

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ORO 1016 (1950 .

S

 A

Technical Bulletin No. 1016
October 1950

UNITED STATES DEPARTMENT OF AGRICULTIRE WASEIINGTON, D. C.

Vegetable Weevils and Their Natural Enemies in Argentina and Uruguay ${ }^{\prime}$

 Entomology and I'lant (utrantine, sigricultural heseareh Atministrotion $=$

CONTENTS

INTRODUCTION

When the South American parasite laboratory of the Bureat of Entomology and Plant Quarantine was established in 1940 in Monteyideo, Uruguay, one of the projects assigned to it was the search for matural enemies of Listroderes to be introduced into the United States in an attempt to control the vegetable weevil (Listroderes costirostris var. obliquus Klug). These investigations covered the period 1942-45.

It was some time before Listroderes was liscovered. Many examinations of cultivated crops, such as cabbage, tumip, and radish, failed to produce any sign of this wevil. Oceasionally a few larrae were found on leaves of wild radishes. Eventually the latrae in sufficient quantities for large-seale collecting were found underneath ind among the thick blanket of chickweed called "capiqui" or "moco de ovejaz" (Sicllaria mediat), which usually covers garden fields in parts of Argentina and Uruguay in winter after the cuitivated crops bave been removed.

Parasites were collected and reared principally arond the cities of Santa Fe and Rosario, Province of Santa Fe, in Argentina, and near Montevideo, Department of Canelones, in Uruguay. Small collections were made in La Plata, Province of Buenos Aires; in General Pico, Province of La Pampal; and in Cordoba, Province of Cordoba, in Argentima; and in the Departments of Rocha, San Jose, and Colonia; in Uruguay.
It was not possible for the authors to identity the varions species of Listroderes collected. becanse the systematics of the groups is not clear. More than 20,000 adults were sent to specialists for study of thes gen 15. From the few handreds sent in at the carlinst date 8 .species and several races or rarieties have been identified tentatively- Prowably many more will be fomd when the larger shipments are stidied.

Listroderes costirostris obliquets, a speeies of a miform daik grayish- brown, is the principal one found in Urugay, and is commun in the Santa Fe \%one of Argentina. Iistroderes apicalis Waterh: is found in Santa Fe and in Mendoza. Province of Mendoza, Areentina.
ECONOMIC IMPORTANCE OF LISTRODERES IN SOUTHAMERICA
It appears from the 4 years observations that Listroderex is unt an important pest of truck crons in Sonth America. Only one record of consequence is to be noted. In October 19tit a field of young:sprouting potatoes ngar Melilla, Deparbment of Canelones. Urarnay, was destroyed by adalts of this species. The larvae apparently to hithe damage to caltivated crops.
The principal planis upon which Listrode ers feed are capigui and mastuerzo. The others apporing in the fist berow ate only ecational hosts and are listed appoxinaticly in the onder of preference, as judged by their frequency in collections.

host plants of histroderes

[^0]Oerastium sumtfusum Camb.
LAatriedia chamomilla L., manzanilia
Bursa bursa-pegtoris (L.) Britt, shepherd's purse, bolsita, bolisa de pastor, yerba ie los chingelos, mostuerzo macho
Ctehorism sp.
Soliva anthemifolia R. Br.
Brassica napus L., tarpip, colza, nabo
Solanum tuberosum L., potato, papa
Rumeasp, doek, lengua de vaca
Lactuca sativa L., lettuce, lechuga
Aptum graveolens L., celery, apio
Sisymbrium irio L., mostachila
Sisymbrium sp.
Beta eulgaris L., common beet, remolacba
Stachys arvensis L., ortiga mansa
Silene galliod L., callabacilla
Cirsium lanceolatum (L.) H1I, bull thistle, cardo negro
Echium violaceum L., flor morada
Anthemis cotula L., manzonilla bedionda
Saponaria vacoaria L., soapwort, jabonera

SEASONAL HISTORY AND HABITS OF LISTRODERES

As in the United States (High ${ }^{3}$), the vegetabla weevil in South America passes the summer (November to March) in the adult stage awaiting the cool of autumn to begin oviposition. The writers have collected adults mating on March 23 . The earliest record of egg deposition in the laboratory, by females brought from the field, is April 23. Although larvae undoubtedly are present in the fields in May and June, they do net become abundant and large enough to be collected for parasites unil late in July. The earliest adult emergence noted in rearing cages was on July 9 .

Oviposition continues all winter in both Uruguay and Argentina, and larvae do not disappear until November. Some stragglers probably could be found until December, but generally the larvae become too scarce to warrant continued parasite collection; consequently this work was stopped early in November.
On April 18, 1943, a large number of Listroderes costirostris obliquus were found washed up along the beach of La Plata River near Montevideo. The adult weevils had undoubtedly flown out to sea and had been washed in by the waves. This incident is especially interesting in view of High's statement that one specimen of Listroderes apicalis was found on the deck of a ship at New Orieans, La.

NATURAL ENEMIES OF LISTRODERES

Apparently all the parasites that the writers have bred in the laboratory will breed upon any species of Listroderes, for there Porizon argentinensis Blchd., P.parkeri Blchd., Epiplagiops littoralis Blchd., and Triaspis sp. oviposited in or on any hrva of Listroderes. Had more studies been made, some specific preferences might have been revealed, but for the present all these parasites are considered to be parasites of any species of Listroderes.

[^1]
Parasites of the larva

```
Hymenoptera:
    Ichneumonidae:
        Porizon parkeri
            Argentina : San Antonio de Areco, Province of Buenos Alres; Santa
                Fe, and Rosario, Province of Sunta Fe; General Pico, Province
                of La Pampa; Mendoza, Province of Mendoza.
            Uruguay: Departments of Canelones nnd Sinn Jose.
        Porizon argentinensis
            Argentina: Santa Fe, and Rosario, Province of Santa Fe; Cordoba.
                I'rovince of Cordoba; Mendoza, Prosjnce of Mendoza.
            Thersflochinl (genus unknown)
            Argentina: San Antotio de Areco, Province of Buenos Alres; Gen-
            eral Plco, Province of La Pampat: Santa Fe, Province of Santa Fe.
    Braconidae:
        Triaspis n. sp.
            Argentlna: Cordoba, Province of Cordoba.
            Uruguay: Departments of Canelones and Rocha.
Diptera:
    Larvaevorldae:
        Epiplagtops littoralis
            Argentina: Santa Fe, Province of Santa Fe.
            Uruguay: Depariment of Gavelones.
        Preudoclista sp. (aft. afra E. and B.)
            Argentina: Santa Fe, Province of Santa Fe.
Nematoda :
    Hairworm (Mermis sp. ?):
                            Argentina: Rosario and Santa Fe, Province of Santa Fe.
Fungi:
    Entmophthora sphacrosperma Fras.
    Beamcaria globulifera (Speg.) Pic.
            Argentina: Generally distributed.
            Uruguay: Generally distributed.
                    Parasites of the adul.t
Hymenoptern:
    Braconidae:
            Microctonts n. sp.
                Argentimat:Santa Fe, Province of Santa Fe.
Diptera:
    Larvaevoridae:
        Euoestrophania aperta (B. and B.)
            Argentina: Fosario, Province of Santa Fe.
        Hyalomyodes sp.
            Argentint: Santa Fe, Province of Santa Fe.
```


NOTES ON PARASITES OF LISTRODERES FOUND IN ARGENTINA AND URUGUAY

argentina--Provinge or La Pampa: Near the town of General Pico on September 16, 1942, 5 larvae of Listroderes were found; $\mathbf{\Omega}$ parasites issued from them, one Porizon parkeri and one undetermined Thersilochini.

On September 7, 1943, 400 larvae were collected; 50 pupae and 25 adults were also found on and assnciated with Sisymbrium irio, Sisymbrium sp., and Brassica napus. This lot was bronght to the laboratory and reared, but no parasites were seen in the material.

Province of Cordoba: In 1943, with some difficulty, 140 larvae were collected around Cordoba on Stellaria media and Echium violaceum.

One empty cocoon of Porizon was found in the soil. From the 140 larvae were obtained $2 T$ riaspis and 2 Porizon; one of the latter died in the larval stage and the other produced an adult. P. argentinensis.

Province of Mendoza : Mendoza. On August 28, 1943, 1,070 larvae were collected around Mendoza on Sisymbrium inio. Of this lot cared for in the laboratory 306 died, 7 were dissected, and 23 were killed by fungus disease; 644 produced Listroderes pupae or parasites. A firstinstar larva of Porizon and an empty egrshell were found in one of the dissected larvae.

In addition to the larva of Porizon 3 cocoons of this species were formed. One: opened for observation, contained a pupa that had been killed by Pedicutoides; a Porizon parkeri and a P. argentinensis issued from the other two cocoons.

Province of Buenos Aires: La Plata. On August 17, 19£2, $15 \overline{7}$ larvae and 3 adults were collected. Some adults were reared from the latvae, but no parasites were found.

Jose C. Paz. At this point near Buenos Aires 5 f larvae were collected in August 1942. Eight of them produced hanworms, but no other parasites. Most of the larvae were killed by fungus disease; only 3 adult weevils issued.

Sian Antonio de Areco. In August 1942, 3, 646 barvat were collected and reared: 15 percent were parasitized by Porizon parkeri and 4 percent by hairworms. Two specimens of the Thersilochini were also reared from this material. Ot 112 havac dissected, 16 percent contained Porizon parkeri and 11 percent contained hairworms (table 1).

Province of Samta Fe: Rosaeio. On August $10,1943,40 \mathrm{~S}$ cocoons of Poreson and a number of empty ones were collected by sifting 300 square meters of top soil to the depth of about 3.5 cm . under a thick growth of Stellaria. In some cases there were 15 to 20 cocoons per square meter, often bunched or clinging to the roois of Stellaria. A total of 236 adults emeryed at once from the cocoons; 102 others were eventuatly dissected, most of them containing live papae or adults; the remaining 70 cocoons contained Porizon that had died is stages varying from larvae to fully developed adults.

In addition to these collections, is a lavae. a number of pupae, and 300 recently emerged adule Listroderes were taken from August 10 to 19. 1043, near Rosario. Most of the larvate were killed by the fungi, Entomophthora sphaerospeman Fras. and Beauvaria globulifera (Speg.) Pic., although $10+$ adults of Listroderes and 10 hairworms did emerge. Cocoons of -4 Porizon argentinensis and P. parkeri were formed. No Epiplafiops were found in this locality.

From the lot of 300 adults 1 puparium of a fly, Euoestrophasia aperta (B. and B.). was foumt. Dissection of atults reveated the larval remains, and established that this fy is a true parasite of the adult. One otber similar puparium was found in soil. but the fly did not issue.

Santa Fe. Most of the parasites were collected from 10.42 to 1945.
In 1042 approximately 15,000 latrae were gathered for rearing. Most of them died of fumgus diseste. and the remainder either developed to the pupal stage or were parasitized.
This collection was made in two lots. The first. brourht in on September 9, was practically all destroyed by fungi. Dissection of 67 larvae showed 7 parasitived by Epiplagiops littoralis. I by Porizon sp .. and 7 by Mermis worms: 15 were killed by fungus disease.

The second lot, of approximately 7,000 specimens brought into the laboratory on September 30, gave somewhat better results in the rearing, although many were lost because of fungus diseases. Dissection and examination of 100 larvae with a binocular microscope showed 52 percent parasitized by Epiplagiops and 22 percent by Porizon (table 1). It was possibie to account for only 3,049 larvae of this lot in the rearing trays. Of them, 52 percent died of fungus disease. 33 percent produced Epiplagiops puparia, and 15 percent produced Porizon. Probably the figure obtained by the dissection of the 100 larvae is most significant for this lot.

In 1943 collections were contimed around Santa Fe. A preliminary dissection of 100 larvae on August 15 showed 8 percent parasitized by E'piplagiops and 19 percent by Porizon; a second dissection of 100 larvae on Septenber 29 showed 16 percent parasitized by Epiplagiops and 11 percent by Porizon (table 1).

The gross collections for rearing in 1943 consisted of about 92,000 larvae and 19,000 adults. The larvae were all sizes, and many of the small ones did not develop well in captivity, undorbtedly because of crowded and inadequate feeding conditions. Many others died of fungus disease. It is estimated that approximately half of the 92,000 larvae developed to the adnlt stage or to the stage producing parasites. Utilizing thus the estimated quantity of 46,000 larvae from which 4.370 Porizon cocoons and 8,083 Epiplagiops were procured, the respective parasitization would be 10 and 18 percent. A number of hairworms also issued from these larvae.

In 1944 collections were porr. The scarcity of larvae was probably die to drought and high temperature in the preceding 5 months. From September 20 to 30 , 11.223 larvae and 35,122 adults were collected. Relatively few of the larvae died in rearing cages, 0 percent being parasitized by Porizom and 10 percent by Epiplagiops (table 1).

About nine times as many Porizon aryentinensis as P. parkeri oceur in Santa Fe, as judged froma a large lot identified by Blanchard. Parasitization of the adults by Hyolomyodes and Microctonus was less than 0.1 percent.

In 1945 about 70,000 host harvae were collected and reared. From 6 percent of them were proched cocoons of Porison argentinesis and P. parkeri. Many Epiplagiops cocoons and a few Pseudoclista sp. puparia were also obtained and some hairwoms. hut no records were kept of these species. Many of the larvae died in the rearing cages. Parasitization was probably at least twice as high as the figure given.
URUGUAY-Derartmexts abiten Movtevibo: In 1043, 9,012 larvae were collected from September to the latiey part of Oetober. They were freely attacked by disenses and many were lost. From this lot were precured 163 pmparia of Epiplagiopis and ≥ 3 cocoons of Triaspis. Patasitization of ail species was low at the beginning but higher late in the season, This merease was esperially noticeable in Epiplagiops. which inceased from practically nothing carlier in the season to 2 pereent by October 1. On that date parasitization by Porizon was : percent and by Triaspis 0.2 pereent (table 1).

In 1944 collections were begun on July 1 , at which time harvae were searee. They became increasingly abumant thereaffer, the patk being reached bedwen September 2t and Octoher 10. However, by October 23 they had become so searce that further collections seemed unwarranted. During this period 20, (64! larvae were collected, and

388 cocoons of Porizon were found in soil. Some of the larvae, observed with a binocular microscope, were seen to contain an egg of Porizon. These larvae were separated and shipped to the United States. From the remaining lot there was obtained 952 Porizon and 90 Triaspis cocoons, and 880 Epiplagiops puparia.

In 1945, 10,941 larvae were collected. Some containing hairworms were sent to the United States. The remainder were placed in outdoor cages having concrete bases for rearing Porizon, and 482 cocoons of P. parkervi were procured.

> Table 1.-Percent parasitization of Listrodercs in Argentina and Uruguay, $1942-45$

${ }^{1}$ Indicaies present in very small numbers.
To obtain more definite data on parasitization of Listroderes in Uruguay large numbers of larvae, iaken at random in fields throughont the seasons of 1944 and 1945 , were examined for parasites under the microscope (table 2). These examinations probably did not show all the parasites, however. Some Porizon eggs may be laid so far into the interior of the host that rhey cannot be seen through the larval skin, and no frimepis egre or larvae can be seen through the host larval skin. It is sestimated. however, that parasitization missed in this manner did not exceed 1 percent. Other experiments have shown that in mixed parasitization by these two species Epiplagiops always predominates at the expense of Porizon. Therefore, the effec-

Table 2.-Results of microscopic examination of Listroderes larvae for parasitization by Porizon parkeri and Epiplagiops littoralis; 1,000 larvae caamined in 1944 and 1,690 in 1945 in Urugvay

Parasitization by Porizon alone			Parasitization by Epiplagiops alone			Parasitsation by both species			
Number of parasite eggs in 1 host	Number of weevils parasitized		Number of parasite eggs in 1 host	Number of weevils parasitized		Number of parasite eggs in 1 host		Number of weevils parasitized	
	194	1945		1944	1945	Porizon	Epiplagiops	1944	1945
	142	107	1	121	39	1	1	62	24
	20	31			25 4	1	2	33 8	6
	5	14	14.4	3	6 1	1	4	12	5
						2	$\stackrel{2}{3}$	20	
		1				2 3 3	5	7 8	$\overline{8}$
						3 4	3 1	12 5	$\begin{array}{r} 8 \\ 10 \end{array}$
Total.	-					5	1		$\begin{array}{r} 10 \\ 6 \end{array}$
	217	290		165	75			172	65

tive parasitization by each species, from data in table 1 , was found to be as follows:
$19+4$
(percent) $\left.\begin{array}{c}19 \$ 5 \\ \hline\end{array}\right)$

In 1045,12 percent of $2,2: 30$ specimens were parasitized by hairworms. To illustate the random distribution of the eggs of these two species, 421 eges of Porisom were found in 277 weevils in 1044 and 594 erge in 812 hoits in 10th: whereas 310 ergs of E piplagiops were found in 220 hosts in 1944 and 160 eggs in 97 hoots in 1045.

parasites of the larva of lastroderes

Poncon patatert Banchated

(!tiac. 1)
Porizon parteri has been found in Cruguy; and in Ban Antonio de Areco, Province of Buenos Aires; in Rosiriomal Samte Fe, Prorince of Santa Fe in feneral l'je Province of La l'ampa, and in Mendoza, Provine of Mendoza, Trembina.

BESCRHTON OF STACES

 and an oripositor less than 1 mon. in lengeth. Fur a complete deseription of this species and of Porbon wighthenwis the reader is referred to the original descriptions by Bhanchard. ${ }^{4}$

 fubercie-like prot rusion within which is a small back spot. This spot is guite apparent in the orarian eqges what temales are disected. The
 proition this burele is alwass next to and in catact with the skin of the hast. After the egge inas hatched the blark poot cell still be sed on the old cgevel. The ombian cere is white, but after deposiiton it Lurns daw yras, alused black, withiman hour.

The fully tormed lint-instar harra (fig. I. B) has a brownish thim-ble-shaped head. 13 bods segments bearigy larownish selerofized plates, a longer whitisl penulfimate (nimb athomimal) segrarni, and a tapering candal appendage that repreetets the fenth abdominal segment. The heal has \geq st rome siekde--haped mandibles and a pais of what
 demintal seghents bear phatelike seremizations in the midede of the serment and extending from the doremathost to the wental lime,

 a and h). The first thomede plates eath hater phars of cimatar spors which may be suserial organs: segment: wo and the bear
 1 pair on cach, sibated near the lowar termination of the phate. Thie cighth abdominal segment has a foresponding pair of plates but

[^2]

Frivat 1
the ventral termination of them is more abrupt and the tuberclelike process is absent. However, from a circular hole in this plate, which appenrs to be homologous with the ventaral circle on the other abdominal segments, there protrudes a fleshy process, ot pseudopod, almost as long as the width of the harva at this point. The ninth abdominal segment has no sclerotized plate, but has a pair of the fleshy psendoports (fig. $1 B, c$). The last segment is simple. The dorsal separation of the phates (fig. $1, D$) is quite distinct in latyae and also ith cast skins. The fisti-instar lanvac in process of hatching, and the larva partially formed but removed from the retaining envelope are shown in figutes 1. C. D. E, and F. No spiracles or signs of a tracheal system have been seen by the waters in this instan.

The second instar is of the usial candate-ichnemmonid type. that is to say; the unly distengushing featare is the small stub of a tail proces. The month pats are so poorly difturentated that they can
 system.

Whe third instare is similir to the seond. except that the candat process is shamken to a small nodule and can havely be sem. There are no spiancles or signs of a tracheal syetem.
 regular hymenopteritorn tape, having mothing in partondar do distinguish it tron othe jehmemonid lanae of this gromp unless it he the absene of the anaillasy lateral inacheal tramk in the thoras, which
 ple mad regular the hare posessing opais of ver small. open spiractes: the most chamatrentio feathes of the mouth parfs (fige 1.
 seleromo forming a reinforenment laterally abd antorioty for fhe hepophatons, and blo pointed apices and rugose distal pordions of Hiemondibles (fig. 1. (r.b).
 with a darker brown, mither wale. bregular band aromal its midala,

Blol.OCY

Porizon punazatalts mate immediately atter emerging. Ovipo-
 latid the fisat day.

The female has about 22 ovarian tubes on each side. and 11 dias
 down in the ovidure. It is esimated that a female produces about 400 egres.

[^3]countered, she rapidly bends her abdomen undemeath the body and, thrusting the ovipositor forward into the skin. lays an egg in any part of the body. Occasionally eggs are laid well within the body, but generally just muder the skin and outside the layer of hypodermal cells, so that often they actually appetre to be on the outside of the larval skin. Sometimes the egg will be left protruding somewhat, in which case it does not hatch.

The egg is white when first livd, but apparently some constituent in the blood of the host, causes it to turn dark. When an egg is laid partially outside the boty the exposed part remains white. Within 15 minutes after deposition, the part of the egg within the body turns gray and within an houe is almost black.

After s days. at a temperature of appioximately $20^{\circ} \mathrm{C}$., the egg splits at one end and along the ventral anterior portion and the larya begins to exsert the head. The body is not yet well formed and the head is still whilish. The lama slowly issues from the egg over a period of 17 to 18 days.

In 10 to 11 days iffer deposition of the egg, the larvac are about two-thieds out of the egre (fige $1, C$ and D), and the head, thomx, and first thee or four abhominal segments have attained their ehameteristic coloration. The posterion part, of the larva is somewhat "amoruhous," athough indifations of segmentation can be seen. The whole cated portion is enclosed in a sort of "cartridge" or membranous envelope. The museles, heart, and other parts of the thorax and first 4 to abdominal segments are distinct, but in the sixth to tenth abtominal segments these organs become successively less distinct and are apparently in process of forming while the midgut is somewhat swollen with ingested materials.

On the thitemth day the laral semmentation is complete to the seventh iblominal serment the last 3 segments being developed but of a pale color. The whole larya can be detached from its envelope (which extends as far forward as the first abdominal segment), thas leaving a fumellike sheath somewhat similac to the integumentory repiratory sheath of some pasasitie dipterous lavae. Figure $1, E$ shows a larva in its sheath and figure $1, F$, one detached from the slimath.

On the fourteenth day the first free larva was oheerved. Others of the same age were not out. but were like those on the thirteenth day. The caudail process distends considerably alter hatching.

By the seventeenth day out of 6 larvac were out, of the egus. Some att this time were working though and feeding on the fat body and some were free in the bloof of the host.

Examination of material is daysafter oviposition showed the larvae of Porizon parker to be practically all hatehed and completely free of the egry and envelope. Most of them were working their way into the fat body and feeding upon it. Evidendy only ? larva per host survives, for in many rases of hyperparasitation the excedent parasites were dead in the hrst stage, isually with injury to the posterion part of the body: some were free in the body cavity of the host, others still in the hatchiner envelope.

By the twentioth day larvae have molted to the second instar and a few are molting to the third, as evidenced by the old cast skins. The skin of the first instar is cast free, usually being split down the dorsum, with the head still attached.It is in this combtion that he ringlike
segments can be best seen and studied. The skins of the second and third instars, if found still adhering to the larva, can be recognized, but if completely shed they are lost to ordinary sight.

Apparently there are 4 laveal stages.
Jwenty-two days after oviposition some harvae are tully grown, have emptied the host completely, and have emerged frome the old host skin. There is no larval teeding from the outside of the host.

The parasite does not cause the death of the host lava until after the latter has gone 1 to 2 inches into the soil and constructed its pupal cell. The parasite cocoon, spun in this cell. is begum appoximately 1 day after issuance from the host hava. Thas from ege to cocoon requares approximately 25 days. One cocoon was found completely span on the twenty-fourth day after oviposition at appreximately $20^{\circ} \mathrm{C}$.

SEASONAL IISTORY

Apparently there is only 1 genemation of Porizon parkeri in Uruguay and Argentina. Ndults beran to emerge on May 18, 19:t5. from cocoons placed in the laboratory in October $104 t$ and continued to emerge up to August 17.

If host larvac were avaibable in the field in May. 2 generations might be possible. To give further weight to this possibility, in 19.95 in the fields in Uruguay 107 cocoons ol Toriaon parkeri were tomd clustered aroum the roots of chickweed from July 25 to Augnse 27. Adults issued from these cocoons from Augnst 31 to October 10. However, most of the bost harvae collected and dissected from Jny 4 to Angust 24 were small and contained no paasites. The earliest record of Porizon parteri oviposition in the tield in 19.5\% was August, 27 , when 10 exgs were tound by dissertion. The peak of oviposition in the field was from September 18 to October 5 .

The treatment to which coroons were subjected in the laboratory, not being exactly the same as the conditions in name may have cansed the promatare cmergence of some of the adults, for the geneal energence period in the feld is later than that recorded in the laboratory. However, in the field the earliest emerging adults may fond few or no hosts in which to oviposit, and the following generation is propagated by the hate-emerging adults.

The period of maximum oriposition appears to be, as stated, the latter part of September. Hatehing of eges and growth of the firststage larva sontimes during late September and caly October, and cocoon formation is practically completed by the and of October. The larva pupates in the cocoon and the papa transforms to adult, but remains in at quitecent stage within the coroon until the next year. If dissected out the addelt cannot crawl or fy ; life is indicuted only by sluggish movements of the legs.

Pohizon argenthensts Blanchard

Porizon argentimensis, similar in general appearance to P. parkeri except that it has the abdomen black instead of reddish, is found in Rosario and Santa Fe, Provinces of Santa Fe, and Cordoba, Province of Cordoba, in Argentina. It has not been found in Unaguay.

Imasmuch as the ceng, larva, and encoon of this species cannot be distinguished with certainty from those of P. parberi, in the localities
where both species were collected in quantities it was not possible to keep the records of the two entirely separated. Porison argentinensis is an important and valuable natural enemy of Listroderes.

Occasionally the writers have found a first-instar larva of Porizon that differs slightly from P. parkeric, in that there are only 6 dorsolateral plates and the pseudopods are shorter. Apparently this larva is not abumdant enourh to be that of P. argentinensis, for most of the first-instar larvae collected in Santa Fe, where P. argentinensis is the predominant parasite, are identical with those of P. parheri. Although this lava has also been found in Ueuguay, no adults of P. argentinensis have been reported.

Triasins n. sp.
(Fig. ©)
Triaspis n. sp. has been found in the Department of Rocha, and Canclones, Uruguay; and in the Province of Cordoba, Argentima.
triaspis is a negligible factor in the control of Listroderes, never having been found in quantities greater than 0.5 percent in any of the above localities, nor has it been reawd from any other host.

DESCRIPTION OF STAGES

The adult of Triaspis u. sp. is about 4.5 mm . long and is back with reddish-brown legs; the ovipositor is 1 mm . long.

The recently deposited egre (fig. 2,4) is white, without spines or adormments, and has one end daran ont into a long, slightly arehed point; the other end is also shightly pointed but short. The shape changes so that when ready to hateh the egg is abmost spherical, as in many intemal bracomids, such as Merroctonus, Apantelos, and Euphorus.

The first-ingtar larva (fig. 2. D) is ot the mandibulate bype having at wide, slighty pigmented head with long theate mandibles (fis. $2, C$). The body, consisting of 12 additional segments and a short caudal process (about as long as the it precediag segments), (apers gently posteriorly and is without spines or other adormments. The late firstinstar lava, just betore molting, is considerably larger and the candal process points ventrally (fig. $2, D$).

The second-instar larva (fig. \because, E) has very litite to distinguish it. The mandibles and head capsute lack color: the head is almost spherical; and the body is pacticially cylindeical manate posteriorly with the caudal process shrunk to a smatl vental tubercle.

The third-instar is similar to the secom, with the catudal process reduced still further.

The nitimate lava is of the usmal hymenoptentom type having ${ }^{9}$ pairs of open spiateles. The principaj month parts are shown in figwe $2, F$. The mandibles aw pectinate as is usual in most braconid larvae.

The cocoon is thin, almost transparent, light brown, and about a.5 mm . long by 3 mm . wide.
 instar hava; C, hemad of fiast-instar larva; D, first-instar larva atter feedimp
 F, portion of head of dast instat showing mond pan'ts.

BIOLOGY

Triaspris n. sp. mates immediately after emergence and the females begin oviposition at once. The egas are latd freely in host larvae of any age except; in large larve that have gone into the soil and constructed pupal cells. These hater do not seem to le so attractive to females as younger larvae. In oviposition cages, composed of small glass globes with cloth bases, containing a few pieces of lettuce leaves among which the Listroderes larvae are distributed, the fenalles move around rapidly searching out the larvae and quickly stinging them. the larvae are washed in water and dried on bloting paper before being introduced into the cages, in order to take awiy the dint, and salivity juices and excrement that they usually expel unon being touched. This procedure helps to prolong the life of the adults used in labotatory reating. The lettuce leaves. although utilized, are not absolntely necessary, but serve to prevent the host larvate from drying out or "bunchingr" in clusters. After oviposition is well under wat the leaves are discarded.

The longevity of adults of Triaspis n. sp. was not exactly determined. Some females in oviposition cages, ilthongh at times receixing rough treatment from host lavae, lived as long as 2 weeks depositing 10 to 15 ergs a day.

The egor hatches in or 4 days at ondinary temperatures, and by the righth doy the larra is in the hate first stare. Fonteen days afteroviposition, dissections showed the larvie to be in the late secmad stage, with some molting into third-instar larvan and of hers already of that instar. lighteen to twenty days after oviposition the lirva has reached the ultimate stage and worked its way out of the host larva, completing its feeding from the outside; a day hater it spins its cocoon. Some cocoons have been formed 19 days after oviposition. The cocoon period reguires from 10 to 12 days, thus bringing the complete life rycle to 31 or 32 days.

SEASONAL HISTORY

Several thousand host larvae brought int the laboratory from September 29 to October 20, 1945, produced a small number of Triaspis creoons by November 15. Adults issued from them from November 15 to 27.

Undoubtedly adults continue breeding in the field as long as larvae of Listroderes are present, for in the halonatory they laid ergs mmediately.
It is not known how this insect passes the summer period, but it probably has some aiternate host.

Epiplactors littronatis Blanchard

(Figs. 3 and 4)
Epirlagiops littoralis was discovered in 1942 in the first large collections of Listroderes made in Santa Fe , Argentina. It was described by Blanchard," the name leing derived from the location of its discovery, i. e., the littoral \%one of the Plata River.

[^4]Epiplagiops littoralis has also been found near Montevideo, Uruguay. No littcralis appesred in collections made at Rosario, Argentina, also on the littoral, only 300 kilometers from Santa Fe, nor in collections from sjan Antonio de Areco, Province of Buenos Aires, Argentina. Blanchard states (communicated) that he has specimens from the Province of Buenos Aires but has no host data.

Fiogne 3. \rightarrow Epiphagiops littoralis, immature stages: A, Egy showing (co) two cornictes greaty entarged. B, Ergshell on skin ot host, with a firstinstar larva atached at the point of entry, showing (e) the eggshell, (o) the operchlum, and (s) the skin of host. C Firet instar of larva in sifu, a schematic diagram of posteriur porifon, showing (e) and (0) same as in D, (l) the larva, amb (ts) the reapiratory sheach, D, ivirstinst:u larwa with posterior portion enclosed in respiratory shearh (r s) showing (${ }^{\prime}$) the skin of host and (op) the openine in the skin to whinh the respiratory shenth is atached. E, FirstInstar larva, last sepment showing armature and spiracles.

DESCRIPTION OF STAGES

The egg (fig. 3, A) of Epiplagiops littoralis is white, oval when seen from above, and flattened ventrally, the upper surface being
covered with a chalky white substance in which can be seen fine reticulations of elongate hexagonal form. The lower surface is a thin membrane. Anteriorly on the upper surface is a small, clearly delineated operculum that is very phain immediately after the eag has been deposited. On the operculum is a group of small beadlike organs (fig. 3, A, co) set in a circtar space which bents no chatky white material. Posteriorly and domally is another group of these organs: the opercuhum group consists of 30 to 44 separate organs and the posterior group. 41 to 5 苟.

Figure 4. A. a shows the buccopharyngeal ammare of the firstinstat larva with the tip endarged; figure 3 . E. the poterior spiracles and integumental spiner of the firstinstar larva: figure $3, B, C$, and D, the first-instar hara in position of feeding and the method of attachment to host shin: fgume f. - . . . the becopharymeal armature of the second-instar larw: figur 4. . . r. the outine of buteopharyngeal armature of the thiod-instar hara: fatace 4 . B. the poterior spirachab plates of the third-intar lowa and the shape of the plates

and relative position of the oponings; figure 4, C. the outine of the spiracular plates seen somewhat in profile; and figure $4, D$, the shape of the pupartum in dorsal position.

BHolocy

This fly mates immediately after energence. To induce mating the mate fly oscilates the anterior part of its body from side to side rapidly in the presence of the female. Mating basts about an hour and apparenty occurs only once. for when the sexes were left together for a long period no more mating ochered. The maturing of the equs
 immediately bui did not lay the first ergs until thase later. Egy
 femates latd ses egre and disentions showed ther conld have lad
 a lava, but not hathed from the exgathelt, wae weded down in the uterus. ho tarval de velopment was semaboe this poins.

In and herexperment a fies lived liom 27 do: diase and deposiad 601 corys. Dissections showed their eger supply io be praticatly exhausted.

Oriposition takes phate by preferene on lavere that are not fompletely grown or at least ate wot redy iompate. When the female pereives a suitable hot she chambersore it and curts her abdomes sonewhat under or arond and in a morement having ahout 3 to 4 seconds aticks an eqgen it. The exger ustally faid with its long axis (ranserse to the long axiv of the host body: oherwise there is no particular orientation, it being ladindifferenty on thoras or ablemen.
The hara is fomed in \dot{x} to $:$ dass at ammer iemperatures. When ready to hatch it pierese a bole in the lower membranous portion of We decsind near the tuterion end exacty under the opreutum and
 is pusher off, thus allowing for a supple of a thongh the operular aporture and to ingress aperture. Whan inside, the lava remains at this point, cons ructing antegumental respiatory sheath. The old cusehell remaine over this breathing hole meil eventuatly it is worked off he movements of the hot lava or by mbling tgatint leaves. The paraite harca becomes entiely surrounded wiha membrane, the fannellike basal portion of whil? tums black, so that one con separate parasitized from umparifizel harvac on sight. The lamal stage is longer when the egg is hid on a ho-t having a poorty developed fat, beoty. On well-developed hose harac that are simplied with goosd fat bedy. the exg-to-pupation period of the parasite reguires 9 days in a wam remm. In the feld the parasite generally kills the host while it is still in the laval stage but after having formed its pupation cell in the soil.

By the time the parasite larva has completed its fecting, the host harch is gencemll tead and sloughing away, exuding an offensive ador. The parasif lara work its posterior sparacles out through the hosis skin tond wombinus feeding until the host is consumefi. after which the parasite emerges from the old skin and pupates.
Only 1 parasite emerges from a single host. Any other parasites, and here are often 3 or teges on a single hosa apmanty die or are consmed by the mos vigomes parate. Ohen there will be 1 or
more Porizon, several Epiphagiops and a hembiore. or a combination of the three, in a single host. Th these cases the nematode appears to vanquish the other parasies. When a host larsa is parasitized by larva of Epiplagions and of Porizon of :oproximately the same age, the Porizon sucemben and the Epiplagiot completes its lite suecessfully.

SE WONA. HSTORY

The erg stage of Epiplafiop hiftoralis is fomm in Urugutyan fiekls early in September. The firt puparim was foum on september 12. By the ent of the momb all sages of the ly are abmant. By Nowen-
 fost from sight unt the next vent. The litest feot of fly emergence is December:).
In Ganta Fe. Areentina pachably the sme semomal history pevails. The earliest puparia were mied on september 0 . Fress and
 of maximu puparium formation wat from October 1 to 10 , in 10 .
Psen Dochert - -p. aff ara B. and B.)
(Fig. 日)

 and if was posithe of iedate the pupara what the here lanal skins. Examation of the batien preved beyond donbt that 'seudorlista sp.
 portiat in ine biolagical wontrol al Listroderos.

 projecting from the has akin rentrally in the dhamic rexion) within Which the puparime is formed i - shown in figure. . B.

Amatode

 been reared from Lixtrod, marab wolleded in suta Fe. Argentina,

 sitization in the sond hen pate of Thenay was 12 pereent.
The binlogy is monow to he whers. The larab beang the

[^5]

Fiovie:

Fung:

Two fungi, Entomophthora sphaerosperna Fras and Beauvaria globulifera (Speg.) Pic, attack the larvae of Listroderes in Argentina and in Uruguay. Although at times these fungi cause considerable losses in rearing cages, they do not seem to be an important factor in the control of the vegetable weevil in nature.

parasites of the adult of listroderes

Microctonus n. sp.
(Fig. 6)
The parasite Microctonus n. sp., of the braconid subfamily Euphorinae, was found in cages of adult Listroderes collected at Santa Fe in 1944. It has not been collected from any other locality. It is a negligible factor for controlling Listroderes, only about 2 dozen specimens having been reared from approximately 30,000 adults. No other host is known.

DESCRIPTION OF STAGES

The adult of Microctonus n . sp . is blackish, about 3.5 mm . long, and has a very short ovipositor. The male is similar in appearance to the female.

The egg when first laid (fig. $6, A, a$) is about 0.18 mm . long by 0.09 mm . wide (including the peduncle) and of the usual whitish color. At one end is a slightly inflated peduncle about as long as the body of the egr; the other end is slightly pointed. After a few hours of incubation the peduncle shrinks somewhat (fig. 6, A, b). As incubation protresses the egg becomes more spherical in outline and increases enormonsly in size; and as is customary with many braconid eggs, a layer of large cells is formed surrounding the embryo (fig. 6 , $A, o)$. When the larva is ready to issue it bursts the shell of the egg and works its way out; the cells surrounding the embryo also flow out and many are seen free in the hody cavity of the host.

During this development, the egg, deposited in the hypopharyax, works posteriorly by degrees through the beak, head, and into the thorax and probably to the abdomen. One beetle, having been exposed to adults for several days, when dissected, had 8 eggs distributed from the hypopharyns to the second thoracie segment in stages of development varying from newly laid to well-formed larva, the more advanced being uniformly situated posteriorly.

The first-instar larva (fig. $6, B$) has a large flat head that is broader than the thoras, 12 other segments, and an elongate but rather blunt. caudal appendage approximately as long as the preceding 10 segments.
The head (fig. $6, O$) bears 2 sinall sensorial papilhae above the epipharyngeal region, a faintly discernible maxillary and labial region with buttonlike maxillary palpi and a labial projection resembling a spinerette. The mesnl borders of the hypostomal scleromes are covcred with tuberclelike rugosities. The mandibles are long. simple. and ensiform.

 instar larva. D_{+}Lasi-instar lirvit, a, spiracle ; b, part of head showing prineipal mouth parts.

The body is subeylindrical, tapering gently to the extremity of the caudal process.

The intermediate instars have not been observed, but by trenting with potash a last-stage larva found dead in a cocoon, it has been possible to observe some of its characteristics (fig. 6, D). It is of the usual hymenopterous type. rather slender, arched, and widest, at the fifth abdominal segment. The head is smaller than the first thoracic segment. There are 13 body segments, the last being without setae; the others bear a transverse row of sparse setae. those on the eleventh abdominal segment being most abundant. There are 9 pairs of open spiracles located on the second thoracic and the first eight abdominal segments. The spiracle (fig. $6, D, a$) consists of a fumel-shaped opening followed by an atnost spherical atrium.
The head of the list-instar larva of Microctonus n. sp. (fig. ($;, D, b$) has been studied only in pieces taken from old cocoons. No antennal
foramina or cye marks are visible. The sclerotized portions above the mouth are not pronounced, the labral region being indicated by a fold in the skin; four sensorial setae are above this fold and two are on it; the mandibles are simple, small, and almost triangular in shape and, unlike most other last-instar beaconid larvae, they have no teeth. Two small rodlike seleromes represent the plearostoma and give support to the mandibular apophyses; although the hypostomai selerome is not pronounced, neither are the mesal boulers of maxillary areas, these being fleshy lobes; the habial sclerome is quite disinct, being rather heavy, more or less U-shaped, widest and heaviest at its midde. where the ginglymal sockets give articulation to the maxillary scleromes. They are also distinet! sclerotized, and extend ont wards to the borden of the head, where they have a membranous artiondation with the stubJike cardmal seferomes. Groups of mather strong sensorial setau are above the maxilary scierome on the bower pate of the labium, and below and laterad ot the labial selerome.

The cocoon is white and of the genem form of an Apanteles cocoon; it is span near the drad host whence the lava issues, or in trash of on soil nearby. It is not atached, exopt oceasionally to the dead host.

In the latboratory this parasite was not reared from egrg to adult. However mating and oviposition were observed, and larvae were reared through the first stage.

Blology

Mating of Micrortonus n. Sp. in ondinary whas tubes oceured immediately atter emeryence.

Females lived 6 to dars in cages with wafer and pure honcy as food. Their lives were probably shortened cousiderably by the exhansting efforts in owipositing in the adult weevils and by the somewhat hatsh treatment they receved from the weevils. Qviposition begins 2 to 3 days after cmergence and mating.

For oripositions, female dirrortonus were plated in amall ghobe cages with a cloth base, and adult weevils wore supplied.

The act of oviposition is a most peculita one. The frmate faces the adult wevil with antennae spread in a more or lese horizontal platne. Tf the weevil is moving when the parasite approaches, it stops. lowers its head until the beak touches the surface upon which it rests; the parasite begins to "paip" the beak of the weevil wibl its antennae, at the same lime slighty mising the abdomen and preparing to sting. Eventually the weevil ratises its head as if to shake of this muisance. At this instant the Mic\%octomus quicily curves its abiomen underneath The thorax and thrusting forwarl brives the wigositor in between the mandibles of the beetle and into the soft skin of the mouth. An egg is deposited inside the body eavity in the bypopharymx. Is the weevil stragles to free itself from the attack. the hioroctomes quickiy withdraws its ovipositor and retreats frequently receiving severe blows from the beete and orasionally losing a leg or antenta.

Hyabomyones sp.

Four specimens of Hy/rlomyodes sp. were reared frum about 70,000 adalis collected at santa Te in 10 and 1 sperimen from approximately the same number of fot atults collecerl in 19 ft . This fy is a negligible factor in the biologisal control of the weevit.

Euofstrophasia aperta (B. and B.)

> (Fiz. 7)

One specimen of Euoestrophasia aperta was reared from 300 adult Listroderes collected in Rosario, Province of Santa Fe, Argentina, and 1 obtained from a pupa found in soil.

By dissection of the adult weevils from which the parasite issued the puparium was isolated; the larval respimatory sheath was found to be in the left side of the mesothomatathed to the trachea near the spinacle. The fiest-instar bucepharygeal amatmre taken from this sheath, this amature of the third-jnstar lara taken from the pupariam, the outhe of the pupariom with its unusual posterior stigmal phate, and the latier considerably enlarged are shown in figure $7, A-C$.

This fly appears to be umimpotant in the control of Listroderes.

[^6]
INTRODUCTION INTO THE UNITED STATES OF NATURAL ENEMIES OF LISTRODERES

The introduction into the United States of natural enemies of Listroderes began in 1942 with the sending of Porizon cocoons and Lpiplagiops puparia.

The carlier sendings were handled by H. D. Smith at the Parasite Receiving Station at Hoboken, N. J., who bred out the Epiplagiops flies and forwarded them with the porizon cocoons to the Citrus Experiment Station at Riverside, Calif.

The Epiplagiops were shipped in small flat boxes packed in spharnum moss; these boxes in turn were artanged in a larger box with honey agar for food and water for drinking, in such a manner that the flies could emerge and find space and footing, food and drink in the

Figure S.-Cage used in shipping puparia and adults of thiplagiops litioralis.
outer box (fig. 8). The objection to this arrangement for shipping is that the flies emerge in the dark and consequently many flatten themselves out trying to go into cracks to escape. However, over a thonSand flies arrived at the Citrus Experiments thation, where they were bred and released over a period of 2 years, after which the efforts to establish this species were dropped. No field recoveries have heen recorded.
Since Epiplagiops does not go into at diapaise as does Porizon, this fly probably passes the summer period on some other host. Efforts to breed it on Javvie of Graphoqnathus lcucoloma (Boh.) (sens. lat.) resulted in abundant oviposition, but no flies developed through to the adult stage.

From a total of 195 cocoons of Triaspis shipped to the United States in 1943, 58 adults arrived alive in Californiat, and were utilized for breeding and release. This parasite does not appear to have become established in the United States.

In 1944, 244 larvae of Listroderes parasitized by Triaspis were shipped to California in a mixture of moist sawdust and ground sphagnum. All of them died in the larval stage, undoubtedly because of some noxious effect of the intreated sawdist.

The Porizon cocoons were shipped in small flat boxes without any arrangement for emergence, as they do not emerge at once. Six small shipments of newly emerged mated females of Porizon parkeri were made by first-chass air maiti, bat becunse 10 to 12 days were required in transit these shipments were not successful. Porison has not become established in the United States, owing to the difliculty of changing the established seasonal rhythm of this insect from the southerm heinisphere and bringing it out of its nestivating state (November to April) in the United States while host larvae are present.
The nematodes were shipped in their host larvae packed in moist sphaguan moss, care being taken to select only parasitized harvae. Selection is not dificult under a binocular microscope, for the worms can usually be seen throurh the skin.
The pakasites sent to the United States during 1942-45 are shown in tables.

Tabla 3.-Numbers of parasites of Listroderes shipped to the United States from South America; 1010-45

Parasitns	1942	1943	1944	1945	Tolit
$\left.\begin{array}{c}\text { Porizon argentinensis and } \\ \text { parkeri } \\ \hline\end{array}\right)$ 6.14 4,083 2,396 4,700 12,743					
Triospis sp--------.-	0	195	244	0	439
Epiplapiops ithoruli	1,107	S, 083	0	0	9, 190
Nematuodes.	0	0	19	${ }^{1} 885$	885
Grand to	1,751	13, 261	2, 640	5,585	23,257

${ }^{1}$ Most larvae containing approximaticly 10 to 15 nematodes each.

SUMMARY

Several species of Listroderes, including costirostris var. obliquus Klug and L. apicalis Waterh. have been found in Uruguay and Argentinat, where their larvae feed principally on chickweed (Stellaria media). They cause little damage to crops, only one important loss being noted-i i field of young pofatoes was destroyed by adults feeding on the sprouts. Oviposition and larval development extends throughout, the winter, from April to November. The summer is passed in the adult stage.
Fatural enemies of the litra inchdes ichneumonids, Poriaon parkeri. Blehd., P aryentinensis blehd., and an unknown Thersilochini; 1 braconid, Mriapsis n. sp.; 2 larvaevorids, Epiplagiops littoralis Blchd. and Pseudockista sp. (atl. atra B. and B.) ; I hatirworm of the Vermis form; and 2 fungus discases, Antomophthora sphacrosperma Fras and Bectwaria globulifera (Sper.) 1ric. Natumi enemis of the adult beetles are ibraconid, Mifroctonts th sp.. and 2 larvatevords, Euoestrophasia aperta (B. and B.) and Hyytomyndes sp.

Porizon and Triaspis are solitary internal parasites of the larva, the egg being deposited within the host larva. Apparently there is only 1 generation of Porizon cach year, but probably 2 or more of Triaspis. The summer period is passed by Porizon as an adult in diapause within the cocoon.
Epiplagiops deposits an undeveloped egg externally on the host larva, the parasite larva penetrating the host at a point under the egg and there forming ar integumentory respiratory envelope. The parasite larva leaves the host to pupate.
Among the natural enemies of Listroderes only Porizon, Eipiplagiops, and the hairworm appar to be of any importance in control in South America, 27 percent of the weevils being killed by these parasites in 1942 at San Antonio de Areco and \%at Santa Fo, in Argentina; in 1943. 26 percent at Santa Fe and 30 percent in Uroguay; in 1944, 16 percent at Santa Fe and 44 percent in Utuguay and in 1045, 6 percent at, Santa Fe and 3 at percent in Urugray. The hairworm, althoughi generally distributed, appears to be of value only in restricted localities where in 1945 at one point in Uruguay, this species alone attained a parasitjzation of 78 percent. The fungus diseases do not seem to be effective in the field, but are exceedingly troublesome in the liburatory.
Introductions into the United States since $19+2$ have inchuded 12,743 Porizon, 439 Thiaspis, 9,190 Epiplagiops, and 885 Listroderes Jarvae bearing 10 to 15 nematodes each.

The 2 species of Porizon, Triaspis sp, and Epiplagiops littoralis have been reated and released in infested fields in California. None of them are known to have become established. Dificulty was experienced in breaking the esti vating diapause of the adult Porieon to adapt them to the seasonal thythm of the Northern Hemisphere. Epiplagiops, having a heterodynamic seasonal rhythm, evidently requires in alternate host.

[^0]:
 cress, swine's eress

[^1]:

[^2]:

[^3]:

 bead, b, mandible.

[^4]:
 Rev. 11 : $[400]-450.194 \overline{0}$.

[^5]:

 quasi ghoburar form tand intarged base.

[^6]: ${ }^{\circ}$ Identhed by M. T. Inmes, The late C. H. I', Towasenal fentifed this ty as Cenosomasp.

