

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

GAINS IN PRODUCTIVITY OF FARM LABOR

By REUBFN W. hecit and gien t. bahton
Agricultural Econonistst

CONTENTS
Measures of famm labor productivity PageFarm praduction3
labor requirements 3
4
Farm production and nen-hour requirements 5
labor productivity in the production of crops 9
Regiona! changes in crop production per hour 15
Changes in production per hour, by groups of crops
21
21
Production of individual crops per hour 22
Labor productivity in the production of livestoch 3
Regional changes in livestock production per hour 27
Charges in production per hour, by kinds of livestock 29
Labor productivity in total farm production 32
Regional changes in total farm production per hour 34
Effects of changes in importance of enterprises on labor productivity 36
Area differences in labor productivity 42
Area differences in labor productivity for individual enterprises 43
Area differences in labor productivity for all crops, livestock, and all farn work 46
Lator requirenents, farm employment, and labor productivity 50
Production per man-hour and per worker 55
labor prodactivity in agricultare and industry
56
56
Sumary 61
Literature cited 62
Appendix 63
tifects of weighting factors on measures of labor productivity 63 69
Tables
Tables

Our farm workers are increasingly productive. Today a farmer on a tractor turns out twice as much product for market each hour as did his father behind a team of horses a generation ago. Science is making farm jobs more pleasant as well. Milking machines are cutting down the chore time morning and evening, and are shortening the length of workday on many farms. Mechanical pickers reduce the period of corn hirvest in the fall and make this important job easier. Dairy barn cleaners, power scoops and loaders, elevators and blowers, haymaking machines and methods that keep hand pitching to a minimum, and innumerable other machines help to lessen effort and drudgery, and reduce the time demanded by farming. Farm homemakers, too, find that rural electrification and modern developments cut the number of hours and eliminate much back-breaking work within doors.

[^0]Farm workers have matched city workers in increasing labor productivity over the last decade and a half, although, during the quarter-century before that, man-hour productivity of industrial workers rose much more rapidly than that of farm workers. Gains in productivity of both groups have been domirating influences in raising the level of living of our entire population over the last 30 years. In addition to producing a wealth of consumer goods for all, nonfarm workers have provided workers on farms with more and moretractors, trucks, and other machines, and greater and greater quantities of gasoline, oil, fertilizer, and other farm production goods. With the aid of these city-made machines and production goods, our larm people are increasingly productive in turning out a growing volume of food and fiber for domestic use and for export.

The chiel technological developments behind the rise in the productivity of farm labor have been increased mechanization and a widespread adoption of improved practices that have raised crop and livestock yields. Greater use of tractors and modern machines has reduced the time element in farming operations and greater use of mechanical power has increased production for human use by displacing horses and mules which formerly consumed a large part of our feed and pasture production. More production per crop acre and per animal has meant greater productivity of labor.

The rise in man-hour productivity during the last 40 years has resulted from a sharpincrease in farm outputandamoderate decrease in total man-hour requirements for farm work (fig. 1). ${ }^{2}$

MAN-HOURS OF FARM WORK and OUTPUT PER MAN-HOUR

Figure 1.--Duritg a lithle morr chan two decathes after jaio the rise in farm outpot was responsible for the increase in output per man-hour. Following this, the drop in hours spent. of farm work contritated to the advance in tahor iroductivity. but the increase in production was ty far the mast. effective influence durity all parts of the period.

[^1]This means that increases in labor productivity have been transcribed into greater production, rather than into labor displacement. But the moderate downward trend in total labor requirements has meant a decrease in the number of farm workers.

The future holds great promise for further gains in farm technology and labor productivity. Analyses of past trends in productivity of farm labor can point out some of the crop and livestock enterprises and the regions where the greatest changes are to be expected. Possibilities for an increase in labor productivity in production of milk, corn, cotton, poultry, hay, and tobacco - chief users of farm labor - will largely determine the general trend in labor productivizy.

MEASURES OF FARM LABOR PRODUCTIVITY

Productivity of farm labor is usually measured by a ratio of production to labor input. The most commonly used ratio has been that of production perfarm worker. As will be seenlater, however, ameasure of production per man-hour used in this report has several advantages.

Farm Production

To underatand the meaning of production per hour it is necessary to understand the meaning of the measures of production. Two measures of total production--farm output and gross farm produc-tion--are employed. ${ }^{3}$ Farm output is the annual production of farm products for human use. Gross farm production includes not oniy products for human use but also includes, as an item of total production, the farm-produced animal power of horses and mules. The index of gross farm product. in thus gives the farm woricers credit for the animal power they produce. As a result of the long time downward trend in numbers of farm horses and mules, the index of gross farm production rises less rapidly than the index of farm output. Both measures are useful in tracing the changes in productivity of farm labor and the causes and significance of such changes.

Index numbers of farm output, gross production, and production of specified groups of farm products, werecalculated by geographic divisions, each year, beginning with 1919. Indexes are available for the United States beginning with 1910.

In constructing the indexes average 1935-39 farm prices in each geographic division are used as weights in combining annual production of individual farm products into total production. To avoid duplication of crop and livestock production, only "product added" by livestock is included. The product-added method can be illustrated for hogs. The farm price of hogs averaged about $\$ 8$ per hundredweight for the United States in the $1935-39$ period. Enterprise studies indicate that about three-fourths of the cost of hog proonction is for feed. Hence, at 1935-39 average prices, the product added per hundred pounds of hogs produced is $\mathbf{\$ 2 . 5}$

[^2]Annual production for the United States for the period beginning in 1919 is obtained by summing the quantity-price sggregates of geographic divisions.

Use of different weighting systems may result in differences in the measures of total production as the differentiarmproducts may be aanigned different relative values and different absolute values. A discussion and analysis of the problems involved in choosing a set of weights is given in the appendix, beginning on page 63.

Labor Requirements

Farm labor requirements are expressed in terms of manequivalent hours, that is, the farm time used by average adult males in performing farm operations. The man-equivalent hours for crops include the time for hauling manure, plowing and fitting the land, planting and cultivating, spraying, dusting, pruning, and for harvesting and hauling the crop to storage, local market, or processing plant. The man-hours for livestock care and production include direct labor only for such operations as feeding, caring for, and disposing of the animals and their products. Labor for growing their feed is not included. Time for farm maintenance or general overhead work is calculated separately and added to the direct labor for crops and livestock in arriving at total man-hour requirements for all farm work. Maintenance labor includes work on fences, repairs to buildings, machinery, and equipment, farm woodiands, pastures, general land maintenance, farm business, and othermiscellaneous work. Available information indicates that these tasks, as a total, take about 15 percent of all farm work.

Many women, children, and olderfarm workers accomplishless in an hour than does an average adult male on most farm jobs. Consequently, the total of actual hours of farm work in any given year will exceed the total of estimated man-equivalent hours. Manequivalent hours used per acre or per animal vary from year to year owing to changes in yields of crops or livestock, degree of mechanization, and other factors. Total man-equivalent hours used infarm production change over a period of time because of changes in ac reages of crops and in numbers of livestock, as well as because of changes in hours used per acre or per animal.

The estimates of man-equivalent hours used in this study are new estimates. They were made for each year by geographic divisions, beginning with 1919, and for the United States, beginning with 1910. Recent bench marks for these series are the estimatea of farm labor requirements, by States, for 1939 and 1944 (6). The estimates of man-hour requirements for the years before 1939 are based chiefly on data in the WPA National Research Project report, "Changing Technology and Employment in Agriculture," by John A. Hopkins, on other reports in the WPA aeries, and on BAE estimates of cropacreages and yields, and livestock numbers and production. Reports of State experiment stations and studies of changes infarm
practices and mechanization also were utilized in making the estimates.

The use of man-hour requirements instead of employment as a measure of the input of farm labor makes possible a more thorough analysis of changes in productivity of labor. Data on man-hour requirements provide a means of comparitug production per hour of individual crops or livestock or of groups of enterprises. It is impossible to make such comparisons on the basis of production per worker. Owing to the way in which farms are organized, a worker is seldom, if ever, employed consistently on a single enterprise. Consequently, a comparison of labor productivity in the production of corn and dairy products, for example, requires the use of data on man-hour inputs. In addition, a man-equivalent hour is a more uniform unit of labor than a farm worker from one year to another and among different parts of the country. Production perfarm worker may rise merely because the time spent at work increases or may be higher in one region because of agreater number of hours per worker there than elsewhere. Production per man-hour is not affected by such changes and differences.

In some respects, farm employment and man-hour data supple ment each other in the study of labor productivity. Variations in man-hours per worker give some clues regarding changes in the degree of underemployment of farm workers. Also, the detailed analysis afforded by man-hour data helps to explain changes in production per worker.

Neither production per man-hour nor production per workerare ideal measures of farm labor productivity. Both are ratios of total production to labor input. These ratios do not measure the actual contribution of labor or of capital or of any other factor of production. Changes in the ratios reflect the joint efforts of all factors affecting either production or laborinput, as substitution of machinery for labor, the development of higher yielding and more diseaseresistant hybrids and varieties of crops and animals, more effective methods of disease andinsect control, and differences in the weather. Hence it is incorrect to attribute all of the changes in efficiency to farm labor (2). Labor is the most important input in agricultural production, however, and changes in the ratio of total production to labor provide a useful measure of changes in efficiency of farm production. But changes in production per hour or per workermust be interpreted in the light of changes in capital inputs and the technological forces operating in farm production which affectmechanization or yields of crops and livestock.

FARM PRODUCTION AND MAN-HOUR REQUIREMENTS

About 19.5 billion man-equivalent hours of farm labor are now used in all farm work (fig. 2). This labor, combined with other production resources, resulted in a gross farm production of more than 11.8 billion $1935-39$ average dollars in the record year, 1948 (fig. 3). In 1910, about 22,5 billion hours were used for agross production of 8 billion dollars.

The milk-cow enterprise is the heaviest single user of direct man-hours of farm labor. It now requires $31 / 4$ billion hours, or 16. 5 percent of all farm work (table 1). The other rhief farm-crop consumers of man-hours of labor are corn (10.4 percent), cotton

FIGURE 2.-. Total farm labor requirements have tended to decline since the first World War. This has resulted from less labor used by crops even though the requirements for livestock have gone up.
(10.3 percent), and poultry (6.0 percent). These four enterprises account for more than 40 percent of all farm work.

The milk-cow enterprise is the chief user of farm labor in five of the nine geographic divisions. Cotton leads in two of the southern divisions and tobacco in the other. Fruits and nuts take more direct labor than any other enterprise in the Pacific region. Corn ranks high on the list of labor users in six divisions, and hay in four divisions. Poultry is an important consumer of farm labor in four regions, truck crops in two, and potatoes, other cattle, and sheep and lambs in only one. Combinations of three to five of these enterprises account for more than 40 percent of all farm labor requirements in each division.

enf 4741.!
FIGURE 3.-Giross farm production increased more during and after World War II than it did during the three decades before 1939. There have been notable increases of oil-bearitig crops, food grains, and truck crops. Production of livestock and products, excep: horses and mules, has also incransed considerably.

The amount of labor used by the different crop and livestock enterprises has followed various trends through the years. The labor used in caring lor horses and mules has been cut sharply owing chiefly to the decline in numbers of these animals. The increasing time devoted to other livestock reflects the rise in production of meat animals and animal products for human use. The total time now spent on the corn crop is less than 60 percent of what it was a third of a century ago; corn production during the same period increased by 15 percent. Total man-hours required for the wheat crop are little more than half what they were before World War I,

TABLE 1.- Iaportant labor-using enterprises in each of the geographic divisions, average 1945-48 ${ }^{2}$

Enterprise	New England	Middle Atlantic	East North Central	West North Central	South Atlantic	East South Central	Hest South Central	Mountain	Pacific	United States
Milk cows	Percent $29 . ?$	Percent 27.7	Percent 28.4	$\left\lvert\, \begin{gathered} \text { Percent } \\ 21.0 \end{gathered}\right.$	Percent 7.9	$\begin{gathered} \text { Percent } \\ 10.2 \end{gathered}$	$\begin{gathered} \text { fercent } \\ 11.2 \end{gathered}$	Percent 12.4	Percent 12.7	Percent 16.5
Other catt	29.?	27.7	28.4	- 21.0		10.2	11.2	12.4 9.6		16.5 3.8
Poultry	11.1	9.6	7.1	8.5	---	-..	-..	,	---	6.0
Sheep. lambs, and wool	-..	7	---	---	--*	\cdots	--.	8.0	---	1.0
Corn-	---	7.8	13.7	13.8	11.9	14.8	6.9	-.	--	10.4
Cotcon	--.	-.	---	---	11.9	24.2	27.4	-.-	--.	10.3
Fruits and nut	-	\cdots	-..	--	,	2	27.	---	28.4	3.9
Hay and forage	8.5	6.7	---	6.0	---	---	-	11.5	-.	4.9
Potatoes-...-	6.8	\cdots	---	6.0	--.	\cdots	..-	1.5	-.-	1.0
Tohacco	---	--.	--.	--.	19.6	7.4	--.	---	---	4.5
Trick crope and market gardens		8.6	...	--.		---			8.5	3.2
Total	56.1	60.6	49.2	49.3	51.3	56.6	45.5	41.5	49.6	65.5

[^3]although production has risen by two-thirds. Cotton now takes about half as many total hours as it did a third of a century ago, largely because of a decline in the acreage.

Individual crop and livestock enterprises account for varying proportions of total labor requirements and production (table 2). Wheat, for example, now takes 2.5 percent of the total direct labor on crops and livestock, but accounts for more than 9 percent of all gross production, exclusive of pasture. Cotton, at the otherextreme, requires 12 percent of the labor, but contributes only 6 percent of the production. Production of meat animals and animal products now accounts for a little more than one-fourth of total production, but absorbs almost three-eighths of the direct labor.

In the early part of the period under consideration, the proportion of the direct man-hours of farm labor required by livestock more nearly matched their contribution to gross farm production than it does today. The difference in this regard between 1910-14 and 1945-48 was due to the fact that livestock production per hour did not rise so fast as did crop production perhour. The proportion of total hours used by wheat and corn, on the other hand. fell relative to the production contributed by these crops over the period as a whole. Shifts in importance of the various enterprises have decided effects on the changes in total farm production per hour over a period of years. These shifts areconsidered in more detail in later sections of this publication.

LABOR PRODUCTIVITY IN THE PRODUCTION OF CROPS

In 1948, farmers in this country raised about 90 percent more total crops per hour of labor than they did in 1910. They raised more than $3!/ 3$ times as much wheat, about $21 / 4$ times as much corn. more than 100 percent more fruit, more than 75 percent more cotton, and 30 percent more hay. Even more pronounced climbs in labor productivity have been made by certain crops in particular areas. For crops as a whole, the West North Central Division stands at the head of the list, with an increase of 113 percent in production per hour of labor from 1919 to 1948. This area is followed by the Mountain and East North Central Divisions, each with increases exceeding 100 percent.

These increases have occurred because of changes in many factors. These influences may be placed into two groups; those that chiefly influence acre yields and those that mainly affect labor requirements per acre. This is notaclear-cutdistinction, however, as crop yields and labor requirements are themselves interrelated. Before World War 1, for example, it took about 35 hours to grow and harvestanacre of corn yielding 26 bushels (table 3). Since then, the man-hours per acre have fallen to less than 24 hours and the drop would have been greater if the yield had not increased. The average yield is now about 35 bushels. The combined effect of fewer hours and more busheis per acre has been to halve the labor requirement per bustiel. This trend to fewer man-hours per unit of production has occurred on other crops but on some of them it has resulted from a different combination of changes in labor requirements and yields. The man-hours per acre of potatoes, for example, have actually gone up but the yield has aiso increased greatly, and again the labor requirements per bushel have been almost cut in two.

TABLE 2.--Proportion of direct labor requirements and of gross farm production contributed by various enterprises, litited States, indicated periods, 1910-48 ${ }^{1}$

En	1910-14		1920-24		1935-39		1945-48	
	Labor requirements	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { production } \end{gathered}$	Labor requirements	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { production } \end{gathered}$	Labor requirements	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { production } \end{gathered}$	Labor requirements	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { production } \end{gathered}$
llorses and mules	$\begin{gathered} \text { Percent } \\ 9.5 \end{gathered}$	Percent 8.3	$\begin{gathered} \text { Percent } \\ 9.8 \end{gathered}$	Percent 7.3	Percent 6.2	$\begin{gathered} \text { Percent } \\ 4.5 \end{gathered}$	Percent 4.4	Percent 2.3
Meat animals and animal products-	24.8	21.5	27.0	22.5	32.9	25.1	36.1	26.7
Corn----.-.-.....	18.2	21.1	17.0	20.7	14.6	16.9	12.2	17.4
Other feed grains and hay-	8.4	13.9	9.1	15.3	8.1	14.3	8.8	14.2
Wheat--.---------.-.-	3.9	7.7	3.8	8.1	2.8	7.2	2.5	9.2
Other food crop	11.1	11.9	11.8	13.3	13.7	16.6	15.2	17.0
Cotton-.......	20.2	11.0	16.7	7.9	15.5	9.2	12.1	6.1
Other crops	3.9	4.6	4.8	4.9	6.2	6.2	8.7	7.1
Total	200.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

[^4]1ABL. 3.--Man-hours per acre, yield, and man-hours per unit of production for designated crops, United States, 1910-14 and 1945-48:

Crop	Man-hours per acre ${ }^{9}$		Yield			Man-hours per unit of product		
	1910-14	1945-48	Unit	1910-14	1945-48	Unit	1910-14	1945-48
	Hours	Hours						
Oats-	35.2 15.7	23.7	Bushels	26.0	35.2	100 bushels	135	
Hay-	15.7 1.9	8.118	Bushels Tons	$\stackrel{29.4}{1.15}$	35.0	100 bushels	53	23
Wheat-	15.2	6.1	Bushels	14.15	1.73	Tons	10.3	8.5
Potatoes	55.0	26.1	Bushels	35.8	46.4	100 bushels	106	34
Sreetpotatoes	132.0	80.1 118	Bushels	99.7	182.3	100 bushels	76	56
Drybeans-....	47.2	${ }_{20.8}^{18}$	Bushels	94.9	96.3	100 bushels	140	123
Sugar beets	128	${ }_{90} 20.8$	Pounds	778	988	Cut.	6.1	2.1
Cotton-....	116	102	Pons	10.6 200.6	13.2 268.6	Tons	12.1	6.8
Tobacco-	356	495	Pounds		1,164 268		277	182
Soybeans	15.9	9.5	Bushels		$\begin{array}{r}1.194 .0 \\ \hline\end{array}$	100 bushels	$\begin{aligned} & 44 \\ & 126 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \end{aligned}$

1 For comparable data for the intervenine period see appendix table 26.
${ }^{2}$ Per acre harvested, includes preharvest work an abandoned acreage.
Per acre harvested; includes preharvest woik an abandoned acreage.
Average shown for $1925-29$ rather than $1910-14$; soybeai prothction in $1910-14$ was relatively insignificant.

FIGUAE 4. .-For the first two decades after 1910 the rise in crop production per man-hour resulted from a decrease in man-hours per acre as crop production per acre showed a flat trend. During World War II and the postwar years, decreasing man-hours per acre owing to the surge in farm mechanization, and increasing crop yields, formed the basis for a record rise in crop produclion per man-hour.

In addition to the fact that crop yields and labor requirements are interrelated, their relative influences have changed considerably during the course of 40 years. Total crop production per hour of labor exhibited only a moderate upward trend from 1910 to about 1930 (fig. 4), but after the drought and depression of the 1930 's a strong upward trend started and continued through and after World War II. Before 1930, the reduction in man-hours per acre of cropland ${ }^{6}$ was wholly responsible for the climbincrop-labor efficiency, as there was no appreciable change in yields. But since 1937, sharp increases in crop production per acre of cropland have joined with the continuing reduction in man-hours to push crop production per man-hour to an unprecedented level.

The absolute data upon which figure 4 is based are presented in table 4 for a few key years. In 1910-12 about 38 man-hours were spent on the average acre of cropland yielding $\$ 16$ worth of crops at average 1935-39 prices. During World War I crop yields went down. This by itself would have lowered crop production per hour but there was a sufficiently greater drop in man-hours per acre to overcome the effect of lower yields and to raise crop production per hour about 10 percent.

It should be remembered that the number of man-hours per acre depends to some extent on the size of crop yields. During this
${ }^{\circ}$ Cropland is the sum of the estimated acreage from which one or more crops were harvested, plus acreage of crop failure and summer fallow.

TABLE 4.. Average crap production per man-howr, and average man-hours and crop prodution per acre of cropland, thited States, by indicated periods, 1910-46 1

Item	Unit	1910-12	1919-21	1937-39	1944-46
Man-hours per acre-...............	Hours	38.3	33.6	29.5	26.9
Crop production per acre-...-.....	Dollars *	16.05	15.50	17.16	19.76
Crop praduction per man-h	Dollars:	. 42	. 46	. 58	. 73

[^5]period, for example, labor requirements per acre would not have gone down quite so rapidly if there had not been a lowering of crop yields.

The reduction in man-hours per acre was not quite so rapid from 1919-21 to 1937-39 as it liad been during the first World War but the rate of decrease was about the same during both World Wars. Increased mechanization, including change in practicesin meny instances, was chiefly responsible for the reduction in man-hours per acre. Even before the advent of tractors, the increased use of labor-saving machines incrop production was an acknowledged fact. The more recent development and widespread adoption of tractors and associated equipment, of notortrucks, automobiles, and other forms of mechanical power, is likewise well known.

The extent of replacement of horses and mules by tractors tells the story--there were slightly more than 24 million horses and mules on farms in 1910 and they increased to almost 27 million head in 1918. Then the horse and mule population decreased rapidly and there were less than a third of the 1918 peak numbers left on farms at the end of 1948. During this same 39 -year period the number of tractors on farms rose from a thousand to 3.5 million. Automobiles and motortrucks have also aided in the replacement of horses and mules and in reducing the time required per acre in hauling jobs on the farm, and more particularly in transporting supplies to the farm and products to market.

The increased use of mechanical power on farms and other developments have helped in reducing the labor requirements per acre on crops. Tractors werefirst adopted in areas composed of big farms having large fields. Tractors, particularly the early models, are best adapted to large fields and their use for this pirpose results in the greatest decrease in man-hours per acre. Despite the recent deve:opment of smaller tractors, the increased use of tractors has hastened the enlargement of fields. In New England, for instance, farmers go to considerable expense to eliminate old stone walls between small fields to facilitate the use of mechanical power and associated equipment.

If it were necessary to use the automobiles and trucks on roads like those prevailing at the time of World War I, the reduction in man-hours per acre of crops would not have been so great. The development of hard-surfaced highways and improved farm-tomarket roads has helped decidedly in reducing nan-hours per acre of crops.

If the indirect labor on crops were added to the direct labor, the reduction in farm man-hours per acreresulting from the replacement of horses and mules by tractors would be greater than is indicated in table 4. Considerably less time is spent on the farm per crop acre to service and maintain tractors and automobiles than was required to produce and care for horses and mules and to raise feed for them. It is true, however, that a major part of this indirect farm labor for crops has been transferred to the cities. Urban people now manufacture the tractors and automobiles, produce fuel for them, and co many of the major repair jobs. In the years before tractors, farmers produced the farm power in the form of horses and mules, and produced their fuel in the form of oats. hay. corn, and pasture. Thus, if indirect labor on crops, urban as well as farm, is added to direct labor, the reductionduring the last 40 years in total labor used per acre excecds the decreãe in man-hours of direct labor per acre; if indirect farm labor on: ; is added the reduction greatly exceeds the dropindirect labor per acre.

As a general rule, year-to-year Iluctuations in crop production per acre come about largely through the wather. It has been demonstrated that weather can be very influential in changing crop yields over a period of a few years. But it can hardly be said that weather by itself has either raised or lowered yields substantially over a long period of time. Other factors-as use of new hybrids and varieties of crops, increased application of fertilizersand lime, adoption of soil- and moisture-conserving practices, more effective control of pests and diseases, and irrigation and drainage of larger areas-have been more influential than weather in the long run, in increasing the yields of crops.

Improved hybrids and varieties of crops, of which hybrid seed corn is an outstanding example, have made notable contributions to increased yields, particularly in recent years. Almost four times as much fertilizer was used by farmers in the United States in 1947 as in 1910. The quantity of lime now appliedis six to eight times greater than in 1929, the first year for which data are available.

When the changes in man-hours and crop production per acre are converted to average annual rates of change, their effect on changes incrop production per hour is more clearly seen (table 5). The decrease of 1.4 percent per year in labor requirements per acre was responsible for the increase in crop production per hour from 1910-12 to 1919-21 as crop yields also went down. But during the interwar period fewer man-hours and more crop production per acre were about equally effective in raising crop production per man-hour 1.3 percent a year. Cropyields increased greatly during World War II, and were more influentialin raising crop production per hour at the high rate of 3.4 percent per year than was the reduction of 1.3 percent per year in man-hours per acre. Thus during the three subperiods changes in yields were, chronologically, less effective, equally effective, and more effective. than were decreases in labor requirements in raising crop production per hour.

Although a more detailed discussion is presented later, itseems well to mention, at this point, two influences that operate on crop production per man-hour. The crop pattern in an area does not remain the same. There may be shifts in importance of crop enterprisesfrom year to year, or over a period of several years.

As there are marked differences in production per man-hour among crop enterprises, these shifts in importance affect total crop production per man-hour. Similarly, theremay be shifts in importance of a crop among regions. From 1919-21 to 1944-46 such shifts within regions tended to reduce total crop production per man-hour for the United States as a whole, whereas shifts in importance of individual crops among regions tended to increase total crop production per hour. The net effect of these two influences on change in crop production per hour during the entice 25 -year period was small. During parts of the period, however, shifts in importance of crops within and among regions affected total crop production per hour significantly.

Regional Changes in Crop Production Per Hour

Changes of real import in labor productivity in crop production have seldom had a uniform effect in all parts of the country, One part may have resisted mechanization while others may have taken readily to machine methods. Higher yielding varieties and hybrids have usually not been adapted to the whole country. About the only mark of similarity a mong the geographic divisions with respect to the changes in production of all crops per man-hour of direct labor is the definite upward trend exhibited in each region (fig. 5). There are wide differences in the magnitude of the increases and in the year-to-ycar Hluctuations around the trend.

The most consistent increase in crop production per man-hour occurred in the Pacific States. During only 7 of the 29 years was the production per hour lower than it had been the year before, and most of these drops were slight. This is in sharp contrast to the West South Central Division where declines were recorded in almost half of the years. The dependence on irrigation in the Pacific States and the more variable weather conditions in the West South Central area are inlluential factors in this difference.

By far the greatest annual increases in cropproduction per hour came during World War Il. In many instances greater additions to production per hour were made in a few years than during the previous several years. The outstanding example is found in the West North Central States where the gain in crop production per man-hour during the 7 years from 1937-39 to 1944-46 was more than double that of the previous 18 ycars. The Middle Atlantic is the only area in which the annual increase was greater during the years before 1937-39.

The big differences among the geographic divisions in the increase in crop-labor productivity are the more remarkable when
TABLE 5.-Average annual rateof change in cron prodaction per men-hour, and manhours and crop production per acre of cropland, United States, indicnted periods, 1910-46

frem	$\begin{gathered} 1910-12 \\ 10 \\ 1919-21 \end{gathered}$	$\begin{gathered} 1919-21 \\ 60 \\ 1937-39 \end{gathered}$	$\begin{gathered} 1937-39 \\ 60 \\ 1044-45 \end{gathered}$	$\begin{gathered} 1910-12 \\ \text { to } \\ 1944-46 \end{gathered}$
	percont	percent	Percent	Percent
Man-hours per acre----------------	-1.4	-0.7	-1.3	-1.0
Crop production per nere-------1.-	- 4	. 6	2.0	. 6
Crop production prer nam-hnur---...-	1.0	1.3	3.4	1.7

246 67644.y
Figure 5. .-Man-hours per crop acre have decreased most since World War I in the North Central, Mountain, and West South Central States, where mechanization has generally progressed most rapidly. The greatest rise in man-hours per acre occurred in the Pacific States where increasing yields and growing emphasis on labor-intensive crops ofiset the decrease in hours that resulted from advancing mechanization. Hising yields, farm mechanization, and other factors that reduced man-hours per acre all contributed to the increase in crop production per hour, although the relative importance of each factor varied among regions.
the different amounts of crop production per man-hour in 1919-21 are considered. Even with horses and mules as power, crops in the different parts of the country took greatly different expenditures of labor (table 6). The extensive type of cropproduction is reflected in the fewer than 20 hours of labor used per acre in midwestern areas. The 70 and more hours of labor used per acre in the two southeastern areas reflect the many hours of hand work on cotton and tobacco.

TABLE 6.-Crop prochction per man-hour, and man-hours and crop production per acre of cropland, sif geographie diviation, averages of indicated periods, 1919-46

	1919-21			1937-39			1944-46		
Geographic division	Man-hours per acre	Crop production per acre	Grop production per men-hour	Man-hours per acre	Crop production per acre	Crop production per man-hour	Man-hours per acre	Coop production per acre	Crop production per -haur
	Hours 34.8	Dollars 28.61	Dollars	Hours	Dollars	Dollars		Dollars	Dollars
New Engl and--- Widdle Atlanti	34.8 35.1	28.61	0.82	37.0	35.10	0.95	33.7	37.26	1.11
East North Central	24.9	21.92 16.09	62 65	33.7 22.1	27.28	. 81	31.6	27.97	. 89
West North Central.	15.4	11.02	. 72	22.1 11.3	0.09 9.91	. 91	18.9	29.97	1.11
South Atlantic----1	78.4	24.11	. 31	77.6	9.91 30.68	. 88	10.6	13.13	1.24
East South Central.	70.8	19.98	. 28	69.0	30.68 24.41	. 45	80.9	38.15	.47
West South Central	51.7	15.22	. 29	38.9	24.41 14.89	. 35	67.6 33.2	28.09	. 42
Mountain	19.4	11.38 21.09	. 59	15.9	12.36	.78 .78	33.2 14.1	15.82 14.12	.47 1.00
	34.1	21.09	. 62	39.5	32.66	. 83	41.7	39.74	1.00 .95
United States-.	33.6	15.50	. 46	29.5	17.16	. 58	26.9	19.76	. 73

Similar forces were behind the changes in crop production per hour inall parts of the country but their relative importance varied widely among regions. Since just after World War I, the reduction in man-hours per acre have been more influential than greater yields in raising crop production per hour in the West North Central, Mountain, and West South Central Divisions where labor re-. quirements dropped 4. 8, 5.3, and 18.5 hours peracre, respectively. The large farms and level fields in these areas aided the change to machine methods of cropproduction and this change to mechanization is one of the chief reasons for the big drops in man-hours per acre. In addition, in the West South Central States, a considerable reduction in the high labor-consuming cotion acreage and a large increase in the low labor-consuming wheat acreage lowered the average number of man-hours per acre. This shift to wheat had the additional effect of holding down the increase in crop productionper acre, as the valuc of cotion production per acre is greater than that for wheat.

The increase in crop production per man-hour in the Pacific area during the last quarter-century is unique in at least two respects. First, the increase in crop production per acre was higher than in any other arca. second, it is the only group of States in which the average man-hours per acre of iotal crops have increased signilicantly. While yields of individual crops have increased during this period, a shift to crops ul higher value has contributed a lot to the increase in average productaon per acre of all crops. Man-hours per acre for mosi crops have decreased, but the average for all crops has increased. The man-hours required per acre of wheat, for example, decreased by almost 50 percent from 191921 to $1944-46$ despite a decidedly higher yold. The big increase in crop production per acre (88, 5 percent) and the shift totruckerops and cotion, which have above-average labor requirements per acte, wefe induental canta! factors in the upward trend in man-hours per acre.

Assde from the Pacilic area, the South Allantic States had the largest incrase in crop producton per aces. Greater yields of individual crups helped, but a shifi froni cotion to tobacco was also effectuve th rathmy dverage rap produtan per acre. The rise in crop producion ptr homr was below average despite the very definite incretse in prodution per acre, because of the slight increase in man-homes per acre. Mechamzation has been slow in this area, and the shitt the the labeintensive tobacco enterprise has raised the averagt man-huurs per acre.

There dre aboye-average nambers of tractors in retation to cropland in the New England and Middla Atlantic States, but the reduchions in man-hours per acre since 1919-21 are less than average. Small fields, uneven topography, and the kind of crops, limit the opportunties for great labor savings on crops. Hay, for example, is a prevailing rrop in these areas and mechanicalmethods of putting up hay were adopled slowly. A large part of the corn crop is cut by hand and shocked or ensiled with a stationary ensilage cuiter, just as it was 25 years ago. Considerably greater yields, however, have resulted in about average increases in production per hour.

The effect of changes in yields and man-hours per acre on crop production per hour is more readily seen when they are presented as average annual rates ul Change. Farmers in the East and West North Central and Molutain Divisions raised their crop production

TABLE 7.-Average annual rate of change in crop production per man-hour, and in manhours and crop production per acre of cropland, by geographic atvision, imitated periods, 1019-46

Ceographic division	1919-21 to 1937-39			1937-39 to 1944-46			1910-21 to 1944-46		
	Man-hours per acre	Grop production per acre	Crop production per man-hour	Man-hours per acre	Crop production per acre	Crop production per man-hour	Man-hours per acre	Crop production per acre	Crop production per man-hour
New England--....-	Percent 0.3	Percent							
Middle Atlantic---	0.3 -.2	1.12		-1.3 $-\quad 9$	0.8	2.2	-0.1	1.1	1.2
East North Central	-. 2	1.2	1.4 2.0		$\begin{array}{r}.4 \\ \hline 6\end{array}$	$\begin{array}{r}1.3 \\ \hline\end{array}$	-4	1.0	1.4
West North Central	-1.7	- $-\frac{2}{5}$	1.0 1.2	-2.2 $-\quad .9$	6 4.1	2.8 4.8	-1.1	1.1	2.2
South Atlantic----	$-.1$	1.3	1.4	$.6$	4.1 3.2	4.9 2.5	-1.5	${ }^{.7} 8$	2.2
East South Central	$-.1$	1.1	1.4 1.3	$\begin{array}{r} 6 \\ -\quad 3 \end{array}$	3.2 2.0	2.5 2.3	$\cdot \frac{1}{2}$	1.8	1.7
West South Central	-1.6	1.1	1.3	$\begin{array}{r} .3 \\ -2.2 \end{array}$	$\begin{array}{r} 2.0 \\ .7 \end{array}$	2.3 2.8	-2	1.4	1.6 1.9
Mountain Pacific	-1.1 -8	. 2.5	1.6	-1.8	$\begin{array}{r} .7 \\ 1.9 \end{array}$	2.8 3.8 2.8	-1.8 -1.3	$\begin{array}{r} 1 \\ .9 \end{array}$	1.9 2.2
	8	2.5	1.6	. 8	2.8	2.0			2.2 1.7
United States---	$-.7$. 6	1.3	-1.3	2.0	3.4	-. 0	1.0	1.9

 las tern bigurd since 1010 . The greatest patan was made on food prains beroust of their eiscly suitability for uechamization. Corentet yields al so conteatated to labor efficitacy, parbicalarly during and after forld War ll. The aext most rapud rase whs thate ost fecd frains. White nechanization of coftemproduction has lagped, a signzficanc ancrease in poodmetion per manhour has ocrunced, owith charely 10 greater yiehds.
per hour relatively more than those in other areas, from 1919-21 to 1944-46 (table 7). Lower labor requirements and higher crop yields were about equally effective in raising crop production per hour in the East North Central Division, but in the other two divisions the reductionin man-hours was more influential, particularly during the interwar period. The drought of the early thirties had a greater adverse effect on crop yields in these areas and the general use of higher yielding hybrids and varieties of crops came later than in the East North Central States.

TABLE 8.--Changes in production of selected crops per man-hour, Unized States, indicated periods, 1910-46

Crop	Annual tate of change				Totel change 1910-12 to $1944-46$
	$\begin{gathered} 1910-12 \\ t 0 \\ 1919-21 \\ \hline \end{gathered}$	$\begin{gathered} 1919-21 \\ 20 \\ 1037-39 \end{gathered}$	$\begin{aligned} & 1937-39 \\ & \text { to } \\ & 1944-46 \end{aligned}$	$\begin{gathered} 1910-12 \\ 20 \\ 1944-46 \end{gathered}$	
Feed greins	Percent	Percent	Percent	Percent	Percent
Feed greins	1.1	1.2	4.6	1.9	87.3
Food trains	-1.	- 8.8	1.0	. 6	24.9
Truck crops and gardens---.----------	1.0	2.8	7.0	3.2	191.0
Vegetebles, except truck crops.---	1.0 .3	1.4 1.3	18 2.9	1.2	49.9
Proits and tree nuts-....--..----	1.3	1.3 1.9	2.9 1.8	1.4	58.1
Subar crops-.......	1.3	1.9	1.8	1.7	79.1
	-. 6	1.6 2.3	. 7	. 8	33.2
Tohitceo--.. All crops	-. -.4	2.3	1. 3	1.2 .2	48.2
	1.0	1.3	1.3 3.4	1.7	6.5 75.4

In all other regions, except the West South Central, increased yields during the last quarter-century were more effective than the reduction in man-hours per acre in raising the productivity of the lebor spent on crops. In the West South Central States the largereduction in man-hours per acre was accompanied by a small increase in crop production per acre, and resulted in an average ennual rate of increase of 1.9 percent in crop production per hour. which is the same as the average increase for the entire United States.

Changes in Production Per Hour, by Groups of Crops

During the last 40 years the changes in production per manhour of the different crops have been markedly dissimilar (fig. 6). The steepest rise in labor productivity was made by food grains. The rise was particularly rapid after the drought of the 1930^{\prime} s and during World War II when production of food grains increased rapidly and the scarcity of farm labor made farmers apply every practicable device to reduce the man-hours of labor used. The production of food grains per hour increased at the rate of 3.2 percent per year from 1910-12 to 1944-46, and at a rate of more than double this after 1937-39 (table 8). Wheat is the major food grain and is the crop on which the greatest gains in labor productivity have been made. During Worid War 1 and the interwar period, decreases in man-hours per acre brought about by rapid strides in mechanization were chielly responsible for the rise in labor productivity. During the inter-war period the change over from harvesting wheat with binders and beaders to the much less time-consuming com-bine-harvester-thresher was particularly rapid. Significant increases in yields during World War il joined the continuing reduc. tion in labor requirements per acre to push production per hour upward at the high average rate of 7.0 percent per year.

Next to food grains, feed grains have exhibited the greatest increase in production per man-hour. Corn is the dominant crop in this group, and the bigincrease in corn yield in recent years has contributed much to the increase in labor productivity. The average anual rate of increase in labor productivity in feed grains was 4.6 percent during the recent war period and was almost 2 percent
per year for the entire period since 1910-12. It may be noted that the droughts of the early 1930 's had more effect on the production of feed grains per hour of labor than for any other crop or group of crops. Production per hour of labor used on food grains dropped drastically during the early 1930 's, the low point coming in 1933; but for feed grains the output per hour of work was lowest in 1934 and 1936, when droughts were most severe. In the western Corn Belt and in the Great Plaits, precipitation is often the limiting factor in crop production. But wheat is mostly harvested before the dryer months of July and August, whereas these are the critical months in the development of the corn crop, and are sometimes very dry, as in 1934 and 1936.

Among the crops having a higher than average gain in labor productivity, fruits, berries. and tree nuts had the most consistent rise during the last 40 years. But this group is characterized also by large and consistent year-to-year changes. The tendency of many fruits to alternate between high and low yields is partly responsible for the usual large year-to-year change.

At the other extreme is the hay crop, which is almost devoid of yearly fluctuations in output per hour of labor, although there has been a small but consistent increase in hourly output since the early 1920's. Yields of hay. particularly perennial hays, are less subject to fluctuations than are yields of most crops, and methods of putting up hay have not changed materially until recent years.

Cotton production per hour of labor decreased during the early part of the 40 -year period. The boll weevil was advancing over the Cotton Belt and its ravages geverely reduced cotton yields and more labor was needed to fight the scourge. Since about 1921, however, production of cotton per man-hour has increased almost as much as the average for all crops, and during the interwar period it advanced at a rate of 2.3 percent a year, which was more than the average increase for any other group of crops except food grains. But this increase was from a relatively low level.

Tobacco production involves considerable hand work and the time required for the major harvest jobs is about proportional to the production. But higher yields during World War Il resulted in more production per hour of labor. The annual rate of increase in production per hour was 1.3 percent during the war, compared with cnly 0.2 percent during the entire third of a century.

Production of Individual Crops per Hour

As is well known, reduction in man-hours per acre and greater yields of crops have been largely responsible for the increases in crop production per hour of labor. This is true for an individual crop as well as for crops as a whole. The importance of each of the se factors varies, however, from crop to crop, from area to area, and during different parts of the period. The changes in production per hour associated with changes in yield per acre and mechanization and other factors for three outstanding crops are outlined below.

Corn.-Farmers in every part of the country grow corn. It is harvested from more acres, requires more labor, and has a greater value than any other single crop. Because of its importance the increase in the productivity of the labor spent on corn has contributed much to the greater production per hour of all farm work.

The bushels of corn produced per hour of labor in 1919-21 varied considerably among different parts of the country. Corn production in the two North Central Divisions is characterized by relatively high yields and the use of few man-hours per acre. This was true in 1919-21 but is even more strikingly true today. This means that farmers in these areas not only produced more corn per bour of labor in 1919-21, but also have increased the production per hour more than those in other parts of the country (appendix table 27). More than 2 bushels are now produced for each nour of labor in these areas. or about double that received just afier World War i. In some other areas the productivity of the labor spent on corn was low at that time and little progress has been made since then.

Yields of corn per acre went down from 1919-21 to 1937-39 in all geographic divisions except the East North Central and Pacific. By itself, this reduction in yields lowered the production of corn per hour of labor, but the considerable progress in mechanizing the production of corn made during this period bad the opposite effect. And, in most instances, the effect of increased mechanization more than offset the lowering effect of the decreased yield. In the West South Central and Mountain States, however, the yield went down aimost 20 and 30 percent, respectively; and altbough additional mechanization resulted in some labor efficiency, it was not enough to overcome the effect of these substantial decreases in yield. Consequently, there were net decreases in bushels of corn produced per hour of labor in these two areas during this period.

As much or more gain in corn production per man-hour was made during World War li as had been made during the previous two decades. The rate of mechanization was stepped up and manhours per acredecreased rapidly. More of each operation was done with tractors and machines (appendix table 28). Much of the corn that had been harvested by cutting and shocking, much by tiand, was picked from the standing stalk, and more was harvested with the mechanical picker. In addition, increased yields in most areas also contributed to the greater labor productivity. The increase in production per hour associated with higher yields was particularly great in the West North Central and Mountain Divisions. These areas had not fully recovered from the drought in 1937 39 so more favorable weather in 1944-46 had a decided effect in increasing the yields. The acceptance and use of hybrid seed corn made a great difference in all areas.

Cotion.-- In contrast to corn, a greater part of the increase in production of cotton per hour of labor during the last third of a century was associated with higher yields. There has been a rather slow bri steady increase in mechanization of cotion production which has helped to increase the productivity of the labor spent on cotton. But from 1919-21 to 1944-46, the effect of greater yields was almost double or more that of increased mechanization in all geographic divisions, except the West South Central (appendix table 29). The increase in yield was less in this area than in any other geographic division and it is among the areas in which the most progress has been made in mechanizing the production of cotton.

Greater yields are the result of several factors, the most influential of which include greater use of fertilizers and green manure crops, producing on the more productive land or farms. more effective control of insects and diseases, and greater use of
higher yielding varieties of yeed. Fertilizer is now nct only applied to a greater proportion of the cotton acreage but is also applied in greater quantities per acre treated.

In all areas except the South Atlantic most of the increase in cotton yield and in labor productivity associated with $c h a n g e s$ in yield during the 25 years prior to 1944-46, came before 1937-39. In fact, from 1937-39 to 1944-46 the yield decreased in the three geographic divisions west of the Mississippi River where cotton is extensively grown, and increased substantially only in the South Atlantic States. The decrease in acreage was greater in this area than in any other geographic division and this provided a greater opportunity for the selection of the more productive land. There was also a substantial increase in application of fertilizer in this as in most of the other areas.

The annualincrease in pounds of cotton produced per hour that is associated with mechanization, is about the same in each geographic division during both the interwar and World War ll periods. Belore trastors were commonly used, additional mechanization consisted chicfly of changing from half-row to one-row and larger equipment. More rectutly, in addition to the continuing substitution of larger horse and mule equipment, the noteworthy change has been totractors (appendix table 30). In 1946, three-fifths of the land planted to cotton atl the United States was broken with tractor-drawn implements as agansi half that percentage 7 years earlier. The proportion of the cotton planting and cultivating done with tractors likewise morethan doubled during these 7 ycars. In 1939, the Mountain and Pacific regions were far ahead of the others in the extent to which tractors wereused for these operations, but the West North Centraland West South Central Siates made the most gain from 1939 to 1946.

Although considerable progress has been made in mechanizing thescoperations on cotion, muchless progress has been made on the wme-consuming job of picking. Considerable effort has been made, over many years, to develop a machine that would harvest cotion successfilly. Two types of machines--thestripper which removes the entige boll from the stalk and the mechanical picker which remioves the seed cotion and leaves the empty boll on the stalk-have Leen developed and are being used to a limited extent. Use of these machines results in a big reduction in labor requirements and thus in an increase in labor productivity. Bui such machines were thed on less than I percent of the crop in 1946, so their effect on labor productivity was noimarked. If theyare widelyadopied in the future their effect on productivity of farm labor in the Cotton Belt will be very significant.

Wheat. - The change in productivity of the labor spent in raising wheat is characterized by the tremendous gains brought by the advancements in mechanization. During the last quarter-century the increase in bushels of wheat produced per hour of labor that was associated with mechanization was much greater than that resulting from higher yields in most areas; it ranged up to over 50 times greater in the West South Central States (appendix table 31).

In 1919-21, the bushels of wheat produced per 100 hours of labor varied considerably by geographic divisions. Through combinations of man-hour reductions and high yields per acre, farmers in the four western groups of States produced more than a bushel of wheat per hour of labor, and the figures ranged up to 162 bushels

04 47040.1x
Figuan 7...Changes in production of milk per cow, of egbs per hen, and of Iivestock sroduction per breeding unit, in getarnl, have effective influence on labor efficiency in livestock production. Over the interwar period as a whole. prowiaction mer hreediuk anit rose at of fuster rate than man-hours per breeding unit; hence lator praluctivity incrensed. The fapid rise in livestock prodaction per man-hour during World War if resulted from an increase in production per breediag unit and a decrease in man-hours per breeding unit. Greater use of milking machines contributed to the denline in hours per breeding unit.
per 100 hours in the Pacific States. Farmers in these areas also increased the production of wheat per hour more than those in other areas, from 1919-21 to 1944-46.

In most areas the increase in productivity that was associated with higher yields was greater during the few years from 1937-39 to 1944-46 than it had been during the previous two decades. In fact. lower yields in 1937-39 than in 1919-21, in these areas, resulted in a reduction in number of bushels produced per hour that was associated with this factor. Distinctly more faverable weather was chiefly responsible for the higher yields in 1944-46.

Although the use of mechanical power and associated equipment has lowered the man-hour requirements for practically all operations in wheat production, the adoption of the combine-harvesterthresher has been the most influential. Although the first United States patent for a combine had been granted almost a century earlier, combines were used to harvest less than 5 percent of the crop in 1920. But about half of the wheat crop was harvested with them in 1938 and more than three-fourths in 1945 jappendix table 32). The increase in use of combines goes hand in hand with the increase in labor productivity that is associated with mechanization. From 1920 to 1938 the increase in both was greatest in the West South Central and Pacific Divisions, the West North Central
and Mountain Divisions were next, with the East North Central States ranked fifth. The same ranks for the se factors also existed for the entire quarter-century, from 1920 to 1945.

LABOR PRODUCTIVITY IN THE PRODUCTION OF LIVESTOCK

There has been a noteworthy increase in the proportion of the farmers' time that is spent in direct work on livestock during the last 40 years. The increase is even more noticeable if horses and mules are excluded; farmers increased other kinds of livestock to utilize the pasture and other feed set free. it is probable that the part of the farmers' workday given to livestock will continue to increase, It is well to know, therefore, what the changes have been in the productivity of direct labor spent on livestock.

The annual rate of increase in production per man-hour of labor spent on livestock has lagged behind the rate of increase in production of crops. But there has not been so much difference during the last few years as there was in earlier periods. This lagging results chictly from the fact that mechanization, while causing a freat reduction in man-hours per acre of crops, has not brought in a corresponding decrease in time requiredfor livestock production. The increase in production per breeding unit of livestock, however, has excecded the increase in crop production per acre. ${ }^{7}$

Livestock production per breeding unit rose rapidly from 1919 to the early 1930's (fig. 7). There was more milk per cow, eggs per hen, pork per sow farrowing, etc. Such elements as reduction in the death losses, feeding meat animals to heavier weights, raising a higher percentage of the calf and lamb crops, and raising more chickens and turkeys in relation to the number of adult birds on farms also helped to raise livestock production per breeding unit. Man-hours perbreeding unit went up, but less rapidly than production per breeding unit, because it requires less than a proportional increase in time to handle more milk per cow or eggs per hen. These changes brought a modierate upward trend in livestock production per hour of labor.

The productivity of the labor spent on livestock fell below the 1919-21 level, in 1934 and 1935, because of a drastic drop in production per breeding unit and a slight lowering in man-hours per breeding unit. Following the drought and during and after world War II the labor requirements per cow, sow, ewe, and hen, went down rapidly despite a continued increase in production per unit. Thegreatincrease in use of milking machines, the wide acceptance of labor-saving methods of doing livestock chores, the rapid stepupin number of farms using electricity and its attendant savings in

[^6]time for many jobs, and the omission and slighting of some tasks because of severe labor scarcities were instrumental in reducing the man-hours required per unit of breeding livestock. This reduction was at the average rate of 2.0 percent per year, from 1937-39 to 1944-46 (appendix table 33),

During this period, production per breeding unit went up at the rate of 0.8 percent a year. This increase belped, bet the reduction in man-hours had considerably more influence in causing livestock production per hour to increase at the average annual rate of 2.9 percent. During the interwar period, however, and for the quartercentury from 1919-21 to 1944-46, the increase in production per breeding unit was wholly responsible for the increase in livestock production perhour of labor. In 1949-46. the man-hours per unit of breeding livestock were approximately at the 1919-21 level, after the significant upswing which reached high points in 1935 and 1938.

As seen later, changes in importance of the various livestock enterprises within regions has helped to raise livestock production per hour of labor. The shift to more poultry and meat animals has increased livestock production per man-hour ol labor. Shifts in importance of livestock enterprises among regions, however, have been a minor influence in slowing down the increase in livestock production per hour of labor during the last quarter-century.

> Regional Changes in Livesluck Production per Hour

Changes in the quantity of livestock products obtained from a given amount of human effort has not been he same in all parts of the country. Different kinds oflivestock prevail in the various geographic divisions and the changes in production per hour have varied widely among the different kinds. In some instances, shifts from production of one kind of livestock to another have also had decided bearing on the changes in labor productivity.

The greatest and most consistent increase in production of meat animals and animal products per hour of direct labor during the last 30 years took place in the New England States (fig. 8). In most geographic divisions the trend in productivity of the labor spent on livestock was moderately upward during the decade of the twenties. dropped during the early thirties, and climbed steeply upward during the late thirties and through and after World Waril. But the upward movement during the twenties was very small in some areas, as the West South Central Stases, and the dropduring the early thirties was accentuatedin some divi.ions, asthe West North Central States. The upward climb that started during the date thirties reached an average annual rate of 3.9 percent in the New England Division (appendix table 34). It was almost 3 percentor more in four additional groups of States. In all geographic divisions the annual rate of increase from 1937-39 to 1944-46 was much greater than it had been during the interwar period. In the West North Centrall States, for example, it rose at the average anrual rate of 3.6 percent compared with a slight decrease from 19:19-21 to 1937-39.

During the quarter-century the average rate of increase was 2 percent a yearin the New England States, l percent or more a year in five additional groups of States and ranged down to 0.6 a year in the other three areas. There were several reasons for these wide differences. Although milkcows require the most labor in all parts of the country the importance of the various kinds of animals, from

FIGURE 8. - The importance of the different kinds of livestock livestock in an area should be kept in mind in interpreting the differences among areas in changes in production of livestock per hour of direct labor, because the increase in production per hour has been greater among some kinds of livestock than in others. As meat animals have tended to lag in this respect, increases have been smaller in areas where they prevail.
the labur standpoint, varies widely, and there have been considerable differences in the changes in production per hour for the different kinds. Meat animals have lagged behind milk cows and poultry in this respect, which means that areas in which meat animals are particularly numerousare below average in the increase in productivity of the labor spent on livestock. For example, the Mountain region where meat animals are of greatest importance, is among the regions having the lowest rate of increase in production of all livestock per hour of labor.

*AE 47447.Kx
FIGURE 9. --lncreased use of ma!king machines, more milk ner cow, larger herds, and other factors contributed to a greater rise in milk production per hour during the last decacte than had occurred during the grevious quarter-century. The gain in production of mest animals and poultry per hour also was accelerated duting World War IJ.

On the other hand, milk cows and poultry are of greatest importance in the New England States which partly accounts for the high rate ofincrease there. But, in addition, and as seen in more detail later, relatively more time is now spent on poultry than was true 25 years ago in this region and more poultry products are obtained per hour of labor, compared with other kinds of livestock. In other words, the change in laboremphasis away from milk cows and meat animals to poultry has helped to increase livestock production per man-hour.

Contributing to the low rate of increase in the West South Central Division was the shift from meat animals to milk cows and poultry. The change in production, in this instance, slowed the increase in production of meat animals and animal products per hour of labor. In some areas the rate of increase is high or low merely because the rate for each kind of livestock was in that direction.

Changes in Production per Hour, by Kinds of Livestock

Just as among the groups of crops, the different kinds of livestock show considerable variation in the advancements made in production per man-hour of farm labor. Poultry production per man-hour exhibits both the most frequent and the greatest year-toyear fluctuations (fig. 9). Aside from a short period in the early 1930's, the dairyman has had the most consistent increase in production for each hour of labor. Before and during the first world

Warthe trendinproduction of all meat animals and animal products per hour was upward, at an average annual rate of 0.2 percent per year (appendix table 35). This was caused by increases for milk cows and meat animals as the trend for poultry was downward.

The trend for all kinds of livestock was upward during the interwar period and was sharply upwardduring World War Il. The acceleration in the average annual rate of increase in labor productivity that came with World War Il was approximately the same for each kind of livestock. lt was about four times greater during this period than it was between the wars.

The factors behind the changesin labor productivity are identical for each kind of livestock but their effectiveness varies. Poultryis now a substantial enterprise on many farms where formerly it was merely a sideline. There have been great improvements in poultry buildings and equipment, rations, sanitation practices, feeding and marketing methods, and disease control, and therehas been a widespread adoption of improved strains developed through selection and brecding. For the production of hens and eggs the se facts have been translated to 2 greater extent into greater egg production than intoreduction in hours of labor per hen, Nevertheless, from 191921 to 1944-46, there was a reduction of 6 percent in man-hours per hen which, logether with the increase of 30 percent in eggs per hen, has meant about 40 percent morc production per hour of labor. About halfof the increase in eggs per hen and most of the reduction in labor requirements has occurred since 1937-39, which accounts for the high annual rate of increase in labor productivity in recent years, compared with previous periods. ${ }^{8}$

Although poultry has headed the list since 1919-21, it is only an example of what has happened all along the line in production of meat animals and animal products per hour of labor. A large increase in production per beef cow. sow, and ewe, has been the dominant influence in greater production per hour for these kinds of livestock. For some kinds of livestock there was a decrease in manhours per head and there would have been a similar decrease in man-hours per breeding ums if the production per breeding unit had not increased. In other words, from 1919-21 to 1944-46 there would have been a decrease in man-hours per breeding unit rather than a 3 -percent increase had it notbeenfor the 33 -percentincrease in production per breeding unit.

Dairying is the only livestock enterprise in which farm mechanization has had a decided influence in reducing the man-hours of directlabor per brceding unit and thus increasing the production per hour. The outstanding part of mechanizing the work on dairy herdshasbecn the adoption of milking machines. There were about 380 thousand milking machine installations on farms in 1945. This was more than double the number 7 years carlier and there were only about 55 thousand in 1920. From 1919-21 to 1937-39 the influence of the use of more milking machines in reducing hours per cow was more than erased byotherfactors. In 1937-39farmers marketed more of the milk as whole and market milk, rather than as crean or butter. This change, with the accompanying higher

[^7]sanitary standards and more frequent marketings, undoubtediy increased the hours per cow. The production of more pounds of milk per cow was also influential in increasing labor requirements.

Production per cow rose in each area during this period. Manhours per cow would havedecreased slightly with no ciangc i: yield of milk, but greater production per cow was chiefly ins? s sible for the increase in milk production per hour of labor. In the country as a whole the increase in labor productivity amounted:12. 5 percent or 337 pounds of milk per 100 man-hours (appendix table 37). By geographic divisions the additional milk varied from 190 to 659 pounds per 100 hours or, on a percentage basis, from? to 31 percent.

During Worid War II, the increase in farm labor productivity in milk production was greater than it had been during the preverour 20 years in the entire country and in six of the nine geograpl:c divisions. It ranged up to $21 / 2$ times greater and more in th? tous northeast divisions and the disparity was even greater on an ainuat basis. Milking machines had been increasing during the interwar period but their influence was much greater during Worid War Ii. In the Middle Atlantic Division an increase of more than 4 pounds of milk per hour was due to the greater use of milking machines, and the increase was more than $11 / 2$ pounds of milk in the country as a whole (appendix table 38).

Other phases of mechanization helped to lower the man-hours of direct labor per milk cow and to increase the production of milk per hour. Higher larm income and the labor scarcities that came with World War II gave animpetus to the use of devices and practices for saving labor. These devicesincluded installation and use in dairy barns of such things as feed and litter carfiers or trucks, barn cleaners, and drinking cups at the stanchions. The commercialization of dairy farming continued aithough at a higher rate, and many jobs that were formerly done on the farm are now done in urban factories. Even less butter and cheese are made and less market milk is bottled on the farm than before the war. The effect of this step-up in mechanization and transference of dairying jobs to urban centers on pounds of milk per hour is shown under "miscellaneous factors" (appendix table 38). The notable effect of size of herd is alsoincluded under this heading. According to the census, the number of cows milked all or any part of the year, per farm reporting, rose from 1939 to 1944 in all parts of the country, except the West South Central, with a United States average increase of 8.5 percent. This constituted approximately an additional cowifor each two farms reporting. As additional cows can be sdded to the herd with less than a proportional increase in time required, the addition is an important factor in reducing the man-hoirs pe= cow and increasing the quantity of milk produced per man-hour.

The increase in milk production per cow from 1937-30 to 194446 was responsible for 45 to 190 additional pounds of milk per 100 man-hours in eight of the geographic divisions. In the West South Central Division, however, milk production per cow went down 161 pounds; a reduction of 77 pounds of milk per 100 man-hours was the result.

In the whole country, between the wars, the entire increase in production of milk per 100 man-hours was due to the production of more milk per cow, as time spent per cow also rose. But, during World War II, the effect of fewer man-hours per cow joined the

FARM OUTPUT AND GROSS FARM PRODUCTION PER MAN.HOUR*

©46 47446.Ea
FIGURE 10.-The indexes of both farm output and gross farm production per hour of labor have increased mote since 1910 than the indexes of cotal output and gross farm production because of the lowering of lator needs in farming. Fleplacement of farm-raised work animals by purchased tractots and motor fuels throught greater farm production for market and accounts for the greater increase per hour in farm out,put for thman use.
influence of greater production per cow to push production per manhour sharply upward, Labor productivity in milk production rose almost a third from 1919-21 to 1944-46.

LABOR PRODUCTIVITY IN TOTAL FARM PRODUCTION

For each hour of work, in 1948, farmers in the United States obtained over two-thirds more gross production than in 1910-14. The increased output of farm products for human use was even greater - it doubled during this third of a century. This increase has not comegradually since 1910. A moderate upward trend occurred from 1910 to the early 1930's when it was temporarily interrupted by the severedroughts and depression(fig. 10). Following this the rate of increase accelerated and it has continued to the present time.

Although there has been a long-time downward trend in total labor requirements, the increase in farm output and gross farm production has had a larger part in the upward surge in labor productivity. In fact, from 1910-12 until just after World War 1 the increase in farm production was wholly responsible for gains in production per hour because total labor requirements also rose (table 9). Butafter this, total labor requirements decreased. This, coupled with increased production, resulted in a rapid increase in production per man-hour. This was particularly true during World War I, when the decrease in the labor used and the increase in

TABLE 9. - Change in fars tator requiresencs, production and form labor productivity, lnited States, indicated periads, 1910 to $\$ 946$

Prem	Atmun! rate of change				Totel change 1910-12 to 1944-46
	$\begin{gathered} 1910-12 \\ 60 \\ 1919.21 \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} 1919-21 \\ 60 \\ 1937-39 \end{gathered}$	$\begin{gathered} 1937-39 \\ 10 \\ 1944.46 \end{gathered}$	$\begin{gathered} 1910-12 \\ 20 \\ 1944-46 \end{gathered}$	
Man-hours for all farmwork-	$\begin{gathered} \text { Percent } \\ 0.1 \end{gathered}$	Percent -0.5	$\begin{gathered} \text { Percent } \\ -0.6 \end{gathered}$	Percent -0.4	$\begin{aligned} & \text { Percent } \\ & \cdot 11.3 \end{aligned}$
Fatm output----.-. Farm output	. 6	1.1	3.0 3.6	1.4	$\begin{aligned} & 59.8 \\ & 80.3 \end{aligned}$
	. 7	1.5	2.4 3.0	.9 1.3	37.6 55.1

[^8]production, brought an average annual increase of 3.0 percent and 3. 6 percent in gross farm production and farm output per hour of labor, tespectively.

The increase in gross farm production per man-hour has been less than the gain in farm output for human use per hour. Part of the rise in output per man-hour of all farm labor is due to the fact that since World War I less and iess of the total farm work has been spent on horses and mules, which are excluded from farm output. More and more of the farm power-in the form of tractors, automobiles, tuel, and so on-has been produced by urban people. During recent years about one-twentieth of the farm worker's time has been spent on the production and maintenance of horses and mules whereas about one-sixth of their time was devoted to these jobs during World War I. If the farmman-hours used on horses and mules were excluded, the increase in labor productivity would be less. Farm output per man-hour, however, does indicate the greatly increased quantity of farm goods for human consumption made available per man-hour of farm labor.

The same lorces that have caused big increases in the produc tivity of the labor spent on crops and livestock have also been responsible for the comparable increase in total farm production per man-hour. Many of these factors have a bearing on both manhours of labor used and production. There is evidence that farm mechanization, for example, has added to both quantity and equality of farm products, but it was more important in reducing labor requirements. In addition to the fewer hours required for road and field jobs when automobiles, trucks, and tractors are used, less farm labor is needed to service and maintain these machines than was given to the horses and mules that the machines replaced. Milking machines have been responsible for the greatest decrease in the labor used for livestock production.

Farms in the United States and the enterprises on them have increased in size. This tendency, coupled with no increase in total land in farms, has lowered total labor used because acrea and animals can be added to a farm unit with less than a proportional incresse in the labor needed. Additional knowledge and the applica-
tion of established principles have reduced the labor needed on farms. Education regarding worli-simplification methods has helped. "Quick milking" shortens time spent. Time required for operations on other enterprises has been reduced and in some instances operations have been eliminated.

On the production side, increased yields per acre and per animal were chiefly responsible for the notable step-up. These higher yields inturnhad other causes including application of greater quantities offertilizer and lime, morefavorable weather, feeding of better rations, less cropfailure, more productive pastures, development and adoption of higher yielding hybrids and varieties of crops and animals, and more effectivecontrol of insects and diseases of plants and animals.

These iwo groups of factors have both been translatedintomore total farm production per man-hour of labor. As seen in more detail later, farm production has become relatively more important inareas whereagreater quantity of products are produced per hour of labor. Although not a major factor, this shift has helped some in oblaining g^{r} naterproductivity of labor. On the other hand, the trend toward more labor-intensive enterprises--as tobacco, truck crops, and most knds of livestock-has slowed the increase in farm production per hour of labor.

Regional Changes in Total Farm Production per Hour

The increase in total farm production per hour of labor during the last 25 years exhibits less variation among geographic divisions than that for either crops or livestock. There was a tendency for the areas in which the increase in crop production per hour was above average to be below average for livestock, and vice versa. The New England and Middle Atlantic Divisions, for example, had the greatest increase in livestock production per hour but they had the smallest increase for crops. On the other hand, the two North ...niral areas had big increases in crop production per hour and abjut average or below for livestock.

Although the increase in total production per hour over the 25 was has a relatively nar row range among areas, the year-to-year

Agi. ate widelydifferent (fig. 1i). The most consistent increase welired in the Pacific States, with the two northeastern groups of States following inthis respect. Ratherviolent year-to-year fluctua1. \&a: are fohibited in the other areas. The ycarly changes are if iy function of changes in crop production per hour, with . oforibtoduction per hour serving as a tempering element. raus regions that have large year-to-year changes in crop produc-- ${ }^{\prime}$ prer hour also have big annual changes in farm output and gross - ruduction per hour.

Tit spread between the over-all increase in output and gross : odulion per man-hour is explained chiefly by the rate at which i.wises and mules werc replaced by tractors. Where the displace. Drat of animal power has lagged, as in the South Atlantic and East \therefore at, Ceatral Divisions, the difference between the increase in and gress production per houris notlarge. Butinareas where 4 If mechanical power has advanced rapidly the difference is preat.

When the rise in output and gross production per hour are expressed in average annual rates of change there is some similarity

FIGtRE 11 - Grenter diferences among areas of the councry have occurred in the increase in larm outpul per hour than in gross production per hour be catse of the regional variation in the rate of farmenechandzation and the daspucemenc of harses and malats. Ficher miensure indientes a definite upward trend in larm lator prodursivitw since loto, on perery area. The rase was es pecially rapad during horlid war it.

In the statistics for the geographic divisions during each subperiod and more particularly, during the entire 25 years (table 10). There are, however, some appreciable differences. In the West North Central States the rate of increase in gross production per hour during World War Il was more than 1 percent higher than in any other area. A greater difference in farm output per hour occurred because of the rapid change-over to mechanical power in this area. The remarkable step-up in the rate of increase from the interwar to the World War II period is common to all areas.

TABLE 10．－．Change in fara output and eross fara production per ana－hour，by geographite duvision，tradicated periads，1．919－46

$\begin{aligned} & \text { Compayhac } \\ & \text { tivision } \end{aligned}$	Anmual rate of clanges						「ozal change 1919－21 to 1944－46		
	$\begin{gathered} 1919-21{ }^{19} 67-30^{2} \end{gathered}$		$\begin{gathered} 1937-39 \text { to } \\ 1.944-46 \end{gathered}$		$\begin{gathered} 1919.21 .60 \\ 1944-46 \end{gathered}$				
	Form Chitpetit	$\left\lvert\, \begin{gathered}\text { bross } \\ \text { farm } \\ \text { dro } \\ \text { dution }\end{gathered}\right.$	Finm out pats	Grass 「arm 戸な＊ 	$\begin{gathered} \text { Finfor } \\ \hline \end{gathered}$	Cross facta prom huc 10 on	$\begin{aligned} & \text { farm } \\ & \text { rulput } \end{aligned}$	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { pro- } \\ \text { duct. } 20 \\| \end{gathered}$	
	गercent	$\left\lvert\, \begin{gathered}\text { ¢5ctut } \\ 114\end{gathered}\right.$	Pracent	Practit	Percent	Hercent	$\left[\begin{array}{c}\text { Ptuent } \\ 6.4\end{array}\right.$	Pereent	
Ste Engilando．	1.6	11.4	3.1	\％	3.19	1.14	6.3 58.4		
Mudter At lantye．．	1.7	1.1	3.3	1.7	1.9	1.2	58.4	36.6	
Erat Vorbherntral－	\％ $1+$	1． 3	1．．	2.5	3	1.6	7	50.1	
West torthgentrat．	1.3	\therefore	714	4.1	4	1.6	73.2	48.3	
＊outh Allart 1t－	1 B	1．：	11	2.	2.1	1，ts	71.11	17． 7	
East Somblichlrai＊	1． $\overrightarrow{1}$	1.1	1．${ }^{1}$	2	1.9	1， 3	59.4	37.5	
West Southryentraj－	1 H	1 1	1． 1	\therefore ：	± 9	1．6	72.4	48.5	
Mountaut－．．．．．	\pm	11	3.1	3.1	2.1	1.6	M1．4	50.8	
Pacifie．	： 1	1.1	2.1	\therefore ：	2.1	1.6	67.8	49.5	

Elfects of Changes an Imporiance of Enterprises
on Labor Productivity
Differences in praduction per hour of wark devoted to different crop and livestock enterprises，and to the same enterprises in different areas，frequently are very great．Consequently，changes in the relative imporiance ui the various enterpises within agiven area，or changes in their importance from area to area，have a decided effect on production per hour of labur whenenterprises are combinedinto all crops，allivestack，and gross farm production．${ }^{9}$

Changes in the proporition of the total time spent on the various enterprises or clanges in the＂pattern＂of man－hours affect average production per hour，as some enterprises return more or less product per man－hour than the average of allenterprises．The pattern of man－hours can be changed in several ways．Changes in the composition of production within an area may affect the pattern of man－hours and average production per hour．For example，the great expansion min soybean production in the Corn Belt during the war increased average production per hour for the area because more soybeanswore produred per hour ol labor than the crops they displaced，Similarly，there may be a shilt in the importance of an individual entexprise ameng areas．Average production of corn per

[^9]man-hour in the U nited $S t a t e s$ will be raised, for example, if production in the Corn Bell increases more thanproduction in other regions.

Decided changes in mechanization and other labor-saving factors in producion for a given enterprise can change the patiern of manhours, and thus affect average production per hour indirectly as well as directly. The wheat crop provides a good example. The direct effect of the rapid mechanization of the production of wheat vas to raise the average production of all crops per hour of direct labor. But as the mechanization progressed a smaller proportion of total man-hours was devoted to wheat, and as this crop returns a relatively high produci per man-hour, the indirect effect was a lowering of average production of all crops per hour. The direct effect of mechanization, of course, was much more important than the andirect eflect.

During World War II, fabov was scarce and production demands were high. Agraculture belped to meet this challenge by devoting relatively more labor to the crops and kinds of livestock of which greater quantilies of pruducts were produced per man-hour. This was aecomplisleed chelly by spending relatively more time on the more labor-extensive livestock enierprises, and more of the crop laboz in the mare labor-extensive areas. Although these changes accounted far onty abmit 3 perctuabe ponnts of the 23 percent rise ir grasis larm prodishlan per hour dering the war, they were fumely and hignatia atat.

Intreaser in the productan of orl rops, feed grains, and vegetables ather that trutk wop, in the regions that are most suitable for themenatit, ite subatiatialy to the wartmegains an the produc-
 duchtre of meal arnitan and ponitery mereased the production per man-hour al direct fatjur spent on liventock. Moreover, a greater proportion of faxin matn-hours wat devoled to livestock production than before the wiar. Thistendedin mostregions to hold down the increase in labor produthoity, ath crop procitation generally yielded more produst per hour of work than did production of livestock.

Althoughthere were some notable exceptions, the general tendency at the end of the pertod between the wars was to devote a greater propurion of furm labor to the more labor-intensive crop and livestock enterprises than at the beginning of ihe period. This means, chacliy, that relativety more time was devoted in 1937-39 than in 1919-21 to producing dancy products, truck erops, fruits. and tobacco, and less to producing meat animats and food and feed grains. These interwar changes in the importance of various crop and livestnck enterprises held down the inc rease in gross farm production per man-hour. Without these changes production pex man-hour wontd have nur eased 27 percent instead of the 20 percent actually recorded.

It must be recognazed that labor productivity is only one of many factors that farmers must cons:der when making adjustments among enterprises. A certan rumbmation of enterprises may result in maximurn production per mianholour but other combinations may result in hagher net refuras, ot in a more complete utilization of the farm labor forere, cte. In 1937-39 almost a billion and a half fewer man-hours were spent mproduchag feed and food grains than in 1919-21. Tremendoun quantities of these grains could have been

TABLE 11.--Average value of production per man-hour of labor ueed for selected groupe of crops, and hinds of livestoch, by geographic division, 1935-39

Item	New England	Middle Atlantic	East North Central	West North Central	South Atlantic	East South Central	West South Central	Mountain	Pacific	Lnited States
	Dollars 0.36	Dollars 0.65	$\begin{gathered} \text { Dollars } \\ 1.11 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 0.60 \end{gathered}$						
Feed grains	0.46	0.60	0.95	0.83	$\begin{array}{r}0.30 \\ \hline 91\end{array}$	0.31 .80	$\begin{array}{r} 0.36 \\ .55 \end{array}$	$\begin{array}{r} 0.65 \\ .70 \end{array}$	$\begin{aligned} & 1.11 \\ & 1.05 \end{aligned}$	$\begin{array}{r} 0.60 \\ .83 \end{array}$
Hay----...	1.42	1.35	. 93	.67 .15	. 91	.80 .55 .81	.55 1.33	.70 1.13	1.05 2.03	.83 1.11
Food grains-..........	58	. 85	$\begin{array}{r}1.02 \\ \hline 48\end{array}$	1.15 .32	.61 .69	$\begin{array}{r}. \\ \hline .41 \\ \hline\end{array}$	+. 36	1.13 .66	2.96	1.11
Trucks crops and gardens	.58 180	.66 1.21	.48 .91	.32 .91	.69 .70	.41 .67	.36 .63	1.08	1.55	. 99
Vegetahles, except truck	1.80 .69	1.21 .61	. 94	. 36	-70	. 49	. 36	. 58	. .58	. 57
Fruits and nut	. 63	.77	. 54	. 54	. 28	. 22	. 35	. 60	. 85	. 44
Cottan--	--	-	---	. 30	. 26	. 27	. 29	. 45	. 58	.28
Tobacco-	1.10	. 51	. 42	. 48	. 37	+48	---			. 41
Qil crops		1.06	1.51	1.31	. 30	. 22	.26 .36	. 96	2.05	. 52
All crops	. 93	. 78	. 86	. 79	. 39	. 34	. 36	$\begin{array}{r}.74 \\ \hline 48\end{array}$. 72	. 55
Milk cows ${ }^{\text {' }}$. 75	-75	. 51	.36 2.31	. 55	139 150	.40 1.20	1.27	.72 1.33	.50 1.88
Meat animals	1.31	1.82	2.54	2.31	1.43 1.27	1.50 .89	1.29 .90	1.27 1.12	1.38	1.13
Poulery ${ }^{1}$ All meat animals and animal products	2.10 1.00	1.60 .98	1.14 .94	.92 .91	1.22 .87	.89 .70	.90 .73	1.12 .85	1.38 .97	1.13 .89
All meat animals and animal products	49	. 47	. 39	. 35	. 35	. 29	28 31	+32 +53	.43 .62	.36 .43
Gross form production	. 60	. 55	. 54	. 50	. 34	. 29	. 31	. 53	. 62	. 43

${ }^{1}$ Gross livestock production per hour of labor; includes product added plus the value of feed and pasture consumed.
${ }^{2}$ Product added per hour of labor.
${ }^{3}$ Gross farm production includes the farm-produced power of horses and mules. Gross production per hour in $1935-39$ mas less than that for either crops or livestock in the South Atlantic Division, andwas the same as for livestock and less than for crops in the East South Central Division. These apparent inconsistencies resule chiefly from the narrow range between crop and livestock production per hour of direct labor and the fact that gross production per hour is based on total man-hours of direct lator for crops and livestock plus an allowance for overhend work and farm maintenance.
produced in 1937-39 with this expenditure of labor. But there was not a market for these quantities and farmers had turned to other enterprises, as fruit, truck crops, and livestock, even though the change meant a less rapid climb in production per man-hour of labor.

Most of the changes in enterprisesthat cameduring the interwar period also prevailed during the quarter-century that included both the interwar and World war Il periods. In 1944-46 slightly more of the directlaborfor all crops was spent in the more labor-extensive areas than in 1919-21, and somewhat more of the direct labor for livestock was devoted to the more labor extensive livestock enterprises, particularly poultry. Thesechanges tended to increasegross farm production per hour. The proportion of farmlabor devoted to the more labor-intensive crops and to livestock production increased, however, and these changes held down the increase in gross farm production per hour during the 25 -year period. If the sechanges had not taken place production per hour would have risen by 52 percent instead of 47 percent.

Although the general effects of changes in relative importance of enterprises on production per hour are clear, there are some noteworthy variations in some of the geographic divisions. Some of these highlights are given in the following section.

Regional Variations in Effects of Changes in Importance of Enterprises on Proctuction per Hour...There is considerable variation in the quantity of products returned per man-hour spent on the different crop and livestock enterprises within an area and on the same enterprises within different areas. In the United States as a whole, in 1935-39, the value of production of foodgrains per man-hour was four times greater than cotton and the value of production of meat animals per man-hour was almost four times greater than milk (table 11). Even larger differences in value of production per hour among enterprises werefoundincertain of the Geographic Divisions.

A greater quantity of crops than livestock products are produced per man-hour in all arcas. In 1935-39, crop production per hour ranged from about 10 percent more than livestock in the South Allantic States to more than $21 / 4$ times as much in the Mountain States. Crop production per hour was about 50 percent more than livestock production in the United States as a whole.

The South Atlantic Division is the only one in which changes in importance of enterprises resulted in agreater increase in gross production per hour than would have occurred without such changes during the interwar period (table 12). It was a significant influence, as more than 40 percent of the increase in gross production per hour was associated with changes in importance of enterprises. This resulted chiefly from a decrease in cotton production and an increase in tobacco which returns more per man-hour than cotton.

Many factors have a bearing on the effect of changes in importance of enterprises on gross production per hour and these factors occur in a myriad of combinations. In the regional example just given, crops are very important from the labor standpoint. They used almost four-fifths of the man-hours of direct labor for crop and livestock production in the South Atlantic States, in 1935-39, and so weight heavily the gross farm production per hour. On the

[^10]TABLE 12.-Change ingross production fer man-hour associated with change in relative iamortance of enterprises, by geographic division, indicated periods, 1919-46:

[^11]The sum of the figures in comparable colums for the two subperiods will not equal that for the entire period because a different
other hand, livestock took almost three-fifths of the direct manhours in the New England States during 1935-39 and these enterprises rather than crops had the greatest influence on gross production per hour in this region, in the South Atlantic Division, the difference between crop and livestock production per hour was mall and it would have lakin a large change in importance to exert much influence on gross farm production per hour. In some other regions the spread in production per hour between crops and livestock was so great that small changes in importance were reflected in gross production per hour of labor.
in all geographic divisions, exeept the South Atlantic, changes in relative tmportance of enterprises slowed the increase in gross production per hour during the interwar period. This occurredbecause relativelymore time was spent on the more labor intensive crops and kinds of heve tock. The most substantial changes of this sort took place in the East and Wesi North Central Divisions. In the later division the increase in gross farm production per hour would have betnone and one-half times 3 reater and in the East North Central it would have been almost 30 percent greater if there had been no changes in importance of enterprises from $1919-21$ to 1937-39. In ess nece, the further mechanization of some of the more laborextensuve crops in these areas has meant that farmers spend a greaterproportion of their time on livestock and on the more laborintensive crops and have this slowed the increase in the productivity of thetr labor.

During forld War il the trend toward the production of live. stock and the more labor-intensive crops continued in the two North Central Divisions. In the other regions from 2 percent to more than 66 percent of the increase in labor productivity resulted from increases in the relative importance of the more labor-extensive kinds of crop and livestock enterprises, In the Nnw England States, for example, more than 25 percent of the man-hours spent at farm work in 1944-46 were deyoted to enterprises which are rated as highly labor efficient as hay, vegetables except truck, and poultry, compared with less than 20 percent in 1937-39.

During the 25 -year period since the end of World War 1 , the inc rease in labor productivity would have been greater if there had been no changes in importanse of enterprises in the two North Central Divisions and the two Western Divisions. But in the other areas the changes in importance of enterprises incteased gross production per hour, Changes among the different crops and among the different kinds of livestock were the most influential in these instances.

Effects of Changes in Xroportame of Enrerprises on Production per Hour in the Cnated Stntes.-Griss farm production per hour in the United States would have increased 26.8 percent from 1919-21 to 1937-39, rather than 19.5 percent, if the distribution of manhours among both enterprises and areas had not changed between 1919-21 and 1937-39 (table 13). An increase in the proportion of farm labor spent on the more labor-intensive crops and kinds of livestock was chicfly responsible for this lower rate of increase, but some shifts to the more labor-intensive areas also contributed to it.

During World War IL change in relative importance of enter prises among regions was a noteworthy influence. During the 1944-46 period, 9 billion of the 20 billion man-hours used annually
in farm work in the United States were used in the geographic divisions that have a gross production per hour that is below the average. In the 1937-39 period, 10 billion out of 21 billion hours were used in the less labor productive areas. As there is considerable difference in the quantity of farm products produced per hour of labor in these two groups of areas this shift was a decided influencein raising the increage in labor productivity in the country as a whole. Changes to the more labor-extensive crops and kinds of livestock had little effect on gross production per hour during World War II.

For the entire quarter-century changes in relative importance of crop and livestock. enterprises within regions retarden, and regional shifts in enterprises accelerated, the rise in gross production per hour. The former was the most important. This means that if the distribution of total man-hours among areas and enterprises in 1944-46 had been the same as it was in 1919-21, the increase in the productivity of labor would have been greater than ctually occurred.

AREA DIFFERENCES IN LABOR PRODUCTIVITY

Wot only was there considerable variation among geographic divisions in the trend and in the year-to-year changes during the last several years in the quantity of farm products produced per hour of labor, but similarly, during any given year or period, the production per hour has not been the same in all areas. A combination of several factors determines the productivity of labor, and the combination is not uniform by areas. Varying quantities of different products are obtained per unit of labor, hence the kinds of enterprises carried on are of primary importance. But, even a different products are obtained per unit of labor, hence the kinds
TABLE 13 .--Change in gross production per man-hour associated with change in relative importance of enterprises, United States, indicated periods, 1919-46

Item	Unit	$\begin{array}{\|c} \hline 1919-21 \\ \text { to } \\ \hline 1937-39 \\ \hline \end{array}$	$\begin{gathered} 1937-39 \\ 10 \\ 1944-46 \end{gathered}$	$\begin{gathered} 1919-21 \\ \text { to } \\ 1944-46 \end{gathered}$
Actual change in production per man-hour	Percent	19.5	23.0	47.0
Change in production per man-hour assuming no change in relative importance of enterprises within regions and among regions--	Percent	26.8	19.8	51.9
Difference	Percentage points	-7.3	3.2	-4.9
Change in production per men hour associated with change in relative importance of enterprises within regions	Percentage points	-6.9	.4	-7.9
Change in production per man-hour associated with change in relative importance of enterprises atang regions	Percentage points	-. 4	2.8	3.0

[^12]single enterprise is handled in a variety of ways, and under a variety of conditions, in the United States, which results in differences in labor productivity.

Area Differences in Labor Productivity for Individual Enterprises

Some crops are grown in all parts of the country while others are grown oniy in limited areas. Whereas cotton, because of its long growing season, is grown only in the southern part of the United States, corn is widely distributed, but concentrated pro. duction is found in the level fertile area stretching westward from Ohio to the Great Plains. Likewise, cottonproduction is more concentrated in some parts of the South than in others. Concentration occurs partly because more corn or more cotton can be produced per unit of input than in other areas. As labor is the most important input, the ratio of production to man-hour requirements provides a major clue to the output per unit of total inputs.

What are the reasons behind area differences in ratio of production to labor requirements? The data in appendix table 39 provide part of the answer, in regard to corn. The Corn Beitforms a part of each of the East and West North Central Divisions and more corn is obtained per hour of labor in these divisions than elsewhere. No other areain the world has such favorable conditions for corn. The warm summers, relatively high summer rainfall, and other climatic features are particularly adapted to corn and the level land and deep, fertile soils are conducive to high yields. Hybrid seed, where used, has added about 20 percent to the yield. Here many of the operations, all the way from breaking the land in the spring through picking and storing or marketing the corn in the fall, are done with tractors and mechanized equipment.

Other areas, because of relatively low yields or high man-hour requirements or both, do not p roduce as much corn per hour of labor. In the New EnglandStates much of the corn is put up for silage which is a time-consuming job. The uneven topography and smallfields in this area are not adapted to machine methods so the labor requirements per acre are high and production per hour is rather low despite the good yields.

The story is much the same for cotton except that it is not raised in areas that have a growing season of less than 200 days. It has rather exacting requirements regarding rainfall as to amount and distribution, but it can be produced successfully on almost any well-drained soil. Where cotton will be grown within the area climatically adapted to it, including the western irrigated areas, is dictated chiefly by economic factors.

The time required to pick cotton is closely related to the yield but the man-hour requirements up to picking time, excluding some hand operations such as chopping, depend chiefly on the kind of power and the size of equipment used. This varies all the wayfrom half-row horse or mule, equipment to four-row tractor machinery. Thus, in the westernareas where tractors and associated equipment are more widely used the time before harvest is low. In the Pacific and Mountain regions the high yields raise the time for harvest but the se same high yields caupled with the moderate number of total hours per acre result in a big production per man-hour (appendix table 40).

Higher than average yields of cotton were obtained in the South Atlantic and East South Central Divisions in 1943-45. The nature of the topography, the small irregular fields, and arelatively ample labor supply have delayed farm mechanization in thege areas. This accounts for the above-average man-hours per acre and the below-average production per hour of direct labor. The lowest yield per acre in 1943-45 was in the West South Central States. The fewest man-hours per acre were also required there because of the low yields and the high level of mechanization, particularly in the western high plains. The low yield, coupled with the relatively lower labor requirement per acre, resulted in a production per man-hour above the average.

Wheat, though not as notable a user of farm labor as corn or cotton, also illustrates the regional variation in productivity of labor. Excluding mixed wheat, six commercial classes of wheat are produced in four more-or-less well-defined areas in the United States. The mostimportant class is hard red winter which is raised in an area centering in Kansas and including parts of Ne braska, Colorado, oklahoma, and Texas. To the north-in the Dakotas, western Minnesota, and eastern Montana--hardredspring wheat is grown, as are also the durum and red durum classes. White wheat is produced chiefly in the Columbia basin of Washington, Oregon, and Idaho. The sixth class of wheat, soft red winter, is grown in the southern part of the Corn Belt. The climate, topography, and soils, and the methods used in raising wheat vary among these areas, which means that the yield and man-hours per acreare different (appendix table 41).

In the Pacific States which include a large part of the white wheat area, wheat is produced chiefly with a system of summer fallow and yields per acre harvested are good; they were almost 50 percent above the United States average in 1943-45. As it takes 2 years to produce wheat on summer fallow, the annual yields would be lower. The combined harvester-thresher first came into common use in this region and is still more widely used there than elsewhere. Other operations also are highly mechanized and the number of man-hours per acre used are less than the average despite the high yield. This results in a relatively high production per hour. Yields are not so high in the West South Central, Mountain, and West North Central Divisions, but the level plains lend themselves admirably to the use of machine methods and largescale operations which result in a low labor requirement and a labor froductivity that is above average.

Wheat is grown in the Corn Belt and other areas chieflybecause it fits well in the crop rotation and its inclusion provides for a more uniform seasonal distribution of labor and power. It also serves as a nurse crop for hay and green-manure crops. But labor requirements are relatively high and the quantity of wheat produced per hour of labor is below the average of the whole country.

The range of the differences per hour among geographic divisions is much less in livestock production than in that for crops. The quantity of corn produced per hour in the different divisions, for example, varied in 1943-45 from 35 percent to 177 percent of the average for the whole country, whereas the range in milk production per hour was less than half of this figure. The quantity of livestock products obtained per animal is much less affected by rainfall, temperature, soils, and other physical factors than is
true of crop yields. Or. put another way, crops respond to favorable or unfavorable conditions to a greater degree thanlivestock. Daring the drought of the 1930 's, for example, livestock production per animal dropped much less than the yields of crops. Likewise, the time required to feed and care for an animal is more nearly the same in the different geographic divisions than is true of the time spent on an acre of most crops. To illustrate: An acre of wheat is seeded and harvested by vastly different methods in the various areas and even with identical yields has greatly different labor requirements, whereas sows on commercial farms are handled in more nearly the same way and there is much less difference in labor requirements, area by area.

Eventhough the regional differences in livestock production per hour are not so large as those for crops, thesedifferences are considerable. And their influence on over-all farm labor productivity is increasing as the proportion of the farmers' workday spent in caring for livestock is growing larger. In 1947, about two-fifths of the direct man-hour requirements for crops and livestock in the whole country was for livestock whereas it was approximately onethird in 1910. The milk-cow enterprise now requires more labor than any other on farms in the United States, and it is illustrative of the regional variation in the production of livestock products per hour of labor.

Milk is sold from the farm or used on the farm where produced in severalforms. in regions that have large urban populations such as the three northeast divisions and the Pacific States, a greater share is sold for consumption as fresh milk or cream. Milk of high quality is demanded by strict sanitary regulations in these areas. This bettercare of the cows and the milk results in a higher quality of dairy product, but it also adds to the labor required on the farms (appendix table 42). High-producing cows are the rule in these commercial areas and this meansmore time required to milk and to care for and market the product. Man-hours per cow are high because of the sanitary methods used and the high production per cow but they would be even higher were it not for two other factors. First, the herds are larger and the large-scale operations have advantages: and second. more milking machines are used. But as the milkproduction is relatively higher than the labor requirements per cow. the milk production per hour is above the average.

Many of the milk cows in other regions are of dual-purpose or beef type. Frequently the number milked depends on the needs of the farm family, and more attention is given to the production of beef. The time spent on milk cows is low but the production is relatively lower. Throughout these regions surrounding the larger citits, dairy farms are located that compare favorably with farms in the commercial dairy regions. But such farms are in the strict minority and have little effect on the average of the region.

The regional pattern of dairy farming coincides fairly well with that for poultry raising, particularly egg production. This is not necessarily because these enterprises fit well together in the farm organization, but rather because milk and eggs are both semiperishable products and soare produced close to consuming centers. The four areas in which the greatest quantity of milk was produced per hour of direct labor, in 1943-45, were also high in number of eggs obtained per man-hour spent on the laying flock (appendix table 43). There was one notable change in rank, however, among
these four areas. New England was fourth in milk production per hour but firstin egg production. The rate of lay was highest there whereas the region ranked third in milk per cow. The labor requirements for layers were slightiy above the United States average but were 15 percent above the average for milk cows. One reason for the relatively less time per hen was the large proportion of layersin large flocks. Of the three southern areas, the West South Central shows the greatest number of eggs produced per hour. But in all these areas a sizable proportion of the eggs are for home consumption and the production per hen and per hour of labor is less then the average.

Arca Differences in Labor Productivity for All Crops, Livestock. and All Farm Work

Thus far in this section production has beenmeasured in bushels, pounds, etc. in arriving at regional variations in quantities of individual products obtained per man-hour. In carrying this analysis an additional step, and measuring area differences in production of groups of products or all farm production per hour, a comrion denominator is necessary to add the iterns of production. The common denominator used was average geographic division prices in 1935-39. Use of other weights-average United States prices, for example-would give somewhat different regional variations in quantity of production per hour. A discussion and analysis of the relation of price weights to measures of labor productivity are given in the Appendix, page 63.

Crop production in the United States is characterized by extreme variation. This applies to the kinds of crops grown, to the yields obtained, to the methods used, and to many other aspects of crop production. All these variations exertaninfluence on the differences among areas in crop production per hour of labor.

The West North Central and New England regions represented almost the extremes in crop production per acre in 1943-45--one of
TABLE 14.--Crop production per man-hour of direct labor and related factors, by geagraphic division, average 1943-45
[For indexes, United States $=100$]

Ceographic division	$\begin{gathered} \text { Crop } \\ \text { production } \\ \text { per } \\ \text { man-hour } \\ \hline \end{gathered}$	Crop production per acte of cropland	$\left\|\begin{array}{c} \text { Han-hour } \\ \text { per acre of } \\ \text { cropland } \end{array}\right\|$	Proportion of farms reporting tractors	Value of fand, buildings, and espipment per man-hour
	Index	Index	Index	Percent	Index
Hest North Central-	165	66	40	61	172
New England-------	154	195	126	31	156
East Notth Cantral-	149	106	71	56	189
Mountain---------	141	76	54	44	143
Pacific------------	130	197	150	38	141
Midile Atlentic	178	138	116	50	127
South Azlartic----	63	184	287	11	42
West South Central-	62	81	129	25	68
East South Central-	56	142	250	7	40
United States--	100	100	100	34	100

[^13]the important varying factors-and were drastically differentinintensity of labor use, yet both were at the top in crop production per hour (table 14). In other words, the labor used on crops in both of these regions was highly productive but it was achieved by very different methods in the two areas. The man-hours per acre were high in the New England States. Fewer of the farms had tractors but the uneventopography. small fields, production methods used, and kinds of crops grown were important influences in the high labor requirement per acre.

In the West North Central Division, on the other hand, iwo-fifths of the average number of hours were used percrop acre. More of the farms had tractors. Crop production is on an extensive basis and few operations are necessary on some of the predominating crops. particularly small grains. In this division the high crop production perman-hour was achieved by low production per acre and reduced hours per acre, whereas in New England it resulted fromhighproduction and many hours per acre.

Another illustration of two areas that are greatly different in labor used per acre but similar in quantity of crops obtained per hour, is provided by the South Atlantic and West South Central Divisions. Farm mechanizatio- is more advanced in the latter division; more of the farms have tractors and more land and equipment are combined with an hour of work than in the South Atlantic Division. Cotton is important in both regions but tobacco is grown only in the easternarea and many operations in growing, harvesting. and curing it have proved difficult to mechanize. The same may be said of fruits and truck crops which are more prevalent in the South Atlantic States. The crop yields however, in each of these areas during 1943-45 were commensurate with the labor used, and crop production per hour was nearly the same, although it was much less than the United States average.

In general, high crop production per hour of work is obtained in the areas where soils areproductive and the topography and crops grown are suited to the widespread use of machines. Farm mechanization has progressed rapidly in these areas, more of the farms are equipped with tractors and tractor machines, and less labor is used per unit of land. But in the South much of the work on most crops is done by hand. Remarkable progress has been made, however, on the mechanization of some southerncrops. For example, mechanical dryers and special self-propelled combines have been widely accepted by rice growers in Texas, Louisiana, and Arkansas. Mechanization of the more dominant crops, as cotton and tobacco. will come slowly, because of the many engineering, economic, and social problems involved.
in general, the same parts of the country that were above average in quantity of crops produced per hour of labor, in 1943-45, were aisohigh in. livestock and total farm production per hour (table 15). Crops take arcund three-fourths of the direct man-hour requirements in the three southern divisions and so set the pattern for both farm output and gross farmproduction per hour in these areas. In the rest of the country, livestock is more important and exerts a greater influence on all farm production per hour.

Among the kinds of livestock, milk cows are by far the greatest users of labor. The three groups of States (New England, Middle Atlantic, and Pacific) where value of milk produced per man-hour was highest were also at the top in all meat animals and animal

TABLE 15...Crop, livestock, and total fare production per man-hour and related factors, by geographic division, average 1943-45
[For indexes, United States - 100]

Geokraphic division	Farm output per hour	Gross farm procluction per hour	Horse and rule mooduction - percent. of gross produchiox	Crap productian per hast	Livestock production per hour	labor requirementsfor live. stock
	Index	Incter	Percent	Iruex	Index	Percent
Pecific.	138	130	2.5	130	116	34
New tingland	1.36	1.33	5.7	15.4	140	57
West North Central	128	128	6.8	165	100	53
Mruntain	12.4	124	6.8	141	89	49
Easc Narth Central	122	190	6.1	1.4	104	53
Middle Aclantic--	112	113	7.8	1.18	122	21
South Aclantic---	71	74	10.9	63	10	29
West South Central	? 0	72	9.1	62	82	29
East South Central	58	43	15.7	56	76	23
Linited Suates--	100	100	7.8	100	100	39

${ }^{1}$ Product added hy all liverstock except horses und mules.

* Percentage of dirget man-hour requarements for crops and livestock. excluding borses and mules, required by livestoch.

TABLE 16.--fnciex nualers of gross form praduction per ann-hour and value of farm property associated su th a than-linur of lutar, by geographze dwision, average 1943.45 [Inited Sutes $=100]$

Geographic diviaion	$\begin{gathered} \text { Gross } \\ \text { farm } \\ \text { prodaction } \\ \text { per marthour } \end{gathered}$	Thlue of farm property per man-hour ${ }^{1}$		
		$\begin{gathered} \text { l.and } \\ \text { and } \\ \text { buillings } \end{gathered}$	Machinery mid equipment	Livertock
New England-	173	110	132	112
Pacialic-a	130	162	104	B5
Hest Vorth Central	128	129	140	146
Mounctirn--	124	118	120	189
East North Central	120	138	152	127
Middle Allantic-	113	89	172	127
South Allantic-	- 4	56	44	49
West South Contral	72	80	68	78
East South Central	63	51	40	51
United Sunte	100	100	100	100

${ }^{1}$ Value of indichted items of farm property on January 1, 1945, from the U. S.
Census of Agriculture and 1943-45 average namber of man-hours for all farm work.
products obtained per hour. Two of these divisions, New England and Pacific, also outranked all otiers in farm output and gross farm production per hour.

There are greater differences among regions in output per hour than in gross production per hour, This reflects the variation in the proportion of farm power purchased from industry in the form of tractors. gasoline, oil, etc., and those produced on the farm in the form of work stock and feed crops. A greater than average proportion of farm power is produced on the farms in the southern areas. Use of gross farmproduction per hour, which includes farm-produced power as an item of total production fromeach hour of farm work, raises the relative position of the southernareas over that obtained from use of the farm-output measure. The reverse is true of divisions like the Pacific and New England where farm-produced power is relatively unimportant. The Pacificregion ranks above New England in farm output per hour, bui the opposite is true for gross production per hour, becausefarm-produced power in the pacific region is of minor consequence.

The data in table 16 summarize the reasons behind the area variations in farm production per hour. They indicate thatfarmers produce fairly well in accordance with the land, tools, and animals they have to work with. In the areas in which production per hour was above average, the value of each capital item was also above average, except for land and buildings in the Middle Atlantic States and livestock in the Pacific Division.

The amount of the capital tems associated with an hour of work in the different areas is closely related to the type of farming. Livestock ranching in the Mountain Siates is reflecled in the high value of livestock with which the ranchers work. This relationship would be even more apparent on a headbasis, exchuding the smaller kinds of livestock, because the average value per head is lower in this area. The ranch land likewise has a low value and the ratio of man-hour requirements to acres would be wider then that based on values. On the other hand, the high value of land and buildings associated with an hour of work in the Pacific Division reflects (rather than a great number of acres) the produciveness of the land, which has been dugmented by construction of irrigation facilities.

The balance among the capial items in the North Central States represents the diversiliedfarming-corn, small grains, hay, dairy cows, hogs, beef catile-that predominates there. Farmest in the South Allantic and South Central Divisions had relutively little land, machinery, and livestock, to work with and the product of their effort was small.

If the data in table 16 were on a per worker basis rather than on a man-hour basis, the rank of the areas would be materially different in regard to both the production and the capital items. The New EnglandStates, for example, have many part-lume farms, and workers on these farms put in feuter hours af farm work than the averagefarm worker in the United States. Conversely, West North Central farmers spend more than the average number of hours at farm work. On a per worker basis, then, the New England area would be down the scale and the West Norih Central area would rank nearer the top.

LABOR REOUIREMENTS, FARM EMPLOYMENT. AND LABOR PRODUCTIVITY

Man-hour requirements and farm employment ${ }^{11}$ are the two commonly used measures of the labor input in farming. Certain advantages are inherent in the use of each measure but in most analyses of farm labor they supplement one another. In a study of farm labor productivity, estimates of production of individual commodities, groups of commodities, or total production permanhour. help to explain the changes over time and the area differences in production per worker. Although an enterprise comparison is impossible on the basis of production per worker, total farm production per worker and hours per worker provide valuable clues to the well-being of farm people.

Labor productivity deals with workersorpeople, and the worker rather than an hour of work is the unit upon which the American family and other institutions are built. In this respect. production per worker is a more realistic measure of labor productivity than is production per man-hour. lf, on the other hand, worker productivity is high merely because the work day or work week is long it is aless meaningful measure. An adequate analysis of labor productivity should consider both production per worker and production per bour.

The trends in man-hour requirements and number of farm workers have been similar since 1919 in the United States as a whole and in all parts of the country (fig. 12). Year-to-yearmovements and changes over periods of a few years, likewise, have usually been in the same direction but frequently the magnitudes of such short-time changes have been far from proportional. Labor requirements are more sensitive to changes in farming. They vary more in accordance with changes in acres and in yields of crops and in numbers and production of livestock and livestock products than is true of number of workers. A yitid of corn, a little higher than usual, for example, means an increase in man-hour requirements during the harvest season, but by working harder and longer the usual number of workers would be able to gather the crop. On the other hand, during slack seasons or periods, the farmworkers adapt themselves to the needs of the job and work less hard and fewer hours in a day.

During recent years farm operators and unpaid family workers have constituted almost four-fifths of all farm workers. A farmer does not "lay off" himself or a member of his family who works without wages mertly because work is slack for a month or so, or even for a longer time. In addition, some of the 20 percent who

[^14] hor requmements and farm employment have shown similar monts tive ertans an eath geographic division. Employment anct labor requirestown "pward treads in the fatific States in gomerast to the downard trends in practically all ouber regions. Htsteremployment of farm workers during the depression and drought. of the 1930 's is indicated by the cap bir ween eamioyment and relatively lawer masi-homst reguirements.
are hired workers are also members of the farmer's family and he would probably want to keep them on the farm.

The years, 1919-21, the base period for the data showninfigure 12. were years of relatively full employment as a whole. There was some return of soldiers and war workers to farms and the severe freeze in 1921 and the ravages of the boll weevil resulted in some lowering of labor requirements. but trends based on these years must be interpreted in the light of this full-employment situation. The relation between trends in labor requirements and farm em-
ployment was the same during both World Wars; employment was down relative to labor requirements (table 17). Both wars seriously disturbed the farm labor force; this was particularly true of World War Il because of its length and severity. Many farm workers weredrawn intothearmed forces and the war industries. Those remaining were supplemented by children, women, and older workers. In addition, foreign workers were brought in for farm work, war prisoners were used, and, in some instances, soldiers, industrial, and "white-collar" workers helped during rush seasons. But almost everyone worked harder and more hours per day and per year.

The return of soldiers and war workers to farms resulted in an increase in number of both family and hired workers during 1946 and 1947. but a slight reduction in total farm employment occurred in 1948. These changes likewise follow the patiern of the few years that came after World Warl, except that in that instance the postwar upward movement in farm employment was of longer duration. Despite the 1948 downward movement, the 1946. 48 average farmemployment was higher than during the last 3 years of World War Il. whereas during this period iabor requirements went down almost 5 percent.

In summary, the data in table 17 indicate that, during periods of national emergency and a tight labor market, farm employment goes down relative to labor requirements. But during periods when the labor market is easier the man-hour requirements decrease in relation to number of farm workers. This latter gituation is well exemplified by the drought and depression period of the 1930's. Industrial jobs for surplus farm people were strictly limited, so many remaincd on farms with less than enough work to occupy them effectively. This situation was most pronounced in the West North Central and Mountain Divisions where the droughts were mosi severe (fig. 12). It was evident in the Cotion Belt except for the year 1937 when there was a large acreage of cotton. But the gap was closed during World War II when members of this reservoir of workers were attracted to the war industries or were taken into the armed forces.

The relation between changes in man-hour requirements and farmemployment since 1919 is unique in the Pacific States. The number of man-hours increased more than the number of workers until the late 1930 's and since then they have risen at about the same rate. The increase in the crops that took considerable labor in winter - cotton, fruits (particularly citrus), winter vegetables including lettuce and carrots-was chiefly responsible for this.

TABLEE 17.--Percentage change in man-hour requiresents for all farm work, and in farm employment, Inzted'States. indicated periodo, 1910-48

ftem	$\begin{gathered} 1910-12 \\ 60 \\ 1919-2! \end{gathered}$	$\begin{aligned} & 1919-21 \\ & \text { to } \\ & 1937-39 \end{aligned}$	$\begin{gathered} 1937-39 \\ 10 \\ 1943-45 \end{gathered}$	$\begin{gathered} 1943-45 \\ 10 \\ 1946-48 \end{gathered}$
	Percent	Percent	Percent	Percent
Man-hour reguirements	0.9	-8.4	-2.3	-4.8
Total farnu mployment	-6.8	-4.0	-7.3	${ }^{8}$
Family worknrs....	-8.2	-3.3	-4.8	-88
tired workers.	-1.2	-8.4	-13.5	-1.5

They spread the work more uniformly during the year or tended to fill the winter gap, 30 rather fewer additional workers were needed compered with the increased work in man-hours.

The difference between the movements in man-hour requirements and farmemployment is reflected in the trend in man-hours per worker. ${ }^{2}$ in the U aited States as a whole and in most parta of the country there has not been an enduring change in man-hours per worker since 1919. There were considerable changes during parts of this 30 -year period, however. There was little change in hours per worker during the decade of the 1920^{\prime} s in mostareas. The piling up of population and workers on farms during the depression resulted in a sizable reduction in hours per worker which was rapidly dissipated during World War II. A general decrease has occurred during the last few years. The World War II increase and the postwar decrease in man-hours per worker are also reflected in length of workday for farm operators (table 18). Hired workers usually put in fewer hours per day than do farm operators but changes in the length of their workday since 1939 have been similar to those for the operators.

The most influential causal factors in changes in man-hours per worker have been nonagricultural in nature, as wars and general economic conditions. But some factors within agriculture have had an influence. The increasing importance of work on livestock has, in effect, shifted labor from crops in the growing season to livestock in the winter. The rapid mechanization of crop production has aided this shift of labor to livestock and winter work. This has permitted a more uniform seasonal distribution of labor and

TABLE 18... Average length of zorkday of fara operators during specified months, by geographic division, indicated years and periods, 1939-48

Geographic division	June			September			Decenther		
	1940	$\begin{gathered} 19432 \\ 45 \end{gathered}$	$\begin{gathered} 1946- \\ 48 \end{gathered}$	1939	$\begin{gathered} 1943- \\ 45 \end{gathered}$	$\begin{gathered} 1946 \\ 48 \end{gathered}$	1939	$\begin{gathered} 1943- \\ 45 \end{gathered}$	$\begin{gathered} 1946 * \\ 48 \end{gathered}$
	Hours	Hour:							
New Englard	12.0	12.3	11.9	12.0	12.3	11.7	11.5	11.5	10.9
North Atlantic---	12.5	12.9	12.3	12.3	12.7	12.1	11.1	11.6	11.1
East North Central	12.5	13.3	12.5	12.1	12.5	11.8	11.0	11.4	10.8
West North Centrsl	12.6	13.4	12.6	12.3	12.8	12.1	10.5	11.3	10.4
South Atlentic---	11.8	12.2	11.7	11.3	11.7	11.2	10.0	10.5	10.1
Fast South Gentra!	11.7	12.3	11.8	11.0	11.5	11.0	9.8	10.4	10.1
West South Centrsi	11.8	12.3	11.6	11.4	11.6	10.9	9.9	10.5	9.8
Mountein	12.3	13.0	12.2	11.9	12.7	11.9	10.1	10.5	9.5
Pacific----------	11.3	11.9	11.2	11.2	11.7	10.8	10.0	10.5	9.7
United States-..	12.1	12.7	12.1	11.7	12.1	11.4	10.3	10.8	10.3

[^15]would have resulted in more hours per worker per year if there had not been conflicting influences. But there has been an inclination for farm workers to put in about the same hours and the reduction in man-hour requirements over the long pull has been reflected in a reduction in numbers of workers rather than in hours per worker.

There is considerable variation arnong areas in the number of man-hours per farm worker used per year. Thesedifferences have tended to persist for a long time (table 19). The more important the livestock is in an area the greater the number of hours per worker per year. A livestock farmer must be on the job every day and livestock chores form a big part of the daily work. The New England and Pacific regions, however, are two notable exceptions to this general rule. The average farm worker in the latter group of States puts in a relatively high number of hours a year, yet livestock is not so prevalent in the farm organization as it is in most other regions. The mild climate which permitsyear- round work on crops accounts for this. Even in the Northern Pacific States, where the winters are less mild, large jobs on crops, as pruning and clearing orchards, are done during the winter.
in New England, a greater proportion of the man-hour requirements are for livestock than in any other area, but hoursper worker are lower than in other areas because of the prevalence of part-time farming. In this industrial area there are many opportunities to combine an off-farm job and part-time farming. Then, too, many farmers combine farming with other on-farm but nonagricultural work, as having roadside stands or stations and taking boarders. Hours per worker are low in the three southern divisions principally because of the dominating position of cotton with its seasonal work loads and the unimportance of livestock production. Some progress has been made toward a more diversified type of farming in these areas--more livestock and more crops other than cotton-so the man-hours per farm worker are relatively higher than they were 25 yearsago. Man-hours per workerare high in the North Central and Mountain Divisions because of the importance of livestock and the great diversity of both crop and livestock enterprises.

TABLE 19.-Average number of man-hours worked annuclly per farm worker, by geographic division, indicated periods, 1920-48

Gergraphic division	1920-24	1935-39	1040-44	1945-48
	Hours	Hours	Hours	Hours
New Frglayd	1.,525	1.513	1.522	1.496
Midde Atlantic	2,023	1.979	1,938	1,880
East North Centr	2,259	2,170	2,278	2,158
West North Central	2,786	2,374	2, 5.53	2,407
Sourh Atlantic.	1.496	1,547	1.654	1.770
East South Central	1,525	1.537	1.604	1.636
West South Central	2,079	1,874	1,925	1,781
Mountain-----	2.505	2,221	2,390	2.265
Pacific-	2, 350	2.414	2.388	2,379
United States	2,007	1,909	2,003	1.963

TABLE 20... Percentage change in gross farn production per aan-hour and per fara sorker, by geographic division, indicated periods, 1919-46

Geographic division	$\begin{gathered} 1919-21 \\ \text { to } \\ 1937-39 \end{gathered}$		$\begin{aligned} & 1939-39 \\ & \text { to } \\ & 19: 44-46 \end{aligned}$		$\begin{gathered} 1919-21 \\ t_{0} \\ 1944-46 \end{gathered}$	
	$\begin{gathered} \text { Fer } \\ \text { man-hour } \end{gathered}$	Per farm worker	$\begin{gathered} \text { Per } \\ \text { man-hour } \end{gathered}$	Per farm worker	$\begin{gathered} \text { Per } \\ \text { man-hour } \end{gathered}$	Per farm worker
	Percent	Percent	Percent	Percent	Percent	Percent
New Eigland -.....	18.	14	20	25	42	42
Viddle At lantic --	21	17	13	12	37	31
East North Central	26	19	19	24	50	48
Hest North Central	12	-1	32	41	48	40
South Atlantic --.	25	23	19	33	48	64
East South Central	19	19	16	20	38	44
West South Central	23	17	20	14	48	33
Mountain ----....	22	11	23	29	51	42
Pacific ------...	29	41	16	16	S0	63
United St ites	19	15	23	28	47	47

Production per Man-hour and per Worker

As the long-time changes in man-hour requirements and number of farm workers have been about proportional, there has been little difference between the movements in production per manhour and production per worker. As previously discussed, however, during certain parts of the period since 1919 the two measures of labor input have not moved in unison. In these instances there are differences in the changes in labor productivity as measured by the two methods.

During the interwar period. 1919-21 to 1937-39, gross farm production per man-hour increased more than did production per worker in the United States as a whole, and in seven of the nine geographic divisions (table 20). Effects of the depression were stillfelt in 1937-39. Some unneeded workers were on the farms and man-hour requirements were lower than number of workers, as compared with 1919-21. In the seven areas in which production perhour increasedmore than production per worker, the difference ranged from 13 percentage points more in the West North Central to two percentage points more in the South Atlantic Division. A similar difference would have occurred in the East South Central Division if the effect of the large acreage of cotton on the labor requirements in 1937 had been excluded from the 1937-39 base period. Suchan exclusion would also increase the difference in other areas in which cotton was important.

The rise in both production per hour and production per worker was accelerated during World War II. But this time, unlike the in. ter-war period, production per worker increased more than production per hour. Farm workers were drawn off by the wartime demands for manpower, but labor requirements onfarms decreased less rapidly.

-Aㄷ 4ysyinx
FIGURE 13.- Recent gains in farm lathor productivity have been similar, to those in industry. This differs from the situation that prevailed during the 1920^{\prime} s. There is considerable variation in the fabor-productivity gains made in producing and processing the indicated farm products.

The Pacific region was unlike the United States as a whole and most of the other regions during each of theseperiods. Agriculture was expanding from the standpoint of labor used during the interwar period and man-hour requirements increased more than number of workers. Because of the nature of farming and the composition of the farm-labor force, in such a situation the hours per day and per year are increased before additional workers are employed. During World War II man-hour requirements and number of workers increased at about the same rate; consequently there was no difference between changes in production per hour and per worker.

Thus far in the postwar period there has been some reduction in labor requirements relative to number of workers. If this movement continues on an appreciable scale the production per hour will increase more rapidly than the production per worker.

LABOR PRODUCTIVITY IN AGRICULTURE AND INDUSTRY

The segments of the United States economy are interdependent. One important sector cannot prosper indefinitety while another lags. One significant factor in both a prosperity or a depression situation within an industry is the productivity of labor. Farm people are interested in the changes that have occurred in production per man-hour of industrial workers. Likewise industrialists and nonfarm workers want to know what the trend has been in productivity of agricultural labor. Only limited comparisions can be
made because of a lack of reliable data, particularly since 1939. Conversion to a defense and war economy so disrupted the pattern of production and work in many industries that productivity indexes had to be discontinued. It is expected that they will be resumed at a later date.

During the course of the last 30 years both farm and industrial workers have increased the quantity of products resulting from an hour of work. There was some lag from 1919 until the late 1930 's in the agricultural increase, compared with mining and steam railroad transportation (fig. 13). But agriculture has kept pace with industry since about 1933. From 1937-39 to 1944-46, gross farm production per hour (adjusted for shifts to enterprises and areas with a greater or less than average production per man-hour) rose 20 percent, whereas the increase was only 14 percent in mining (table 21). The actual increase in both farm output and gross farm production per hour was greater. Even in the East South Central Division, where the gain in production per hour of farm labor was the smallest of any division, the increase compares favorably with that in mining for the country as a whole during this period. This also applies to many other industries. There was little increase in labor productivity in the fertilizerindustry, for example. Production of fertilizer rose during the war but man-hours increased almost proportionately. This increased production was of great benefit to farmers, however, as it influenced decidediy the higher crop yields and the greater crop production per man-hour.

The increase in both freight and passenger traffic which was near phenomenal during the recent war, with a much less than proportional increase in man-hour inputs, resulted in a big increase in labor productivity. As far as passenger travel is concerned, the production measure used--revenue passenger miles-fails to consider the distress resulting from overcrowded cars and the discomforts caused by pressing into service old and out-of-date equipment. But gigantic troop movements were executed and huge quantities of war material were hauled expeditiously and the revenue traffic per hour put in by passenger and freight employees increased almost one-half from 1937-39 to 1944-46. The increase would have been even greater if the peak year 1943 had been included in the computation of the data in tabie 21. In 1946, a downward point was reached which was only slightly above gross farm production per hour.

For the entirc period since the end of World War I the gains in production perman-hour have beengreater in industry than in farming primarily because of the great strides made in industry before World War II. Productivity of agricultural labor undoubtediy would have risen more between the wars if the demand for farm products had been higher. The potentialities were there, but it took the upward surge of wartime demand to realize them. Many of the technological advances that contributed to the advance during World War Il were not concurrent developments but rather the wider application of previous discoveries. Weather that was better than average also helped during recent years.

Fabricant (5) found that from about 1900 to 1939 the lag in the decrease in number of workers per unit of farm production, as compared with industry, was understated from the standpoint of number of man-hours because hours peraverage worker fell only slightly, if at all, in agriculture and fell more decidedly in in-
dustry. As far as agricultural workers are concerned the same is true for the period 1919 to date. Comparable data for industrial workers are not available for this period but there is some evidence that hours per industrial worker rose materially during the war. This increase may have been enough to nullify any decrease that occurred from 1919 to 1939. If so, an agricultural-incustrial comparison of labor productivity from 1919 to date, based on number of workers, would not be materially differentfrom a comparison made on the basis of man-hours. Relatively full employment existed at the end of the period underconsideration and this conclusion mighthave been vastly different if the period had ended with something less than'a full-employment situation.

Most farm products go through one or more processes before they reach the ultimate consumers. How do the changes in productivity of the farm worker who raises the wheat, the apples, and the chickens compare with those of the worker who cleans, combs, spins, and weaves the wool, cleans and cans the spinach, or halves and dries the apricots? Part of the answers are suppiied for a few products in the statistics shown in figure 13 and for additional products in the figures shown in table 22 .

These comparisons should be considered only in general terms as each industry and as agriculture operates under its own partic-
TABLE 21.-Labor productivity in agricultare and industry, United States and selected areas, indicated periods, 1919-46: $: 2$

Agriculture, industry, and area	Percenthge change in production par man-hour		
	$\left\|\begin{array}{c} 1919-21 \\ 1037 \\ 1037-39 \end{array}\right\|$	$\begin{gathered} 1937-39 \\ 10 \\ 1944-46 \end{gathered}$	$\begin{aligned} & 1919-21 \\ & 10 \\ & 19.4-46 \end{aligned}$
	Percent		
Gross farm production .-. United States - detual Gross farm production -.- United States - Adjusted	19	23	47
Farm output --....-...-- Unitel States - Actual	35	28	73
Groses farm production -.- Fast North Centrai- Actual	26	19	50
Grose farm production East. North Central - Aljusted	38	25	71
Farm output ---.-......-. East North Central - Actual Gross farm production -.. Enst South	42	25	77
gross farm production ... Finst Sonch Central - Actual Groas farm production -.. East South Central - Adjusted	19	16	38
Grose farmproduction -... East South Central - Adjusted	19	14	36
Steemn railroad transpor- tation	35	19	60
	68	43	142
Manufacturing-...-......- United States - Actual	79	14	104
Manufacturing of ferti- lizers	89	((

[^16]TABLE 22.-Chonge in labor productivity in producing and processing selected farm products, Inited States, indicated periods, $1919-46^{2}$

Agriculeural enterarise or ituluatry	Percentuge change in prodistion per man-hour		
	$\begin{gathered} 1910-21 \\ 10 \\ 1937-30 \end{gathered}$	$\begin{gathered} 1937-39 \\ \text { to } \\ 1944-46 \end{gathered}$	$\begin{gathered} 1919-21 \\ \text { to } \\ 1944-46 \end{gathered}$
Production of fooxi prains	$\begin{gathered} \text { Percent } \\ 66 \end{gathered}$	Percent 60	Percent 166
Mianufacturing of flour and grain mill products-	63	-1	- 62
Manufacture of bread and other bakery prokfucts ${ }^{\text {a }}$	6	15	21
	12	18	33
Panufacturing of ice cream	117	15	150
Production of cotzon-------	50	(3)	57
Matufacturing of cotent geod Production of feed grains-.-	63	(3)	(3)
Production of leed grains-	25	37	70
Slaughtering and meat packio	6 43	(3)	(17)
Production of sugar beets--	47	12	
Peet sugar refinitrg---....----------------------	(3)	-17	(3)
Proderction of tobacco	1	9	1]
Mattrfacturing of tohacco products	137	20	\$96

${ }^{1}$ See fonthote 1. table 21.
${ }^{2}$ Not available before 1923, appropriate percentage changes based on average of 1923-25 rather than 1919-21.

Not available.
ular set of circumstances, and identical changes in production per hour may result from extremely different causes. Then, too, industry is more specialized than agriculture. In many industrial plants the work done by some workers is so repetitious that the doing becomes almost mechanical. No such specialization occurs in farming even though the daily pattern varies little for some jobs. as in livestock chores. In addition, a manufacturing plant usually turns out a few similar products, whereas on most farms work on many different crops and kinds of livestock and their products is combined.

No other farm product and few old and established industries can match the gains made in production of food grains per hour of labor during the last 30 years. The climb was even steeper for wheat, the most important food grain. The story behind this tremendous rise has been told; and although food grains have not been a major factor in the gain in over-all farm labor productivity, their use demonstrates what can and does happen to long-established products and processes. Production of foodgrains and the manufacture of flour per man-hour ran a similar course from 1919 until 1931; then grains took a big drop but the flour was much less affected by the depression.

The recent drop in production per hour in milling resulted from a more rapid rise in labor input than in production, as measured in wheat ground for flour. The milling industry was low on the wartime priority list and very little new machinery was available, which partly accounts for this decreasc. A higher extraction rate was a wartime expediency but this had little effect on wheat ground per hour of labor. The baking industry has made a moderate gain in labor productivity since 1923-25 - nearly all of it since 1937-39.

The production of trilk and ice cream per hour of labor is, in somerespects, an inappropriate comparison because man has used milk from cows and other animals from time immemorial, whereas its manufacture into ice cream is a relatively recent development. As a young industry, the manufacture of ice cream is more subject to rapid improvement. Plants and machines wereimproved within a short time and, as production has mounted, they have increased in size. Because of this, the rise in labor procictivity in the manufacture of ice cream has beenfar greater than that in the production of milk. Other factors, as the increase in quantity of ice cream frozen, which has about quadrupled since 1919, have helped in this direction.

The production of cotton and cotton goods per man-hour ran a rather similar course from 1919 to 1939. The percentage change from 1919-21 to 1937-39 was higher in the coton industry than in its agricultural counterpart largely because of choice of periods. The difference would have been much less if the change had been computed from the period 1922-24 rather than from 1919-21.

Labor productivity in both beet-sugar refining and sugar-beet production dropped during the first part of World War II primarily because of the drop in production with less than a proportional drop in man-hours. Both reached a low point in 1943. Following this, the production per hour made a more rapid recovery in regard to beets than occurred in the sugar factories, in 1944-46. production of beets per hour of labor was above the 1937-39 level whereas beet-sugar refinedper hour was 17 percent below. The rate of gain in quantity of beets produced per hour was less during this period than it had been during the interwar period. The same was undoubtedly irue for sugar-beet refining.

Tremendous gains have been made since just after World War I in the quantity of tobaceo products manufactured per man-hour. A large pari of this gain carz be attributed to the big increase in the cigarette industry. This, in turn. can be attributed to the phenomenal rise in quantity of cigarettes manulactured. Numbers rose from around 50 billions in 1920 to almost 400 billions in 1948 . The manufacture of cigarettes, like the freezing of ice cream, can be classed as a young industry; remarkable advances have been made in plants, machines, and other factors. The increase in laborproductivity in the manufacture of cigars, smoking tobacco, and other tobacco products, has also contributed to the rise for ali tobacco products, but, in each instance the gain was less than for cigarettes. The production of tobacco per man-hour has increased slowly but the annual gain has been greater during recent years than it was berore 1937-39.

No attempt is made in this discussion to compare changes in labor productivity in the whole of agriculture with the rest of the economy. Adequate data for many industries are lacking. This applies.particularly to the marketing and other service industries and occupations, as wholesaling and retailing. According to Fabricant (5), available data indicate that if quality of service isignored the labor productivity in the service industries has increased less rapidly than in the rest of the c conomy, including agriculture. This discussion does not tell the whole story of labor productivity for any of the individual farm products, which pass through many other processes or steps on their way to the ultimate consumers.

Although the remarkable climb in the productivity of farm labor that occurred during Wurld War II may never be duplicated, the upward trend of the last 40 years in all likelihood will continue. Indications are that mechanization of farm operations, which has contributed significantly to higher production per man-hour in the past, will continue unabated. The South particularly offers a fer. tile field for the greater use of machines on farms. The full impact of farm electrification on the productivity of labor is yet to be felt. On the production side, plant and animal breeders indicate that the fields of hybridization and the development of higheryielding crops and animals are far from cxhausted. Results of experimentation and research have aided in the gains in labor productivity in the past and their contributions will continue to be made.

Continuedadvance infarm labor productivity wall depend, partly at least, on the ability of industry to provide machines, gasoline, and other materials and supplies to farmers at a reasonable cost. The continued upward movement in productivity of industrial labor likewise depends on the avalability at reasonable rates of agricultural raw materials for factorics and of food for industrial workers. Because of this interdependence, the productivity of farm and industrial workers musl move upward together in order to provide for a continued general rise loward a desirable level of living for people throughout the economiy.

sUMMARY

Agricultural technology has made possible outstanding gains in productivity of farm labor. Compared with 40 years ago, a manhour of farm labor now produces 200 percent more food grains, 100 percent more leed grans, 75 percent more fruits and tree nuts, 50 percent more truck crops and cotion, about 50 percent more milk and poultry products-in shori. iwice as much farm output for human use.

Gains in productivity of farm labor have not been uniform over time, among geographici divisions, or among the cropand livestock enterprises. Practically all of the two-fold rise in farm output per man-hourduring the last to years has occurred since world War I. Farm output per man-hour in the United States increased at an average annual rate of 1.7 percent for the period 1910-46. But during World War II the annual rate of increase was more than twice that for the period as a whole and 7 times the annual rate of increase during World War 1 .

The rise in the productivity of labor in crop production has exm ceeded that in the production of livestock. During the last 40 years crop production per man-hour increased at about twice the average annual rate of all meal animols and animal products; most of this gain took place during world War II. The sharpest inerease in labor pruducifity in crop production oceured in lood grains. Milk products led in the list of livestock enterprises.

The increase in crop production per hour has resulted from boih a decrease in manthours per acro and a rise in production of crops per acre. Mechanization has been the chief factor in cutting man-hours per acre. lacerases in production of milk per cow, of eggs per hen, and per livestock breeding unt, in general, have contributed significantly to the incereasie an livestock production per man-hour.

Shifts in the importance of the various crop and livestock enter prises have affected average man-hour productivity. Between the two World Wars there was a shift toward the kinds of crops and livestock that return less product per hour of labor. An opposite shift took place during World Waril.

The two North Central Geographic Divisions and the Mountain Division outranked other regions in increases in output per hour during the last 30 years. The East South Central Division showed the smallest rise. The differences in rates of change among regions have not been great. As a result, marked differentials in the level of man-hour productivity among regions have persisted for a long time.

Although the trends of tolal labor requirements and farmemployment have been similar during the last 40 years, the relation between the two has varied for periods of a few years. Hours per worker increased during each of the great wars. A decline in the number of hours per farm worker daring the drought and depression period reflected an incecase in under-employment.

Labor productivity in both agriculture and industry has in$c r e a s e d$ within the last 30 years. The rate of increase varied considerably among indusiries and larmenterprises. The productivity of the labor used in producing some farm commodities rose more than production per man-hour in plants where the same commodities were processed. In other instances the opposite has occurred.

Prospects are excellent in most parts of the economy for further gains in labor productivity. But a balance must be maintained among the occupations to provide for the continued well-being of all.

LITERATURE CITED

(1) BABGON, GIEN T, and CODPEA, YAKTIN 8 .
 53, R5 ppe, ;llus. [Processed.]
(2) GAGTON, GIEN T., and CMEPE, MABTIN h.
1948. RELATION OF ACAICIMTURAL PAONCTION TO INUTS. Gev. Econ. Stneis. 30 (2); 117-126.
(3) BHOME!S., A. P., BIHKIEDD. S. W., and PETERS, 3. If.
1947. HARVESTING: SMAM. (BAINS AND UTUIITATION OF THE STRAW. U.S. Bur. Agr. Ecom. 6h, 32 pp. illus. [Processect.]
(4) GMODEI, L, A. P., and EWING, J. A.

19A8. USE OF TMACTO FOMER, ANMAL SOWER, AND HAND MFTHODS IN CROP mank
(5) FASBICANT, SOROMN.
1945. LABKO SAVINGS IN AKFRICAN INJUSTBY, 1899-5939. Natl. Bur. Econ. Res. Occasional Papet 23. 52 pp. New York.
(6) HECIT, HEUBEN M.
1947. FAPM LABOR REQUREGENTS IN THE INITEI STATES, 1939 and 1944. P. S. Bir. Aer. Ecom. F. M. 59 , 68 pp , illus. [Processed,]
(7) HOPKINS, NOIN A.
 Admin. Nacl. Bes. Proj. on reemploymeth opportumities and recent changes in inderstianl techni(pies.) 189 pp., illus.. Washington, Govi. Prine. Off.
(8) SHAN, EXDON E., and HOPKINS. JOHN A.
1938. TRENAS IN EMPLOMGNT IN ACRICULTARE, 1909-36. U. S. Works

Prog. Admin. Natl. Roa, Proj. Rept. A-8, 163 pp., illus.
UNITED STATES BRREAI OF AERICJRTURA, ECONCHICS.
1949. FABH LABOR. January 1949. [Processed.]
(10)
(11) UNITED STATES BLipeal of The censis.
inited states berean of labor statistics.
1948. HUNDEDOK OF LABCR STATISTICS, 1947. U. S. Sur. Labor Statis. Bul. 916, 221 pp .
1947. UNITED STATES CENSLS OF AGRICLLTRE, 1945. 2v. Washington, D. C.

APPENDiX

$\frac{\text { Effects of Weighting Factors on Measures }}{\text { of Labor Productivity }}$
As was indicated on page 3 , in constructing a farm-production index, it is necessary to use a common denominator as a weighting factor in combining bushels of wheat and corn, tons of hay, dozens of eggs, etc., into total farm production. The weights used in the construction of the production indexes that are utilized in this analysis were the conventional "average price" weights. The indexes of production were originally developed for several purposes, one of the most important of which was to ascertain what changes had occurred in the different regions of the United States in volume of agricultural production per se. Majority opinion seems to favor this sort of weighting system when a production index is wanted for this and other general purposes.

Many would prefer a system of labor weights if the specific purpose of constructing the production index were to deriveameasure of the productivity of labor. An agricuitural production index constructed with unit-labor-requirement weights shows the same general changes in production and in labor productivity as those used in this publication. The chief difference between aggregative types of production indexes constructed with these two kinds of weights is that individual products may receive more or less weight in a set of average prices than in a set of unit-labor requirements. Cotton, for example, is a labor-intensive product so it has less weight in a set of average prices than in a set of labor weights. Consequently, price-weighted indexes have shown a greater increase in all agricultural production and in total labor productivity than similar labor-weighted indexes during these recent years when the production of most agricultural items has risen more than the production of cotton.

Although geographic-division average prices were uaed as weights in developing the production indexes utilized in this study there are other sets of average prices that might have beenapplied - United States average prices for example. As an accurate picture of changes that had occurred in each part of the United States was desired, r egional average prices were used. The average 1935-39 farm prices of the broadly defined commodities used, as all corn and all wheat, varied among regions (table 23). Corn, for example, was priced at $\$ 0.56$ per bushel in the West North Central Division and at $\$ 0.85$ per bushel in New England.

TABLE 23.-Farn prices of selected fare products, by geographic division, average 2935-39

Many factors account for the variations in prices among regions, and for that matter, among States and even among parts of a State. There are area differences in the grade and quality of the products and in the form in which they leave the farm, which influence the prices received. The tobacco grown in Connecticut and Massachusctis, for example, is chiefly a cigar-wrapper type and the price obtained for it is regularly considerably above average. In regions in which milk is sold from the farms as whole milk for consumptionasfresh milk or cream, it generally is a higher grade product and commands a higher price than does milk in regiont in which cream for the manufacture of butter is sold.

There are differences among regions in the supply and demand conditions of a specific farm product and these affect the price. To illustrate, prices for corn are higher in New England because it is a feed-deficit area and corn or some other feed is shipped in to supply the need, involving transportation and handing costs. The seasonal pattern of production also influences decidedly the area differentials in prices of some farm products. Potatoes grown in areas in which the new crop is put on the market early have a price advantage over potatoes grown in late-season areas.

In order to compare measures of labor productivity, using regional and United States average prices as weights, the production indexes in each geographic division were recalculated for 1919-21 and 1943-45 using 1935-39 average United States prices. ${ }^{23}$ The latter set of price weights assigns to corn, for example, the same absolute weight in each region. Use of United States prices as weights would conceivably affect in two respects, the measures of labor productivity that have been used. The percentage changes in production per manthour in the various regions over a period of years might be different than when regional prices are used as weights. And United States price weights might give different results regarding relative levels of labor productivity among regions.

A significant question in building up farm production indexes under either set of price weights is just how far to go in determining average prices. For example, different varieties of fruits of various kinds, or tobacco of different types, or cotton of different staples, are in effect different commodities having different average prices and, in principle at least, each should be weighted by its average price.

As there are greater differences in varieties, types. etc., of most farmproducts in the United States than in any geographic division, the determination of average prices for a detailedclassification of farm commodities is more important when United States average price weights are used. This is accomplished to a certain degree by using geographic division average prices. The Pacific Division average price of wheat, for example, approximates the United States average price of white wheat as the production of white wheat is chiefly limited to the Pacific States and other classes are not extensively grown in the region. A similar situation prevalls for many of the other farm products. Limitations of

[^17]TA4E 24.-Change in production per man-hour spentoncrops, livestock, and all farm production, urder two systeas of price weighes, by $\&$ geographic diviston, 1919-21 to 1943-45

data, plus the necessity of economizing on clerical work, made it impossible to go beyond the broadly defined products used.

A comparison of the changes in production per hour of tabor on crops, livestock, and gross farmproduction, from 1919-21 to 1943-45, under the two sets of prices is given in table 24. For most geographic divisions, the changes in productivity under the two weighting systems are not greatly different. The largest difference in crop-labor productivity occurs in the West Sonth Central region. Use of United States average prices results in a smaller increase in labor productivity than the use of average regional prices. chiefly because United States prices give greater weight to cotton. It is a major crop in the region and production of it decreased from 1919-21 to 1943-45. The lowering influence of cotton when United States prices are used is partly offset by the effect of corn and wheat. Corn has less weight in the set of United States average prices and the production in 1943-45 was about half that in 1919-21. United States prices give more weight to wheat, and its production increased during this quarter-century.

Use of United States average prices also results in a smaller increase in livestock-labor productivity in the West South Central Division. There were various degrees of change in volume of production over the 25 -year period in this area, and various degrees of difference between regional and national prices of the livestock items. Use of United States prices gencrally gave greater weight to the livestock items that increased the least and less weight to the items that increased the most.

In New England, use of United States average prices results in a greater increase in labor productivity in crop production than when regional prices are uscd. The $1935-39$ average price of potatoes is about the same for New England as for the United States, but the prices of other crops are much higher in New England than in the United States as a whole. This results in a greater weight for potatoes when United States prices are used. Potatoes are a major crop in New England and their production increased greatly trom 1919-21 to 1943-45. Tobacco is another important crop there. Use of United States prices gives less weight to tobacco than use of regional prices, and the production of this crop decreased during the period. The combinations of these changes in production and differences in weights for potatoes and tobacco both contributed to the greater increase in productivity obtained with the use of United States average prices.

Use of United States prices had an opposite effect on livestocklabor productivity in New England. Egg production increased almost four-fold during the period and use of United States prices means that eggs influence the total change less than when regional prices are used. There was the same effect with respect to the influence of cattle and calves. Production of these animals decreased greatly and their importance in the total was greater when United States average prices were used.
in New England, the effect of differences between the two sets of prices was in opposite directions for crops and livestock, so changes in total gross production per man-hour were not very different undet the two weighting systems. In the West South Central region, however, use of United States prices resulted in smaller increases in labor productivity for crops, livestock, and totalgross production.

TABLE 25. - Production per hour of work spent on crops, livestoch, and all fart prodiction, under two aystens of price weights, by geographic division, average 1943-45

The two systems of price weights do not give such different resulte in relative production per man-hour among regions during 1943-45 as might be expected (table 25). The most important differences occur in the New England and Middle Atlantic Divisions where the level of farm prices is generally higher than in the rest of the country owing chiefly to their proximity to marketa and population centers.

The regional price weights used in this study have some limitations when they are used in measuring the productivity of labor. But they are reasonably satisfactory for all measurements here attempted.

Tables

References have been made in the text to tables 1 to 43. Tables 44 to 66 contain most of the data upon which the foregoing analysis is based. Data in this group of tables were used in preparing several of the charts. In some of the charts, however, for more ef fective graphic presentation the base period is different from that used in the tables. The 1935-39 average is the base for the index numbers in all the tables.

TAHE 26.-Man-hours per acre, yizld, and man-hours per unit of production for designated crops, United States, indicated periods, 1910-48

Crop	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
Corn:								
Rtan-hours per acre	35.2	34.1	32.5	30.2	28.1	28.0	26.2	23.7
Yield - bushels--	26.0	25.9	27.3	26.4	22.1	25.0	32.0	35. 2
Man-hours per 100 bushel	135	132	119	114	127	112	82	67
Oate								
Men-hours per acr	15.7	15.1	13.2	11.9	10.7	10.1	9.2	8.1
Yield - bushel s-	29.4	32.5	29.8	29.5	26.3	29.2	31.8	35.0
Man-hours per 100 bushel	53	46	44	40	41	35	29	23
Hay:								
Ma-hours per acre	11.9	13.0	12.5	12.0	10.3	11.2	11.7	11.6
Yield - tan---	1. 15	1.25	1.22	1.22	1.08	1.24	1.35	1.37
Men-hours per ton	10.3	10.4	10.2	9.8	9.5	9.0	8.7	8.5
Wheat:								
Man-hours per acre-	15.2	13.6	12.4	10.5	9.4	8.8	7.4	6.1
Yield - bushels---	14.4	13.9	13.8	14.1	13.5	13.2	17.1	17.7
Mian-hours per 100 buchel	106	98	90	74	70	67	43	34
Rice:								
Men-hours per acre	55.0	51.7	46.9	37.2	33.0	31.8	$\bigcirc 29.2$	26.1
Yield - bushel s-	35.8	38.8	39.3	42.9	47.1	49.7	45.5	46.4
Men-hours per 100 bushel	154	133	119	87	70	64	64	56
Potatoes:								
Man-hours per acre	76.0	73.8	75.2	73.1	67.9	69.6	71.4	80.1
Yield - bushel ---	99.7	94.8	107.6	114.0	107.6	117.2	136.7	182.3
Man-hours per 100 bushel	76	78	70	64	63	59	52	44
Men-hours per ac	132	128	122	122	116	116	115	118
Yield - bushel s-	94.4	97.3	92.8	93.8	81.1	84.9	87.4	96.3
Man-hours per 100 bushels	140	132	131	130	143	137	132	123
Man-hours per acre	77.2	42.0	33.1	29.8	28.3	27.5	23.7	20.8
Yield - pounds-	778	645	667	655	714	855	898	988
Man-hours per cut.	6.$]$	6.5	5.0	4.5	4.0	3.2	2.6	2.1

See footnote at end of table.

TABLE 26.--Man-hours per acre, yield, and man-hours per unit of production for designated crops, United States, indicated periods,
1910-48 ${ }^{1}$--Continued

Crop	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
Sugar beets:								
	128	125	111	109	104	97	95	90
Yield - tons-	10.6	9.6	9.8	10.9	11.2	11.6	12.7	13.2
Man-hours per con	12.1	13.0	11.3	10.0	9.3	8.4	7.5	6.8
Man-hours per acre	116	105	96	96	97.	99	103	102
Yield - pounds-	200.6	167.9	154.8	171.3	184.0	226.2	259.9	268.6
Man-hours per bale	277	299	297	268	252	210	190	182
Tobacco:								
Man-hours per acre	356	353	353	370	370	415	448	495
	816	893	773	772	784	886	1,026	1,164
	44	44	46	48	47	47	14	1.43
Soybeans:								
Men-hours per acre	---	---	---	15.9	12.9	11.8	10.7	9.8
	---	---	-..	12.6	14.3	18.5	18.3	19.0
Man-hours per 100 bushels --.....-......---	---	---	---	126	90	64	58	52

TABLE 27.--Effect of change in yield per acre, andmechanization and other factors on bushels of corn produced per 100 aan-hours, by geographic division, indicated perioas, 1919-46

Geographic division	Production per 100 men-hours			Change in production per 100 men-hours from 1919-21 to 1937-39			Change in production per 100 man-hours from 1937-39 to 1944-46			Change in production per 100 man-hours from 1919-21 to 1944-46		
	1919-21	1937-39	$1944-46$	Total	Associated with change in		Total	Associated with change in		Total	Associated with change in	
					$\begin{aligned} & \text { Wechan- } \\ & \text { ization } \\ & \text { and } \\ & \text { other } \\ & \text { factors } \end{aligned}$	Yield per acre		$\begin{aligned} & \text { Wechen- } \\ & \text { ization } \\ & \text { and } \\ & \text { other } \\ & \text { factors } \end{aligned}$	Yield per acre		$\begin{aligned} & \text { Wechan- } \\ & \text { ization } \\ & \text { and } \\ & \text { other } \\ & \text { factors } \end{aligned}$	Yield per acre
	Bushels											
New Englend -Middle	46	53	60	7	12	- 5	7	5	2	14	17	- 3
Atlantic .--	66	76	93	10	16	-6	17	17	0	27	33	-6
	120	180	227	60	35	25	47	39	8	107	74	33
West North Central	151	175	249	24	37	-13	74	31	43	98	68	30
South Aclantic	40	41	50	1	2	-13 -1	74 -9	31 2	43 7	98 10	68 4	30 6
Est South	40	41	50	1	2	- 1	-9	2	7	10	4	6
Central -..West South	37	42	55	5	7	- 2	13	6	7	18	13	5
Central -..-	51	50	54	-1	8	-9	4	4	0	3	12	9
Mountain --.-	90	75	128	-15	6	-21	53	16	${ }^{4} 3$	38	22	16
Pacific -..----	101	114	130	13	13	0	16	5	11	29	18	11

TECHMTAL DULLITN 1020, U. 8. DEFT. OP AGRLCULTURE

TABLE 28.-Use of tractor power, mechanical pickers, anahyorid seed in producing corn, by geographic aivision, 1938 or 1939 and 1016

	Percentage of specificed operations an corn acreage done with tractor power ${ }^{2}$.				Percentage of acreage of corn for grain harvested with mechanical picker ${ }^{1}$		Percentage of acreage of corn plented with hyorid seed	
	Breaking land ${ }^{2}$		Culcivating					
	1939	1946	1939	1946	1938	1946	1938	1946
	Percent							
New England	41	70	13		\cdots	$\underset{20}{13}$	$\frac{1}{3}$	58
Middle At lantic	49	81	16	56	- 27	28	$\begin{array}{r} 3 \\ 33 \end{array}$	$\begin{aligned} & 70 \\ & 97 \end{aligned}$
East Narth Central	70	92	42	82	27 19	64	33	97
West North Central	74	94	48	84	19	57	21	88
South Atlantic --	13	40	3	12	(2)	4	$\text { (}{ }^{2}$	16
East South Central	12	36	- 5	14		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\left.{ }^{1}\right)^{1}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$
Vest South Central	26 74	57 91	16 41	50 76	$\begin{array}{r} 3 \\ 3 \end{array}$	$\begin{array}{r} 4 \\ 23 \end{array}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$
Mountain Pacific --	74 71	91 94	41 26	76 75	3	$\begin{aligned} & 23 \\ & 30 \end{aligned}$	$\begin{array}{r} \text { (3) } \\ 1 \end{array}$	$\begin{aligned} & 23 \\ & 43 \end{aligned}$
United Scates	51	78	30	64	12	41	15	69

${ }^{1}$ Adepted fram Use of Tractor Power, Animal Power, and Hend Methods in Crop Production. (4).
: Includes plowing with moldboard and disk plows, listing, middle busting, and bedding.

- Leas than 0.5 percent.
$\begin{array}{r}\text { TABLE 29. - Effect of change in yield per acre, and sechanization oud other factors, on pounds of cotton lint produced per } 100 \\ \hline\end{array}$

TABLE 30. - Percentage of indicated operations on cotton acreage done with tractor power, by geographic division, 1939 and 1946°

Geographic division	Breaking land ${ }^{\text {a }}$		Planting		Cultivating	
	1939	1946	1939	1946	1939	1946
	Percent	Percent	Yercent	Percent	Percent	Percent
West North Central-*	24.	76	4	30	13	55
South Atlantic-----	11^{-}	40	1	12	1	10
East South Central--	14	36	4	15	6	15
West Souch Central--	40	74	33	62	32	65
Mtuntain--..--------	75	90	56	75	64	83
Pacific-	85	97	71	85	73	90
United States - .-.	30	60	21	43	21	45

${ }^{1}$ See footnote 1 , table $2 B$.
${ }^{2}$ See footnote 2, table 28.

TABLE 31.-Effect of change in yield per acre, and aechanization and other factors, on bushels of theat proauced per 100 ani-hours. by geographic division, indicatea periods, 1919-46

Geographic division	Praduction per 100 man-hours			Change in production per 100 man-hours from 1919-21 to 1937-39			Change in production per 100 man-hours from 1937-39 to 1944-46			Change in producticn per 100 en-hours from 1919-21 to 1944-46		
	1919-21	1937-39	1944-46	Total	Associated with change in		Total	Associated with change in		Total	Aasociated with change in	
					Mechanization and other factors	Yield per acre		```Mechan- ization and other factors```	Yield per acre		$\begin{gathered} \text { Mechan- } \\ \text { ization } \\ \text { and } \\ \text { other } \\ \text { factors } \end{gathered}$	Yield per mere
	Bustrels	Bushels										
Middle At lantic	76	118	149	42	20	22	31	26	- 5	73	46	27
Cast North Central --..-	96	136	213	40	21	19	77	42	35	117	63	54
West North Central .-...	106	168	297	62	64	-2	129	50	79	191	114	77
South Atlentic --.......-	54	73	107	19	8	11	34	20	14	53	28	25
East South Central	55	71	90	16	3	13	19	14	5	35	17	18
West South Central -...-	136	228	306	92	121	-29	78	46	32	170	167	3
Mountain --.-.-.--------	104	185	284	81	61	20	99	52	47	180	113	67
Pacific --.-.-.-.-.-.-.-	162	309	410	147	106	41	101	45	56	248.	151	97

TABLE 32... Use of tractor power and conbines in producing wheat, by geographic division, 1938 and 1945 ar 1939 and 1946

Geographic division	Percentage of apecified operations done zith trector power ${ }^{1}$				Percentage of acreage harvested with cambines*	
	Breaking lund ${ }^{\text {2 }}$		Seeding			
	1939	1946	1939	1946	1938	1945
	Percent	Percent	Percent	Percent	Percent	Percent
Middle Atlantic.	47	80	10	46	8	41
Gest North Central	68	91	26	68	29	70
畳et North Centrib	80	96	64	90	49	77
South At lantic--.	21	51	7	35	6	49
East South Central	16	44	5	27	7	42
West South Central	71	89	71	89	74	92
Manntain-..	75	92	58	82	51	79
Pacific-	78	93	67	86	84	94
United States	74	92	57	84	49	78

${ }^{1}$ See footnote 1 , table 28.
${ }^{2}$ See footnote 2, table 28.
${ }^{3}$ Adayted from Harvesting Small Grains and Utilization of the Straw. (3).

TABLE 33.-. Change in production of all meat animals and aninal products per aarhour of direct labor, and man-hours and production per unit of breeding livestoch, United States, tndicated periods, 1919-46 ${ }^{1}$

Item	Annual rate of change			Total change 1919.21 to 1944-46
	$\begin{gathered} 1919-21 \\ 1937.39 \end{gathered}$	$\begin{gathered} 1937-39 \\ t 0 \\ 1944-46 \end{gathered}$	$\begin{gathered} 1919-21 \\ \text { to } \\ 1944-46 \end{gathered}$	
	Percent	Percent	Percent	Percent
Man-hours per breeding unit---------.--	0.9	-2.0	0.1	2.8
Livestock production per breeding unit--	1.3	. 8	1.2	33.3
Livestock production per man-hour-.....-	. 4	2.9	1.1	30.2

[^18]TABLE 34. -- Change in production of all meat animals and animal products per manhour, by geogrophic division, indicated periods, 1919-1946 ${ }^{\text { }}$

Geographic division	Annual rate of change			Total change 1919-21 to 1944-46
	$\begin{array}{r} 1919-21 \\ \text { to } \\ 1937-39 \end{array}$	$\begin{gathered} 1937-39 \\ \text { to } \\ 1944-46 \end{gathered}$	$\begin{gathered} 1919-21 \\ \text { to } \\ 1944-46 \end{gathered}$	
	Percent	Percent	Percent	Percent
Ne: England--	1.3	3.9	2.0	64.4
Middle Atlantic	. 8	3.0	1.4	40.4
East North Central-	. 5	2.8	1.1	33.2
West North Centra! -	(a)	3.6	1.0	26.6
South Atlantic----	. 7	2.8	1.3	38.0
East South Central	. 1	1.8	. 6	16.4
West South Centrat	. 2	1.9	. 7	18.1
Mountain-	. 3	2.3	. 8	23.6
Pacific.	. 9	2.5	1.3	39.4

[^19]TABLE 35.-Change in production of meat animals and animal products per ann-hour, United States, indicated periods. 1910-46

Enterprise	Annual rate of change				Total change 1910-12 to 1944-46
		$\begin{gathered} 1919-21 \\ \text { to } \\ 1937.39 \end{gathered}$	$\begin{gathered} 1937-39 \\ 10 \\ 1944-46 \end{gathered}$	$\begin{gathered} 1910.12 \\ 20 \\ 1944-46 \end{gathered}$	
Meat animals and enimal	Percent	Percent	Percent	Percent	Percent
products----.	0.2	0.4	2.9	0.8	32.6
Milk caws-.	. 6	. 6	2.4	1.0	39.9
Peat aninal	. 4	. 3	1.3	. 5	20.3
Poultry-	. 3	. 7	2.8	. 9	34.4

[^20]TABLE 36. - Won-hours per unit of production and related fectors for desienated livestock onterprises, United States, indicated periods, $1910-48$

Enterprise	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
Milk cows:								
Man-hours per cow--..............--	146	141	142	145	147	148	140	135
Milk por cor- pounds.............	3,842	3,790	4.000	4,437	4.289	4.401	4,657	4,927
Men-hours per tundredweight of milkChickens and egga:	3.8	3.7	3.6	3.3	3.4	3.4	3.0	2.7
Man-hours per 100 layers-.........	172	169	172	172	172	172		
Eggs per layer 1-....................	${ }^{86}$	84	91	91	91	101	109	127
Hogan-hours per 100 eggs-............	2.0	2.0	1.9	1.9	1.9	1.7	1.5	1.3
Men-hours per hundredweight produced	3.6	3.6	3.5	3.3	3.2	3.2	3.0	2.9

[^21]TABiE 37.-Milk production and change in milk proauction per 100 man-hours of direct labor. by geographic division, indicated periods, 1919-46

Geographic division	Milk production per 100 man-honrs			Change in milk production per 100 man-houra	
	1919.21	1937-39	1944-46	$\begin{gathered} 1919-21 \\ t 0 \\ 1937-39 \end{gathered}$	$\begin{gathered} 1937-39 \\ t o \\ 1944-46 \end{gathered}$
	Founds	Pounts	Pounds	Pownes	Pounds
New Ergland	2,764	2,992	3,575	228	583
Niddle Atlantir .-	3,103	3,407	4.214	304	807
East North Centrol	2.875	3,302	3.962	427	660
West North Centra?	2.782	2,972	3,354	190	382
South Atlantic ---	2,264	2,535	2.827	271	292
Fest South Central	2,255	2,474	2,662	219	188
West South Central	1,854	2,426	2,476	572	50
Mountain	2,612	3.190	3, 586	578	396
Pacific	3,264	3.923	4.823	659	900
United States	2,704	3,04!	3.508	337	467

TABLE 38..-Factors associated wath changes an malk production per 100 man-nours of direct lakor. by geographac tivision, 1937-39 to 1944-46

Geographic division	Tot.s) change in milk produclion yer 100 man-hours	Change in milk praduction per 100 man-hours associated with		
		Increase in use of milking machines	Miscel. laneous factors	Change in production per cow
	Pounas	Pounds	Pounds	Paunds
New Englond	583	338	134	111
Miodle Atlantic	807	436	269	102
Cast North Centra!	660	1.85	285	190
West North Central	342	91	172	119
South Atlantic	292	53	140	99
East South Central	188	23	120	45
West South Central	50	29	98	-77
Mountain	396	111	168	117
Pacific .-	900	382	373	145
United States	467	151	203	113

TABLE.39.--Production of corn per man-hour of direct lator and related factors, by geographic division, average 1943-45

Coprophic division	Produc1ion per 100 bumhours	$\begin{gathered} \text { Yieldi } \\ \text { ler } \\ \text { acre } \end{gathered}$	Acreage planted with dybujd sucd	Mantromes pler acter	Acreage harvasted		Land breaking done witl i, ractior power ${ }^{3}$
					For kilage	For grain with mechanical pieker ${ }^{9}$	
	Bushe is	Rusheis	Percent	Hour*	Percent	Percent	Percent
Hest North (entrril Gast North Cuntrul	235	36.2	78	15.4	3	51	94
Past North Central	216	4.5 .5	93	21.1	?	58	92
Pacitic------------	130	35.9 18.0	35	27.7	35	13	94
Hiddtr At antic---	122 88	18.0	16	14.8	8	13	91
New Enkltond-a.----	97	37.2 40.3	52	42.3	35	17	81.
East Soulh Centiraj	52	20.8	16	68.1 40.3	78	2	70
West Souch Central	50	15.7	8 8	31.1	(4)	4	36 57
South Aclantic-	17	17.3	7	40.9	J	4	40
['nited Statrs-u-]	133	32.6	59	24.6	5	37	78
	Itulex mumurs (${ }_{\text {mited }}$ States $=100$)						
West Nortl Cantral	177	1.11	--	1.3	--	--	--
East North Centrad	162	140	--	86	--	--	--
Bacific-	98	1.13	--	113	--	-.	-
Mountaith	02	5.5	--	$6{ }_{6}$	-.	--	--
Mitdle Atlantice--	66	114	-.	172	--	-.	\ldots
New England.-.-.--	44	12.1	--	277	--	--	--
Fast South Central	39	6.4	--	164	--	.-	-.
Hest fouth Camiral	38	48	-*	126	--	_.	.
South Allantic-	35	59	--	164	--	--	--
L'niled Slates-4-	100	100	--	100	--	-*	-*

[^22]TABLE 40.--Production of cotton per man-hour of direct labor and related foctors, by geographic division, average 1943-45

Ceographic division	Production per 100 man-hours	Yield per ocre	Man!hours per acte	Acreage worked with traccor power ${ }^{1}$	
				Preaking !and ${ }^{\text {a }}$	Caltivating
	Pounds	Pounds	Howrs	Percent	Percent
Pacific---........	460	536	117	97	90
Mountain----.-...-	344	406	118	90	83
Weat South Central	273	205	75	74	6.5
West North Central	269	411	153	76	55
East South Central	244	347	142	36	15
South Atlantic...-	229	316	138	40	10
United States---	258	268	104	60	45
	Jndex numbers (United States $=100$)				
Pscific.-.-.-.-.-	178	20.1	112	--	--
Mountain- ---	133	151	113	-.	-.
West South Central	106	76	72	--	--
West North Central	104	153	147	-.	..
East South Central	95	129	137	--	--
South Atlantic-..-	39	11.8	133	--	*-
United States--	100	100	1.00	\cdots	--

[^23]TABLE 41.--Production of theat per man-hour of direct labor and related factors, by geographic division, average 1943-45

Geographic division	Production per 100 man-ltwurs	Yield per acre	Man-hours per acre ${ }^{\text {? }}$	Acreago harvested wich contines ${ }^{2}$
	Bushels	Bushe is	Hours	Percent
Pacific-...-.	388	24.8	6.4	94
Mountain.	295	13.0	4.4	92
Weat North Central	286	20.3	7.1	79
West North Central-........-	284	15.9	5.6	77
East North Central--...-....	193	21.2	11.0	70
	137	21.2	15,5	41
South At lantic-..----...... East South Central-.......-	98 87	15.9	16.3	49
	87	14.3	16.4	42
United States-	251	17.1	6,8	78
	Index numbers (United States $\times 100$)			
Pacific.-.---....-.----......	155	145	94	\cdots
Hest South Central-a-...---	118	76	65	-
	114	110	104	--
West North Central-.........	113	0.3	92	--
East North Central--.-.....	77	124	162	--
Middle Atlantic----.....---	55	124	228	.-
South At lantic-	39	93	240	-*
East South Central--------	35	R4	241	--
United States-	100	100	100	--

${ }^{1}$ Includes summer fallow work, and time spent in preparing land and seeding acreage not harvested.
*For 1945 , see footnote 3 , table 32.

TABLE 42.-Production of milk per man-hour of direct labor and related factors, by geographic division, average 1943-45

Geographic division	Milk production per heor	Milk proctuction jer cow	$\begin{gathered} \text { Man-hours } \\ \text { per } \\ \text { cow } \end{gathered}$	$\begin{aligned} & \text { Milking } \\ & \text { nachines } \\ & \text { wer loo cows } \\ & \text { milked } \end{aligned}$	Milk cows in large Jerds*
	Pourds	Pounds	Haurs	Number	Percent
Pacific.-----.-.-	46	6,516	141	2.0	57
Middee Atiantic...	41	5,743	141	2.8	48
East North Central	38	5,358	140	2.5	24
Mountain--..-...--	35	5,076	143	1.7	16
New England-....--	35	5,488	157	2.7	52
West North Central	33	4. 464	135	1.3	11
South Atlantic-...	28	3.812	138	. .5	20
East Suuth Central	26	3,305	127	. 2	12
West South Central	25	3.097	123	. 3	1.3
United States-.-	34	4,659	136	1.6	23
	Index numbers (brited States $=100$)				
Pacific-.----.	135	140	104	125	-
Midile Atlantic--	121	123	104	175	-
Eust North Centiral	112	115	103	1.56	-
Mountain---......-	103	. 109	105	106	-
New England.+....-	103	1.18	115	169	-
West North Central	97	96	99	81	-
South Atlantic...-	32	82	101.	31.	-
Enst South Central.	76	71	93	13	-
West South Central	74	65	90	19	-
Uniterd States---	100	100	100	100	-

[^24]TARLE 43.--Production of eggs per man-hour of direct lator and related fac* tors, by geographic division, average 1943-45

Geographic division	Egg production per hour	$\begin{gathered} \text { Egg } \\ \text { production } \\ \text { per hen } \end{gathered}$	Man-hours per 100 hens	Chickens in large flocks
	Number	Number	Hours	Percent
New Englend-	94	153	162	81
Pacific---	87	137	158	72
Middle Atlantic	77	128	167	75
East North Central-	72	121	168	39
West North Ceneral.	71	114	162	52
Hountain-.-.-......	70	116	166	43
Weat South Central	67	97	145	28
South At lantic---	60	97	161	25
East South Central-	56	91.	163	9
Wited States	71	114	161	44
	Index numbers (United States $=100$)			
New England.	132	134	101	-
Pacific---1...	123	120	98	-
Middle hilantic	108	112	104	-
East North Central	101	106	104	-
West North Cantral	100	100	101	-
Mountain-....-	99	102	203	-
West South Central	94	85	90	-
South Atlantic..-	85	85	100	*
East South Central-	79	80	101	-
United States-	100	100	100	*

TABLE 44.--Gross farm production, by selected enterprises and periods, Uhited Stctes, 1910-48

Enterprise	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Million dollars	Hillion dollars	Million dollars					
Feed grains	2,050	2,160	2,178	2,112	1,828	1,887	2,321	2,475
Corn--. -	1,617	1,647	1,692	1,600	1,401	1,431	1,733	1,854
Oats	332	399	378	365	- 300	316	- 369	434
Barley	78	86	73	111	100	110	155	129
Sorghums for g	23	28	35	36	27	30	64	58
Hay ${ }^{1}$------....	629	748	763	717	647	751	907	896
Food grains	629	730	725	708	636	668	800	1,043
Wheat	587	667	658	654	587	608	736	-976
Rye	18	31	33	20	15	21	17	11
Buckwheat	7	6	6	5	4	3	4	3
Rice	17	26	28	29	30	36	43	53
Truck crops and farm gardens	249	271	341	439	484	560	646	731
Vegetables, except truck --.	314	314	335	326	357	350	387	407
Potatoes----------	247	232	257	242	258	247	268	299
Sweet potatoes	44	53	- 52	48	56	53	50	46
Dry edible beans-	23	28	24	33	38	45	56	51
Dry field peas---...-		1	2	3	5	5	13	11
Fruits, berries, and tree nuts	311	310	344	374	385	432	484	525
Sugar crops --------------	70	78	76	63	$\begin{array}{r}79 \\ \hline 19\end{array}$. 90	84	89
Sugar cone	26	24	21	14	19	29	25	28
Sugar beets-	28	33	38	38	47	50	50	33
Sorgo sirup-	9	15	12	7	10	7	6	6
Maple products	7	6	5	4	3 788	4	${ }^{3}$	2
Cotton----.-.	847	681	648	901	788	778	707	656
Tobacco-.	193	244	244	256	252	280	285	401
Oil crops --.--	38	40	46	61	59	100	239	290
Soybeans for beans	-12	1	3	6	14	46	126	168
Peanuts	12	23	19	24	27	37	58	64
Flaxseed-	26	16	24	31	18	17	55	58
Other crops	35	33	36	43	45	56	61	65
All crops-	5,365	5,609	5,736	6,000	5,560	5,952	6,921	7,578

See footnotes at end of table.

TABLE 44. -Gros: farm production, by selected enterprises and periods, United States, 1910-48--Continued
[Production in 1935-39 average dollars]

[^25]TABLE 45.--Man-hours of labor required for farm work, by selected enterprises and periods, United States, 1910-48 ${ }^{1}$,

Enterprise	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Million hours							
Feed grains	4,301	4,298	4,023	3,693	3,494	3,131	2,919	
	3,539	3,498	3,296	2,999	3,494 2,910	2, 594	2,331	2,050
Oats	- 583	609	558	488	401	360	350	332
Barley--	129 50	127	100	136	131	120	139	92
Sorghums fo Hay ${ }^{2}$ -	50 878	64 1.039	- 6946	70 937	52	57	99	77
Food grains	905	1,007	1,0464	727	899	901	1,045 489	964 499
Whea	767	805	736	611	510	503	402	427
Rye--	75	126	120	63	48	57	40	24
Buckwhe	27	27	21.	18	. 12	9	8	6
Rice--.-.-.-....	36	49	47	35	29	32	39	42
Truck crops and market gardens	195	217	290	387	423	478	531	634
Farm gardens-...........	437	436	473	519	496	532	620	584
Vegetable, except truck Potatoes	389	405	388	355	388	353	339	301
Potatoes-....-	267	257	260	224	234	211	203	190
Sweetpotatoes-.-	79 43	91 57	89 39	80 50	102.	93	84	73
Dry field peas--	+-8	(3)	(3)	5	49 3		48	35
Fruits, berries, and tree	800	744	748	772	759	753	751	772
Sugar corps ---	197	234	215	161	199	205	179	178
Sugar beets	64	80	82	74	83	81	71	70
Sugarcane---	90	87	75	53	66	87	76	83
	32	57	50	27	44	31	27	22
Cotton-	3.937	10					5	3
Tobacco	3,937 457	3,421 579	$\begin{array}{r}3,24 \\ 597 \\ \hline\end{array}$	4,086	3,367	2,749	2,269	2,018
Oil crops-	77	107	112	134	152	192	324	891 344
Soybeans for bean		2	4	9	15	36	88	103
Peanuts--	43	86	84	96	119	143	209	219
Flaxseed-	34	19	24	29	18	13	27	22

See footnotes at end of table.

TABLE 45. - Man-hours of Labar reguired for farm work, by selected enterprises and periods, United States, 1910-48 ${ }^{1}$--Continued

Enterprise	1910-14	1915-19	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Hillion hours	Million hours	Million hours	Million hours	Hillion hours	Hillion hours	Hillion hours	Hillion hours
Other crop	217	217	217	217	217	217	217	217
All crops	12,790	12,704	12,280	12,637	11,561	10,801	10,338	9,953
Horses and mules	1,859	1,972	1,906	1,651	1,349	1,091	919	732
Milk cows-.--	2,658	2,821	2,965	3,107	3,521	3,483	3,487	3,253
Meat animals 4 -......	1,151	1,265	1,187	1,162	1,219	1,151	1,456	1,397
Other cattle and calv	634	693	581	543	602	596	$\div 21$	747
Hogs----------.---	438	495	529	511	498	436	608	552
Sheep, lambs, and wo	191	175	168	216	248	242	250	187
Poultry------	786	810	872	992	988	943	1,127	1,175
Misc. livestock	129	129	129	129	129	129	129	129
All livestock	6,695	7,095	7,150	7,149	7.335	6,920	7,241	6,775
Farm maintenance	3,439	3,494	3,429	3,492	3,335	3,118	3,102	2,951
All farm	22,924	23, 293	22,859	23,278	22,231	20,839	20,681	19,679

${ }^{1}$ The sum of the geographic division figures for an item presented in tables 45 to 54 may not exactly agree with those shom in this table because of rounding.
${ }^{2}$ Includes man-hours for sorghums for forage and silage.
${ }^{3}$ Less than 500 thousand hours.
${ }^{6}$ Excludes man-hours for wool.

TABLE 46. - -Man-hours of labor required for farm wark, by selected enterprisea and periods. Ne Ensland Division, $1920-48$

Enterprise	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Hillion hours	million hours	vilion hours	Hillion hours	dillion hours	Million hours
Feed grains	30	25	23	21	18	15
Cora	21	17	16	15	13	11
Orts	${ }^{9}$	(1) 8		(4)		
Barley-1--...........---	(1)	(1)	(1)	(1)	(4)	(1)
	30	29	${ }^{-7}$	27	28	31
Foorl grains.	1	1	(1)	(1)	(1)	(1)
Theat-	(${ }^{1}$	(1)	(1)	(1)	(1)	(1)
Hye--	--1	-..	\cdots		\cdots	
Buckune	1	1	(${ }^{1}$	(${ }^{1}$	(1)	(${ }^{1}$
Truck crops and market	--.	\cdots	-	-..	---	---
gardens--.......--	14	17	19	24	21	19
Fari gardens-..--------...	11	12	14	17	17	16
Vegetables, oxcept truck:	19	19	21	19	21	25
Potstoes-....------.....	19	19	21	19	21	25
Sreetpotatoes..........-	(1)	(1)	(1)	(1)	-1)	-i)
Dry edible beans...--	(1)	(1)	(((--	(
Fruits, berries, and tree nuts-	25	23	22	18	17	17
Sugar crops	4	4	3		2	1
Sugar beets				
Sugarcane -.....----......	---	...	---	---		
Sorgo sirup.	-	---	\cdots	---	---	,
Maple products-....-----	4	4	3	3	2	1
Cotton-.....	15	\cdots	10	\cdots	-.-	10
Oil crope-.................	---	12	10	---		
Soybeans for beans--.-.	---	\ldots	---	--.	---	---
Peanuta---------........	...	---	\ldots	---
Other crops	1	1	\cdots	1	1	,
All crops-...--------	150	143	139	138	134	135
Horses and mules-------...	32	26	19	15	11	10
Milk cows-------......--	143	128	131	131	122	108
Ment animals-3............	15	12	13	12	13	13
Other cattle and calves	11	8	9	9	10	10
Hogs--...........-------	3	3	3		3	3
Sheep, lambs, and wool-	1	1	1	1	1	(1)
Poultry-.---------------	19	21	23	26	36	40
Misc. Livestock-..........	3	3	3	3	3	3
All livestock------.-	212	190	189	188	186	174
Farm maintenance-......---	64	59	58	58	56	54
All farm mork-----...	426	392	386	384	376	363

[^26]TABLE 47. -. Wan-hours of labor required for farm work, by selected enterprises and periods, Hiddle At lantic Divisian, 1920-48

Enterprise	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Million hours	Nillion hours	Million hours	Hillion hours	Million hours	Million hours
Feed prains.--------------	208	177	160	151	129	115
Corn	151	128	120	117	100	91
Onts	53	44	35	30	25	21
Barley--------.---.-.-.	4	5	5	4	4	3
Sorghums for grain-....	\cdots	\cdots	-.-	---	-	-
Hay ${ }^{\text {l }}$.......................	86	82	67	64	76	80
Food grains--*-----------	60	45	36	35	27	25
Wheat	39	30	24	26	20	19
Rye	8	4	4	3	2	2
Buckwheat	13	11	8	6	5	4
Pice-------------------	---	---	-.-	---	--*	---
Truch crops and market gardens	50	56	60	72	78	101
Farm gardens...-.---...-.-. -	39	41	42	42	45	42
Vegetables, except truck---	57	44	46	41	38	36
Potntoes-----...-------	51	39	40	34	33	31
Smeetpotatoes----------	2	2	2	3	2	2
Dry edible beans--......	4	3	4	4	3	3
Dry field peas---------	---	--.	**	-..	- -	---
Fruits, berries, and tree nuts-	87	76	72	62	53	46
Sugar crops-...........-----	3	2	2	2	2	1
Sugar beets.--............	-.	---	---	---		-..
Sugarcane-..............-	---	-**	---	---	--*	*-
Sorgo sirup-................. Maple products-.---......	3	2	--	2	--	$\cdots 1$
Cotcon------...-------	---	---	---	---	\cdots	-..
Tobacco-......------------	15	13	10	9	12	14
Oid crops...-..------...--	---	---	(a)	(2)	1	1
Soybeans for beans---.-		---	(a)	(a)	1	1
	---	3	${ }^{-}$	${ }^{*} 3$	${ }^{--}$	-- 3
All crops--..-.........	608	539	498	481	464	464
Horses and mules--------.	121	95	74	62	51	37
Milk cows------......-...--	383	357	375	371	356	323
Meat animals_3......-.-.-.	39	37	37	39	42	42
Other cattle and calves-	21	22	25	26	27	28
Hogs--------.....-------	15	12	9	11	13	13
Sheep, lambs, and wool--	5	5	5	4	4	2
Poultry------.......------	68	81	82	86	100	112
Misc, livestock-......--r--	11	11	11	11	11	11
All livestock--------	624	583	581	571	562	526
Farm maintenance-------.	218	198	191	186	177	173
All farm work---------	1.450	1,320	1.270	1,238	1,203	1,163

[^27]TABLE 48. - Man-hours of labor required for farm work, by selected enterprises and periods, East North Cintral Division, 1920-48

Enterprise	1920-2.4	1925-29	1930-34	1935-39	1940-44	1945-48
	Million hours	tillion hours	Million hours	Million hours	Mallion hours	Million hours
Feed grains.----.........-	831	787	690	622	546	505
Corti-	643	599	542	501	442	412
	168	160	124	102	92	89
Barley---1.-..-.-.-...-	20	28	24	19	12	4
Hayz	173	154	(1) ${ }^{1}$	(')	(1)	(1)
Food grains-.........	170	154	108	156	1.73	153
Wheat-----	132	99	94	114 99	72	68
Hiye--.--	35	12	12	14	$\begin{array}{r}63 \\ 8 \\ \hline\end{array}$	63
Buckwheat--------6-.....	3	2	2	14	1	4
	---	--		-...	-.-	...
Truck crops and market gardens	42	53	60	66	80	
Farm gardens-.-.-.-.-.-...-	99	102	85	66 98	. 106	103 96
Vegretables, except truck--	80	70	72	61	106 49	33
Potatons-..------------	66	53	56	48	35	24
Sweetpotatoes------.....	1	1	1	1	1	1
Dry edible beans---.....-	13	16	1.4	12	13	1
Lry field peas-...........	..	(1)	,	(1)	(1)	(${ }^{1}$
Fruits, berrits, und						
tree nuts---.............	76	70	70	66	55	
Sugar crops-.....----....--	24	16	16	1.7	15	10
Sugar beets	21	14	15	1.5	13	9
Sugarcane ----.....---...	-.	,		-	\checkmark	---
Sorgo si rup-	2	1.	(1)	1	1	(1)
Maple products		1		1	1	
Cotcon-...---	1	d	(')	(1)	,	(1)
Tobacco--.	33	26	24	(17	18	-19
Oil craps -.-........-.....-	1	3	?	23	50	54
	1	3	7	23	50	54
Flaxseed.	(1)	(1)				
Other crops	28	${ }^{1} 28$	${ }_{28}$	${ }_{28}$	${ }^{(1)}$	28
	1,558	1. 423	1,283	1,268	1. 193	1,120
Lorses and mulus-------..-	330	268	214	176	135	87
Milk cows------------..--	75.8	789	874	881	889	854
heat animals-3...-.........	206	198	209	210	268	247
Other cattie and ealves-	62	65	71	80	92	90
Hogs--.----.---.--------	135	121	124	117	164	148
Sheep, lambs, and wool---	19	24	28	26	23	17
Poultry-------.-.---..----	188	205	203	197	208	212
Misc. livestock-------...-	25	25	25	25	25	25
All livestack---------	1,517	1,497	1,539	1,502	1,536	1.433
Farm maintenarice----...---	543	515	498	489	482	450
All farm work	3,618	3.435	3,320	3,259	3,211	3,003

[^28]TABLE 49.-- Atan-hours of labor required for farm work, by selected enterprises and periods, Hest North Central Division, 1920-48

Enterprise	1920-24	1925.29	1930-34	1935-39	1940-44	1945-48
	Million hours	Million hours	Million hours	Million hours	椎llion hours	Million hours
Fegt irains	1. 120	1,130	1,003	784	775	710
Corn	83.4	850	773	570	544	527
Oats	214	187	149	138	134	132
Barley	51	73	69	63	72	40
Sofgherns for grain-......-	21	20	12	13	26	11
Hay	286	250	202	226	276	230
Tood grains	394	310	234	229	181	182
Wheat	328	272	212	200	164	173
Dуе----------------------	64	$3 i$	21	29	17	8
Buckwiea	2	2	1	(3)	(2)	1
Rice.	--	-.-	---	-..	---	...
Truck crops and market gardens	14	18	18	22	24	38
Farm gardens -- -----------	93	103	82	87	114	113
Vegetables, excepl truck.--	57	45	41	36	34	28
Poratoes - ------------.	55	4.3	41	34	32	25
Sweetpozatoes---..........	2	2	2	1	1	1
	(2)	(${ }^{2}$	1	1	(2)	2^{2}
Dry field peas -..-------	--.	-	--	- - -		
Fruits, berries, atid tree tuzs	39	35	28	21	15	12
Supar crops	14	15	17	15	13	11
Sugar beuts	10	13	15	13	11	10
Sugarcare---------	--.	---	---	-.-	---	---
Sorpo si mip------....-...	4	2	2	2	2	1
Maple products....---..--	-*	*-	---	---	---	---
Cotton	32	51	52	62	48	58
Tobacco	2	2	3	2	2	3
Oil cmps--......----------	23	28	18	16	42	47
Soybegas for beans-1.--..	(2)	1	2	4	20	29
Peanuts	- -	--	\cdots	---	---	--
Flaxseed	23	27	16	12	22	18
Other crops	27	27	27	27	27	27
All crops ---------....	2,10.	2,014	1.728	1,527	1,572	1,4 5
forses bici mules	579	503	402	287	227	172
Milk cows	717	812	951	999	892	801
Meat amimuls ${ }^{3}$------------	433	446	458	357	. 885	453
Other cattle and calves --	185	183	205	176	216	212
Hops ----...........-------	211	252	238	165	249	225
Sheep, lambs, and wool---	16	22	31	32	41	30
Poulery .-.-...------------	258	289	288	254	316	324
\$iscell aneous livestock ---	1.5	15	15	15	15	15
All livestock	2,011	2.076	2,130	1,828	1,956	1,779
Fammaintenance - --.-.....	725	722	681	592	623	572
Al! farm work	4,837	4,812	4,539	3,947	4, 151	3,810

[^29]TARLE 50 -.Man-hours of labor required for farm work, by selected enterprises and periods, South At lantic Division, 1920 -48

Enterprise	1920-24	1925-29	1933-34	1935-37	1940-44	1945-4
	Million hours	Alllion hours	Million hours	Mfillion hours	Million hours	Million hours
Feed graina	540	463	490	514	459	433
Com	513	441	45%	489	437	400
Oats	26	21	22	23	28	29
Barley .-...............--	1	1	2	2	4	4
Sorghums for grain	5		9	\cdots		(a)
Food grains	55	49	49	62	74	79
Wheat -	18	39	38	42	34	${ }_{27}$
Pye --.....	6	5	7	6	7	
Buchwheat -.......	2	1	1	1	(2)	$\left({ }^{3}\right)^{3}$
Rice	-.--	-..	---	
Truck cropa med market gardens	58	69	69	79	9.3	90
Fatm gardens .-.-.-.-......	60	67	68	91	94	88
Vegetables, excepl truck	61	56	64	59	56	50
Potatoes.	24	24	24	22	22	21
Sweetpotatoes	37	32	10	37	34	29
Ory edible beans	---	---		-	...	
Mry field peas	-	\cdots	---	---	-..-	
Fruits, berries, and tree touts	100	108	108	132	129	139
Sugar crops ---.....------	25	18	26	26	23	25
Sugar beets	\cdots	-	\cdots	---	-	
Sugarcane .-.-..........--	14	12	15	18	16	19
Sorgo sirup Maple products	11	6	11	8	${ }^{7}$	
Cotion Pros.	833	895	736	599	89	19 399
Tobaceo	340	435	407	502	460	655
Oil crops-.----.......	55	68	82	97	130	137
Soybeans for	2	3	4	5	8	8
Peanuts	53	65	78	92	122	129
$\xrightarrow{\text { Plaxseed }}$	7	--	\cdots			
		5.	5.3	53	53	53
All crops	2.23k	2,326	2, 198	2,233	2,111	2,178
Horses and mules Milk cows	175	154	137	131	128	120
	233	228	2.56	259	261	265
Meat animals ${ }^{3}$...........-	79	73	80	97	105	115
0 Oher cattle and calves-	38	35	41	44	54	64
Hogs -.-...........------	39	35	35	10	48	50
Sheep, lanbs, and wool -	5	6	7	,	5	0
Poultry------........	93	101	99	99	133	150
Miscell meous livestock	15	16	15	16	16	15
All livestock	599	575	590	59.5	645	659
Fam maintenance	500	512	492	495	486	503
Ali farn work	3,335	3,413	3,280	3,324	3,242	3,350

[^30]TARE 51.--Man-hours of labor required for farawork, by selected enterprises and periods, East South Central Division, 1920-48

Enterprise	1920-24	1925-29	1930-34	1935-39	1940-45	1945-48
	Afillion hours	Hillion hours	Bfllion hows	$\begin{array}{\|c} \hline \text { Milition } \\ \text { hours } \end{array}$	Hillion hours	Nillion hours
Feed grains -.............	653	551	551	527	481	399
	639	542	542	520	464	382
Oats .-....................-	14	${ }^{9}$	8	6	13	14
Barley ${ }^{\text {Sorghum }}$ for grain	${ }^{(1)}$	(1)	- 1	1	,	2
Hoy	50	45	53	69	78	85
Food grains:	17	13	14	19	15	13
Wheat	15	11	12	17	13	11
Aye	2	2	2	2	2	2
Buckuheat	(')	(')	(')	(${ }^{\text {2 }}$	(')	(${ }^{2}$
Truck crops and market gardens	25	33	25	\cdots	---	**
Farm gardens-	25 74	33 87	25 93	23	25	29
Vegetables, except truck	$3!$	31	39	35	34	98 27
Potatoes .-.-.....--.....	7	8	9		11	
Sweetpotatoes-	24	23	30	26	23	18
Dry edible beans -........	---	\cdots	-..	--.	...	---
Fruits, berries, pald trees	\cdots	-	-	--"	---	.-.
Sugar crops	33 34	31	30	28	26	23
Sigar beets	34	21	36	31	24	23
Sugarcane -	12	9	13	15	11	11
Sorgo simup...	22	12	23	16	13	12
Maple products	\cdots	---	\cdots			
Tobacco	687	971	854	773	654	624
Tobacco ---..--	191	161	178	145	153	191
Onl craps ---..	25	23 1	$\stackrel{28}{1}$	34 2	48 4	46
Peanuts .-..	24	22	27	32	44	6
Flaxseed	3	\cdots	---	..	-	
Other crops	33	33	33	33	33	33
All crops	1,853	2,001	1,934	1,809	1,674	1,591
Fioraes and mules Milk cows	177	165 210	148	142	141	129
Meat minala	69	10 64	256 70	258 83	263	263
Other cattle end calves-	31	30	35	83 42	100	104 5
Hoge +.....----.........--	36	31	31	38	47	45
Poultry --.wns, and wool -	6	6	8	8	8	7
Poultry --..................	75	83	78	77	86	86
Miscell meaus livestock -	11	11	11	11	11	11
All livestock	538	536	567	576	604	596
Famm maintenasce	422	448	441	419	402	386
All farm wark	2,813	2.985	2,942	2,804	2,680	2,573

[^31]TABLE 52.--Man-hours of labor required for farm york, by selected enterprises and periods, West South Central Division, 1920-48

Enterprise	1921-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Million hours	Million hours	Miltion hours	Million hours	Million hours	Million hours
Feed grains --------------	538	462	484	428	408	298
	453	381	409	350	304	207
Oata	42	34	38	38	34	29
Barley ----.--.......-...-	2	2	2	3	6	2
Sorghums for grain	41	45	35	37	64	60
	140	109	126	123	147	117
Food grains --------------	93	73	65	69	73	90
	49	42	40	40	37	53
	1	(2)	(2)	1	2	1
Buckwheat -........--------	$4 \overline{3}$	31	25	28	34	36
Truck crops and market gardens	35	56	70	76	89	97
Fam gardens -.-.-...........	66	74	17	79	99	91
Vegerables, except t,ruck:	29	28 9	36	34	33	30
	7	19	11	10	11	8
Sweetpotatoes-......-	22	19	25	24	22	22
Dry edihle beans .-.------------ Dry field peas	---	---	---	---	(2)	---
Fruits, berries, and tree nuts	41	50	54	60	65	62
Sugar crops --............-	61.	38	45	59	54	57
	49	I2	\cdots	' ${ }^{1}$	(${ }^{\text {d }}$	${ }^{2} 1$
Sugarcane --------------	49	32	38	54	49	53
Sorgo sirup .-----------	12	6	7	5	5	4
Maple products -.........-			170	1.225	- 9	---
	1.67]	2,116	1,670	1.225	967	825
Tobacco		(2)	(3)	(3)	(2)	(${ }^{3}$
	7	11	16	20	49	56
Soybeans for beans -----	(2)	1	1	1	5	6
Peanuts ...----...........-	7	10	15	(19	${ }^{4} 4$	49
Other crops	12	42	42	42	42	42
Alt crops ------------	2,724	3,059	2,685	2,215	2.026	1.765
Horses and mules	290	270	22.3	177	142	109
Milk cows	265	284	347	356	368	337
Meat animals ${ }^{\text {a }}$------------	160	135	151	155	200	D1
Other cattle and calves -	117	91	103	101	131	131
Hogs --.......................	38	35	37	40	51	44
Sheep, \anits, and wool	11	16	23	29	33	28
Poultry -......	93	111	113	107	132	128
Miscellaneous livestock	19	19	19	19	19	19
All livestock	833	R26	865	829	A76	796
Farm maintenance	628	686	626	534	512	452
All farm work	4,185	4571	4,176	3,578	3.414	3013

I Includes man-hours for sorghums for forage and silage.
${ }^{2}$ Less than 500 thousand hours.
${ }^{3}$ Excludes men-hours for wool.

TABLE 53. - -Wtan-hours of labor reguired for forn work, by selected enterprises and periads, Mountain Division, 1920-48

Esterprise	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Miltion hours	Killion hours	Million hours	Million hours	Hillion hours	\#illion hours
Feed grains - .-.	68	6 ?	62			
Corn-...--	35	36	36	54	62	51
Oats...	21	16	11	10	12	17
Sarley---2--	7	12	12	12	20	21
Hoy ${ }^{\text {2 }}$ Sorguns for grion	141	3 140	3 114	5	5	4 113
Food grains	148	140 85	114 59	109	119	113
Whear	88 4	85	59	53	51	56
Rye-	4	82 3	58	52	49	55
Buckwheat	4	3	1	1	2	1
Pice-----.-- .-. --		---	---	\cdots	- $-\cdots$	\cdots
Trucle crops and market gardens.	12	23	21		31	36
Farm gardens-...-...---...	14	15	16	27 16	31	36 19
Vegetables, except truck:	27	38	16 41	16 38	19	19 39
	17	18	20	19	21	24
Swreetpotatoes---7---...-	10	19	19	-		-
Dry field peas-----------	10	19	19	18	19	14
Fruits, berries, and tree nuts \qquad	--	1	2	1	2	1
	23	22	19	18	17	18
Sugar beets--.-------------	43	41	44	39	34	34
Sugarcane-....-.---------	43	41	44	39	34	34
Sorgo sirup---....-....-				--	-	---
Maple products--....-...	-			.-	--	
	18	33	31	43	\cdots	\cdots
Tobacco--			31	4	39	47
Oil crops -............-----	2	2	2	(${ }^{\circ}$)	\cdots	1
Pernues-..				\ldots	---	---
Flaxseed	2	2	2	(9)		\cdots
Other crops	9	9	9	(9)	2	1
All crops	445	475	418	406	424	423
Horses and mules	132	115	91	67	58	
Milk cows-.---	107	124	140	131	135	122
Meat animals ${ }^{3}$	125	132	135	130	155	147
Ohher cattle and calves	75	68	71	69	84	94
Hogs--.---.------------	14	14	13	11	18	13
Sheep, lants, and wool -	81	103	112	105	107	78
Poultry----...---..----....	29	35	37	33	40	40
Miscel ${ }^{\text {aneous }} \mathrm{l}$ i ves tock-..	15	15	15	15	15	15
All livestock -..---..-	453	474	479	431	457	410
Farm maintenance	158	168	158	147	155	147
All farm work--..---.	1,056	1,117	1,055	984	1,036	980

[^32]

TABLE 54.--Man-hours of labor required for farm wark, by selected enterprises and periods, Pacific Division, 1920-48

Enterprise	1920-24	1925-29	1930-34	1935-39	1940-44	1945-48
	Million hours	Afillion hours	Million hours	Million hours	Million hours	Million hours
Feed grains	33	30	30	31	31	26
Coed	6	5	5	5	4	3
Oets	11	9	8	8	7	6
Barley--..-..---------	1.5	14	15	16	17	15
Sorghums for grain----	1	2	2	2	3	2
Hay ${ }^{1}$	84	78	75	71	76	76
Food graid	46	40	36	33	29	33
Wheat-	40	36	31	28	23	26
Rye	1	(2)	1	1	1	1
Buckwheat--..----...---	--	---	- 4	4	\cdots	6
Rice-...-.-....----------	5	4	4	4	5	6
Truck crops and market gardens	40	62	82	90	100	121
Form gardens---.........-	18	18	19	20	23	23
Vegetables, except. truck	29	25	25	27	31	33
Potatoes-....--.------	14	12	12	14	17	22
Sweetpotatoes---..-...-	1	1.	1.	1	1	1
Dry edible bears-.....--	14	12	11	11	11	8
Dry field peas-*.......	---	(2)	1	1	2	2
Fruits, berries, and tree nuts	319	358	356	367	374	404
Sugar crops	8	5	9	14	13	15
Sugar beets----.-.-...-	B	5	9	14	13	15
Sugarcane-.-----...---.	---	---	---	---	---	
Sorgo sirup-----------	---	---	---	---	---	
Maple products---------	-*-	--	-	---	--	64
Cotton----------------	7	20	24	48	4.	64
Tobacco--	---	---	---	1	3	2
Oil crops ------.-.------	---	--	-	1	-.	
Soybeans for leans-...--	---	---	---			
Peanuts---------------	- -	--	(2)		3	2
Flaxseed--------------	${ }^{-2}$	$\stackrel{-}{-}$	22	22	22	22
111	606	658	678	724	743	819
Horses and mules---------	70	56	41	33	26	19
	757	175	1.91	196	200	181
Mebt animals ${ }^{3}$....-...---	60	65	66	78	87	85
Other catte and calves	40	40	11	52	59	64
liogs------------------	9	10	9	11	15	11
Sheep, lanbs, and wool-	25	32	34	31	27	19
	48	64	65	64	76	83
Miscell meneous livestock--	14	14	14	14	14	14
All livestock-------	363	391.	395	401	417	391
Farm maintenance--------	171	185	190	198	205	213
All farm work---....-	1,140	1,234	1,263	1,323	1.365	1.423

[^33]TABLE 55.-Index numbers of man-hours of labor requirea for farm work, by selected enterprises, Initea States, $1910-48$ $[1935-39=100]$

yoayt wuys do dinllonaoyd Ni SNIYD

TABLE 55. - Inaex numbers of man-hours of labor required for jarn work, by selectea enterprises, United States, 1910-48-Continued

		Livestock					Crops										
Year	All farm work	AlI live- stock	Horses and mules	$\begin{gathered} \text { Milk } \\ \text { cows } \end{gathered}$	Meat animals ${ }^{\prime}$	Poultry	$\begin{gathered} \text { Al! } \\ \text { crops } \end{gathered}$	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1930	109	104	135	94	103	109	112	110	89	112	94	100	101	85	139	116	73
1931	112	105	123	98	107	104	116	119	97	110	91	112	108	89	142	106	83
1932	108	106	123	102	108	104	109	121	105	100	93	115	100	99	119	70	85
1933.	108	109	118	106	113	105	107	111	92	91	94	107	99	110	124	97	73
1934.	96	106	114	106	99	101	90	96	78	85	82	1.16	97	102	88	74	84
1935	100	100	110	102	90	94	100	107	111	98	96	113	$\underline{105}$	100	91	90	96
1936	97	101	104	101	99	101	95	96	83	93	91	97	92	97	101	82	96
1937	105	99	100	99	96	1.03	109	101	94	112	95	101	105	98	132	105	91
1938	99	99	05	99	103	97	98	100	108	100	107	97	97	105	89	95	100
1939.	99	101	Q	99	112	105	98	96	104	88	111	92	101	100	87	128	117
1940-	98	101	89	99	113	106	97	95	117	85	113	92	98	89	89	. 92	128
1941...	97	102	87	100	118	107	93	93	115	87	112	92	102	88	79	- 81	127
1942--	101	106	84	101	131	118	98	94	121	79	115	92	101	101	87	91	199
1943--	100	109	82	10.1	142	133	95	92	113	74	113	111	95	82	79	92	213
1944	100	106	79	100	129	. 33	96	91	111	82	118	93	101	79	78	122	177
1945	96	104	75	99	124	1.34	91	85	116	83	118	89	99	88	63	126	179
1946 .	95	100	70	95	122	127	92	84	105	80	128	93	107	92	62	143	172
1947.	93	96	64	92	121	120	92	76	103	86	117	79	104	92	77	137	185
19.48..	94	92	59	87	119	117	95	81	101	83	120	80	101	76	92	115	180

[^34]TABLE 56. - Index numbers of man-hours of labor reguired for fara work, by geographic division, 1919-48 $(1935-39=100)$

TARIE 57 --Index numbers of production per man-hour by selected enterprises, United States, 1910-1948 [1935-39 - 100]

			Livestock				Crops										
Year	Farm output	Gross farm production	Meat enimals and animal products	Milk cows	Meat ani. mals ${ }^{1}$	Poultry	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and garden	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	$\mathrm{CrOps}_{\text {Oil }}$
1910.4	74	82	94	86	92	88	76	82	88	59	70	79	58	80	70	103	78
1911--	72	80	94	86	93	93	11	74	87	55	70	76	67	82	78	103	93
1912--	78	86	95	87	91	92	81	87	87	65	71	86	72	79	76	104	115
1913-2	72	81	95	88	91	87	73	73	87	63	72	80	62	81	74	102	92
1914--	76	84	96	88	91	86	79	80	87	70	73	84	77	82	80	105	87
1915--	80	89	99	90	93	88	84	88	86	73	73	81	76	79	72	103	82
1916-1	73	83	98	88	93.	87	77	78	88	60	73	74	72	79	69	104	76
1917-1	76	85	97	88	91	88	79	84	86	61	73	80	68	74	70	105	66
1918--	75	84	97	86	94	88	79	81	86	67	78	77	72	77	69	105	71
1919--	76	86	95	90	95	88	81	85	87	64	77	19	75	73	71	99	60
1931-7	81	89	95	90	95	87	86	95	87	66	77	87	83	81	77	99	65
1921-7	77	87	98	93	95	92	83	87	86	66	78	81	63	81	64	100	62
1922.-	82	89	101	94	98	93	86	88	89	69	81	86	84	78	69	100	69
1923--	82	89	103	94	100	94	85	94	88	70	82	89	85	82	66	103	84
1924.-	81	87	100	96	98	89	83	84	90	85	84	93	83	80	75	98	97
1925-1	82	88	99	97	99	90	83	97	93	73	86	87	78	87	77	99	88
1926--	83	89	102	99	100	9.4	84	91	93	87	84	91	93	85	82	99	88
1927--	87	92	104	102	101	94	89	94	92	89	88	93	78	93	75	94	97
1928--	89	92	103	102	102	92	89	97	93	94	90	97	87	93	76	94	84
1929--	88	92	103	103	101	95	88	95	93	96	91	94	85	90	77	96	80

technical bulletin 1020, U. S. dept. of agricultube
See footnotes at end of table.

TARLE 57..-Index numbers of production per nin-hour by selected enterprises; United States, 1910-48--Continued $[1935-39 \cdot 100]$

Year	Fam output	Gross farm prodiction	Livestock				Crops										
			Meat animals and animal products	Milk cows	Meat mimals ${ }^{1}$	Poultry	$\underset{\text { crops }}{\text { All }}$	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	$\begin{gathered} \text { Cot }- \\ \text { ton } \end{gathered}$	To-	$\begin{aligned} & \text { Oi1 } \\ & \text { crops } \end{aligned}$
1930.	8.	90	103	102	100	0.4	86	86	94	103	91	94	83	98	76	97	90
1931--	93	0.4	102	100	102	96	91	92	92	111	95	93	98	88	92	99	77
1932--	94	94	101	97	102	96	91	102	91	98	92	90	86	92	82	97	69
1933--	86	88	99	94	102	94	84	86	97	19	95	91	88	93	80	97	64
1934--	82	85	92	92	98	91	81	65	95	81	105	96	85	82	83	100	69
1935--	96	97	93	96	97	99	97	96	96	86	98	94	99	90	89	100	103
1936.-	88	90	100	98	106	98	86	71	99	89	102	93	89	98	94	98	78
1937--	103	102	98	100	99	96	103	111	104	103	102	105	103	98	110	102	96
1938--	106	105	103	103	100	104	107	109	102	110	99	104	100	109	103	99	102
1939--	107	106	105	103	104	103	107	113	99	112	99	104	109	105	104	101	121
1940--	112	110	109	105	104	104	112	116	101	126	98	111	110	115	108	108	129
1941--	128	14	113	110	106	114	119	126	102	139	100	112	113	111	102	105	143
1942--	127	122	120	114	109	119	126	143	106	159	103	117	116	109	112	105	144
1943--	125	120	125	113	113	122	122	135	108	147	101	118	106	99	110	104	141
1944--	130	124	123	115	112	120	128	142	108	166	103	118	119	101	119	109	144
1945--	134	128	126	121	110	126	133	149	109	171	106	125	112	107	110	108	153
1946--	141	133	126	125	110	121	140	164	112	182	110	138	122	112	106	111	154
1947--	139	130	128	129	110	128	133	142	114	201	109	137	121	117	115	109	152
1948--	149	139	132	132	110	129	145	188	115	198	108	149	90	118	124	113	187

${ }^{1}$ Excludes wool.
Includes sorghums for forage and silage.

TABLE 58. - Inuex numbers of production per man-hour by selecteu enterprises. New Englana Division, 1919-48 $[1935-39=100]$

Year	Farm output	Gross farm pro-duction	Livestock				Crops										
			Meat animals and animal products	$\underset{\substack{\text { Mill } \\ \text { cows }}}{ }$	Mest ani$\mathrm{mals}{ }^{1}$	Poultry	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cot. ton	Tobacco	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1919..-	78	87	81	88	93	75											
1920-..	75	85	8	89	92	78	89 86	84 87	89 89	--	92	74 71	87 76	124	---	106	--
1921.-	78	87	82	89	92	81.	88	89	89 90	---	94	81	76	115	\cdots	102	--
1922.	76	84	84	91	92	82	84	86	90		89	68	71	110	---	103 91	\cdots
1923--	81	88	85	92	94	83	92	87	90	-.-	89 92	68 89	71 80	110	---	91 103	---
1924-.	83	91	85	92	95	79	94	89	91	--.	94	89 94	88	115	\cdots	103	---
1925-.-	83	90	8 f	94	97	80	91	92	93		93	94 87	82 86	108	---	101	---
1926.	85	92	89	96	98	81	93	93	92	-.-	93	95	91	104	-..	102	---
1927...	86 88	92 93 97	90	99	97	84	92	90	91	---	94	87	78	106	-.-	96	--
1929...	93	97	92	98	95 94	84 87	95 101	91	95 95	---	94	88	77	105	--.	96	---
								95	95		95	102	88	102	---	102	--
1930-.	96	99	94	100	95	88	102	99	96	---	94		103				
1931.-	94	97.	93	99	95	89	100	96	96	...	98	97	103 81	105	\cdots	103	--.
1932...-	93	96	92	98	96	90	100	99	97	---	91	95	105	103	-..	105	--.
1933-..	94	96 97	92	95	97	91	98	97	98	---	99	100	108	97	...	101	
1935-..	96	97	92 95	96	97 99	91	101	99	98 99	-	99	110	62	101	-..	104	---
1936-..	98	98	98	$\begin{array}{r}98 \\ 100 \\ \hline\end{array}$	99 100	97 98	96 99	98 99	99 100	\cdots	99	104	90	102	--.	103	-.
1937.	103	103	100	100	101	98	105	99	100 99	---	100	105	81	99	\cdots	104	...
1938---	99	99	102	100	100	103	104 98	99	99 100	---	101	105	116	100	-..	99	--.
1939..-	104	103	105	102	100	103	102	105	102	---	101	98 98	92 121	99 100	\therefore	90 104	---

See foot notes at end of table.

TABLE 58.--Inaex numbers of production per man-how by selected enterprises, New England Division, 1919-48--Continued [1935-39 = 100]

Year	Farm outprt	Gross farm produc tions	Livestock				Crops										
			Meat onimals and animal products	Milk cows	Meat mals ${ }^{2}$	Poultry	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vege- tables except truck	Fruits and tree nuts	Sugar crops	$\begin{aligned} & \text { Cot- } \\ & \operatorname{ton} \end{aligned}$	Tobacco	$\underset{\text { crops }}{\text { Oil }}$
1940--	107	106	108	105	99	106	106	108	103	---	99	106	101	110	---	102	---
1941--	111	109	114	109	99	112	107	110	105	-..	102	108	113	117	---	104	---
1942-.	119	116	123	115	100	120	111	114	104	-..	103	108	128	121	---	102	-..
1943.-.	127	123	130	114	104	122	122	111	106	--	105	118	107	130	---	104	-..
1944...	122	118	132	118	107	119	113	114	107	---	106	109	98	133	-.-	104	---
1945---	125	121	136	120	101	124	116	116	108	\cdots	107	107	74	145	-..	100	--.
1946-..	134	129	132	123	100	114	127	123	108	-..	109	125	103	134	---	102	--
1947...	136	130	141	130	98	127	125	124	109	-..	108	125	110	135	-..	99	
1948--	139	133	140	131	96	120	129	126	110	---	110	130	105	146	---	99	---

[^35]TABIE 59.--Index numbers of production per man-hour by selectea enterprises, Miale Atlantic Dietsion, $1919-48$ $(1935-39=100]$

Year	Farm output:	Gross farm pro-duction	Livestock				Crops										
			Weat animals and anumal products	$\begin{gathered} \text { Milk } \\ \text { cows } \end{gathered}$	Abat aninubls ${ }^{1}$	Poultry	$\underset{\text { crops }}{\text { All }}$	Feed grains	Hay ${ }^{2}$	Food grams	Truck crops and gardens	VegeLables except truck	Fruits and tree nuts	Suzar crops	$\mathrm{Cot}-$ tor	Tobacco	$\underset{\text { crops }}{\text { Oil }}$
1910.-.	24	84	89	on	98	85	78	81	81	63	76	79	65	105	---	96	\cdots
1920--	80	87	87	00	100	85	85	84	81	64	38	87	106	104	---	100	---
1921---	73	82	89	92	99	90	76	83	82	66	70	76	50	106	---	98	---
1922--	82	88	91	9.4	98	90	85	81.	82	64	79	84	96	105	---	95	---
1923--	79	86	91	93	98	00	82	79	82	70	80	83	84	101	---	95	--
1924--	83	89	91	93	100	$8:$	85	80	83	65	86	$8-$	83	101	---	94	---
1925--	82	88	92	9.4	99	82	83	88	84	73	85	79	80	98	-..	98	---
1926--	85	90	9.4	98	100	89	86	86	83	74	83	85	103	102	---	97	---
1927-.-	87	91	97	100	99	89	86	83	8.4	34	88	$8 \bar{i}$	68	99	---	97	---
1928--	88	91	97	100	98	87	87	83	89	65	89	02	85	101	---	98	-..
1929--	87	90.	97	101	97	92	8.	Rn	85	74	90	85	75	98	---	95	---
1930--	89	91	97	100	97	89	87	79	86	84	91	89	96	99	---	85	---
1931-.-	94	95	96	101	98	54	94	91	87	90	92	101	99	96	---	98	---
1932--	90	91.	95	98.	98	94	88	82	87	35	87	96	99	97	\cdots	90	---
1933--	91	92	94	96	98	92	89	85	87	87	93	94	87	96	---	86	\cdots
1934 - -	93	94	94	98	97	91	93	90	88	79	98	105	79	97		97	150
1935--	97	98	98	100	98	96	96	96	87	96	98	94	98	98	---	100	115
1936-.	95	96	90	100	100	98	94	94	88	94	100	99	83	101	---	104	83
1937.-.	103	103	100	100	100	98	105	100	115	105	102	102	110	103	---	97	108
1938---	103	102	101	101	101	103	10:	106	120	104	99	102	94	99	---	100	105
1939-.	102	101	102	99	101	105	101	104	90	101	101	103	115	99	---	99	89

See footnotes at end of table.

TABLE 59.--Inaex numbers of production per man-hour by selected enterprises, Hidule Atlantic Division, 1919-48-Continued $[1935-39=100]$

Year	Farm output:	Gross farm produc. tion	Livestock				Crops										
			Ment animals and animal prod. ucts	Milk cows	Meac animals ${ }^{2}$	Poultry	Al) crops	$\begin{aligned} & \text { Feed } \\ & \text { grains } \end{aligned}$	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vege tables except truck	Fruits and tree nuts	Sugar crops	Cot. ton	Tobacco	$\begin{aligned} & \text { Oil } \\ & \text { crops } \end{aligned}$
1940-- -	104	103	104	104	103	10.4	103	110	93	107	100	105	99	101	-.-	102	96
19.11.-	107	105	110	109	102	113	103	116	94	106	101	111	101	109	-.	103	95
1942--	113	110	116	114	103	117	108	122	94	111	102	110	110	120	-	95	100
1943---	110	107	120	113	106	118	104	105	95	97	99	109	83	113	--	95	88
1944---	115	111	122	115	107	119	108	116	96	126	100	110	103	116	..-	102	95
1945---	119	114	124	120	104	117	111	128	96	132	102	117	57	113	...	97	109
1946---	128	122	127	125	104	116	118	141	98	139	107	136	106	115	---	101	119
1947...	128	122	133	134	104	125	116	133	98	151	103	134	101	117	---	103	110
1948..-	134	125	134	134	105	125	121	154	99	151	105	143	93	107	--.	102	122

[^36]TARLE 60..-Index nubers of production per man-hour by selected enterprises, East Nor th Central Division. $1919-48$ $[1935-39=100]$

Year	Fanm output	Gross farm prodticcion	Livestock				Crops										
			Meat animals and animal products	Milk cows	Meat animals ${ }^{1}$	Poultry	All crops	Feed grains	Hay^{2}	Food grains	Truck crops and gardens	Vege- tables ex- cept truck	Fruite and tree nuts	Sugar crops	Cotton	Tobacco	Oil
1919--	75	84	94	85	91	89	76	72	86	74	75	79	56	84	---	96	
1920--	77	85	92	86	93	89	77	76	88	60	67	91	92	90	----	100	50
1921--	72	81	94	90	93	94	73	71	88	63	74	74	41	88		100	50
1922.-	78	86	99	93	94	95	77	73	89	69	78	90	86	79	.-.	97	60
1923--	81	87	100	95	95	96	80	76	90	80	77	92	84	83		96	57
1924--	78	83	97	97	95	91	76	69	90	$8{ }^{8}$	83	95	70	79	--.	89	50
1925--	84	88	96	97	95	93	83	83	91	75	87	89	70	95	-...	100	56
1926--	83	88	98	59	95	97	82	77	92	93	83	90	95	89	--..	96	60
1927--	81	86	101	100	97	95	79	71	92	82	84	87	61	86	-..	93	62
1928--	85	89	101	101	98	94	81	81	93	52	88	95	81	76	-..	97	71
1929.-	86	89	101	103	98	99	81	77	93	81	90	87	74	78	-..	10.	81
1930.-	81	85	99	15	97	98	77	71	94	63	94	79	67	88		98	78
1931--	93	94	99	99	98	100	92	85	94	119	98	93	109	100	---	99	90
1932--	94	95	99	96	99	101	94	93	95	94	90	98	79	109	...-	94	89
1933--	83	85	99	93	99	98	80	73	96	89	101	84	79	94	-..	93	78
1934--	80	84	92	92	98	90	79	68	99	92	110	101	72	94	--.	100	89
1935--	95	96	94	96	97	101	96	94	97	94	100	96	105	88	---	100	93
1936--	87	89	99	99	99	100	83	75	100	98	103	92	74	104	---	99	83
1937--	104	103	97	100	100	87	106	108	100	96	104	96	116	104 89	---	99	99
1938--	104	104	103	102	101	105	104	106	101	105	97	108	81	109	---	98	111
1989--	110	108	107	103	103	107	111	117	102	107	96	108	124	110		104	114

See footrotes at end of table.

TABLE 60, - Index numbers of production per man-hour ty siected enterpises, East North Central Division, 1919-48-C̄onetnued $[1935-39=100]$

Year	Fam output	Gross farm produccion	Livestock				Crons										
			Meat animals and animal products	Milk cows	Meat animals	Poultry	All crons	Feed grains	Hay^{2}	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	To-	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1940.-	109	107	111	107	104	105		113									
1941--	118	114	117	114	106	114	118	126	103	125	96 103	99	102	115	\cdots	104	89
1942--	124	119	121	118	108	120	122	126 138	104	136 109	103	110	116	132	\cdots	104	105
1943--	122	117	126	116	111	124	119	130	106 107	110	105	108	113	126	---	106	106
1944-	124	118	123	119	112	121	120	126	109	149	103	102	85 114	83 107	---	101	106
1945--	133	126	124	124	111	130	131	144	110	171	104	1109	114	107 117	---	107	107
1946--	139	130	125	129	111	123	138	156	111	173	104	118	$\begin{array}{r}117 \\ \\ \hline\end{array}$	117	---	107	111
1947--	132	123	128	131	110	129	126	156 136	111	173 180	110	128	117 121	123 97	---	108	121
1948.-	156	144	131	134	111	127	157	181	115	203	103	145	121	97 123	---	108	109 133

${ }^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for for age and sil age.

TABLE 61-Index numbers of production per man-hour by selected enterprises, Hest North Central Division 1919-48

Year	Farm out. put	Gross farm pro-duction	Livestock				Crops										
			Neat animals and animal products	Milk cows	Meat animals ${ }^{1}$	Poultry	All crops	Feed grains	$H^{2}{ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	$\begin{aligned} & \text { To- } \\ & \text { bacco } \end{aligned}$	Oil crops
1919--	82	93	103	92	92	94	85	90	91	62	84	80	93	69	76	107	55°
1920-..	92	100	102	95	92	93	95	101	91	70	85	98	88	78	77	107	63
1921--:	88	97	107	99	93	98	91	96	93	67	85	$8: 4$	35	85	88	96	65
1922--	93	99	114	96	95	98	94	96	93	74	85	95	124	96	88	105	79
1923---	92	98	115	98	96	99	93	100	94	63	84	98	103	93	67	105	72
1924---	91	97	112	100	95	94	92	85	94	94	88	107	97	88	63	102	85
1925--	93	98	108	101	96	96	93	96	96	77	92	94	88	98	79	105	77
1926---	89	95	111	102	97	99	90	87	100	83	88	100	109	90	72	99	76
1927-.-	100	103	112	104	98	97	100	99	96	92	88	107	93	93	61	110	92
1928--	104	106	113	107	99	97	104	100	99	105	91	113	100	114	68	111	89
1929--	100	102	112	107	99	100	99	98	96	98	94	99	103	91.	78	107	77
1930---	100	102	112	107	99	100	99	91	98	114	94	99	65	99	77	104	85
1931...	96	97	114	105	100	101	94	84	101	116	93	96	117	96	97	109	69
1932-.-	104	104	108	101	99	98	104	105	100	104	93	99	83	99	94	104	81
1933-..	91	92	106	98	99	99	88	89	102	76	99	90	91	97	81	101	73
1934---	67	73	94	91	97	92	62	47	94	73	110	72	71	73	95	87	69
1935--	95	95	93	95	96	98	95	97	97	82	102	104	116	93	84	105	95
1936-.-	75	80	98	98	98	95	70	53	100	91	100	56	53	90	98	93	57
1937...	105	105	96	98	99	97	109	111	102	105	103	113	117	106	96	102	100
1938---	111	109	103	105	101	106	113	116	101	108	100	113	85	112	106	101	119
1939...	114	111	110	104	106	104	113	123	100	114	95	114	129	99	116	99	129

See footnotes at end of table.

TABLE 61. - Index numbers of production per man-hour by selected enterprises, Hest North Central Division, 1919-48--Continued [1935-39 = 100]

			Livestock				Crops										
Year	Farm output	Gross farm pro-duction	Meat animals and animal products	Milk cows	Meat animals ${ }^{1}$	Poultry	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vege tables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobeaco	Oil crops
1940--	121	116	111	107	104	103	122	127	102	140	94	126	119	113	106	109	138
1941-	130	124	118	112	106	113	130	137	105	160	99	120	108	119	113	111	141
1942---	146	137	127	115	109	122	149	159	110	198	101	133	116	110	110	109	144
1943---	141	132	135	114	113	124	142	148	111	181	97	127	84	103	101	108	140
1944-.-	147	137	129	112	113	122	148	158	113	180	94	121	87	106	110	113	138
1945-..	154	143	133	123	114	129	153	153	115	206	96	142	111	113	95	113	146
1996.--	163	151	133	128	114	126	167	174	118	215	105	147	128	122	111	115	160
1947.-.	154	141	137	130	114	131	151	135	119	238	101	148	132	113	99	104	151
1948---	182	165	137	132	114	129	181	202	122	233	110	167	129	119	110	110	189

${ }^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for forage and silage.

TABLE 62.--Index numbers of production per aan-hour by selected enterprises, South Atlantic Divisian, i918-48 [1935-39 = 100]

Year	Farm output	Gross farm pro-duction	Livestock				Crops										
			Meat animals and animal products	Milk cows	Meat animals ${ }^{1}$	Poul try	$\underset{\text { crops }}{\text { All }}$	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	Oil crops
1919...	73	81	91	86	101	84	78	96	93	75	85	97	65	92	82	86	91
1920-.-	79	85	91	88	101	83	83	103	93	84	87	101	82	93	86	84	88
1921--.	71	81	92	88	101	88	77	97	94	75	87	92	54	90	70	87	88
1922---	78	86	92	88	99	88	84	96	93	81	89	101	80	89	71	89	80
1923--	82	88	92	88	99	89	87	100	94	89	90	99	83	88	78	94	92
1924---	79	87	90	90	98	85	84	89	95	85	90	109	93	85	79	85	86
1925-..	79	84	91	91	99	86	82	93	95	95	92	92	77	79	83	92	94
1926---	86	90	96	97	100	90	87	101	95	103	91	103	94	91	88	93	97
1927---	85	89	99	101	102	91	87	102	96	91	94	112	70	89	80	94	100
1928---	84	88	97	102	100	86	85	92	95	94	94	115	86	88	77	90	91
1929...	87	90	97	102	99	89	88	102	96	95	97.	112	81	96	82	92	97
1930--	85	87	96	98	98	89	84	83	96	108	96	100	70	94	91	94	85
1931-.	93	94	95	99	99	93	93	100	95	117	96	101	105	93	95	91	100
1932-..	84	87	96	95	99	94	83	85	95	79	97	87	69	96	83	87	83
1933---	89	90	93	91	97	90	89	94	98	88	96	92	88	96	86	96	82
1934.--	92	95	90	91	95	91	94	87	97	92	100	102	85	95	96	97	92
1935--.	98	98	92	93	95	95	99	98	100	99	99	99	96	96	98	101	10 C
1936--	93	94	97	97	99	97	94	92	99	93	100	91	88	- 98	100	98	100
1937---	102	101	100	101	101	99	100	104	99	103	100	104	105	100	106	100	106
1938---	101	102	104	103	102	104	102	104	101	104	100	104	100	103	92	99	100
1939--	106	105	107	106	103	105	105	102	101	101	101	102	111	103	104	102	94

See footnotes at end of table.

TABLE 62.--Inaex numbers of production per man-hour by selected enterprises, South Atlantic Division, 1919-48--Continued $[1935-39=100]$

			Livestock				Crops										
Year	Farm output	Gross farm pro-duc-tion	Meat animals and animal products	Milk cows	Meat animals ${ }^{1}$	Poul. try	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	$\begin{aligned} & \text { Oil } \\ & \text { crops } \end{aligned}$
1940---	110	109	109	104	100	112	110	107	103	111	100						
1941---	109	109	114	112	99	121	108	111	105	117	100	109 93	119 119	111	113 88	106	120
1942---	116	114	120	114	103	127	115	116	104	118	102	105	130	104	-88	104	104
1943--	115	113	126	115	104	131	112	117	105	108	104	100	118	104	109	102	104
1944--.	123	119	124	117	101	127	118	123	106	148	105	94	130	113	120	107	103
1945---	127	123	128	121	97	135	122	136	104	135	106	109	135	110	113	107	109
1946---	129	124	126	124	99	128	125	143	105	160	108	122	142	112	111	109	106
1947---	130	124	128	128	99	132	124	150	107	171	106	114	139	109	108	108	117
1948-..	134	127	133	134	102	136	128	152	106	167	108	122	143	114	122	111	117

${ }_{2}^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for forage and silage.

TABLE 63.--Index numbers of protuction per man-hour by selected enterprises, East South Central Division, 1919-48 [1935-39 = 100]

			Livestock				Crops										
Year	Farin output.	Gross farm pro-duction	Meat animals and animal products	Milk cows	Neat animals	Poultry	All crops	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1919-.-	71	87	101	90	102	95	83	85	95	89	91	96	34	99	63	98	
1920-..	81	89	99	89	101	96	85	96	96	76	92	100	102	102	61	98	87 89
1921---	76	$8:$	101	91	101	102	82	89	96	79	93	92	65	101	64	97	86
1922.-	83	89	102	92	102	101	86	88	95	82	93	100	118	100	70	100	77
1923	76	85	100	91	100	103	80	89	06	84	94	101	83	100	47	100	69
1924--.	79	87	98	9	97	98	83	85	96	71	95	96	118	92	71	99	85
1925---	83	81	98	97	99	99	85	87	98	90	95	90	85	96	85	98	82
1926-..	89.	93	102	104	100	105	90	101	97	112	95	106	110	104	\% 3	98	75
1927...	82	88	107	106	102	104	83	91	97	70	96	103	67	100	76	93	84
1928-..	80	85	101	106	101	92	80	84	97	57	97	108	111	100	73	97	77
1929...	88	90	99	106	99	99	88	96	96	77	98	109	8.8	101	83	99	86
1930---	76	81.	98	103	99	98	76	62	9.4	88	98	94	73	96	76	94	81
1931...	95	94	96	100	97	100	94	10.4	95	113	98	9.	122	102	86	99	92
1932--	85	87	97	97	100	104	83	89	96	75	98	97	65	100	71	95	75
1933-..	88	89.	96	93	100	98	87	97	98	86	99	92	102	100	70	94	72
1934-.	92	94	91	89	98	99	94	92	98	92	99	101	103	104	88	101	92
1935-7-	92	94	94	93	${ }^{\prime}$	102	92	90	99	85	100	100	96	100	90	98	103
1936---	93	94	97	97	99	97	93	92	100	101	100	88	83	98	100	94	111
1937--	109	106	99	100	100	98	109	114	99	118	100	105	119	103	111	104	99
1938-..	106	105	104	105	101	104	106	109	101	106	100	10 ?	89	101	103	99	110
1939--	100	101	106	105	104	99	100	95	101	90	100	101	113	98	96	105	77

See footnotes at end of table.

TABLE 63.- Index numbers of proctuction per man-hour by selected enterprises. Enst Suuth Central Division, 1919-48--Continued $[1935-39=100]$

Year	Farm out. put	Gross farm pro-duction	Livestock				Crops										
			Meat animals and animal prod. ucts	Milk cows	Meat animals ${ }^{1}$	$\begin{gathered} \text { Poul- } \end{gathered}$	All crops	Feed grains	Hay ${ }^{2}$	Foal grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	$\begin{gathered} \mathrm{Cot}- \\ \mathrm{ton} \end{gathered}$	Tobacco	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1940-..	102	103	102	102	102	97	103	108	103								
1941~-	112	112	107	108	102	111	113	123	103	115	101 102	99 105	86 130	95	${ }_{9}^{91}$	108	111
1942---	117	115	116	119	106	117	117	129	103	120	102	108	130	104	101 113	108	132
1943 ---	117	114	121	111	109	122	113	124	104	105	102	108	109 87	101	113	108	140
1944...	122	118	118	114	106	114	118	126	104	138	103	105	87 99	102	112	107	136
1946-	125	122	115	117	102	120	125	146	100	110	103	114	119	104	113	115	132
	127	122	117	120	103	117	125	151	106	118	104	116	108	106		118	142
1947---	128 139	122	120	123	103	136	126	152	106	142	104	110	122	103	110	118	142
1948-.-	139	131.	123	126	105	123	134	181	106	145	105	113	123	108	124	118	162

${ }^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for forage and silage.

TABLE 64.--Index numbers of prounction per man-hour by selected enterprises, Mest South Central Division, 1919-48
$[1935-39=100]$

			Livestock				Crops										
Year	Farm output	Gros s farm produc. Lion	Neat animals and animal products	Milk cows	Meat animals ${ }^{4}$	Poultry	$\begin{gathered} \text { All } \\ \text { crops } \end{gathered}$	Feed grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cotton	Tobacco	Oil crops
1919--	79	87	99	76	94	96	83	107	81	64	89	99	127	70	71		110
1920...	81	87	99	77	95	96	85	110	81	60	90	100	69	80	82	---	100
1921.--	75	84	101	84	96	101	79	99	80	61	89	95	78	91	62	-..	93
1922...	72	80	100	86	97	101	75	88	81	48	91	96	100	8.5	i1	*--	94
1923--.	69	78	99	89	98	102	71	83	80	65	91	100	92	75	70	---	93
1924...	75	80	9	92	97	98	77	91	82	8.4	93	97	104	64	78	---	73
1925---	69	75	99	95	98	98	69	38	81	56	94	100	89	81	75	-.-	96
1926---	83	86	102	101	100	107	84	111	82	103	24	108	106	60	83	--	110
1927--	79	83	103	105	100	105	79	102	82	73	95	105	77	80	76	-..	93
1928---	P_{1}	84	102	104	99	98	81	98	82	99	96	110	100	84	80	--	108
1929.--	79	82	103	107	98	101	79	89	96	112	9 ?	106	101	89	74	--.	88
1930--	75	80	99	102	97	97	74	74	91	99	97	108	76	87	72	-..	80
1931---	96	95	100	102	98	99	96	105	69	131	$9{ }^{-1}$	108	109	79	95	---	90
1932..-	90	91	101	100	100	99	89	102	73	101	99	94	92	80	90	---	84
1933---	81	83	98	93	- 98	94	78	72	96	78	98	96	88	79	83	...	97
1934...	71	82	91	89	99	93	76	56	80	94	99	87	93	82	76	...	60
1935..-	90	93	93	95	100	101	92	101	101	77	100	100	98	92	87	---	99
1936-.-	87	89	97	96	99	98	84	79	89	81	100	9.4	\cdots	102	87	---	86
1937...	107	105	100	101	98	97	107	111	103	115	$\therefore 101$	106	112	100	111	-..	106
1938--.	108	106	104	105	100	103	110	109	105	110	100	102	98	104	107	...	104
1939...	108	107	106	103	103	101	107	100	102	117	99	98	115	102	108	---	105

TECHNICAL BULLETIN 1020, U. S. DEPT. OF AGRICULTURE

See footnotes at end of table.

TABLE 64.--Inuex numbers of production per man-hour oy selectea enterpries, West South Central Uiviston, 1919-48--Continuea $[1935-39=100]$

Year	Farm output	Gross farm pro- duc- tion	Livestock				Crops										
			Meat animals and animal produets	Milk cows	Meat animals ${ }^{1}$	Poultry	All crops	Fted grains	Hay ${ }^{2}$	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	Cot. ton	Tobacco	$\begin{gathered} \text { Oil } \\ \text { crops } \end{gathered}$
1940 - -	115	112	105	103	102	100	114	123	108	115	101	100	116	83	112		
1941...	117	114	110	107	103	115	114	113	118	98	100	118	132	97	108	--.	134
1942---	123	118	115	108	106	116	118	113	119	134	102	119	132	97 95	108	---	136 140
1943---	118	114	118	106	110	117	$11:$	107	110	101	104	110	116	105	112	---	140 87
19.4.--	138	130	118	109	109	116	135	131	118	16.4	105	112	131	101	122		147
1945---	131	125	119	111	107	121	127	128	112	119	106	116	140	105	107	\rightarrow	144
1946...	135	128	117	115	106	114	132	135	120	135	105	118	142	. 98	106	---	
1947---	145	134	117	115	106	118	140	138	119	180	106	115	150	98 91	1	---	173 141
1948.--	141	130	120	118	107	121	133	148	121	142	107	112	146	101	122		165

[^37]TABLE 65. - - Index numbers of production per man-hour by selected enterprises, Mountain Division, 1919-48 $[1935-39=100]$

Year	Farm output	Gross farm pro-duction	L.ivestock				Crops										
			Meat animels and anial prod- ucts	Milk cows	Meal animals ${ }^{1}$	Poultry	Al] crops	Feed grains	$1 \mathrm{lay}{ }^{2}$	Food grains	Truck crops and gardens	Vegetables except: truck	Fruits and tree nuts	Sugar crops	Cotton	$\begin{aligned} & \text { To- } \\ & \text { bacco } \end{aligned}$	Oil crops
1919--	66	79	92	81	100	9.4	71	86	87	48	67	70	76	60	73	---	45
1920---	76	87	96	87	100	93	81	100	87	66	69	82	66	73	65	---	58
1921--	79	89	101	92	98	98	$8: 4$	89	87	69	71	89	77	75	67	---	75
1922---	79	89	100	94	100	97	86	92	88	70	77	91	83	71	68	---	84
1923--	84	92	101	95	100	97	89	109	88	76	78	85	88	82	74	--	89
1924--.	80	87	100	96	96	92	82	80	89	78	78	72	69	71	74	---	93
1925---	82	89	98	96	96	94	87	41	91	71	87	84	87	83	78	---	75
1026--	84	90	98	98	95	97	87	80	91	82	85	76	99	84	84	---	77
1927.-.	95	98	98	100	95	95	100	106	91	97	91	95	93	91	84	---	118
1928---	43	97	98	100	95	96	98	104	92	96	92	84	97	90	85	---	113
1929--	89	93	98	103	47	97	92	100	93	83	95	86	101	85	84	---	75
1930---	94	97	99	102	95	99	97	11.4	95	84	95	95	90	97	88	---	76
1931--	86	90	98	98	96	98	86	86	95	73	92	83	95	87	86	44
1932--	91	94	98	93	103	93	93	78	44	97	86	88	96	95	83	--.	74
1933---	88	91	97	92	103	96	88	85	96	71	89	92	78	95	84	--.	47
1934-2-	84	87	94	89	98	93	85	62	95	80	96	79	88	73	94	---	65
1935---	94	96	95	94	97	96	97	97	97	91	98	93	96	98	95	---	88
1936---	92	93	100	99	102	97	89	85	100	68	06	96	93	96	98	---	48
1937...	98.	98	99	99	100	111	96	91	100	90	103	103	97.	99	102	---	87
1938---	111	109	101	103	100	104	112	119	101	13]	100	106	108	110	100	---	140
1939--1	105	104.	105	105	101	112	106	108	102	120	103	102	106	97	105	---	137

See footnotes at end of table.

TABLE 65, - - Index numbers of production fer man-hour by selected eriergrises, Mountain Division, $1919-48-$ Continued

			Livestock				Crops										
Year	Farm out put	Cross farm pro- duc- dicm	$16 \pi t$ manals and anima* produess	Milk Cows		Poul. 1 y	$\begin{aligned} & \text { MI } \\ & \text { crops } \end{aligned}$	Feed Hrains	Hay ${ }^{\text {a }}$	Hood grans	Truck crops and gardens	Vegetables exrept truck	Fruits and cree nuts	Sugar crops	Cotton	Tobacco	Oil crops
1940-.	112	110	106	10	103	101	113										
1941--	120	117	10%	111	103	107	123	129		125	103	117	111	112	101	--*	170
1942-~	123	119	113	112	107	112	126	149	105	162 180	105	121	109	115	94	- - -	174
1943--	129	124	118	112	112	11.4	130	155	108 109	180	109	132	98	107	93	---	203
1944--	130	126	118	115	113	112	13.3	150	109	181	111	132	107	111	93	\cdots	205
1945--	134	127	120	118	113	115	13.3	170	110	167	112	136	120	106	101	-.-	208
1946--	137	130	114	121	11.	11.5	1334	170 172	111	175	120	139	122	114	96	--	154
1947.-	145	137	122	124	111	118	139	187	114	179	121	148	115	117	107	---	231
$1948 \sim \ldots$	148	139	122	128	112	118	147	186	113	191	126	148	122	127	103	---	236
					112	12.	14	14.9	110	20 a	127	152	117	121	106		293

${ }^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for forage and silage.

TABLE 66.--Inuex mumuers of prowuction per man-hour by selectea enterprises, Pacific Divtsion, $1919-48$ $[1935-39=100]$

Year	Farm output	Gross farm pro-duction	Livestock				Crops										
			Meat enimals and animal products	Milk cows	Meat antmals ${ }^{1}$	Poulcry	All crops	Feed grains	Hay^{2}	Food grains	Truck crops and gardens	Vegetables except truck	Fruits and tree nuts	Sugar crops	$\begin{gathered} \text { Cot- } \\ \text { ton } \end{gathered}$	Tobacco	Oil crops
1919 - .	71	78	87	79	97	92	75	72	81.	50	30	50	7	53	67	\cdots	---
1920-..	71	78	85	80	97	91	75	74	8.2	52	72	56	72	63	65	\ldots	---
1921---	73	80	$8{ }^{8}$	83	97	91	78	76	8.3	64	13	59	73	62	67	--	---
1922...	74	80	90	85	96	95	77	78	83	54	76	61	7	58	56	\cdots	
1923---	79	84	89	86	96	95	82	83	84	76	37	64	84	64	75	--.	\cdots
1924-.-	71	7	88	86	95	90	74	31	96	51	79	6.3	36	65	74	---	-
1925--	76	80	00	89	94.	92	7	A1	84	57	81.	71	75	45	82	---	--*
1926.-.	80	8.4	91	89	95	96	83	84	85	70	82	71	86	62	83	--.	---
1927-.-	84	37	93	93	96	91	86	87	86	83	85	33	85	66	80	--	---
1928--	84	86	05	93	98	88	85	90	88	84	88	12	8.4	83	92	---	\cdots
1929.-	85	88	96	96	97	92	87	86	88	79	89	74	88	79	86	---	---
1930---	88	89	96	97	98	93	87	91	89	76	01	81	86	86	91	---	\cdots
1931---	88	90	97	96	99	95	88	74	92	$7:$	92	76	91	86	91	-...	--
1932--	91	92	96	95	100	96	91	93	93	84	93	80	90	0	93	---	---
1933.-	89	90	93	92	100	96	90	93	94	74	92	91	89	101	92	---	--.
1934.--	90	91	94	95	97	97	91	85	97	78	96	90	87	101	98	---	107
1935--	98	98	96	98.	96	98	98	101	97	96	99	00	100	93	97	---	95
1936...	97	98	100	99	98.	100	97	100	99	94	99	98	34	102	99	--.	92
1937...	100	100	101	100	101	103	99	102	100	98.	101	105	96	95	100	\cdots	97 110
1938--:	102	102	101	102	102	99	103	95	101	106	99 102	103	104	96 114	101		110
1939.	103	102	102	101	103	100	103	102	103	106	102	104	106	114	103		106

See footnotes at end of table.

TABLE 66.--Intex numbers of production per man-hour by selected enterprises, pacifuc liviston, 1919-48-Caritinued $[1935-39=100]$

Year	farm ontput	Gross farm pro-ducLion	Livestock				Crops										
			Itht animals and allimal. prode wets	$\begin{aligned} & \text { Hilk } \\ & \text { rows } \end{aligned}$	Heas ant mals	Poultry	All crops	$\begin{gathered} \text { Feed } \\ \text { grains } \end{gathered}$	Hay*	Fool Brains	Truck crops and gardens	Veigecables except truck	Fruits and tree nuts	Ejgar crops	$\begin{gathered} \text { Cot- } \\ \text { ton } \end{gathered}$	Tobacco	Oil
1940---	108	106	105	107	10.4	101	106	10.4	104	101	104	108	109	114	106	-..-	118
1941.-.	108	107	108	109	105	106	108	111	106	127	105	113	107	106	101	...	88
1942-\%	113	111	110	112	107	107	112	133	107	130	107	123	108	107	100	\cdots	125
1943---	113	112	116	114	109	111	112	134	106	117	105	123	105	108	103	--	117
1944-..	119	117	119	121	109	111	117	134	109	127	108	124	115	115	100	-.-	125
1945--	119	115	121	126	104	113	113	136	109	121	111	121	107	119	101	-	124
1946-*	124	121	121	132	104	110	120	150	111	140	115	132	114	120	104	---	141
1947---	123	120	125	137	104	117	116	156	112	120	116	132	112	125	106	-.	146
1948--.	124	121	129	144	105	118	116	162	112	143	117	136	106	121	103		169

${ }^{1}$ Excludes wool.
${ }^{2}$ Includes sorghums for forage and silage.

[^0]: 2 This study mas developed under the geaersi direction of Martin A. Cooper. Many other tembers of this Streau and Allen D. Searl of the Bureau of Labor Statistics, U. S. Department of Lebor, offered valuable suggestions.

[^1]: ${ }^{2}$ For an explanations of labor req̧uisements see fage 1.

[^2]: ${ }^{3}$ For a detaiied description of these production indexes, see Farm Praduction in Wint det Peace (1). ${ }^{\text {rot }}$

 - finderscored figures in parencheses indicate literature cited.
 - In some of the analyses pertaining to praductivity of lobor for individual products, it was more convenient to use bushels, pounds, etc., as unita of production father than the production indeses.

[^3]: ${ }^{1}$ Enterprises reguiring 6 percent or more of all farm work in each of the geographic divisions.
 ${ }^{2}$ Excludes farm gardens.

[^4]: 'Man-hour requirements for farm maintenance and production from pasture were excluded from the totals in computing percentages.

[^5]: ${ }^{1}$ Three-year averciges were used to add atability. The intervening yeors regretent, in a general way, the World War I, the interwar, and the World War II periods. See lootnote 6, page 12 for definition of cropland.
 ${ }^{2}$ Bosed on 1935-39 geokraphic division prices of farm products.

[^6]: ${ }^{\text {P Production per breeding unit of livestock (axctusive of horses and }}$ mules) measures essentially the same thing for livestock as does crop protuction per acte for cropland. A treeding unit is a cow, a sow, a hes, etc. The numbers of the eypes of bremtimg mints wert combined into a total by weighting according to the relative comeribution of each unit to gross livestock prorduction in 1935-39. For exatnyle, a milt cow produced about $\$ 80$ of pross production and a hen or pullet $\$ 2$. S0. These value weights were applied to numbers of milk cows, and hens and pullets, respectively, in calculating the index of animal units of breeding livestock. This calcalation is satisfactory for the Inited States hat ic is not feasible on a gengraphic-tivision basis because of interregional shipments. For example, a heef animal bay he: produced in one division and shipped as a scocker or feeder to anotiver division and tiere fattened. The latter area would then show ma wrealistically large beef production rel ative to number of beef cows on farns.

[^7]: For mathours per hem mindirc, rate of lay, and nath-hours per 100 eges by 5 -year purnods simer jotid sut appendix alle 30 . Comparatle daca for milk cows and production of milk are also shown along with than-hours per cwt. of production of hogs.

[^8]: The ancrease in gross farm production exceeded that for farm output be cause the incrense in jorainction of horses and onlos for farm power was greatef than the increast: in other farm production

[^9]:

 of enterprises．

[^10]: ${ }^{10}$ Livestock production as used here refers to "prodact added" iy livestock. For method of chleulatiag fromuct adifed, see patge 3.

[^11]: base is used for the 1937-39 to 1944-46 subperiod.

[^12]: 'The sum of the figures for the two subperiads will not equal that for the entire period, in most instances, because a different base is used for the 1937-39 to 1944-46 subperiod.
 $z^{\text {Slight adjustments were made in these figures for each period to permit }}$ a sumation to the total difference.

[^13]: : See footnote 6 , page 12 .
 ${ }^{2}$ From the Census of Agriculture. 1945 (11).
 3 Value on Januaryl. 1945 from the 1945 Census of Agriculture (11). Man-hours required by crops are for 1943-45.

[^14]: "the farmermployment data used ia this puhtication are those estimated by the tharenn of Akrimilural Economacs frum 1936 throngh 19 an, as an extension of the serzes putituhed an'Irends in Empionnent an Aeraculture, :009-36 (8). Thest series extemded back to 1909 on a linited States hasis and to 1925 ob a State group basis. The distribution of the trited States farm employment amoty geographic tivisions for $1919-24$ was based on dach from Changing Technology hnd Fingloyment. in Ayruculture (7). Through 1948, persons (farin operbtors. unpaid members of their (amplies, athl hired workers) doing the equivaient of 2 or more days of farm work dining the week of inguiry eacli month were counted as emploved on farms. Beginning with banary 1949. the BaE has estimated the number of farm workers on the basis of n broadened defitation of farm employment; see form labor, January 1040 (Progessed) (9). The new series was available for relatively few years when this analysis was nade and the old series was used throughout this puthlication.

[^15]: ${ }^{24}$ Man-hours per worker is based on average annusl farm employment and aa such is on a full-time-warker equivalent basis. Actually the number of workers on farms varies considerably from week to week and from month to month. In addition, the number of people who are counted as being employed on farms at some time during the year far exceeds the number at work at any one time. The man-hours data are on the basis of an average adult male worker; and an it is often true that a woman, child, and older worker accomplistes less in on hour than an everage adult male the actual houts of work exceed those shown.

[^16]: ${ }^{1}$ Source of data for industrial items: Handthook of Lalor Statistics. 1947 (10) and more recent releases, U. S. Bureall of LaLor Stat,istics.
 ${ }^{9}$ Production per man-hour in mining is based on proxduction indexes weighted with current year man-hours and ianot strictily comparable with the unadjusted apricultural items and the other industrial items (except fertilizers) whichare based on value-weighted proiuction indexes. Production per man-hour in mining is comparable with grose farm production perman-hour adjusted for shifts in importance of enterprises. For details of arljusements see pages 36 to 42.
 ${ }_{4}{ }^{3}$ Passenger and freight revenue craffic per man-hour.

 - Not available.
 ${ }^{5}$ Fased on an unweighted index of production.

[^17]: ${ }^{12}$ Oming to methods originally used in calcalating the indexes of production it was not possibie to convert all produces in all repions co a United States price-weight basis; the most important omission related to truck crops. In the cast of soare other products, the conversion to United States price weights was only epproximate.

[^18]: ${ }^{1}$ Includes all livestock except horses and mules.

[^19]: ${ }^{2}$ See footnote 1, table 33.
 ${ }^{2}$ A slight decrease.

[^20]: ${ }^{2}$ The average annaal rate of change in production of all aneat animals and enimal praducts per man-hour was greater than for any class of livestock because of shifts in importance anong the livestock enterprises between 1937-39 ond 1944-46. The shift was toward meat anics 1 s and poul cry, nore of which are produced per hour as compared to milk per man-hour spent on milk cows.

[^21]: ${ }_{1}^{1}$ Per hen or pullet on farms January 1.
 Liveweight production.

[^22]: 'Includes prain equivalont on acreage harvested for fodder, silage, pte.
 ${ }^{2}$ For 1946, see footnote 1 , Appendix table 28.
 3 For 1946, see footnotes 1 and 2, Appendix table 28.

 - less than 0.5 percent.

[^23]: ${ }^{1}$ For 1946, see footnote 1 , table 28.

 - See frotncte 2, table $2 B^{\prime}$.

[^24]: ${ }^{1}$ Census of Agriculture, 1945 (1i). Namber of cows milked divided by number of fams rejorting milkitg machines. Some farms reported milking machines but no cows milked and sone farms that reported machines would have more than one, These reperts tend to congrensate one another in compoting the machinesper cow milked.
 ${ }^{\text {a }}$ Census of Africulture, 1945 (11). Cows inherds of 20 or more cows per herd.

[^25]: ${ }^{1}$ Includes sorghums for forage.
 2 Includes mohair, which is not shown separately.

[^26]: ${ }^{1}$ Leas than 500 thousend hours.
 ${ }^{2}$ Includes man-hours for sorghuns for forage and silage.
 ${ }^{3}$ Eancludes man-hours for mool.

[^27]: 'Includes man-hours for sorghums for forage and silage.
 Less than 500 thousand houfs.
 ${ }^{5}$ Excludes man-hours for wool.

[^28]: 'less than 500 thousand hours.
 ${ }_{3}^{2}$ Includes man-hours for sorghums for forage and silage.
 ${ }^{3}$ Excludes man-hours for wool.

[^29]: Includes man-hours for sorghams for forage and silage.
 ${ }^{2}$ Less then 500 chausand hours.
 ${ }^{3}$ Excludes math-hours for wool.

[^30]: Includes men-hours for sorghums for forage and silage.
 ${ }^{2}$ Liess then 500 thousend hours.

 - Excludes man-hours for wool.

[^31]: ${ }^{1}$ Less than 500 throsand hours.
 2 Includes man-hours for sorghums for forage and silage.
 Excludes man-hours for wool.

[^32]: ${ }^{1}$ Includes man-hours for sorghums for forage and silage.
 ${ }^{2}$ Less than 500 thousand hours.
 ${ }^{3}$ Excludes man-hours for wool.

[^33]: Includes man-hours for sorghums for forage and silage.
 ${ }^{3}$ less than 500 thousand hours.
 ${ }^{3}$ Excludes man-hours for wool.

[^34]: Excludes man-hours for wool.
 ${ }^{2}$ Includes man-hours for sorghums for forave and silage.

[^35]: ${ }^{1}$ Excludes wool.
 2 Includes sorghums for forage and silage.

[^36]: ${ }^{1}$ Excludes wool.
 ${ }^{2}$ Includes sorghums for for age and silage.

[^37]: ${ }^{1}$ Excludes wool.
 ${ }^{2}$ Includes sorgliums for forage and silage.

