunity cost of travel time and the time spent on site. In addition to trip costs, a number of site and respondent atributes were thought to influence visitation rate. The number of visits made to a fishing site per year are expected to be inversely related to the trip cost variable. With respect to site atributes, it was reasoned that anglers are more likely to visit those sites with towns near by and those that they regard as having few problems, as measured by the PROBLEMS index. Several characteristics of the individual may influence their participation behaviour, inclading wealh, their degree of specialisation in fising (measured by GEAR, and CLUB) and their consumptive orientation, which is eaptured by the variable SATISFY. All variables are defined in Table 5, together with the expected signs of their coefficients.

A frequency distribution plot of visitation data revealed there to be an outlier of 150 visits per year (Figure 8). This was deemed to be an unusually large value in the context of the rest of the sample, and as such was removed from the data set. This reduced the sample size to 83 .

Figure S: Frequency distribution plot of the dependent variable, number of visits per year, from a sample of 84 anglers.

Figure 9: Seater plot of trip costs on visits, showing an inverse exponential relationship.

Thble 5: Description of explanatory variatiles in the travel cost model.

Dependent Variable:

visits $=\quad$ Number of visits to the fishing site made by the responde nt over the past 12 months.

Explanatory variables and their expected signs

Price Variable

-se	TC	$T C$ is the total costs of visiting a site ($8 / \mathrm{trip}$). $T C=\Sigma(a, b, c)$:
		a) A proportion of the direct costs of the visit (\$/trip) which are attributable to fishing, as recalled by the responden.
		b) Opportunity cost of time spent travelling (\$/tip) = (hrs thavel (ime) ${ }^{*} 033^{*}$ meomera8ohrs)] Hours travel time was based on $50 \mathrm{~km} / \mathrm{m}$ for metro residents fishugs a a metro site, and $90 \mathrm{~km} / \mathrm{hr}$ for metro residents travelling to a country ste or for cotntry residents traveling to either a comitry or metrosite
		c) Opportunity cost of tme spent on she (Strip) $=(A v \text { hrs per day })^{*}(A v$ No. dass per trip)* (0.5^{*} income 2080)

Respondents Atributes

de	EMPIOY	Employment status of respondent (1 if employed; 0 unemployed or retired)
+10	GEAR	The total estimated value of all fishing gear possessed by the respondent
-ve	SATISFY=	An index measuring whether or not fish catch is essential for making a fishing trip satisfying or enjoyable. Scale ranging from catch being incidental (3) to essential (15).
+ve	INCOME ${ }^{\text {a }}$	Annual income of respondent
tre	ACTIVITY*	1 if fishing was the primary activity for the respondent on the visit; 0 otherwise.
+ve	CLUB $=$	1 if the respondent is a club member; 0 if otherwise

Site Attributes:
-ve TOWN $=$ Distance of the respondent's chosen fishing site from a major town (km).
*ve PROBLIEMS= An index derived from a summation of 5 responses, each of which measures whether or not the respondent perceives there to be a problem at the fishing site. The 5 problems relate to roads, facilities, pollution, crowding, and commercial fishing. The index ranges from no problems at all (5) to severe problems (25),

Table 6: Estimates of the general specification amd three atternative models. Absolute tratios bre given in piren(hesis. (n m 83)

Regressoms	ModeLA General Specification	Model 13 \log tip costs	ModelC Log dependen! \log tip costs
hitercept	25710 (1754)*	$51802(3350) * *$	$\begin{aligned} & 4.421 \\ & (4.594)^{* * *} \end{aligned}$
Gear	$0002(0.631)$	0004 (1242)	$\begin{aligned} & 0508 \times 10^{*} \\ & (2637)^{* *} \end{aligned}$
Trip C at	$0050(2165)^{* *}$	$9676(3585) * *$	$\begin{aligned} & 0.0867 \\ & (5.459)^{*+4} \end{aligned}$
Sansfy	$0331(0367)$	0561 (0647)	0.025 (0.488)
lucome	$2015(1415)$.0)364 (0248)	$0135(1556)$
10 nn	-0060(0668)	. 0011 (0151)	0006 (1 329)
Probs	$.1086(0636)$	$.123609760)$. 138 (1.446)
Cluh	.6704(0941)	.8238(1217)	$\begin{aligned} & -0.686 \\ & (1.723) \end{aligned}$
Actuvity	$6296(0710)$	$17740206)$	$0.529(1046)$

Descrintive statistiss and Diagnostic Tests.

R bar squared	0.074	0.161	0.308
51	21022	20.010	1.177
F-statistic	$F(8,74) \times 1.820$	$F_{(8.74)}=2.969 * *$	$\begin{aligned} & \mathrm{F}_{\{8,24)} \\ & { }^{2} 5.571, \ldots * \end{aligned}$
Functional Form	$12.672 * *$	14.525**	$4.454 *$
Normality	262.841 ***	206.843 ***	1.772
Heteroscedasticity	$10.035^{\text {*** }}$	16.764***	3.643 *

* denotes significant at 10% ** at 5% and *** at 1% or less.

The diagnostic tests are for functional form misspecification (Ransey's RESET test), normality (asymptopic chi-squared test), and heteroscedasticity (asymptopic chi-squared test)

A correlation matrix of the variables (Appendix 2b) shows that visitation rate varies inversely with travel costs with a coefficient of -0.327 , which is consistent with demand theory. A seatier plot of these two variables reveals that the relationship is non-linear (Figure 9). Contrary to expectations, the number of visits are negatively correlated with income (-0.259) and employment (-0.249). A likely explanation for this is that unemployed and retired people have more time available to make frequent, short fishing trips to their local fishing site. The variables EMPLOY and INCOME are highly correlated with one another (0.657), so to avoid multicollinearity EMIPLOY was removed from the model.

A general linear model of visitation rate was firstly specified and estimated by ordinary least squares using the software package Microfit V3 (Pesaran and Pesaran, 1991). Estimates of this general model which included 8 regressors (model A) is given in the first column of Table 6 . The trip cost variable is the only regressor with a significant cocfficient, and overall the general model is not adequate for explaining visitatation rate as it has a non-significant F statistic and a low adjusted R^{2} value. The diagnostic tests reveal the functional form is misspecified and that heteroscedasticity is present.

In order to reetify these problems. semi \log independent and double log specifications were estimated. In model B, thip costs were transformed to logs. This specification yielded a better adjusted R^{2} value but the diagnostic tests indicate that there are still problems with functional form and heteroscedasticity. The double log model (model C) has a reasonable adjusted R^{2} value of 0.308 and a highly significant F statistic. Coefficients of the variables GFAR, \log TC, and CLUB are all significant, however heteroscedasticity is still present and functional form is still a problem. While the double log form produces the best model fit. it does not agree with theoretical expectations because it implies intinite visits per individual at zero cost and generates infinite consumer surplus whenever demand is inelastic. For this reason, model B was used to generate an estimate of consumer surplus.

Estimates of Aggregate Recreational Benefits

Table 7 summarises four different estimates of the net economic benefit from recreational fishing, ranging from 1.5 to 6.0 million dollars depending upon the technique used to derive the estimate. Benefits aceruing to the individual angler were aggregated using the West Australian Fisheries Department's 1994 creel survey, which estimated angler effort to be 104,000 angler days (Ayvazian pers. comm.). The benefit estimate from version C of the willingness to pay regression model was obtained by substituting mean values of all variables into the function. A fourth estimate of angler's welfare was calculated from the log independent travel cost model (version B). This was obtained by setting all variables, other than trip costs, to their mean values in order to produce a simplified demand curve for fishing in terms of visits and trip costs. Consumers surplus was then calculated by integrating this function between mean trip costs (derived directly from the sample) and the level of trip costs that corresponds to zero visits.

Tible 7: Net economic bencfits from recrentional fishing in southern Western Australia, Individual henefits were aggregated using data from the WA Fisheries Department's creel survey which estimated angler effort in 1994 to be 104,000 angler days per year.

	Consumer Sunlus Eslimates	
Source ofl stimate	Individual (\$/day)	Aggregate (\$mill/yr)
Sample mean Willingness to Pay	27.36	2.85
Sample median Willingness to Pay	15.00	1.56
Willingness to Pay (Model C)	17.97	1.87
Travel Cost Method (Model B)	60.30	6.27

Condusions:mel Futher Research.

Generally, the regression results were disappoining and the welfare estimates produced in lable 7 need to be interpreted catliously owing to the poor goodness of fit displayed by the models which generated them. In light , f the difficulties encountered in this study, together with the problems reported by other researehers working in this area. the future role of survey techniques in estimating recreational hishery benefits needs to be clarified.

While the results to date are inconclusive, they have presented some new insights to recreational fishing economics that need to be investigated further. For instance. anglers appear to base their behaviour on er ante evaluations of the fishing experience, and their utility from fishing is a function of ''e extent to which these expectations are met. It follows that an alteration to an angler's expectations will influence his/her level of benefis per trip and also his/her future level of participation. It is the intent of the authors to researeh angler preferences in more detail and to incorporate the findings into an analytical model of resource allocation.

Beferences

ABARE (1994), Australim Fisheries Statistics, Austrolim Buren of Agrieultural and Resource Economics.

Anderson, 1. (i. (1983). "The demand curve for recrational fishin with an application to stock enhancement activities." Land Economics 5y(3): 279.

Ayvacim, S. (1995) Personal commmication.
Bateman, I J. and R. K. Tumer (1993). Valuation of the Enviroment, Methods and Tedunques. The C'ontingent Valuation Method. Sustanable Envirommental Economics and Management. London, Bellaven Press p72.

Bishop, R ('. S R Milliman, et al. (1090). "Benehlecost ambysis of lishery rehabilitatom projects: A (iveat I thes case study." Ocean and Shoreline Managenemt 13:253.

Bram, II (1977) "I eisure value systems and recreational specinisation: The case of trou fishemen." Joumal of eisure Resench 9: 174.

Carson, R. I., N. F. Atores et al. (1995), "Contingen valuation and revealed preference methodologies: Comparing the estimates for quasi public goods." Drati paper unpuhlished.

Fedler, A. I and R. B. Ditton (1986). "A framework for understanding the consumptive orientation of recreational fishermen." Finvirommental Mangement 10(2): 221.

Hantey, N. D. (1990). "Vahution of envirommental effects: Final Report-Stage One." Industry Deparmen of Scoland and the Scottish Development Agency, Edinburgh.

Johnson, N. S. and R. M. Adams (1989). "On the marginal value of a lish: Some evidence from a Steethead lishery." Marine Resource Economies 6: 43.
L.al, P., P. HoHand, et al. (1992). "Competition between recreational and commercial fishers. Mangement options and economic research", ABARE Researeh Report 92.11

Lenanton, R. C. (1994). WRFC Amual Report. WA Fisheries Department.
Lenanton, R. C., L. Joll, et al. (1991). "The influence of the Leenwin Current on constal fisheries of Westem Australia." Journal of the Royal Society of Western Australia 74: 101.

Loomis, J. B. (1988). "Comparative reliability of the dichotomous choice and open ended contingent valuntion techniques." Journal of Envirommental Economics and Management 18: 78.

Loomis, J, B. and D. M. Larson (1994). "Total economic values of inereasing Gray Whale populations: Results from a contingent valuation survey of visitors and households." Marine Resource Economics 9:275.

Milon, W. J. (1991). "Measuring the economic value of anglers' kept and released catches." North American Journal of Fisheries Management 11: 185.

Mitchell, R. C. and R. T. Carson (1989). Using surveys to value public goods: The contingent valuation method. Washington, D C.

Pesaran, M. 1. and B. Pesaran (1991). Microfit Version 3 User Manual. Oxford University Press, Oxford. UK.

Samples, K. C. and R. C. Bishop (1985). "Estimating the value of variations in anglers' success rates: An application of the multiple-site travel cost method." Marine Resource Eionomics 2(1): 55

Sorg, F. C. and J. B. Loomis (198(0), "Economic value of ldaho sport fisheries with an update on valuation techniques." North American Joumal of Fisheries Management 6: 494.

Staniford. A. I. and S. K. Siggins (1902) "Recreational fishing in Coffin Bay: Interactions with the commercial fishery," Fisheries Research Report No. 32. Fisheries Deparment of South Australia.

Whitehead, J. C. (1993). "Benefits of quality changes in recreational fishing: A single site travel cost approach." Journal of Fnvirommental Systems 21(4): 357.

Appendix 1:

Reonomie Survey of Recreational Pishing

Port 1: Preliminry data abou the respondent detemined from the WA Pisheries Departmen's Creel Survey.

Date of this linterview,	
Date of Creel Jmertien	
Creel ldentifeation Number	
Site Loention	
Distance of site fo clasest mijor town	
Congesifon (mumber of tuglers on heneli)	
Distanee of regpondent's arigin to the fishing site.	
Alember of angling club?	
Tours spent Mawding (return mip)	

Part 2: The Qusstimmatre.
It is well hnown that the West Anstralian communty gans a great deat of economic aud social benelits from recreational hishing lowever, in difficult to observe how much hese benefis are worlb in dollar tems hecatse, unlake commerchally canght bish, there is no price attuched to the experience of recratwol thong People at the Foberws I leparment and the University of WA are curtently conduntig resath to find out more about the recreational salmon and heming fishery. For instance, the reveareh ams to find out how many find are beme caugh, wha size they are, and to estimate how much angles spend to go fishing The purpose of this survey is to estimate the size of economic and soctal henelis bemg generated by angles who fish for salmon and herring.

How muny day have you fished over the past 12 months?	- $5 \quad 5 \cdot 10$	11.25	$\cdots=$
How many days did you spend fishing at he survey site?			
At the time of the interview you had caught:snlmherr........obler		
Is this representative of your average daily catch on whole trip? If not what was your catch?			
How many bours did you spend fishing at the site?			
Over the lasi 12 months, how many visits have you made? IT MULTIPLE trips, what is the averge duration (days)?			
What is your employment status?	employed, retired, U/E, sudent.		
Weather and Sen condilions at suryey site were recorded as: How would you rate the conditions for fishing on the majority of the trip? Poor, below average, average, above average, excellent.	Wind: \qquad Seas: \qquad Cloud: \qquad		
Was fishing the primary activity on this trip?			


```
Stromphs dimapler
Drayuter
```



```
Apla
&Homyls Seter
```

Smictmen Na		
1	\%	1
(II)	(1)	(1)
111	(1)	(1)
111	(1)	(1)
111	(1)	1%
1.1	111	(1)

latal same

 fhem ameht nothome

Itip I Yemas

 thate at cypamal

	\|hals unt	Thpomet (11.1) an 1* man latal
	\%	
Vehtif If EA		\%
	-3.0.come	4
Hatimilis.	4	\%
Imal mifluverate	\%	1
Aftothemelatmon	4	
	111141	I

 wheh comospond

How much of this would you spend on entertainment, sport, hobbies etc over 12 months? ($\%$ or $\$$).	
How much would you have spent on fishing over the last 12 months? (\$)	
Recall that for the trip on which you were interviewed you spent $\$$..............Based on your catch, weather,and cujoyment, do you think that this trip was worth the expense?	
Suppose that it becomes more expensive to go fishing. Based on your enjoyment from this trip, would you still have taken the trip if cosis had been higher?	
If yes, what is the most costs could to rise to before you decide that your fishing experiences on this trip were not worth the expense?	
Would you have preferred to catch some (more) salmon?	
How many in a day would have satsfied you?	
If you had been fortunate enough to catch this number of samon, would this have increased the value of the rip above the amount stated pres tously? If so. how much?	
Woud you have preferred to catch some (more) herring?	
How many in a day would have satisfied you?	
If you had been fortunate enough to catch this number of herring, would this have increased the value of the trip above the amount stated previously? If so, how much?	

There may have been a number of thints on the trip which detracted from your enjoyment of fishing, Using the scale on this card, please indicate the extent to which you found each of the following things a problem.

No problem at all	Very slight problem	Uncerain	Minor problem	Major problem.
1	2	3	4	5

A. The quality of the access roads into this particular fishing site. \qquad
B. The availability of facilities such as toilets, kiosk, and steps to the beach at this paricular fishing site.
C. The level of pollution on the beach and in the water on this particular day of fishing, \qquad
D. The number of other people at fishing sites on this particular day of fishing.
E. The presence of commercial fishermen in the region on this particular day of fishing .

Appendix 2a

Correlation matrix of variables thought to influence willingness to pay．（ $n=\$ 2$ ）

	$\frac{n}{5}$	$\begin{gathered} \sum \\ \substack{x} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{0}{8} \\ & \underline{[4} \\ & \hline \end{aligned}$	$\frac{\pi}{6}$ $\frac{1}{3}$ $\frac{3}{8}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & \frac{1}{3} \\ & \hline \mathbf{u} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\frac{a}{\mathbb{B}}$	爰 5 		7 6 0 0	14 0 0 3 3	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & t \\ & 4 \\ & 40 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	$\underset{i}{2}$	0 0 0 0 0
WTP	100														
SALM	011	100													
HERR	001	－ 009	100												
Allfish	001	． 007	078	100											
EMPLOY	002	012	－013	－0 18	100										
GEAR	0.12	025	010	0.08	001	100									
TRIP	030	0.45	－0．02	． 004	007	010	100								
SATISFY	． 020	． 006	－009	－0 03	－001	． 031	003	100							
WEATHER	． 001	． 008	000	011	－005	001	－ 310	． 004	100						
HRSFISH	023	018	． 001	006	． 023	038	030	004	003	100					
INCOME	004	010	． 009	． 007	065	005	007	000	009	． 018	100				
club	011	015	． 015	． 013	013	021	010	． 017	． 009	－006	007	100			
congest	－008	006	013	005	000	－014	003	． 007	．021	0.10	008	007	100		
Activity	015	005	． 015	－005	． 010	017	0.14	－007	－009	030	． 014	0.11	． 009	1.00	
PROBS	． 002	010	000	． 006	012	018	． 008	008	． 002	024	020	－004	007	0.12	100

Appendix 2b

Corelation matrix of variables thought to influence the number of visits to a fishing site（dependent variable in the travel cost model）．$n=83$

	$\frac{5}{5}$		$\begin{aligned} & \frac{\pi}{4} \\ & \underset{\sim}{4} \end{aligned}$	$\frac{\pi}{\frac{U}{n}}$	$\begin{aligned} & \underline{4} \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{array}{r} 9 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { Z } \\ & \text { B} \\ & \hline \end{aligned}$	宮 品		$\begin{aligned} & \text { o } \\ & 0 \\ & 0 \\ & \text { or } \end{aligned}$	0
VISITS	1.00										
EMPLOY	－0．20	1.00									
GEAR	0.09	－0．01	1.00								
SATISFY	－0．07	0.00	－0．31	1.00							
INCOME	－0．18	0.65	0.03	0.02	1.00						
club	－0．09	0.12	0.21	－0．16	0.07	1.00					
TOWN	－0．14	0.01	－0．11	0.05	0.06	－0．09	1.00				
RESIDE	－0．29	－0．18	－0．06	0.16	－0．10	－0．06	0.10	1.00			
ACTIVITY	0.13	－0．12	0.19	－0．07	－0．15	0.12	0.04	－0．41	1.00		
PROBS	－0．17	0.13	0.19	0.07	0.22	－0．03	－0．09	－0．15	0.14	1.00	
TC	－0．32	0.15	－0．02	0.16	0.23	0.02	0.29	0.64	－0．15	0.03	100

[^0]: *This study is funded by a grant from the Fisheries Research and Development Corporation.
 \# Dept. of Agricultural and Resource Economics, University of Westem Australia, Nedlands WA 6907.

[^1]: 1 Recall that on your trip you spent $\$ X$ on fishing related expenses Based on your enjoyment from the fishing trip. do you th nk that this trip was worth the expense?
 2 If yes, suppose, for whatever reason, that if becomes more expensive to go fishing. Based on your enjoyment from this trip, would you still have taken the trip if costs had been higher?

