

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

SOME FACTORS AFFECTING THE DEMAND FOR MILK AND CREAM IN THE METROPOLITAN AREA OF NEW YORK

By FI. A. Ross
Rescarch Agent in Marketino, Burceu of Agricultural Rconomics ?

CONTENTS

Pngo			Page
Introxlisetiont	1	Pifect of prico changes on comand.	44
Soturca of cath	3	Other factors aftecting famand.	47
Gractes of milk and craztu sol	3		52
Dally retuli sales fur family	\%	Determiuation of futors affecting	
Typxs of variation to dummiki...........-.-...	15	demanda.	52
	10	Determination of tho cammities of milis	
Gumsk of zitwonal variation ity doz	18	Hnd cream which producors must	
bemsonal varlation in retall sules.	27	supply	
Selamoral varhatinn in wholegabo sutas	27	Formulation of a methot of forecasting	
Day-af-the-wask tariation in deamant	32		
Flatitay vartation in clomman!...	30		
Effect of telnforatury fluctumbons on dotmaud.	30		

INTRODUCTION

Milk presents a very difficult marketing problem because of certain peculiarities in its production and handling which are lacking with most farm products. Because of its high perishability it can not be stored in its natural form as can apples, potatoes, or wheat. Then there is a continuous supply instead of an annual harvest. If production exceeds the fluid-milk demand, the surplus is manufactured into less perishable products which find ready sale in world markets. The price obtained for this surplus milk, however, is usually less than that puid for fluid milk in city markets.

This is particularly true in Now York, where butter, cheese, and condensed milk, produced under conditions of high cost, must compete in the open market with the same products from the cheaperproducing regions of the mid-West. It costs less to ship a pound of butter from lowa to New York than to ship sufficieat com to produce a pound of butter in New York State. Nevertheless, the availability of extensive pasture acreage in the State of Now York has resulted in maintaining there a dairy industry which, during the greater part of the year, supplies far more milh than is consumed in fluid form by the great urban population of the neighboring cities.

[^0]These cities have been demanding more and more milk each year, but even in 1925 only 52.1 per cent of the milk handled in New York State milk plants was used as fluid milk. ${ }^{1}$ During the same year, however, there was a period when the New York City supply was barely adequate to maet the demand for fluid milk. That is, supply and demand are not in adjustment, and seasons of shortage alternate with sensons of surplus.

A few perishable farm products, like cantaloupes or lettuce, are like milk in that they can not well be stored. These products are even more seasonal in their production than is mill; yet they are. usually consumed as they are produced because lower prices stimulate consumption during the season of heavy production. The demand for milk, on the other hand, does not seem to respond in the same way. Bseause of these unusual characteristics of milk, the suecessful marketing of this commodity requires a much more careful malysis of demand than is needed in the case of some farm products. The following study of the demand for milk was undertaken to furrish this much-needed information for the New York milk market. Specifically, the study has four principal aims:

1. To determine the factors which affect demand and to measure their influence.
2. To determine the quantities of different products demauded throughout the year, so that preduction may be intelligently adjusted.
.3. To formulate a method of forecasting sules of milk and cream in order to decrense the surplus necessary to guard against shortages due to uncxpected flucturtions in demand.
3. To quantitatively anulyze demand as a factor in mulk prices.

source of data

If the cooperation of all the milk dealers in a city is obtained, it is possible to gather datal which will give the totai-current sales for that market. Such figures, however, show demand only as it exists at a particular time. Sales at other times muy be entirely different. For a complete analysis of demand, detailed records covering a long period are necessary. Unfortunately, only the largest dealers keep such records, and it is therefore impossible to get long-time records which include all sales for a given city. In New York, however, the milk-distributing business is sufficiently concentrated so that the available records cover the major part of the milk sales in the city.

In this study, sales records were obtained directly from the books of six of the largest distributors. The periods covared varied according to the nature of the reccrds and the length of time that they had been kept by the different dealers. Many of the data cover the period from 1919 to 1924, except for one year (November 1, 1921, to October'31, 1922), which is omitted because of the milk-drivers' strike. Accurate sales records are lacking for the eariy part of tiru period omitted, and thiose available are not typical because of the disruption of business.

[^1]During tho last year of the period studied (1924), records were obtained covering the sales of $765,842,560$ quarts of milk. According to the Milk Reporter, the total receipts of milk in the metropolitan district during that year were $1,195,861,040$ quarts. The analysis covered, therefore, 64 per cent of all the milk shipped to the New York market. The retail business was covered even more completely since these six dealers handled approximately 94 per cent of all the mill sold at rotail and 96 per cent of all the cream. With such a large part of the milk busiuess included, it is felt that the data presented here are undoubtedly typical of the whole city except in a few minor instances which are noted later in the discussion.

Supplementray datas were obtained through the courtesy of the New York City Department of Health, which made a survey of the businesses of 38 of the larger milk dealers in the early part of 1927. This was done for the purpose of securing the Iatest information on the proportionate quantities of the various grades of milk and crean sold.

New York City and the surrounding towns and suburbs constitute one larye market for milk, subject to certain minor varistions in price and snitary requirements. The largest dealers have distributing branches scattered throughout the territory. These branches are necessary because only a limited number of retail wagons can distribute from a given peint without too long hauls. The number of retail routes to a branch may vary from 25 to 200. Eranches in the sparsely settled regions operate the smallest number of retail wagons. Routes in the densoly populated area are much shorter and a greater number can be handiled by a single braneh.

Most of the region covered by the study is shown in Figure 1, and this figure will serve as a key map for the districts given in many of the tables. Each district represents the territory served by the retail wagous from a single distributing branch. In addition to the area shown in this map, the records include sales to districts around Stamford and Bridgeport, Conn., and around Asbury Park, N. J. For convenience in locating the various districts they are grouped under cight headings, including the five boroughs of New York and three other districts here referred to as Long Island, Westchester County, and New Jersey.

The records as obtained from the books of the dealers were of three kinds: (1) Monthly sales, (2) weekly sales, and (3) deily sales, of the various products ordinarily handled by milk distributors. Monthly and weekly sales for all commodities, and daily sales for the most important ones, cover the whole metropolitan area. Because of the large amount of work involved in copying daily-sules records for the 42 districts included, only certain of these districts are given for some of the minor dairy products. In the case of these less important produets, it was thought that this "sampling" method was sufficiently accurate to give dependable estimates for the whole area.

GRades of milk and cream sold

The average daily receipts of milk at the New York market during February, 1927, amounted to $3,522,520$ quarts. Of this quantity, $2,726,283$ quarts, or 77.4 per cent, was sold by the 41 dealers whose
seles are shown in Table $1 .{ }^{2}$ Approximately four-fifths of this quantity was grade B milk and one-fifth was grade A. Certified milk constituted only about I per cent of the total sales.
Tahle 1.-Average daily sales of milk by 41 dealers in the New York metropolitan area during February, 192\%

Commodily	Average dally sules	
Gracto 18 milk	Guarts 2, 103, 105	Per cent 74. 3
Crate A tulik	[627, 1320	19.4
Cartifed trilk..	35, 5152	1.3
Total	2, 726, 283	100.0

Fig. I.-Key Map of the new York Metropolitan Area
The territory includes the five boroughs of Now York, und purts of Long Island, and Westehestor Cancty, N. Y. shd New Jersey, Each district represents the tarritory served by retail waquons from a gingle distributing braneh

During the same month these dealers sold 76.2 per cent of all the cream received at the market. The amount sold and the butterfati test for each of the different classes of cream are shown in Table 2.

[^2]The actual fat content ranged from 1.86 to 5 per cent above the legal minimum established by the New. Yoric City Department of Health. Extra-hervy cream, with an average fat test of 39.55 per cent, constituted about 70 per cent of the total sales. New York offers an. excellent market for cream in that it demands large quantities of the high-testing product. Roughly, five bottles of heavy cream are sold at retnil for each bottle of light and medium cream. Contrasted with this is the Chicago market, which in 1922 demanded 10 bottles of light cream for each bottle of heavy. ${ }^{3}$ In the latter city the heavy cream tested only 32 per cent fat, as compared with nearly 40 per cent for New York.

Table 2.--Average daily sales of cream by 41 dealers in the New York Metropolitan arec during February, 1927

Klnd nf cresm	Buttorfat content		Quantity motd	
	$\begin{gathered} \text { Legal } \\ \text { minlmum } \\ \text { Tork Clty } \\ \text { York } \end{gathered}$	Aotual :		
Lefotit.	Per cent 18	Per cent	Quarts	Per cend 23.2
Medium.	${ }_{28}^{23}$	${ }_{39} 27.41$	73, 7848	6.7 6 6. 6
Extra hativy---	38 45			-0.5
Total		34. 16	105,225	100.0

1 Wolghted avernge.
The channels through which the products handled by these 41 dealers reached the consumer are shown in Tables 3 and 4. Of all the milk sold, 54 per cent was sold on retail routes, and about 9 per cent was sold in bottled form through stores, leaving 37 per cent which was sold as bulk milk. Twenty-five of the dealers divided their builk sales in to two classes-that part going to stores to be resold as dipped milk, and that part going to rectaurants, hotels, and the like, to be served to consumers or used in cooking and ice-cream making. Approximately equal quantities were used in the two classes, and it seems likely that this proportion would hold true for the dealers not reporting.
Practically all of the bulk milk was grade B, and so the proportion of this grade sold in bulk form is mueh larger than that of all milk (46.5 per cent as compared with 36.9 per cent). Only a very small quantity of grade A milk was sold in bulk form, and no certified milk. Retail sales constituted 93 per cent of the total sales of grade A milk and 97 per cent of the total sales of certified milk.
Approximately one-eighth of the light cream and one-fourth of the heavy cream was handled on retail routes; the rest was sold in bulk and bottled form to such customers as hotels, restaurants, confectioners, and ice-cream makers.

[^3]Table 3.-Percentafe diveribution of sales of milk by 41 dealers in the New York metropolitan,arca during Febtuary, 1927

Soles methnd	Orado $\mathrm{I}_{\text {mall }}$		Gracto A mitle		Certilad milk		All grades	
	Quarts	Per cont	Quarts	$\begin{aligned} & \text { Por } \\ & \text { eent } \end{aligned}$	Quarts	$\begin{aligned} & \text { Por } \\ & \text { cont } \end{aligned}$	Quarts	$\underset{\text { cent }}{\text { Per }}$
Rotall liotind.	955, 715	44.2	491, 670	03.2	34, 500	97.1	1, 48L, 890	
Wtursale	\% 2120,713	9.3 3.1	33,705	6.4	1,013	2.9	230, 500	8.7
Postaurants, oie, bit	485,015	24.1	2,255	. 4	0	0	522.713	10.1
'Patat.	2, 163, 105	100. 0	627, 6213	100.0	35, 252	100.0	2,726, 283	100.0

theot tha 41 doulers thd not diternathate botwoon store and restaurant tark sules. Jhatr butk sales were therufore dividud butweon stores and restamants in tho same proportion ts thast of the 23 dealers who Feparted thena suparatols.

Tanle 4.-Percentage distribution of sales of cream by 41 dealers in the New York metropolitan area during February, 1927

Sales mothed	Light and modiH2t creain		$\underset{\substack{\text { Extra-heavy } \\ \text { ercama }}}{ }$		All cream	
	Quarts	Per cent	Qunts	Per cont	Quarts	Per Dont
Retnll. Wholessik:	3,916 27.6168	$\begin{aligned} & 12.4 \\ & 8.6 \end{aligned}$	18,8196 54,817	26.6 74.4	$\frac{3}{82} 812$	21.7 78.3
Total	31, 512	160.0	73, 713	100.0	106,223	100.0

Daily retail sales per family

Different parts of any cosmopolitan city like New York show great diversity in the demands for dairy products. Although it is not the purpose of this study to relate demand to the social or the racial characteristics of the population, certain data are given for the separate districts which make up the metropolitan area. For a small dealer who serves only one section of a city and for the dairymen who sell milk to such a dealer these district data may be more representative than are the figures for the market as a whole.

The boundaries of the districte are determined by the area covered by the retail wagons distributing from a single branch. In a few of the more congested parts of the metropolitan area the population is highly varied; and the same distributing branch may serve a millionaife on Park Avenue and a destitute garment worker on Ayenue B. Hence the data on average sales por family in such a district mean little from a sociological standpoint. Most of the districts, however, are characterized by distinctive features, such as business, resort, and suburbun sections, or poor, middle class, rad wealthy homes.

The daily retail sales per fannily shown in Tables 5 and 6 were obtained by dividing the total retail sales of each product by the average number of active customers as shown by the books of the route men on the first day of each month. Obviously, such data on the average sales per family for any given product do not mean that each family buys some of the commodity each day. For example, certified milk is purchased by a relatively small proportion of the famiiies in a district, whereas cream may be purchased every day, or
occasionally, or not at all. The average sales per family, however, put the different districts on a common basis, so that the relative intensity of sales is indicated. This is shown graphicully in Figure 2..

The lowest average sales per family, 1.067 quarts, were found in the district about Paterson, N. J. (district 40). The heaviest sales per family were shown in district 31, which includes the towns of White Plains, Hartsdale, Scarsdale, and Harts Corners, in Westchester County. Sales in this district amounted to 1.546 quarts per family, or 45 per cent more than in district 40 . There is no doubt

Fig. 2.-Average Daily Retail sales of All Milk in Quarts Per Family, NEW YORK METROPOLITAN AREA, 1924
Sales are henviest in sume of the better-class suburibn districts
that the low retail sales in some of the New York City districts are due to the fact that a part of the family supply is purchased at stores. It is not unusual for a poor family to purchase bottled milk from the retail wagons for the children and to supplement this with dipped milk from the store for consumption by the adult members. Since the suburban districts depend almost wholly on retail deliveries the per family purchases are necessarly higher. In addition there is a strong tendency for families with children to move to these suburbun regions, and this may explain a part of the heavier demand per
family. The rest of the variation in sales between different districts may be accounted for largely by racial or economic differences in the population.

Table 5.-Average daily retail sales of bottled milk per family in the New York metropolitan area, 1904

Distriet	Grade B milk	Grade A mill	Certifed	Grade 3 milk	$\begin{gathered} \text { All } \\ \text { bottled } \\ \text { milk } \end{gathered}$
Mantintans	Quarts	Quarts	Quarts	Pinto	Quarts
	0.491	0.500	0.014	0.179	1.100
2	.024	. 381	. 015	- 213	1.000
	. 051	. 387	. 024	. 188	1.149
5	. 853	. 309	. 020	-103	1. 1904
Bronx:					1.104
	. 722	. 467	. 015	. 057	1.222
7	. 734	. 44	. 018	. 050	1. 2223
Bronklyn:	-73\%	. 448	. 028	. 005	1. 248
	. 830	. 379	. 034	. 088	1. 278
10	. 771	. 415	. 038	.068	1.258
11.	. 820	. 323	. 028	-053	1.218
12.	. 769	. 347	. 057	.084	1.215
13	. 735	. 307	. 033	. 129	1. 340
14.	. 1868	. 519	. 0208	. 053	1.229
10.	.766	. 422	. 021	. 067	1. 182
Queens:					
17.	. 827	. 272	. 034	. 087	1. 100
18	. 844	. 283	. 017	. 129	1.208
19	. 881	. 280	. 024	. 088	1.229
22.	. 797	. 283	. 046	. 088	1. 140
222	.8227	. 422	. 046	. 051	1.220
8tateri fland: ${ }^{3}$. 818	-358	. 026	. 058	1.231
Long island:					
	. 825	. 285	. 037	. 045	1. 150
${ }_{2}^{25}$	-809	- 262	. 064	. 085	1.178
Westhester County:	. 0 A	.417	. $\times 1$	-60	1.450
2.	1.084	. 229	. 015	. 077	1. 368
*	1.050	. 271	. 031	. 070	I. 300
29.	. 828	. 323	. 046	. 078	1. 236
30	. 803	, 280	. 042	. 080	1. 275
31	1.0!8	. 431	. 070	. 055	1. 546
32--....	. 070	. 328	. 038	. 063	L. 308
New Jersoy:	. 745	377	0 OE	078	
3.	.692	. 448	. 018	. 074	1. 185
35	. 788	. 321	. 016	. 094	1.132
36	. 777	. 280	. 024	. 003	1.128
37.	. 325	. 804	. 042	. 032	1, 187
88	. 200	. 283	. . 024	. 061	1. 218
39.	. 772	. 284	. 085	. 063	1. 152
40	. 778	. 249	. 015	. 050	1,007
41.	. 833	. 295	. 1035	. 087	1. 190
42.	. 830	. 333	. 044	. 057	1.230
Welghted average	. 758	. 372	. 028	. 1886	1. 202

Table 6.-Average daily retail salex of cream per family in the New York metropoititan area, 1924

Distriet	Extraheavy crean	Light cream	All cream	Totel mulk equivaleut
Manhatian:	Half pinto	Half pinas	Halj pints	Pounds
		0.004	0.020	0.107
3.	-028	- 1008	-036	. 190
4 -	. 04917	. 018	. 699	. 502
5.	. 0187	. 020	. 117	. 033
Bromx:				
13.	. 029	. 002	.0n!	. 177
7	. 025	. 0104	. 028	. 157
Jlronklya:	. 03	-007	. 013	.234
B...	. 029	. 005	. 034	. 188
10.	. 043	.607	. 050	. 275
11.	. 044	, 005	. 049	. 275
12.	. 682	. 010	.002	. 515
13.	-0000	. 0007	. 067	. 376
$\frac{14}{15 \ldots}$.030	. 004	-64	. 189
$\begin{aligned} & 16 \ldots \\ & 10 \ldots \ldots \end{aligned}$. 0228	.000	. 023	. 184
Qubalis:				
17.	. 051	. 017	. 008	. 353
18.	. 043	. 007	. 050	. 275
18.	. 051	. 015	. 060	. 316
\% 2	. 095	. 020	. 115	. 622
${ }_{22}^{21}$	-078	-013	. 001	. 323
Statun ishand: 23.	± 066	. 018	-0,44	. 444
Long Liland:				
24.	. 071	. 0006	. 077	. 438
2	. 121	. 013	. 134	. 764
Wextuliester county:	-180	. 038	. 198	1.060
27.....----...--	. 060	. 014	. 074	. 397
28.	. 078	. 019	. 097	. 518
23.	. 107	. 229	. 136	. 720
30.	. 111	. 021	. 132	. 719
31.	. 179	. 050	. 235	1. 220
Now Jursey:	. 120	. 014	. 134	. 7511
31---	. 942	. 017	. 059	. 299
3.	. 054	.023	. 077	. 388
35.	. 032	. 011	. 043	. 222
33.	. 027	. 007	. 034	, 181
37.	- 348	. 044	. 192	1,007
3 K .	.048	. 014	.0.32	. 329
40	. 036	. 012	-048	. 2410
40.	. 038	. 000	. 044	. 243
41.	.074 .104	.012 .029	. 830	. 473
	. 104		-133	.702
Weibhted averugo.	. 053	. 011	. 0 ¢ 4	. 346

fanom pounds of 3.5 per cont tuilk $=$ one-half pint light craam: 8.9086 pounds=one-halt pint extra-heavy (reatily.

Tho average daily sales of all milk on retail routes were 1.202 quarts per family for the entire metropolitan area. Grade B quarts constituted 63.1 per cent of this total; grade A quarts, 31 per cent; certified quarts, 2.3 per cent; and grade B pints, 3.6 per cent. The proportionate amounts of these grades differed widely in the various districts. (Table 7 and figs. 3 end 4.) In spite of the rapid increase in the domand for grade A milk during the period covered, the principal unit sold in all but two of the districts was the quart of

Fig. 3.-Sales of Grade a Milik as Percentages of Total Retall Milk Sales per family, New York Metropolitan abea, 1924
Grado A malk suthes vary withely with tho economic condition of tho meople, the mikk orditazens of the various manicipalities, and the aweunt of dfypud wilk sold from stores
grade B milk. This product constituted as high as 79.4 per eent of the total retail sales in one of the Westchester County districts and was at least 6.5 per cent of the total in 24 of the 42 districts studied. In only two districts did it fall below 50 per cent. One of these districts held down the sale of grade B milk by its health regulations, and the other had a large store trade in dipped milk which replaced some of the retail sales of grade B milk.

Table 7.-Relative quantities of milk sold at retail in the New York metropolitan uTEa, 1984

District	Percentage of tho total sales for meit dilatiot				
	$\left\lvert\, \begin{gathered} \text { Qunts or } \\ \text { drude } \\ \text { milk } \end{gathered}\right.$	Quarts of gradu A millk	Quarts of oertined milk	Pints of grada. milk	Tctat
Mantattan:					Per cemt
1.-.	42.33	48.8	1.2	3.7	100
3-..--	60.9	$\begin{array}{r}320 \\ 33.8 \\ \hline\end{array}$	1.4	0.7	100
4.	6 Gi .0	33.3	1.3	3. 5	100 100
5.,	50.2	33.4	20	4.8	
7.	5	378.4	1.2	23	100
Brooklyu:					
10.	64.8		2.7 3.0	3.2	100
11.	012.4	26.5	3.3	3.8	100
12	43.	58.6	4. 7	3.4	100
13	告. 5	2489	39	5.7	100
14.	53.4	42.3	2.1	2.2	100
1 l	6. 0	26.6	2.0	2.5	100
	71.0	23.2	2.9	2.3	180
	(13). 8	23.4	1.4	5.3	100
10.	71, ${ }^{7}$	22.8	2.0	3.5	100
22	67.6	23.1	4.0	3.6	100
22.		32.0	$\frac{2}{3.5}$	2.5 1.9	100
Statan ishand: 23	86.8.	20.1	2.1	2.3	100
Long Istand:				2.3	100
24.	T1.8	\%30	3.2	2.0	100
	${ }_{64}^{6.7}$	22.38	5.4	3.6	110
准-1.....--	70.4	36.8	1.0	28	100
28	75.8	19.5	2.2	27	100
29	67.0	26. 1	3.7	3.2	100
30.	70.8	22.7	3.3	3.2	100
31.	65.8	27.3	4.5	1.8	100
34	57.0	37.5	I. 5	3.1	100
35.	50.1.	23, 4	1.4	4.1	100
310	68.9	24.9	21	4.1	100
37.	27.4	67.7	3.5	1.4	100
30.	73.9	2 2 .0	20	25	100
40.	77.0	34.7	5.6	2.7	100
41	61.6	24.7	4.4	2.4 28	100
42.	67.2	26.9	3.6	2.3	100
Wolghted avorago	03.1	31.0	2.3	3.6	100

The largest percentage of grade, A mill (67.7 per cent) was found in one of the New Jersey districts which included the town of Montclair. No grade B milk could be sold for drinking purposes in that town, and the percentage of grade A sales was thereby raised for the entire district. Oddly enougir, the district with the next highest percentage of grade A sales was the lower east side of Manhattan, which includes the poorest part of the city. Here the percentage of grade A sales appears to be high because the retail sales of grade B quarts were lowered by the purchases of dipped milk from stores. In other words, it seems likely that even the poorer families desire thd higher-quality milk for their children, and if bottled mill is purchaseo a large part of it will be grade A .

Since certified milk retails at decidedly higher prices, and is used almost entirely for infants and invalids, it constituted only a small proportion of the total sales. Even in the better-class residential districts the maximum was only 5.6 per cent of the total sales. In generai, the suburban district: offer a better market for this grade of milk than do the more densely populated areas.

Grade B pint sales also constituted a very small proportion of the demand in all but the business districts. Except in the lower half of

Fig. 4.-Sales of Certified Milk as Percentages of Total Retail. Milk Sales per Family, New York Metropolitan Area, 192 g

Good suburban residential destricts offer excellent facilities tor the rearlig of bables and the sale of cort lifed milk

Manhattan and in one section of Brooklyn and one of Queers, the pint sales wera less than 5 per cent of the total.

The average daily retail sales of cream per family for the entire metropolitan area amounted to only 0.064 half pint. (Table 6 and fig. 5.) This is approximately equivalent to the purchase of a half pint each day by one out of each 16 families, or the purchase of one bottle each week by one-half of all the families in the market. The variation in sales among the districts is, of course, far greater in the case of a semiluxury like cream than in the case of the more necessary
product, milk. The cconomic status of the consumers in the varius districts also appears to be a more important factor in cream sales. The White Plains district in Westchester County led in the demand for cream as well as in the demand for mills. The average sales per family in this district wero eleven times as great as in the lower east side of Manhattan. There was also considerable variation in the proportion of extra-henvy cream and light cream sold in the different

Fig. b.-Average Dally Retail Sales of Half Pints of Cream per Family. New York Metropolitan Area, 1824
Crean smies appiear to to more induencod by tho weath of the consumers than mallis sales
districts. The ratio of the high-test cream to the low-test cream ranged from 2 to 1 to 14 to 1 .

The average retail sales of all bottled milk per family in 1924 were 7.4 per cent higher than in 1921. (Table 8.) The per capita receipts of all milk at this market in 1924, however, were 8.9 per cent higher, indicating that the wholesale sales (including some whole milk for ice cream) increased a little faster than did the retail sales. The changes in the respective districts showed great variation. A few regions showed decreuses, but in the others the increases ranged from approximately 1 to 23 per cent. In general, the increase was greatest in the regions which had the lowest sules per family. This
may be attributed, in part, to the fact that the greater buying power which came with increased industrial prosperity permitted residents of these districts to increase their consumption of dairy products, whereas the wants of the residents in the wealthier districts were already filled.

Table 8.-Changes in the retail sales of will and cream per family in the New Yort metropolitan area from 1921 to 19 m 4

Distriot	Olameses in sales of-3				
	Pantrs of gratd It min	Qunts of grule A milk	Quarts of certiHod milk	$\underset{\substack{\text { All } \\ \text { bottion } \\ \text { mill }}}{ }$	$\underset{\substack{\text { bottled } \\ \text { creatm }}}{\text { Alt }}$
Mankuthas:	Par cent	Per cent	Per cent	Per cent	Per cent
	+6.28	+23.5	-34.0	$+9.0$	+5. 6
3.	+10.8 +7.0	+42.8 +31.2	-14.31	+16.6 +0.6	+65,
4.	+1.5	+24.4	-25.6	$+4.5$	+6.8
5.	+7.1	+41.6	-17.6	+12.4	-10.7
1 bronx:					
B.	+1.8	$+23.5$	-38.0	± 7.3	-13.0
mrookiyn	+4.2	+19.8	-13.0	+10.4	-0.8
$0 .$.	+.8	+49.4	-2.0	$+0.4$	-2.0
16.	+0.6	+41.8	+5.8	+14.3	$+21.5$
${ }_{11}^{13}$	-2.5	$+53.5$	+3.1	+5.5	+17.9
10.	-1.4	+44.1	${ }_{-10}$	+12.6 +5.3	+20.8
Quears:	+1.0	+2.3	-19.7		-9.0
17--	$\pm .5$	+18.f	-24. 4	+2.1	+20. 2
18		+22.7			$+59.3$
20	+4.4	+12.8	-10.3	+8.5	-10.6
\&taten islanti	-13.2	+30.6 +3.2	-23.3	-4.2	-4.2
Stamy liand: 23.	-14.9	-3.2	-45. 3	.$^{-14.0}$	-20.0
25	-8.5	+22.1	-20.0	-2.8	
Westchester Oommy	-1.8	$+32.0$	-38.5	+9.3	+18.3
27,.....------	+14.6	$+10.3$	-21.1	$+12.7$	+7.1
.28....	+2.	+39.7	-22.5	+5.5	+77. 0
20	-3	$+28.7$	-12.7	+3.4	+223
31	$+5.1$	+24.8	-12.5	+0.2	+17.3
31	$+1.4$	+31.3	-7.3	$+0.5$	+7.6
Now jersey:	-5.6	+18.0	+3.5	-1.1	-28.1
33......	+10.6	+40.4	-26.0		
34	-2.9	$+292$	+38.5	+5.7	+44.0
35.	-4.1	+24.8	-15.8	$+4$	$+21.7$
36.	+8.6	+28,4	+28.3	+8.0	+45.2
38.	$+8$	+38.1	+18.1	+8.1	+25.0
39.	+1.2	+41.8	+54.8	+8.3	+-67. 4
4)	+20.1	+50.3	8	+22.8	+30.1
41	-1.7	+24.0	+25.0	+2.8	+15.0
	-10.4	+50.2	$+25.7$	+. 4	+23. 1
Welghted average.	+2.4	+31.5	-6.2	+7.4	± 13.5

i Increnses and decreises are oxpressed as percentages of the 1921 sales.
Retail sales of cream per family increased 13.5 per cent during the same period, as compared with an increase of 17.5 per cent in the per capita receipts of cream and condensed milk. Since the latter products play a much more important part in the manufacture of ice cream in the city, it is to be expected that the rapid rise in the consumption of that commodity would cause the receipts at the market to increase faster than did the retail sales of cream. The variation in the changes in sales among the districts is much greater in the case of cream than in the case of milk. The range is from a decrease of 29 per cent to an increase of 67.4 per cent. Cream sales also appear to have shown the greatest increases in districts with a low per family demand and a none too high buying power.

Perhaps the most significant feature of these changes in demand is the difference in the degree to which various grades of milk are affectod. The rapid incrense in population has resulted in an incrensed total demand for almost all dairy produats, although the demand for some products has obviously increased more rapidly than that for others. The data show, however, that the per family sales of certified milk actually decreased 6.2 per cent during theae years. Grade A milk sales per family, on the other hand, increased 31.5 per cent, while sales of quarts of grade B milk increased only 2.4 per cent. In other words, thore was a notable shift from grade B and certified milk to grade A during the three-year period. The increases in sales per family of the last-named product amounted to over 50 per cent in several districts. It is evident that, with the present industrial prosperity, consumers do not consider the 3 -cent margin between grade A and grade B milk too high. Certified-milk sales showed marked increases in a few of the New Jersey districts, particularly in regions to which many families have moved who wish

Fio. 6.-Dally Retail Sales of Ouarts of Grade B Milk by One Dealer, New York, 1824

to rear their children outside of Manhattan and the other congested parts of the city.

TYPES OF VARIATION IN DEMAND

Sales variations may be classed in two general groups: (1) Regular or recurring variations and (2) irregular or intermittent fluctuations. Those in the first group might be termed calendar variations beause they include loug-time trends, seasonal variation, day-of-the-week variation, and holiday fluctuations. Since the exact time at which any one of these variations will occur is known, rather accurate estimates of the demand can be made, long in advance of the date, if quantitative measures are once established.

The second group of fiuctuations are caused by highly variable factors such as temperature, industrial conditions, and price ehanges. Some of these factors affect sales only after a period of time, and changes in demand may be predicted some time in advance of their occurrence. Other fractors, such as temperature, Hluctuate over short periods and have an almost immediate effect on sales.

With all these factors operating at the same time, a very irregular demand naturally results. In analyzing these sales records, it is necessary to study one type of variation at a time, after having eliminated all the other factors. The effect of any one factor (for example, season) is therefore shown as a smooth curve since othar variables have been eliminated. The combined effect of all factors gives the highly irregular sales curve familiar to milk dealers. In Figure 6 are shown the daily retail sales of quarts of grade B milk by one dealer during 1924. Although sales of this product are less variable thun sales of most other dairy products handled by distributors, the fluctuations are pronounced.

LONG-TIME TREND IN DEMAND

Sizee all but a small part of New York's milk and cream supply arrives by rail, an approximation of the trend in the total demand for milk may be obtained front the records of receipts which have been compiled monthly for many years by the Milk Reporter. Previous to January 1, 1927, these figures were given for milk, and for cream and condensed milk combined. Since that time, the Bureau of Agricultural Economics of the United States Department of Agriculture has been issuing daily, weekly, and monthly reports which show separately the receipts of milk, cream, and condensed milk. The average daily receipts of these three commodities for the first six months of 1927 are given in Table 9. In addition to the milk and cream consumed in fiuid form, the figures probably include some milk, cream, and plain condensed milk used in the manufacture of ice cream and such other products as are made in the city. They also include a small amount of ungold surplus, which is usually made into butter.

Table 0.-Average daily receipts of milk, cream, ond condensed milk in the Nevo York metropolitan area during the first six months of 1927 ।

Montl	Mitk	Cream	Condensed tuilk	Tatal
January	$\begin{gathered} \text { \{0-quart } \\ \text { cant } \\ 88, ~ B O 5 \end{gathered}$	$\begin{gathered} \text { \{-quart } \\ \text { cane } \\ 2,083 \end{gathered}$		$\begin{gathered} \text { 4a-quart } \\ \operatorname{cons} \\ 87_{+}+13 \mathrm{~d} \end{gathered}$
Februtry	88,063	3,451	731	12.245
Mareh...	92, 551	4, 194	003	92, 715
Amil...	02,63	4, 386	1,184	06,403
May.	96, 232	6,890 6,220	${ }_{2}^{1,481}$	105,588 106,832
गutie.	40,451	4,200	2,161	100, 83
Averure.	91,971	4, 535	1, 181	197, 707

I From Market Nows Survice, Burdun of Agrictaltural Economies, United States Department of Agriculture. These dath are gresented here, because no previous thgures are available stowing the distribution of crean and condensed mitk receipts, which were formerly jublished es one fiture.

The receipts of milk and cream at New York have shown mn almost constant increase since 1885, when these records were first made available. ${ }^{4}$.This is accounted for by the steady growth of population and by the increased per capita consumption. The relation of these two factors and their effect on total receipts during the 15 -year period 1912 to 1926, are shown in Figures 7 and 8.

[^4]Botb the population and the per capita consumption of milk (as measured by receipts) increased at about the same rate from 1912 to 1918; but from then until 1926 the latter has been relatively higher.

Fig. 7.-Demand for. Milk, New York Metropolitan Area, 1912-1826
All circes expressed as percentianes of the 1910-1914 average. Stendily fncreasing jopulntion Hnd trat entida tonsuntiption reduire mure and mare milk shipjed to this market each yeut
The combined effect of these two factors has been to send the total receipts of milk in 1926 to 185 per cent of the 1910-1914 average. The per capita consumption of milk in 1926 was 139 quarts, o" 39

Ali curves oxpressed as percentages of the 1010-1014 avorake. Industrind jrasperity and the increased use of fee cream have eulused these receipss at New York to rise more rapidily than the raik reocipts
per cent higher than during the base period, when it was approximaiely 100 quarts.
The per capita consumption of cream and condensed milk (including that shipped to the city for the manufacture of ice cream) rose
most rapidly from 1918 to $1922 .^{5}$ Following 1922 the per capita consumption has remained about stationary except for a slight rise in 1926. The increasing population, however, has resulted in a continuous rise in the total receipts, which in 1926 were more than double those in the 1910-1914 period. The per capita consuinption of cream in that year was 8.4 quarts, or 158 per cent of the base.
In both of these charts the per capita consumption is based on estimated population between the census years, and their accuracy depends upou the accuracy of the projected curve of population. Of greater significance than the per capita consumption, is the trend of total demand. This is still teading staadily upward for both milk and cream, although at a decreasing rate. If the present industrial prosperity continues, and if the proper educational work on the dietriry value of milk is carried on, this trend may be expocted to continue for some time. During the five years 1922 to 1926 , the New York market increased its average daily demand for mills, cream, and condensed milk at the rate of rpproximately 5.3 per cent each year, or the equivalent of 54,000 gallons of mille.

CaUSES OF SEASONAL VARIATIONS TN DEMAND

Sensonal variations in sales of milk are caused chiefly by two factors-the anmunl vacation migration, and the major temperature changes of the passing seasons. These two fuctors act in opposition, since both the per capita consumption of mill and the number of persons going on vacations iucrease as midsummer approaches. A measure of the vacation movement of the population may be gained from the retail route books of the milk drivers. One of the large distributiag companies makes a practice of tabulating the number of active accounts of customers that are transierred at the cnd of the month from the old route book to the new. This gives accurate monthly data on the changes in the number of families in the various districts and in the entire metropolitan area. These figures, bowever, do not aderfuntely take account of the one or two week vachtions that may fall between two dates of enumeration. Nor do they show any decrease if some members of a family leave the city while others remait and continue to buy milk. The actual movement of retail customers during the vacution season is therefore greater than these monthly data indicate.

[^5]The pereentage variation in the number of families being served by retail wagons in the New York metropolitan area is shown in Figure 9. It should be remembered that these enumerations are made only once each month, and that the lines connecting the plotted points do not necessarily follow the population movements between these dates. The number of families buying milk on the last of July and the last of August is more than \& per cent below that for the rest of the year.

Producers of milk for the New York market are fortunate in that a number of summer-resort regions are included in the metropolitan

Fig. 10.--Degrease in Number of Families Buying Milk From Retail WAOONS, NEW YORK METROPOLITAN AREA, JULY ANU AUGUST, 1923-1824
Decrentos in tho thamiser of fimitios oxpressed as percentages of tho May and October avemge. In somo of the wealiffer districts the decreass may amount bo one-fourth of the customers
area served by the equiar'milk dealers. The movement of people from their homes to cettages or hotels along the neighboring beaches may cause trouble for the milk distributors, but it does not deprive producers of a market for their milk. The vacation movement to more distant summer resorts, however, decreases the demand in this city market. If the summer resort is in the New York milk shed, it may merely mean that a producer ships his milk to the city in the wiuter ind sells it locally to New Yorkers in the summer.

The yacation change in population in each of the 42 districts is shown in Table 10 and in Figures 10 and 11. The vacation movement for the entire area in 1923 and 1924 was almost double what it was in 1919 and 1920. This tendency for more and more persons to go away on their vacations is also shown by most of the individual districts. There is much to support the belief that this tread will continue as long as the industrial prosperity of the city is maintained.

The greatost movement out of the district is found in the section west of Central Park (district 5). One-fourth of the retail customers

Fig. 11.-Increase in Nutaber of Families Buyino Milk from Retail Wagons. New York Metropalitan Area. Juty and Aucust, 1923-1824
fugreases th the mumber of fanultes oxpressed as percantinges of the Mry and October averugo. necauso of the ustr-by beachat, cortaln districts may double their popathatiou during the vacation
monthg months
in this section discontinue service during the two hottest months. It is highly probable that the majority of these leave the metropolitan area. In some of the other districts, the bull of the movement is probably to Brighton, Manhattan, and Rockaway Beaches, or similar resort sections. The population in such resort sections is naturally very much higher in July and August than during the rest of the year. In district 22, which includes the various Rockaway beaches, the number of retail customers more than doubles during the two hottest months.

Table: 10.-Monements of raiail customers into and out of districts in the New York metropolitan area during July ard August

District	Chunges in the number of tus. tonaers during July and August exprassed us percent. akes of the averike For May and Oeta-ber-		District	Changes in the number of customerpdurlagsuly and sugust expressed ths average for May and Octo-ber-	
	$\left\lvert\, \begin{gathered} 1010 \text { and } \\ 1020 \end{gathered}\right.$	$1920 \mathrm{mad}$		$\begin{aligned} & 1010 \text { and } \\ & 1920 \end{aligned}$	$\begin{aligned} & 109 \text { pud } \\ & 1924 \end{aligned}$
Mutshatlan: 1.......	$\begin{aligned} & \text { Per cerit } \\ & -7,0 \end{aligned}$	Por crnt	Staten Isimad: 23.	$\begin{aligned} & \text { Per cent } \\ & +10.4 \end{aligned}$	$\begin{gathered} \text { Per cent } \\ +1 \mathrm{~K} 4 \end{gathered}$
1---....	-1.0	-6.8	1،1mg Island:		+17.0
3	-10.4 -14.8	-17.0 -15.0	$24 . \ldots$	$+1.8$	+4.1
4.	-22.8	-24.6	20.1	(1)	$1+23.0$
13rums:			Westohester County:		-5.2
6.	-14.8	-19.9		-8.6	-5.3
	\bigcirc	-9.4.818	29	-1.4	+6.0
Brookigit:				+24 +2.4	- -3.0
S....	-4.0 ± 34.0	+20.6	32	+8.5	+i.0
11.	(1)	2-7.5	New Jersey;		
12	-8.3	-16. 2	33.	-3.2	-0.8
13	-127	-8.8		-3.0	${ }_{-7.6}$
14.	$\stackrel{+}{10}$	${ }_{1}=6.8$		+5.0	-8.8
11.	-15, 8	-13. 1		+1.1.	-13.3
Qucens:				+1.8 -4.0	-6. ${ }_{-8.4}$
17,	-3.4	-3.2		-4. 1	-3.6
18.	(1)	- +1		-3.2	+2.8
\%		. $=1.1$		-. 0	
	(1).	t. +11.7 +14	Woighted aver	-3.4	-6. 2

1 Data nat avainitio.
11824 only.

Milk per Family, New York Metropolitan Ahea
Weokly nvernge of maximum temperatares, 1871-1824, shown in degrees, and montaly sales, 1021-1024, expressed as percontsges of the overage for the year. Salee per family rige with the teuperature except during the vucution perfod, whan se veral factors result in a faulty mensure
The effect of seasonal temperature changes on the demand for milk is indicated to some extent by Figure 12. The temperature curve is
based on the average maximum temperature during the 64 -year period from 1871 to 1924. Maximum rather than mean temperatures are used, because the former ordinarily are attained in the daytime when milk consumption would be affected.

The ratail sales per family were obtained by dividing the "arage daily sales for the month by the average number of customers at the beginning and at the end of the month. The sales rise approximately 5 per cent from the low point in January, to June. They do not continue to rise with the temperatirre through July, but actually fall during the next two months. Several explanations of this decrease might, be suggested.

1. The wealthier families, particularly if they have children, are most likaly to leave the city, thus decreasing the number of heavy consumers.
2. The monthly enumeration of customers does not show the loss in sales which is due to short vacation trips of one or two weeks.
3. No account is taken of the loss of customers if only a purt of the family goes on a vacation.
4. Week-end trips are most common during July and August.

Fig. 13.-Seasonal Variation in Retail sales of quarts of bottled MILK NEw YORK MEJROPOLITAN AREA, 1919-1924
Weekly snjes expressed as percantages of the avarige for the yearns shown by smantla curves. The vuchtion decratse in demmnt is greater for those grades of milk consumed largely by childeat tue of schoot ago aud by peofite whopenm well afiord a vacation
If records showing sales to identical families throughout the year were available, there is no doubt but that the demand per family would increase to the latter part of July and then decrease to December. Such a trend is shown by these data, except for the two vacation montis.

seasonal variation in retail sales

The net.effect of the vacation migration and the seasonal temperature chnnges varies with different commodities. (Tables 11 and 12.) Retail sales of quarts of grade \mathbf{B} milk increase siowly with the increasing tempcrature and reach a peak late in Junc. (Fig. 13.) The temperature, of course, continues to rise, but schools close at this time, and the vacation migration causes an abrupt drop in demand. During July and August there is a continual movement of people to and from the city, but the out-of-city movement is the beavier, and sales continue to decline until the last of August. With the opening of schools, the cityward movement of population sends demand sharply upward. This trend continues until about the 1st of October, by which time practically all vacationists have returned, and the cold weather causes a falling off in demand.

Table 11.-Scasonal variation in the retail sales of milk in the New Yonk metropolitan arca, 1919-1924 ${ }^{\text {1 }}$

Mouth and week	Porcentuge of average for the yoar				Montb and week	Percentrge of nverute for the yeur			
	$\begin{gathered} \text { Quarts } \\ \text { of } \\ \text { wnila } \\ \text { is milk } \end{gathered}$	$\begin{aligned} & \text { Quarts } \\ & \text { ul } \\ & \text { (rike } \\ & \text { A. milk } \end{aligned}$	Quarts tilled mill	$\begin{gathered} \text { Pints } \\ \text { of } \\ \text { trade } \\ \text { Disilk } \end{gathered}$		$\begin{gathered} \text { Quarts } \\ \text { of } \\ \text { prade } \\ \mathrm{B}_{\mathrm{m}}^{\mathrm{milk}} \end{gathered}$	$\begin{gathered} \text { Quarts } \\ \text { of } \\ \text { gride } \\ \text { Amilk } \end{gathered}$	Quirts tifled mullk	$\begin{gathered} \text { Pints } \\ \text { of } \\ \text { kruto } \\ \text { Hillic } \end{gathered}$
Jumary;	Per cent	Per cent	Pet cent	Per cent	July:	Per cent	crst	Per cent	
Firsil	07.5	98.2	102.0			102. ${ }^{\text {b }}$	101.6	05, 8	109.3
Betmad.	97.5	03.2	10.9	024	Second	101.0	97.5	93.0	210.0
'Tluird.	07.5	19.3	101.8	81.8	Third	100.0	03.3	91.0	109.6
Fursh	07, 0	\% 4	101.6	91.5	Fourth	\$1. 4	80.4	91.2	100.0
Fubrumay:		W. 6	101.1	01.2	August:	08.0	88.5	0.8	138.3
Sucoud	117.8	183.0	100, 8	9.1	Secomi	08.1	88.0	80.7	109.5
Third	37, 9	02.3	[19.1. 7	41.0	Third	97.3	88.0	40.9	105. 2
Funrti	48.9	[$\mathrm{W}, 8$	100.6	91.1	Fourth	08.4	89.6	91.3	104.2
Mareh:					Fifth......-	97.4	02.4	92.2	103.1
sirst.	98.4	100.1	100.7	91.3	Soptentber: --				
Seennd	918.7	19.0	100.0 101.3	41.7	Second.--	101. 4	$\mathrm{P}_{0.1} 1$	915.6	103.0 102.7
${ }_{\text {Prourti }}$	[6.0.0.	101.5	1101.31	92.8	Third.	101.9	101.3	48.4	102.5
Fhth.	10.0	102, 5	102.6	143.9	Fourth	102.3	102.5	100.0	102.4
Apris:					October:				
First.	\%9\%	108.2	103.4	96.15	Sirconid	102.3	103.2	102.2	102.0
Seenm	1100.5	1012	104.5	377.5	Thtrd	101.8	103.0	102.5	101.0
Fourth	1100.0	104.0	104.8	88.8	Fourth	101.4	103.5	102.3	101.3
Yay:					Fith --	100.7	103, 1	101.3	100.8
First	109.3	${ }^{105.0}$	105.0 107.0	100.15	First.	100.1	101, 3	101.3	100.2
Thirs	102.7	105.6	$1 \mathrm{lH}$.	102.8	Soconel	P9, 5	100.7	100.0	
Fiourth	1102.6	taki. 6	104.4	104, 5	Third	94. 1	S61, 5	100.8	88.7
Hif	103.1	105.6	14\%3. 8	100.1	Fmurth.	V8. 7	53.3	100.0	97.8
Jutiot					Decemter:				
First	143.1	315, 30	1月30. 1	317.8	First.	08.4	98.9	101.1	${ }_{\text {Of, }} 1$
Stund	1 CH .1	115.3	116.1	116.16	Themend....--				951.8
'dhird	104.7 105.3	1046	140.8 09.0	111.1 112.5	Fourlh...---	07.8 97.6	-188. ${ }^{18 .} 4$	1320 1020	94.8
					Aver	100.0	100.0	100.6	100.0

${ }^{1}$ Nov, 1,1621 , tu Oet. :31, 1922, omited because of milk-drivers' strike which casused abnormal sales during the uiris gute of that fioriod.

Table 12.—Scasonal variation in the retail sales of miscellaneous dairy products in the New Yort metropolitan area, 1919-192 ${ }^{1}$

Month aud weok	Percentage of bverage for the year				
	Extrihenvy ercam	Light cream	Condensed milk	Butter	Butter mill
Jammary:	Per cent [4. 8	Percenit 10… 4	Prícent 100.4	Per cent 88.4	Per cēñ 64. 3
Second	[10. 9	10×2	107. 1	.80.8	64.1
Third.	97. 1	103.1	107.5	92. ${ }^{\text {d }}$	64.4
Fourth.	- 07.4	103.1	107.0	97.6	04. 3
Fobruary:	97.8	103. 1	108.3	101.6	15.6
Eecond:	08.4	103.1	7188.7	103.9	60. 5
9hisu.	\%9.0	103.1	110.0	105.4 100.8	67.80
Faurlh	09.0	103.2	100.3	100.8	69.0
Barch: First	100, 2	103.3	100.5	167.6	70.7
8econd	100.18	10.4	IIM. 7	107.3	72.6
Third	101.7	100.	109.9 110.0	1105.5	77.7
Filth.----	103.5	10.7	120.1	105. 5	80.5

: Nov. 1, 1021 , to (Oet, 31, If:22, onitted because of milk drivers' strike which caused abnormal sales dur!ng thẹ eurly purt of thas țerluch.

Tablel 12.-Scasanal variation in the retail sales of miscellaneous dairy products in the New York meiropolitan area, 1919-1924-Continued

Month and weok	Percentage of average for the year				
	Exiraheavy crean	Llght cream	ConEbnsed milk	Butter	Buttermilk
Aprit:	Per cent				
Second	104.4	1003	110.2	103.2	Per cent
Third.	105.4 106.5	104.0	110.3	101.6	87.6
Fourth.	107.9	10¢. 7	110.4	100.6 100.9	98.7 90.2
May:					90.2
Socont	109.8	105.4	110.3	102.3	101.4
Therel	116.8	108.1	110.3	118.1	107.2
Fourth	110.8	107.3	${ }_{503 .} 7$	104.8	13.3
June:	120.8	107. 2	107. 6	103,7	127.6
First.	120.4				
Thecond	119.1	105.6	102.2	St. 0	135.5
Third	110.1	163.6	98.3	100.4	100.1
July;	110.1	100.0	04.1	100.1	182.5
First					
Becand	10.5	96.0	88.8	9x. 9	177.6
Third	0.5	${ }_{90}^{920}$	884.4	98.0 97.4	172.4
Auguat	88.0	87.5	77.9	97.2	161.2
First.	88, 4				
Second	84.4	85.2 83.3	76.6 74.2	${ }^{97.1}$	145.1
Fourth	88.4	82.0	74.0	0.75	139.7
Fithe	83.4	81.6	74.9	$5{ }^{3} .1$	131.5
Eeptember:	85.1	82 B	77.2	88.9	1*3. 1
	89.1	85.4	80.8	100.7	114.9
Third	89.7	90.8	89.0	104.3	107.0
Fupurth	99.7	04.8	90.8	105.2	100.8
October:	0.1	07.0	94.3	105.3	95.0
First.	98.1	99,0	97.0	104. 7	90. 1
Third.	97.8	100.5	88. 9	103.6	85.6
Fourtio.	\%8838	101.7	100.3	102.3	82.0
Fitth-...	\%.6			100.5	78.5
November:		103.5	1023	08.8	76.6
First	98, 3	104.0	103.0	98.8	72.8
Third.	97.8	104.5	103.6	35.2	76.7
Fourth.			104.1	${ }^{10.9} 9$	88.8
Decemtor:	6.8	104.8	104. 6	927	67.4
First	P6. 7	104.8			
80cond.	\%8.8	504.4	105.5	90.7	65.10
Fourth	10.6.	104.1	105.8	89.8	64.5
	90.7	108.7	106. 1	80.2	64.4
Avctago--	100.0	100.0	100.0	100.0	100.0

A somewhat similar seasonal variation is shown by the sales of quarts of grade A milk, although minor differences may be noted. (Fig. 13.) Sales fall off much more in the summer, and the low demand begins before schools close and continues after they have opened, because a larger proportion of grade A milk is consumed by children not yet of school age, and many families can leave on their vacations without waiting for the close of school. Similarly, they are under no necessity of returning for the opening of school.

Certified milk is consumed so largely by children under school age that, unless there are older children in the family, no attention need be paid to the opening or the closing of school. As a result, the vacation decrease covers a still longer period. Neither grade A nor certified milk shows the sharply marked changes in demand which characterize the vacation period in the case of grade B milk.

There is a slight increase in sales of certified milk in the coldest part of the winter, when sales would naturally be expected to decline. This appears to be due to a distinct seasonal variation in the number of births in New York. (Table 13 and fig. 14.) The number of births during January, February, and March is high. Thers is then a decline to a low point in May, followed by a secondary peak in July and another docline to December. With a normal period of nursing of 9 or 10 months, babios born in January, February, and March will be started on certified milk in November, December, and January. Since the burths during the first three months are unusually high, the demand for certified milk goes up 9 or 10 months later. Many babies, of course, are started on cow's milk zoon after birth. Others have their natural food supplemented with cow's milk when they are only four or five monihs old, but even these contribute to the demand when they stop nursing at the end of the

longer period. The increase due to the July secondary peak in births is concealed in the larger increase due to rising temperature in April and May.

Table 13.-Seasonal variation in the number of birthe in the New York registration area

Month	8-geat syerage or births:		Month	8-year average of birthe:	
	Number	Per cent		Number	Per cent
Jsnuary.	11, 576	104.2	August.	11, 131	100.2
Fubruaty	11. 053	1049	Sepromber	11, 142	100.3
Masch	11,742	103.7	Octotmr..-	10, 687	9 O 2
April	11,087	99.8	November	10,042	95.8
May.	10,709 11,085	90.4	December	10,504\%	94. 6
July.	II, 304	102.8	A verage	11, 1093	100.0

[^6]The sales of pints of grade B milk present a different picture, because a much greater proportion is consumed by adults.
(Fig. 15.) Temperature affects' the 'adult demand for milk miuch more than it does the children's demand, because children do not shift from milk to tea or coffee as do adults. The drinking of milk with luncheons has'much to do with the high summer demand: Working people who lunch down town consume large quantities of milk when

Fig. 16.-Seasonal Variation in the Retail Sales of Pints of Grade b Milk, New York Metropolitan Area, 1919-1924

$$
\begin{aligned}
& \text { Wookly snles expirased as percentages of the average for the year as ahown by smoothed eurves, }
\end{aligned}
$$

collee to milk during tha hot.wenther
the weather is hot, but when the weather is cold they change to a hot drink, and the demand for pints is therefore much greater in summer than in winter. Vacations tend merely to check the increase rather than to cause an actual decrease.

Fig. 16.-Seasonal Variation in Retail Sales of Cream and Condensed Mitk, New York Metropolitan Area, 1919-1924
保
Retail sales of extra-heavy cream (Fig. 16) reach their peak about the 1st of June, when fresh berries are on the market and before the vacation migration has begun. Sales at this time are more than 40 per cent higher than they are at the lowest point, in the latter part of August, when the maximum number of persons are out of the city. With the return of vacationists the sales of cream rise, but the
berry season is past, and the lugh point in the fall is 17 per cent below the early summer peak. Light cream, on the other hand, fails to show as high sales when beries aze on the market. It is used in the home largely for coffee, and the demand is therefore high in winter and low during the hot weather. Condensed milk, the curve for which is shown in the same chart, is the unsweetened produce sold in half-pint bottles and is used by some persons as a substitute for cream in coffee. The seasonal variations in the sulos of condensed milk and light cream are therefore somewhat similar.

Buttermilk is a popular summer drink, since many persons consider the acid taste very refreshing during hot weather. Retail sales of this product reach a maximum about the last week in June, at which time the demand is alniost three times as great as in the coldest months. (Fig. 17.)

Sales of butter on retail milk routes do not show as regular seasonal variations as do milk and cream sales because of the great variability

Fis. 17.-Seasonal Vabiation in Sales of Butitermilik, New York MetroPOLITAN AREA, 1919-1924
Weakly anles expressed as percentages of the average lor the year as shown by smoothod curves. Note thit tha scate used hara tilifers from that usod in previous charts. Buttermilis is largely a hot-wenther drink
in the price of butter. The effect of price changes is considered later. At presont it is sufficient to say that the seasonal sales for any one yoar may vary widely from the average, depending upon whether butter prices follow the normal seasonal trend. In Figure 18 it is shown that, on the average, butter sales on milk routes are low during the season of high prices and during the vacation period.

SEASONAL VARIATION IN WHOLESALE SALES

The seasonal variation in wholesale sales differs from that in retail sales because a number of new factors of demand are introduced. The extent to which they difier may be noted by comparing Tables 14 and 15 and Figures 19 to 21, with those showing the corresponding retail sales. In addition to the bulk and bottled products sold to stores for resale to the consumer, large quantities of these products are sold to hotels, restaurants, stands, schools, hospitals, prisons, and
like places, where they are consumed on the spot instead of being taken in to the home. Smaller quantities of milk, cream, and condensed milk are sold also at wholesale to confectionaries, where they are made into ice cream or served in various ways at the soda fountain.

Fig. 18.-Seasonal Vabiation in Retail Sales of Butter on Milk Routes, New York Metropolitan Area, 1910-1924
Weekly sales expressed es percentages of the average for the vear as ahown by smocthed curves. HIgh winter prices, as well us the vacation period, cause a decresse in demand

Table 14.- Seasonal variation in the wholesale sales of milk in the New York metropolitan area, 1920-1924 4

Month and weak	Percentage of bverage for the year				Month and weak	Percentage of average for the year			
	Quarta of crade Bmak	Quarts A misk	Grade B bulk milk	Pints of grade is milk		Quarts B milli	Quarts $\boldsymbol{\lambda} \mathrm{mllk}$	Grade B bulk millk	Pints of grade B mllk
Janmary:	Per cent	Per cent	Per cent	Per cent	July:	Per cent	Per cent	Per cent	Per cent
First.	81.8	89.8	80.7	78.0	First.	123.6	112.7	138.5	128.7
Second	81.4	80.8	80.8	78.8	Second	128. 1	110.8	118.5	128.6
Thirct	81.0	88.8	00.0	70.0	Third	131.7	100.5	114.6	120.7
Fourth	80.7	90.2	90.5	79.4	Fourt	133.8	108.7	1127	124.8
Fobruary:				70.8	Augustst	133.6	108.0	110.9	122.6
Second	88.7	01.3	823	80.6	Second	131.6	107.5	100.2	120.3
Third	81.0	02.6	03.3	81.6	Third.	120.2	107.0	107.6	117.9
Fourth.	84.6	04.0	B4. 2	82.0	Four	123.5	t06. ${ }^{105}$	100.0	115.5
March:					Fifth.-	123.4	105.9	104.4	113.0
Flrst.	82.5	05.5	85.1	88.5	First.	120.0	105. 2	102.9	110.4
Thecond	88.5	\%83	96.8	88.0	Second	116.7	304.4	101.5	107.6
Fourth	85.8	99.5	97.5	90.1	Third	113.4	103.4	100.3 98.2	104.8
Fith.	88.9	100.8	08.2	02.3	Octobe				
April:					First	105.9	100.7	98, 1	02.0
First.	88.2	101.6	98.9	94.8	Becand	102.5	98.8	97.0	00.2
Second	89.7	102.2	99.6 6	97.4	Third	09.5	96.9	95.8	83.6
Third	01.3	102.8	100.2	100.3	Fourth	00.5	95.0	04.9	01.1
Fourth	03.1	103.2	100.8	103.3	Fifth.	03.8	03.4	94.0	83.0
May:	05.2	103.7	101.5	103. 6	November:	91.5	82.0	83.1	80.9
Becond	${ }_{97} 9$	104.2	1024	109.9	Second	80.4	01. ${ }^{\text {a }}$	02.3	85.0
Third	100.3	104,7	303.4	113.8	Third	87.5	90.3	91.6	89.5
Fourtb	102.0	105.3	104.7	110.7	Fourth	85.8	80.8	01.0	82.1
Fifth..	105.8	106. 3	106.4	110.8	December:				
Jure;					First	84.7	88.8	90.5	80.9
Flrst	106.9	107.8	108.4	212.8	Second	83.5 828	89.8 89.8 8	80.2	80.0
Thecond	112.3 115.9	110.2 118.3	111.2	125.8 128.1	Fourth	82.8 82.3	89.8.8.	80.9 88.7	79.1 79.0
Thirdi-....-	119.7	116.7	1140.7	130.0	A verag	100.0	100.6	1000	100.0

[^7]Table 16.-Seasonal variation in the wholesale sales of miscellaneous dairy products in the New York metropolitan arca, 1920-1924

Month bud woak	I'eremtage of average tor the year				Month and week	Percentage of average far the yeer			
	ExtraCream	Lipht creant	$\begin{array}{\|c} \text { Con- } \\ \text { rlcusset } \\ \text { mank } \end{array}$	Dutter- mill		Extra- henvy cream	Likht cream	Consmalle	$\left\lvert\, \begin{gathered} \text { Butler- } \\ \text { mitic } \end{gathered}\right.$
Jabuary:	Per remt	percent	Percent	Porcent	Jtaly-Goatti.	Percent	Per cent	Pr cent	Preremt
First	\% ${ }^{\text {m }}$. 8	77.5	为 0	40. 5	Thir	115	127.6	${ }^{147.3}$	219.0
Stund	81.1	77.3	60.4	48.3	Fourt	112.8	131.0	1+5.0	283.8
Thled.------	${ }_{8}^{81.5}$	77.5	61.0.	478.5	Augtust:				
	82.3	78.0	60.3	47.0	Firseme	110.1	125.3	14.2 130.3	106.7 181.8
First.	82.8	78.0	71.1	46.7	Third	10.0. 0	114.5	13ti. 1	362.7
8 ccumd	8.1	80.1	72.8	48.9	Futirill	195.5	100.8	132.0	140.
Third.	85.6	81.2	74.4	47.6	Fifth.	100.2	105.3	127.1	132.5
March:	87.1	8 L .6	70.3	48.8	Stoptemler:	06.9	101.1	121.0	20.7
Hirst.	88.13	m. 2	78.5	50.6	Steons	05.9	127.4	112.8	110.3
Secont	91.1	85.0	80.8	552.8	Tairt	94.2	0.0	302.0	100.7
Thirit	33.4	87.8	83.3	55.4	Fourth	v2. 6	91.0	90.2	13.0
Fourth	910, 15	88.8	88.8	58.3	Octuber:				
Fith,	10.0	31.0	88.6	0.1	First	91.0	88.3	90.5	88.1
Fif:	[122.	9.3	01.7	(th. B	Thimt	88.8	88.0	88.8	${ }_{74.8}$
Second	106.8	97.3	95.1	\%6. ${ }^{\text {\% }}$	Fourth	81.5	8.3	78.6	70.4
Third	100.5	100.4	18.8	73.3	Fith	85.4	80.8	78.0	83.3
Fourth	113.5	106.7	142.7	79.9	November:	84.3	79.5	73.8	(2. 7
First	188.0	107.4	100.9	88.7	Seconti	83.3	78.5	7 E .8	50. 6
8cewad	123.1	111.3	111.4	94. 8	'1'hird	83.2	77.8	70.4	57.0
'thers	128.3	115.8	16.1	104.3	Fourth..----	81.3	77.2	618.0	S1, 6
Fourth	134.0	121.13	123.0	116.7	December:				
Fitle.	\$40.1	127.1	126.2	131.0	First - --...-	80.8	76.8	58.1	52.0
12: F!	138.2	133.5	131.9	148.9	Third	80.3	76.4	67.4	50.5
Evernd	132.5	141.2	138.0	172.6	Fourth	80.4	70. 9	07.7	60.0
Thirch ------	120.0	${ }^{149.9}$	125.7	204.8					
Juiy:	120.7	16.1	150.4	240.5	Average.	10.0	10.0	10.0	100.0
First Svecose	$\begin{aligned} & 122.3 \\ & 10.0 \end{aligned}$	$\frac{152.4}{144.7}$	$\begin{aligned} & 152.4 \\ & 140.7 \end{aligned}$	$\begin{aligned} & 235.5 \\ & 227.8 \end{aligned}$					

${ }^{1}$ Nov. I, 1821, to Oct. 31, 1022, omitted because of mitik-ditvers' gtrike, whech caused abnormat salcs during the uarly part of that jerfod.

In most of the wholesale outlets for dairy products the adult consumers predominate, whereas in the retail trade the greatest proportion of the milk consumption is by babies and young children. Bechuse of the greater tendency of adults to change their consumption with the weather, wholesale sales of almost all dairy products rise in the summer and fall in the winter. Even the vacation migration, so pronounced in retail sales, is much less effective here because these employed adults ordinarily have but a very brief vacation. Furthermore, it appears logical to assume that dipped-milk sales are little affected by vacations because of the economic status of the purchasers. It also seems probable that there is some shift from retail deliveries to store purchases during the hottest months by families who are too poor to keep ice, and by that increasing class of people who depend on delicatessen stores for meal-to-meal purchases.

Wholesale sales of quarts of grade B milk reach a peak the 1st of August, at which time they are about 65 per cent above the low point. (Fig. 19.) Grade A milk sales reach their peak a month eariier and are only 30 per cent above the low point. Wholesale sales of grade B pints and grade B bulk milk also are highest at this time (fig. 20), the increases over winter sales being 65 and 35 per cent,
respectively. With the exception of quarts of grade B milk, the summer increase in wholesule sales is checked by the vacation movement out of the city. Since sales of quarts of grade B milk continue to rise until about the 1st of August, when the temperature reaches its maximum, it appears that this commodity is the one most af-

fected by the shift of the household trade from retail delivories to store purchasos.

Wholesule salos of extru-heavy cream are greatest at the height of the berry season, being about 75 per cent above the low point in December. (Fig. 21.) Sales of light cream and condensed milk,

on the other hand, continue to rise until the last week in June, since the iee-crean demand affects them more than it does sales of the higi-testing cream.

Wholesale sales of buttermilk show greater seasonal variation than do sales of any other commodity. ${ }^{6}$ The maximum summer sales are five times as large as the minimum winter sales.

[^8]When wholesale and retail sales are combined, the curve of seasonal variation naturally lies somewhere between the retail and the wholesale curve. The degree to which it resembles either of these, depends, of cotrse, upon the proportionate quantities sold in the two ways. In

Fio. 21.-Seasonal Variation in Wholesale Sales of Cream and Condensed Milk, New York Metropolitan Area, 1920-1924
Weetiy sales expressed us percentuges of the nverage for the year as ghown by smoothed aurvos. Fxtra heavy crentil sules rach a peisk wisen fresh berties are on tha market. dighe erean and

Table 16 and Figure 22 are shown the seasonal variation for all milk sules when weighted by the proportionate quantities sold by the 41 deafers included in Table 1. The monthly variation in milk receipts at the New York market is also shown in Figure 22, for comparison

Fig. 22.-Seasonal Variation in Receipts of Milk ano in sales of ali. Miek, New York Metropolitan Area. 1920-1824
Monthly receipls and wooky sujes axprossed as jeqconthres of tho averuge for tho yedr es shown loy shmathed chrves. The weokly sulas curve strows the seasongl irend in demand faore neearately that the mopthly recaljus
with the weekly sales. The two curves correspond as closely as could be expected, considering the differences in the data. The bulk milk sold by small dealers not included here, and the milk used for ice cream, would easily atcount for the slightly higher receipts in summer.

Table Ib.-Seasonal variation in the sales of all mild and cream in Neq York netropolitan ares, ${ }^{1} 10,20-1924$
frercuntage at averige far tho year\}

Manth and wouk	M t J k	Cruam	Month and wook	Miik	Cream
Junuary:	Per cent	Per cent	Juty:	Ser cent	Per cent
Flrst	${ }_{183}^{13,4}$	83.0 8.8	First.	110.0	125.2
Third	03.5	8,	Thitil	108.3	120.5
Fourth	03.7	84. 0	Fourth.	105.4	112.3
Fubruary:			August:	10. 4	
First	04.0	85.3	First.	104.2	180.0
8oemid	9	88.3	Socumd	1028	105.0
Fourth	0.0	87.4 88.5	${ }^{\text {2 Mhird }}$	102.0	102.7
Matreh:			Fitth	10.2	100.2
First.	0 C 2	90.2	Sertember:		O,
Semond	04.0	12, 0	First.	10.7	90.7
Third	07.5	93.8	Sucmal	102.0	45.5
Fiturth	08.0	12. 8	'thised.	102.0	94.3
Pith.	08.6	1×3.1	Fourth.	101.7	13. 0
${ }^{A}{ }^{\text {Prifilst }}$	09.3	100.8	October:		
Secorid	W6. 0	1153.4	Second.	100.6	9.4
'13irat.	100.4	100.4	Third-	00.8	80.2
Fomith	10.0	100. 6	Fourtit	48.9	88.2
May:			Flith	\%8. 1	87.2
First.	10.7	113.3	Novonher:		
Second	10.4	117.6	First.	07.1	80.3
Third.	103.2	$1 \% 2$	Second	¢. 2	85.4
Fourth	tot. 1	127.2	Third.	05.5	84.6
June: ${ }^{\text {chent }}$	105.2	132.0	Fourth.	94. 9	83.8
First	t00. 3	131.6	Firsit.	04.4	
Second	1 ma .7	134.4	Senam.	94. 0	83.2
Third.		131.2	Thitd	03.8	83.1
Fampli,	112.0	131.0	Fourt	t3. 6	83,3
			A verage	100.0	10.0

: Wetghted by the proportonate smotntas sokd by 41 denters during Fobruary, 1027.

DAY-OF-THE-WEEK VARIATION IN DEMAND

The third important regular variation in sales, is day-of-the-week variation, The consumption habits of the people in the New York market are such as to cause definite daily variations in the demand for milk and cream. (Tables 17 to 19.) When the whole metropolitan area is considered, the magnitude of these variations depends largely upon the proportion of the specific product that is consumed by adults. When different districts in the city are considered, the daily variation in the demand for any given product appears to depend upon the economic status of the consumers and upon the number of working people who lunch away from home on week deys.

Table 17.-Day-of-the-wcek variation in the retail sales of various dairy praducts in the New York netropolitan area, 19841

Proxilet	Percentage of average for the weck						
	$\begin{aligned} & \sin - \\ & \text { dny } \end{aligned}$	Mon-	$\begin{aligned} & \text { Thes- } \\ & \text { doby } \end{aligned}$	$\begin{aligned} & \text { Wednes } \\ & \text { duyy } \end{aligned}$	Thutsday	Frlday	Saturday
Quirts of certifix! mik	28. 9	100.0	90.8	1906	500.0	100.3	S8. ${ }^{\text {P }}$
Quituts of rrato a mill	100.5	100.0	100.2	100.3	90, 8	00.8	98.4
Quarta of kride B rulk	108.7	99.3	98.6	990.8	90.2	00.3	98.9
Pruts of griwlo 3 zillk.	7.ti	tou. 8	109.8	108.0	108.0	107.2	85.6
Laff pints of extra-hervy	178.3	83.4	88.8	12.3	86.2	82.1	00.9
Ealf pints of litht creum.	${ }^{1005} .0$	${ }^{18.0}$	${ }^{(1)} 7$	103.5	97.8	9.95	90.4
flalf phats of condensed mid	100.0		${ }^{98.0}$	105.8	03.8	94.7	103.8
Qumats in butiormik.	76.4	408.8	108.5	100.3	102.0	100.5	94. 5

[^9]Table 18.-Day-of-the-week variation in the wholesale sales of various dairy products in the New York metropolitan area, 192\& ${ }^{1}$

Product	Percentago of avarago for tho weak						
	$\begin{aligned} & \text { Sunt- } \\ & \text { day } \end{aligned}$	$\begin{aligned} & \text { Mon- } \\ & \text { day } \end{aligned}$	$\begin{aligned} & \text { Tues- } \\ & \text { duy } \end{aligned}$	Werl-	$\begin{aligned} & \text { Thurs- } \\ & \text { duy } \end{aligned}$	Fridey	$\begin{aligned} & \text { Suturv- } \\ & d_{d y y}^{*} \end{aligned}$
Quaris of grade A nulk	92.8	99.4	100.8	90. 6	100.8	102.2	104.4
1'Ints of kruele 3 milk.	40. 8	115.2	116.8	115.7	118.4	$11 \mathrm{ti}$.	71.2
Grado is buk milik.	7.1. 5	107.3	103.1	104.2	104.3	107.2	100.4
Extrahegavy craum.	72.9	107.7	88.9	0.4	88.0	112.2	140.3
Idght craum-	42.3	118.9	05.6	33.7	9.4	121.8	1328
Condorsed mitk	42.7	114.5	88.9	13.4	83.6	130.0	148.3
Liuttormijk..	34.4	126.5	108.0	104.2	114.4	115.0	94.6

I Seo Tablos 30 to 58 in the urpendix for day-of theweek variatlon by sections of the city aud by mouth.
Table 19.-Day-of-the-woek variation in the sales of all milk and of cream in the New York metropolitan area 1

Day	Porcentage of avorake for the week		Day	Percenture of nverage for the week	
	Mİk	Cream		Milk	Cream
Sumiay.	50.2	84.7	Friduy	102.8	109.7
Monday	102.7	105. 9	Saturday	[5]. $\mathrm{J}^{\text {d }}$	127.0
Weadnay	101.4	91.1	Average..	100.0	100.0
Tharsday	101.6	89.1	Avago...		

: Woighted by the proportlonate amounts sold by 41 dealers during February, 1997.
Certified milk shows little fluctuntion in any part of the city, because it is purchased largely for babies. Quarts of grade A milk rank next to certified milk as food for young children, and the day-of-the-week variation for this product is greated than for certifisd milk but not so great as for quarts of grade B mill. (Fig. 23.) On Sunday the sales of quarts of both grade A and grade B millk are higher than on other days in most of the residential districts. In some of the business districts, however, Sunday sales are below the average for the week because of the loss of a certain amount of luncheou trade. For the entire metropolitan area, the Sunday sales of quarts of grade 3 milk are about 4 per cent above the average for the week. This is due, in part, to the fact that employed members of families have their noon meal at home on that day.

A very appreciable part of the milk sold in pint bottles is consumed by these workers as a luncheon beverage. 'Consequently, the Sunday holiday and the Saturday half holiday cause a decided drop in demand. (Fig. 24.) The greatest decrease on these two days is found in the business districts of the city, since it is here that the number of employed people who lunch away from home is the greatest. Thus, in the lower part of Manhattan, the Sunday sales are only about 44 per cent of the Monday-to-Friday daily average, whereas in one of the residential districts in the Bronx they are 92 per cent of the ayerage for those five days. The Saturday and Sunday sales for the entire netropolitan area, as represented by the sampling of 21 of the 42 districts, are, respectively, 85.5 and 77.6 per cent of the week's average.

$$
90507^{\circ}-28-3
$$

To check the accuracy of this sampling, the day-of-the-week variation in sales of quarts of grade B milk was computed for the same 21 districts and compared with the variation for the entire metropolitan area. The average difference was less than 0.3 per cent, and the maximum difference was only 0.6 per cent. From this comparison it appears that the sampling gives an accurate picture of the entire market. Such slight error as exists appears to be due to a too heavy weighting of the Manhattan districts.

fio. 23.-Daily Retall sales of Quarts of grade b Milk. New York Metropolitan abea, 1824
Dally sules expressed ns tercentakas of the a verage tor the week. Ssles of this product arelafgely for bousehold consumption ard are littie aliected bv days of the week

Retail sales of heayy cream show the greatest day-of-the-week variation. Approximately twice as much cream is required on Sunday as on other days. (Fig. 25.) The Sunday demand is greatest in residential districts where cream is looked upon as something of a luxury and is therefore purchased only on special occasions. In some localities the Sunday sales are three and one-half times the week-day sales.
Retail sales of light cream and of condensed milk show much less variation on Sunday. This is to be expected, since these products

Fig. 24.-Daily Retail Sales of Pints of Grade b Milk, New York Metropolitan Area. 1924
Daliy sales expressed as percentages of the averago for the week. Saturday and Sunday sales are low because most enployed persons eat their noon meais it bome on these days, bid the luncheon trade in pints 封 thereby dearensed
are commonly used daily in coffee, whereas heavy cream is more likely to be purchased for a special Sunday dessert.
Much of the retail demand for buttermilk in the business sections of the city is the result of the luncheon trade, and sales fall very low on Sunday. In the residential parts of the area, the week-end decrease is much less.

These tables of daily variation are based on averages for an entire year. When day-oi-the-week variations are computed for each
month, the prevalence of week-end trips out of the city during the summer is clearly shown. In April, Sunday sales of quarts of grade B milk are 4.8 per cent above the weekly average, whereas in July they are only 1.7 per cent above the average. Grade A milk and certified milk sales on Sunday are actually below the average for the week during the hottest months. Pints of grade B milk, which are already low on Sunday, fall about 5 per cent lower in the summer. On the other hand, day-of-the-week variations in the retail sales of extraheavy cream appear to be more affected by the berry season than by week-end trips. In other words, the number of families allowing themselves the luxury of heavy cream on Sundays causes sales on that day to rise from about 164 per cent of the week's average in January to 194 per cent in May, with a gradual decline to 168 per cent in December. Retail sales of light cream, condensed milk, and buttermilk also show the effect of large numbers of people leaving the city over the week-end during the summer.

Daily sales of butter, eggs, and cottage cheese on retail milk routes in New York do not represent a normal day-of-the-week demand. These products soll best if they are called to the attention of the

Fig. 26.-Daily Retail Sales of Half-pints of Extra-heavy Cream, New York Metropolitan Area. 1924
Dally subes expressed as percentages of the average for the weck. Sundiny anles of cream are very much tigher than these on other duys, especially in districts where cream is considered a luxary
housewife. Since the milk driver does not see her on his early morning delivery, he is frequently instructed to push the sale of these products when he makes his weekly collection on Monday or Tuesday. Therefore, these two days show sales far in excess of a normal consumptive demand. In some of the more congested districts, the sules on other days are practically negligible, but in some of the suburban districts, where stores are more scattered, the convenience of the daily delivery results in a fair demand throughout the week.

Wholesale sales of milk and cream are naturally much affected by the closing of offices and places of business on Sunday. (Table 18 and figs. 26 and 27.) Quarts of grade B milk show only a slight decrease on Sunday because, for the most part, they are consumed in the home. Pints of grade B milk, on the other hand, enter so largely into the luncheon trade that the Sunday sales fall to 47 per cent of the weekly average. Grade B bulk milk, representing both the dipped-milk or home-coissumption trade and the restaurant or luncheon trade, shows a decrease midway between these two.

Bulk sales of extra-heavy crean rise to 140 per cent of the week's average on Saturday in anticipation of the next day's demand. The
sales actually occurring on Sunday, however, are only half those of Saturday. Similarly, wholesale sales of light cream and condensed milk are high on Saturday but fall to 42 per cent of the average on Sunday. In all probability, some of the cream and condensed milk sold on Snturday is served the next day in the form of ice cream.

The Sunday demand for buttermilk through wholesale channels is only about one-third of the average for the week.

Fig. 26.-Day-of-the-week Variation in the Wholesale Sales of Grade B Bulk Milk, New York, Metropolitan area, 1824
Daily abas aspressud us jercantages of the avarage for the week. The demund for bulk milk also falls uff over the week-und

HOLIDAY Variation in demand

The magnitude of the holiday variation in retail sales of milk, as well as that of the day-of-the-week variation, depends upon the proportion of the commodity that is consumed by persons who lunch away from home. For instance, the quart trade, which is largely for home consumption, is littie affected by any of the holidays. Pint sales, on the other hand, fall off almost 30 per cent on holidays which are marked by the closing of business places on week days.

Fig. 27.-Day-of-the-week Variations in the Wholesale Sales of extraHeavy Cream, New York, Metropolitan Area, 1924
Daily sales expressed as percentages of the average for the weak. Wholesale sales of cream, unlike roluil sules, uro lowest on Sunday
Similarly, sales of bulk milk are largely for adult consumption, and the holiday variation for this product is about the same as for pints of grade B milk. Retail sales of cream show increases on most holidays, whereas wholesale sales usually decline. On the day preceding the holiday, however, wholesale sales of extra-heavy cream frequently rise sufficiently to more than offset the loss on the holiday. Sules of grade B bulk milk appear to be so affected only to a very slight degree.

Holidays that fall on week days, and particularly those that permit an out-of-town trip, usually result in decreases in the sale of

Fla. 28.-Effect of Holidays on the Retail Sales of Quarts of Grade 3 Milk, New York Metropolitan Area, 1824
Percontage change frain the avernge eorrected ables for the three days precelliug and thetiree days
 and the Fourth of July, Note the diterence in scale whetn compuring with Figures 20,30 , and ill

Fig. 29.-Effect of Holidays on Retail Sales of Pints Grade b Milk. New York Metropolitan Area, 1924
Percentage change from the average corrected sules for the three days preceding and the three dass followfing ine boliduy. Since many empluyed persons purchase a pint of mill to drink with their lunch, any poneral huliday cuuses a deeline in sabe. Note the dilference In seale wheth counparing wlis Figures 28,30 , and 31

Fig. 30.-Effect of Holidays on Retail Sales of Half-Pints of ExtraHeavy Cream. New York Metropolitan Area, 1924
Percontage change from the averuge corrected sales for the three days preceding and the three days tolowtug the hellday. Thatksgiving and Christmas feasts demand large quantilies of crenm, especialy in middle-ciass residential districts. Note the ditierence in scale when comparing with Figures 23 , 29, and 31
most dairy products. Thus, July Fourth and Labor Day show decreased sales for all commoditios except cream. (Tables 20 and 21 and figs. 28-31.)

$$
90597^{\circ}-28-4
$$

Fig. 31.--Effect of Holidays on the Wholesale sales of Grade B bulik Millk, New York Metropolitan area. 1924
Fercontago change from the avorape corrected sales for the three days precoding and the threodays followity tho halfaty. Tho olfoct of colosed stores und deereased patronngo of restaurants and

Table 20,-Effect of holidays on the vales of milk in the New Yorl metropolitan area, 1924

Helkday	Changos in sales :					
	Retall 2					Com- bfoed ull mili ${ }^{-3}$
	Quares ot grude \mathbf{H} 12ilk	Quarts of brado A 2all	Quarts of certilied wik	Pints of grado 3 milk		
Now Yearts Dag-	Per cent	Per cent	Per cent -3.0	Per cami	Per cent	Per cant
Wathin's Brthang-a	-1.2	-1. 2	-\{. 8	-18.1	-8.5	-15.14
Waytur-ton's Birthas	0^{-13}	-10	-2. 9	-20.7	-36. 7	-4.4
Presover werk:	${ }_{-1.5}^{0}$	-1. ${ }^{-1}$	${ }_{-1.8}^{-1}$	$+1.6$	-9.1	-4. 2
Montritat Das	-1.2	-1.2	-1.8	-2.6.	-11.2	- 51.0
Fonath of July	-2.4	-2. 4	-1.8	-2\%.3	- 24.6	-1.1. 0
fome Kigym	-1.0	-4.8	-6. 6	-3, 8	-19.0	-12. 3
Thatsgetug	+10	+ +6	-1.2	-5.5.618	-1.1	- ${ }^{18}$
Christaus.	$+2.0$	+1.2	-1,	-20.1	-32.01	-11.88

[^10]Table 21.—Efect of holidays on sales of extra-hcapy cream in the New York metropotitan arca, 1924

Holiday	Change it sales:			
	Retalit	Wholesala		
		On hollday	$\left\|\begin{array}{c} \text { On pro- } \\ \text { rous iny } \end{array}\right\|$	Net
Now Yanr's Day	Per cmil +44.1	Per cent -0.2	Per rent +20.0	Pre cent
Lremin's Birthelny	+4.1 +2.1	$\underline{+12.2}$	+20.0 -8.2	+ +10,
Battor-.ons.	+11.	-10.5	0	-10. ${ }^{\text {a }}$
Prasovar weak 3	+28	-16.3	-30.0	-他. 2
Mombrial Pay-...		-18.7 -13.8		-13.
Fourth of ${ }^{\text {Lataly }}$	+2.3 +27.8	-10.5	+74.8 +6.8 +8.8	+ 10.8
Yabor Disy	-7.8	+27.3	-9.2	+18.1
Thaukstiting	- $\begin{array}{r}-1.9 \\ +89.4\end{array}$	$\pm{ }_{-7.9}^{+8.9}$	+56.0	+61.3
Chtistans.....	+83.7	-17.8	+21.2 +20.3	$+13 ;$ +2.7

[^11]Religious holidays affect sales in a somewhat variable manner. Since Easter is always on Sunday, offices and factories are already closed, and there is but little change from the usual Sunday demand. It appears logical to assume that the decreaso in sales due to the closing of business places on other holidays would be largely lost in the yoars whon these holidays fall on Sunday. Passover week, occurring in April, results in a decrease of about 11 per cent in the sales of bulk milk. Since this period covers a week, the loss in sales is more serious than is a similar decrease for a single holiday.

Holidays liko Thanksgiving, Christmas, and New Year's Day, which are usually occasions for feasting, result in a decreased luncheon trade in pints and in bulk milk, but in a greatly increased demand for cream. Retail sales of henvy cream in the whole arca go up 83.4, 83.7 , and 44 per cent, respectively, on those three days.

Sales of mill and cream in different districts of the metropolitan aroa nre affocted ly holidays to varying degrees. Quarts of grade B, grado A, and certified milk show declines in the business districts on most holidays, whereas many of the rosidential districts show increases on Thanksgiving, Christmas, and New Year's Day. Sales in pructically all districts, with the exception of those including beach resorts, decline on Labor Day. In the sale of pints of milk, business districts show tho greatest decline, and the better residential districts show the lenst.

The greatest variability between districts is found in the retail sales of extra-heavy cream. Although the entire area requires about 84 per cont more cream thau usual to meet the Cbristmas demand, certain distriets increase their purchases 300 per cent, or, in other words, demnad four times the normal quantity of cream.
It should be noted that the foregoing figures are based only on one year's sales, and are therefore more subject to crror than are the seasonal or the dny-of-the-week variations. This is particularly true of the data by districts. The effect of holidays in other years was computed for a few of the most important commodity sales in the wholo aren, and was found to check rather closoly with that shown hero. It is felt, therefore, that these figures may be taken as illustrating what is to be expected under normal conditions.

EFFECT OF TEMPERATURE FLUCTUATIONS ON DEMAND

In addition to the seasonal changes in temperature which have nlready been discussed, there are numerous short-time fluctuations. These sudden changes aro much greater in winter than in swmmer, but a careful month-by-month stady of their effect on mik sales indicatos that whea consumers have adjusted their consumption to winter conditions a sudden rise or fall in temperature does not greatly aflect sales. A similar fluctuation in the summer, however, may have a marked effect on demand. Roughly speaking, a 10 per cent change in temperature will have three times as much effoct on salcs in summer as in winter. For this reason only the six months from April to September, inclusive, were used in studying the effect of temperature.

To make the application of these data as practical as possible, comparisons of both sales and temperature were made with previous periods rather than with the usual theoretical nomal which requires the projoction of the lines of trend. That is, deviations of wcekly
sales and tomperatures aro oxpressed as percentages of the proceding three-wooks' average, and daily deviations are exprossed as percentages of the procoding seven-days' average.
The degree of relationship between the weekly average maximum temperature and the sales of various grades of milk is shown by Table 22. If a given change in temperature always resulted in a corresponding change in sales, the two factors would be said to correlate perfectly, and the coefficient expressing that relationship would be +1 . If there was no relationship between sales and temperature, the correlation coefficient would be 0 . Hence, the more neurly the coefficients in these tables approach 1, the closer is the relationship.

For the six summer months, April to September, sales of certified mide and temperature show no significant correlation. This might be expected, because this grade of milk is consumed almost entirely by babies, and its sules are therefore unaffected by the tendency of udults to shift from hot to cold drinks and back again as the mercury rises and falls. The same is true to a lesser extent in the case of grade A milk, since a large part of it is consumed by children. Pints of grade B milk come next in the retail sales, followed by quarts of grado B milk and buttermilk. The last-named product is consumed very largely by adults and sales are much affected by the weather. With the oxception of pints of grade B milk, all the wholesale sales show a higher degree of correlation than do the retail sales, because of the larger proportion consumed by adults.

Table 22.-Correlation between the weekly average maximum temperature and the weekly aucrage sales of milk during the six summer months April to September, 1919-1924 ${ }^{1}$

Cotumodity

[^12]The correlation coefficients shown in Table 22 indicate the degree of certainty with which sales will follow temperature, but they do not necessarily indicate the magnitude of the change in demand occasioned by a given change in temperature. In Tables 23 and 24 and in Figure 32 it is seen that the effect varies considerably with different products. For instance, if the average maximum temperature for a given week is 20 per cent below the average for the previous three weoks, retail sales of quarts of grade B milk will fall less than 1 per cent below the average, whercas retail sales of buttermilk will fall 10
per cent. Wholesale sales of these products will fall 11 and 35 per cent, respectively. With a 20 per cent increase in temperature, the increases in sales range from about 2 per cent for quarts of grade A milk at retail, to 45 per cent for buttermilk at wholesale. In practically all cases, the products which show the greatest seasonal rise in sales during the summer are the ones which are most affected by the short-time temperature fluctuations.

Fig. 32. Effegt of Temperature Changes on Retail Sales of Bottled Milk. New York Metropolitan area, 1919-1924, and on Wholesal.e SALES OF Bulk Milk, 1920-1924
Variatimens in average weekly tennnoratures and sales expressed ns percentages of the averago of the preceding thrce weyks. When the temperature risw sales increasr, and whon the temperature falls sales decrease

Table 23.-Effect of weekly temperature changes on retail sales of milk in the New York metropolitank arca during the six summer months, April to September, $1919-$ 1024

Cuange in leatperaturs ${ }^{1}$	Chatge in sules 1				Change in Letuperature ${ }^{1}$	Clanage in sales :			
	Quarts of grade ${ }^{-1}$ milk	Quarts of gride A milk	Pints of grade в milk	Quarts of buttermilk		Quarts of grade B milk	Quarts of grinde A trilk	Pints of grade E milt	Quarts of buttermilk
$\begin{gathered} \text { Pur cent } \\ -20 \\ -15 \\ -10 \\ -5 \end{gathered}$	Per cent -0.8 -.7 -.5 -.3	Per cent -0.4 -.3 -.2 -.1	Per cent -1.1 -0.9 -.8 -.3	Per cent -10.4 -7.8 -5.3 -2.7	Per cent +5 +10 +15 +20	$\begin{gathered} \text { Per cent } \\ +0.4 \\ +1.0 \\ +1.9 \\ +3.7 \end{gathered}$	Per cent +0.2 .+ .8 +1.2 +2.5	Per cent +0.5 +1.4 +2.8 +5.3	Per cent +2.8 +5.8 +9.2 +13.2

[^13]Table 24.-Effect of wechly temperalure cianges on wholesale sales of milh in the New York metropolitan area during the six summer monils, April to September,
1020-192/f

Chango Inilemperalures	Ohange in sales					Obango in salaṣ				
								- . 1		
	Quarts of krmale 13 milik	Pints of ariula 13 millk	Cratie Is bulik milk	Buttermidk		Quarts nt grade B milk	Pinls of srate B millk	Crate 5 bulk' milk	Buttormill	
$\begin{gathered} \text { Per rent } \\ -20 \end{gathered}$	Percent -11.0	Per ccrit - 8 , it	Percent -8. 1							
-15	-1.9	-3, 0 -4.0	-8.1 -6.1	-35.5 -27.0	+5 +10	+3.0	Per cent +1.0 +1.4	Per cent $+2.3$	$\begin{gathered} P_{C T} \operatorname{ccnt} \\ +0,8 \end{gathered}$	
-10	-5.6	-3, 1	-4.1	-18.2	+	+6.3 +6.9	+3.4	+4.7	+20.0	
-5	-2.8	-1.6		-18.2	+10	+0.0 +16.2	+5.3 +7.5	+7.5 +10.5	+31.5 +45.2	

${ }^{1}$ Expressert as jorcontage deviations from the avarage of the preceding 3 weoks.
For a number of products, the temperatare on a given day and the salos of milk on the following day are more highly correlated than are weekly temperature and sales. (Table 25.) The degrees of correlation shown by the various grades, however, bear about the same relation in both cases. That is, products consumed by adults follow both weolly and daily temperature fluctuations with greater certainty than do those consumed by children. The ono-day lag of sales behind temperature results from the practice of enrly morning deliveries of milk. A hot day causes the housewife or the restaurant manager to order extra milk for the next day, since the delivery has ulready been made that morning. ${ }^{7}$

Table 25.--Correlation between the maximum temperature on a given day and the
seles of milk on the following day during the six sumener monthsian sales of milh on the following day during the six summer months, April to Sep-
lember, $10 \mathrm{~N}, ~$

Commodity	Correlation between temperature and-			
	Retail saleg		Wholesale saleg	
	Cotralathon eoefficient	Probable error	Correla. tion co- etllelent	$\begin{aligned} & \text { Probable } \\ & \text { error } \end{aligned}$
Suris of graio B milk	+0.357			
Cumris of tortifled milik.	$+$	± 0.044 $\pm .058$	+0.426	± 0.041
Gints of erade 13 milk.-	+.030	± 051		
Crmbe is hat milik	$+356$	$\pm .04$	+.233	士.017
	$+.53{ }^{-1}$	$\pm .036$		士. 032

[^14]The extent to which daily sales are affected by daily fluctuations in temperature is shown in Tables 26 and 27 and in Figure $33 .{ }^{8}$. Here again those products which reach adult consumers, either in the home or in public eating places, show the greatest variation due to

[^15]this cause. With a 20 per cent decroase $1 n$ temperature, the decreases range from less than 1 per cent for retail sales of quaits of grade A milk to 36 per cent for wholesale sales of buttermilk. With a 20 per cent increase in temperature, the increases range from 0.4 per cent for quarts of grade \AA mill at retail to 22.5 per cent for buttermilk at wholesale.

Fig. 33. Effect of Temperature Changes on Retail Sales of Bottled Milk and on Wholesale Sales of Bulk Mil.k. New York Metropolitan AREA, 1924
Virintions in daily tempertheres and sales bxpressed as jucrentages of the avornge of the preceding 7 duys. Sinco buiti milk is consumed largely hy mults, it is most aliected by tenyerature chatages
Tande 26.-Effect of daily tomparature changes on retail wales of milk in the New York motwopolitan area during the six summer monhes, April to September, 1924

Change intem-perra-tures	Qhatrgo in stas the following day ${ }^{1}$				Chinge in temsture :	Ctunse in saleat the following day ${ }^{1}$			
	Quarts of gracte-B ulik	Quarts onf grinte A milk	Pints of gruila B ullk	Quarts of buttormilk		Quarts of grude \mathbf{B} nill	Quarts of grado A mill	Plints of grade 13 milk	$\left\lvert\, \begin{gathered} \text { Quarts of } \\ \text { butter- } \\ \text { malle } \end{gathered}\right.$ millk
Per cert -20 -15 -10 -85	Pcr cent -1.3 -1.0 -.8 -.3	Per cent -0.6 -.1 -.2 -.1	Per scht -1.15 -1.8 -8.8 -.4	Per cent -14.0 -10.4 -6.8 -3.3	Per cent +5 +10 +15 +29	Per cent +0.3 +6.6 +.6 +.7	Per cemt +0.1 +.3 +.3 +.4	Prr cent +0.3 +.6 +.8 +.9	Pcr cent +3.0 +5.3 +7.0 +8.8

1 Expressed as percentuge doviations from the average for the preceding 7 days.
Tante 27.-Effect of daily tcmperature changes on wholesale sales of milk in the New York metropolian area during the six summer months, April to September, 192/4

Change int ternpera*	Change in sales the following day 1				Change is teth perature	Change in sules the tollowing das :			
	Quarts of gratie \mathbf{H} milk	Plats of brade 13 milk	Grado B luntk uallk	Butiermilk		Quarts of crado B milk	Pints or crade \mathbf{B} mill	Grate 13 bulk milk	Buttermillk
$\begin{gathered} P e r \text { cent } \\ -20 \\ -15 \\ -10 \\ -5 \end{gathered}$	$P c t<m t$ -7.2 -5.3 -3.5 -1.7	Per cent -7.3 -5.4 -3.5 -1.7	Per cent -8.0 -5.9 -3.8 -1.8	Per cent -36.5 -23.8 -17.7 -8.5	Per cent +5 +10 +15 +20	Per cent +1.5 +2.8 +3.8 +4.4	Per cent +1.5 +2.5 +3.7 +4.3	Per cent +1.7 +3.2 +4.3 +5.0	Per cent +7.5 +1.5 +1.5 +22.5

I Expressed as percoulage dinviatlons front the average for the preceding 7 days.

Since sales of milk are affected by temperature, other climatological factors were studiod to see whether they also caused variations in demand. (Table 28.) The moisture in the air, expressed as relative humidity, was correlated with sales of milk. From the gross correlation coefficients thus obtained, it might have been concluded that the sales decrens a as the amount of moisture increased. Further study, however, showed that the amount of moisture in the air and the maximum tomperature for a given day were inversely proportional. By using net or partial correlation methods, it was found that there was no significunt rolation between humidity and sales if the temperatire was constant. In other words, the decroase in sales which apponred to be due to an ineroase in the relative humidity was actually due to a drop in temperature.

Table 2S.-Effect of temperulure changes on sales of all milk in the New York metropolitan area ${ }^{\text { }}$

Woighted by the nromortinnate ginntities sold by it deators daring Fehruary, togt
 3 weeks. Ditly sutes and tomperatato doviations oxjressed os percentages of the average for the preceding

Sales of milk and amount of rainfall were correlated in a similar manner, but no significant relation was shown except in the case of pints of grade B milk sold on the same day as the rainfall. Apparently a shower causes the pint sales to decrease slightly, probably because that part of the trade is with construction workers and like laborers who might be more influenced by weather conditions than would office or store employees. The relationship, however, is too uncertain to be of much practical importance.

EFFECT OF PRICE CHANGES ON DEMAND

From November 1, 1907, to Octoher 20, 1916, the retail price of a quart of grade B milk in New York City remained stationary at 9 cents. During that period the cost of producing milk had been steadily increasing, without a corresponding advance in the prices paid to producers. This acute situation precipitated a milk strike in October, 1910, and the retail price was advanced 1 cent per quart to cover the increase obtained by the producers.
During these nine years of unchanged prices, consumers had Ioarned to look on the retail milk price of 9 cents as a fixture, although they were accustomed to fluctuations in the prices of almost all other foods. Consequently the advance to 10 cents met with mueh opposition, and, according to reports of milk dealers, consumption was materially curtailed. The reaction of the consumers had a psycho-

[^16]logical rather than an economic basis, because milk was a relatively cheap food even after the price was advanced. Since that time there have been many changes in the retail price of milk, and consumers have become accustomed to a varying price. The effect of these changes on the demand for various grades of milk is shown in Table 29.

Table 29.-Effect of price change on sales of milk in the New York Metropolitan area, 1919-1904

Prico chuako		Comurodity	Avarage change in sales foliowing clarage in price 1					
			First weol	$\left\|\begin{array}{c} \text { Seamud } \\ \text { stexk } \end{array}\right\|$	Tllirdd weok	$\begin{aligned} & \text { Fourth } \\ & \text { wook } \end{aligned}$	Fitth weok	$\begin{aligned} & \text { A ver- } \\ & \text { mye tor } \\ & 5 \text { weoks } \end{aligned}$
Eocreaso of 1 cont porunit.	111218181818	Ornto B atarcs	Per cent	Per ceat	Per cerst	Per cent	Parcent	$\begin{gathered} \text { Per cent } \\ +0.4 \end{gathered}$
		Grnmo Braurs--		+1.0 +8 +1.8	${ }_{+}^{+0.4}$	$\stackrel{+0.3}{+0.0}$		
				+	\pm	+12.	$\underset{+}{+28}$	+1.7
			\pm	$\stackrel{+1.2}{+2}$	-. 7	- -4	${ }_{-6}^{+.9}$	
cicrense of 1 cent per		grade A cturl	-. -5	- -4.	-2.	$\underline{+1}$	+3	-2.3
	12	Orwlo if trit	-1.4	-1.2				-2.3
			-6.8	-6.3	-6.2	${ }_{-12.7}^{-7.7}$	-7.2	
(nctays of mors than 1		Oruls A marts	${ }_{-7.5}^{7.3}$	-11.6	- 11.9	-12.7 -13.1	-17.1	- $\begin{aligned} & \text {-14.2 } \\ & -14.3\end{aligned}$
		Oruke 13 buth	-1.3. 3	-12.0	-12:	-11,7	-1.8	-

[^17] aduat.

Fig. 34.-Effect of a f-cent Price change on Retall Sales of guarts of Grage A and Grade 3 Milk, New York Mistropolitan Area, $1910-$ 1824
Cbanges in snies expressed as percentages of the normal, When consumers aro necustomed to a variable milk prlee, salos are vers littie athected by a i-cent ctangoln arico
During the period of this study, 1919-1924, there were 13 increases and 14 decreases on the price of a quart of grade B milk. Other products also were subject to mumerous price fluctuations. (Table 30.) Not all of these changes in price could be used in computing the offect on sales, because of the hack of comparable records during and following the milk-drivers' strike. A sufficiont quatity of data is available, however, to show that the average curtailment of sales fol-
lowing a 1 －cent advance in the price of quarts is almost negligible when consumers recognize the necessity of fluctuating milk prices． Similarly，the increase in sales following a 1 －cent recession in price is barely noticenble．As might be expected，pint sales are affected to a greater extent by a 1 －cent change because of the smaller quantity of milk represented．Evea with this unit，a 10 per cent change in price causes only a 2 por cent change in demand．

Although the data are too variable and the effect on enles is too slight to be conclusive，there is some indication that the increases or decrenses are not maintained for a yery long period．（Fig．34．） The measurement of sules was not carried further than the fifth week following the price change，because the frequent price fluctuations would have resuited in an overlapping of periods．

Table 30．－Prices of will：and cream on retail roates in New York City：

Date whun friees lecarsie ulfectiva	Qurarts． al misule Hanilk	Quntris af menke A milk	Quarts of cer－ titfed milk	I＇ints af pruie 13 tulk	Hali pirits onextra－ henvy creath	Unilf bints of dishit creatin	Finlt jlints of con－ thaticl milk	Quarts or buttar． milk
	Gents	Gcuts	Cents	Cents	Cents	Cents	Cents	Cento
Prior to Noss． $1, \mathrm{HPR}$	S							
	0							
Aug．18，12tit．．	9	11	15	G	14	10	8	d
leck 20，ItIt	10	12	1 t	0	115	11	0	7
Febs． 1,101 －	11	12	16	0	18	12	10	7
June 1， 1917	11	12	13	6	18	12	10	7
Julc 1， 1817.	11.7	12．5	15	0	13	13	11	10
Atrg．1，1017．	12.5	13.5	18	6.5	20	14	13	10
Oct． 1 ＋196	14	15	21）	7	31	（ti	13	10
Junt，5，It1k－	15	17	20	0		18	14	10
Feh．1，this．	［4． 51	16． 8	210	8	2is	18	14	10
A 1 \％r．1， 1518	14	115	20	8	，23	17	14	10
Misg 1，1018	13	15	211	7.5	22	17	14	10
	13	15	911	7	2	17	14	10
Stulu，1，IMIS	$1 \cdot 1$	$1{ }^{1}$	21	8	22	17	14	10
Ont．1，this．	15.5	17．5	年	8.5	等	19	15	10
let．Lith， 10 dis．	15.5	17.5	293	9	4	10.	15	10
Nov．1，ilts．	1 i	18	92	10	㐱i	10）	16	11
Nor．I4，HME	17	19	：3	11	$\underline{5}$	EI	17	11
Jain，I， 1918	111	18	91	10	\％ 6	20	14	10
Ajr．1， 1 tho	15	17	\％	亿	3	11	15	10
July l，iblt	111	18	24	f． 5	ti	1if	16	11
Nor．1，1813	18	4	25	11	28	20	18	11
Firla，1，163）	16	10	35	111	\％	24	18	11
Apros，mizo．	15	18	45	9	2	27	18	11
Mixy 1，1983－	15	18	25	0	\％	3×1	18	11
Jume 1，102	15	IS	35	0	28	20	18	it
July 1，Ifrsi．	16	10	23	10	20	21	19	12
A $11 k_{1}$ 1，1182）	$1{ }^{17}$	20	27	10	90	21	10	12
Fiept．1，10w	18	$\underline{1}$	2	11	310	29	20	12
Dere 1，1720．	17	20	23	11	110	20	20	12
Fobs．I，ties．	111	10	28	10	30	21	20	12
Minc． $1,18 \pm 12$	15	18	28	0	29	20	18	11
Junc i，1021．	14	17	28	0	23	10	17	11
A1H5，1，1021，	15	18	${ }^{28}$	10	20	19	18	11
ATr．1，16\％2．	1.1	17	28	10	3	18	17	10
Mny $1.10{ }^{\text {d }}$ ．	13	16	28	0	28	18	17	10
July ！，1922．	1.1	17	？88	10	24	10	18	10
	15	18	28	10	30	2）	19	10
Ter 1，1022．．	18	17	23	II）	32	21	21	10
Fth．1，IWR．．	15	18	98	10	30	23	20	10
Mny 1，1023．．	1.4	17	3	1）	23	10	10	10
Sctot．1，10xs．	15	18	38	10	21	10	1 f	10
Oet．16， $10{ }^{\text {a }}$ ？	14	111	23	10	2 CH	19	10	10
Now．13，IEEt．．．	15	18	28	10	20	10	12	111
Jinn．8，1924．．．	1.1	17	\％	9	－ 21	15	15	10
May $5,102{ }^{\text {d }}$	13	16	4	0	48	18	18	10
Aug．18，1034．	14	17	28	（1）	29	10	10	30
Nuv． $1_{4} 1128$.	15	IS	3	10	刮	111	10	10
Atuy 18， 1426	14	17	43	111	21	11	10	10
Jtili 20 ，matio．	15	1S	次	10	20	1%	10	t0

[^18]At one time the price of quarts of both grade A and grade B milk was advanced 2 cents. In both cases serious decreases in demand followed. A single instance can not be taken as conclusive, but it appears that the psychological effect on consumers of a 2-cent advance is sufficient to cause a material drop in sales. Coupled with the 2-cent increase, however, was the fact that the new price for grade B milk (18 cents) was the highest ever attained up to that time. During the next year the price receded to 15 cents and then advanced 1 cent, at a time until 18 cents was again reached. The last advance to that figure was followed by a decrease of more than 5 per cent in the sales, indicating that 17 ceuts marked the upper limit to which the priee could bo raised without an appreciable decrease in demand. In a like manner, sales of grade B bulk milk and grade B pints fell off 10 and 14 per cent, respectively, when the price of each was increased $11 / 2$ cents.

From this study and from a somewhat similar one of the Chicago market, ${ }^{10}$ it may be concluded that the demand for mikk shows very little elasticity when the consuming public becomes accustomed to a retail price which ehanges occasionally. In other words, nilk is recogamed as an inexpensive and essential food, and if the costs of producing milk rise, the retnil price can be adranced 1 cent at a time with very little effect on sales. Undoubtedly, however, there is a limit beyond which the priec can not be advanced without a sharp fall in demand. These conclusions are intenden to apply only to price changes within reasonable limits. Conversely, lowering the price does not greatly stimulate constumption. This is unfortunate, since a surplus of milk in the district can not be absorbed by the fluid merket in this way. Such a surplus, in secking to get on the city market, is likely to force down the retail price, but the fina result is the consumption of approximately the same cuantity of milk as before.

Obviously, retail milk prices should not fluctuate at short intervals, but a priee which advances ia the Fall and recedes in the spring aceustoms consumers to the idea of a variable milk price, so that consumption is practically unaffected whon market conditions necessitate an advance in price. It was the lack of this system that was largely blamable for the disruption of the milk business in 1916, when public opinion delayed a price advance until decreased production and a milk strike forced a change.

OTHER FACTORS AFFECTING DEMAND

Numerous factors other than those discussed in the preceding pages affect the demand for dairy products. Most of these factors are irregular in their action, and sales rise and fall in a similarly irregular fashion. This is shown for retail sales of quarts and pints of grade 13 milk, half pints of extra-heavy cream, aud pounds of butter in Figures 35 to 38 . Secular trend, seasonal variation, and all short-time calendar and temperature fluctuations have been eliminated. The deviations in sales from the normal thus obtained are expressed in terms of standard deviation in order to make them comparable with similar curves of factors affecting demand.

[^19]Various economic factors which might be supposed to influence snles of these products were studied. Many of them showed no correlation, some appeared to be affected by another factor whicb also affected demand, and a few showed a sufficiently high degree of

fig. 36.-Irredular Variations in Retail sales of quarts of Gbade b Milk. New York Metropolitan Area, 1919-1924
Sulos expreswed in terims of standurd devintion. Thls type of variation in sales of quarts of grade
 relativo prite of milk aud cream
correlation to indicate that they influenced sales directly. The most important factors of the latter group are shown in Tables 31-34. The combined effect of the factors shown in the tables is iudicated by the multiple correlation coefficient. Here, as in the

Fig. 36.-Irregular Vartations in Retall Sales of pints of Grade b Milk, New York Metropolitan Area, 1819-1824
Sules oxprosseil in terms of standaral deviation. Pint sales seern to be most aftected by the rolntive firice of quarts and pints, nad by the retail jrice of pints relative to the peneral price level
case of the temperature correlations, perfect agreement would be expressed by a coefficient of 1. The net correlation coefficients show the degree of relationship between the sales and a given factor, when the effect of all the other factors is eliminated.

Fia. 37.-Irreqular Variations in Retail Sales of Half pints of Extraheavy Cream, New York Metropolitan Area, 1919-1924

 nlfouting crenm wiles

Table 3:-Correlation between sales of quarts of grade B mill on rotail toutes in New York and varions factors, 1919-1924:

Factor	Lag of sales in weks	Nut emrrelation eces? flestit.	Probable error
	43	+0.350	± 0.1040
	20	$+101$	士. 114
milik. Tentigeratare level rolative to normat.	18 0	+.101 +.045	$\pm .045$ $\pm .045$
		. 481	土. 5 S3

[^20] 10.05.

Fig. 38.-Irteoular Variations in Retall Sales of butter on Milk ROUTES. NEW York METROPOLitan ArEa. 1919-1924
 conditions and by tho rolative prke of buther and cheomargarite

Taule 32.-Correlation beturen' sales of pints of grasto B milk on retail routes int Now Jow ant 'arious faciors, 1919-1924 ${ }^{1}$

 gitmets and pints, 3 .as; price of pints, s.fif; temperathro, too.es.

Tabsa 38.-Cemratution beturen sales of extra-heamy cream on refail roules in Ncw 1'm\& and marious factors, 1019-192, 1

Fantor	Lats of sales in weoks	Net corsrelation coff- theient	Prahatio error
Harvard (B) madex of bushass conditions. \qquad Iketall jrien of crean rolathe to the gonernt arike lowal.	43 21 8	$\begin{array}{r} +6.582 \\ -.128 \end{array}$	$\begin{aligned} & \pm 0 . \text {. } 20 \\ & \pm+64 \\ & =.04 \end{aligned}$
Combined fuetors (mumbut enretation)		. 697	$\pm .021$

Tanue 34.- C'orrelation batucen sales of butter on retail routes in New York and ratious factors, 1010-199.4:

Factior	Lag of sules in weeks	Nat etirrelation ctednicient	Probable error
finrara (ib) index uf lasimess conditors.	3544		$\begin{gathered} \pm 0.031 \\ \pm .038 \\ \pm .015 \end{gathered}$
		$\begin{array}{r} 205 \\ \hline 647 \end{array}$	
Combind fatars (muttiple comolation)		. 123	士.088

 relative frite of buttor and oleommrgurine, 7.4t; jrice of buther, 8.39.

In none of the products studied is the correlation sufficiently high to make aceurate forecasting of sales possible, butall are high enough to indicato the trend of demand under a given set of conditions. They are of great importance in partly explaining the changes in denand and in rofuting or proving some of the theories that have been advanced as to the causes of the changes. In contrection with the following discussion, it should be borne in mind that the period covered by the study was one of great industrial prosperity, and that a similar study covering a long period of business depression might show different results. For this reason, too much weight should not be placed on the correlations given here.

Sales of grade A and certiffed milk showed so little variation of this type that no significant eorrelations were found. The demand for quarts of grado B milk appeared to be affected by the general business
conditions of the coumtry as indicated by eoonomic barometers. The one usod here was the Harvard (B) index, in which bank debits in cities outside of New York City play an important part. The best correlation was shown by comparing the business index with sales of milk 43 weeks later. ${ }^{11}$ That is, some months after increased busimess activity causes bank debits (deposits) to rise throughout the country, the demand for milk in New York City rises, presumably because of tho increased prosperity of the people. Similarly, a slackening of businets is reflected some months later by decreased demand.

A second factor affecting sales of quarts of grade B milk it the relative price of bottled and bulk milk. If the usual relntionship between bottled-milk and bulk-mills prices is changed, enough people shift to the cheapor milk to uffect sales. It apparently takes about 16 weeks for the full effect to be shown. A somewhat similar relation is shown by the relative prices of milk and cream. Apparently many families use the cream from the top of the mill bottles when the price of crean is high relative to the price of milk. When the price relation is roversed they buy bottled cream.

On the busis of this compnrison ouly slight correlation was shown betwecu temperature and sales of quarts of grade B milk. This partiecular factor was included to see whether devintions in temperature covering several weeks or months would be reflected in sales. The relation was unguestionably lessened by the inclusion of the winter months. Short-time temperature fluctuations and scasonal changes in temperature had already been elinimated.

Other factors which were studied but which showed less significant correlations were the retail price of milk relative to the general price level, oarnings of New York factory workers, and the physical volume of manufactures.

Sulcs of pints of grude B milk appear to be materially affected by the retail price. Some six weeks after the price is high, relative to the general price level, sales of pints fall in number. The converse holds true when the retail price is relatively low. The largest factor in the demand is the relative economy of purchasing mill in pint or in quart bottles. Apparently people are more inclined to substitute oue product for another when prices are out of line than they are to cirtail consumption. This was found to hold true also in the sale of pints and quarts in Chicago. ${ }^{\text {I2 }}$ Although the sale of pints is greatly atfocted by this tendency on the part of consumers, quart sales are not visibly affected because pints constitute such a small part of the total sules of bottled mill.

Retail sales of extra-honvy cream are more closely related to changes in the business activity of the country than to any other factor studied. As in the case of quarts of grade B mills, demand rises and falls with a lag of some months behind the Harvard (B) busimess index.

Since crenm anay be considered a semiluxury its sules are affected by price to a greater extent than is the household trade in milk. When the price is high relative to the general price level or to the retail price of nilk, sules fall, indicuting both substitution and actual curtailuent of consumption.

[^21]Butter sales on retail milk routes respond to almost the same factors as do cream sales. The highest correlation with business activity is shown when sales lag about 35 weeks behind the business barometer. Approximately equal degrees of relationship were found between sales of butter and the butter price, and between sales and the ratio of butter prices to oleomargarine prices. When both factors were included the net correlations indicated that the relative price of oleomargarine was the more important of the two. (Table 34.)

It appears from the foregoing correlations that the demand for cream and butter is affected to a greater degree by industrial prosperity and by price than is the demand for the more essential product, anilk, and that the public tends more readily to substitute a cheaper product or package when prices are high than to curtail consumption. If the lags shown in Tables 30 to 33 are any indication, the speed with which this substitution occurs is proportional to the difference in price between the product and its substitute.

application of demand data

In most cases, in this bulletin, specific commodities have been analyzed separately, so that it is possible to combine the sales of various grades or packages in any proportions desired. The whole group of producers in the New York milk sbed are concerned primarily with the totai demand for milk and cream, rather than with the demand for individuat units. On the other hand, individual producers or cooperative groups who sell to one of the smaller dealers may have a market in which the demand may be unlike the average for the whole territory. Thus, a bulk-milk dealer requires relatively more milk to supply the demand in August than does a retail distributor of bottliod milk.

Milk distributors, both large and small, are interested in the deunud for specific products. They are interested also in the total demand for milk and cream as reprosented by their individual sales. Since the foregoing data are given in detail for various products, it is an easy matter to compute the weighted-average demand for the milk of zay dealer.

The practicul application of this study may be briefly summarized under the headings of the four aims stated in the introduction.

DETERMENATION OF FACTORS AFFECTXNG DEMAND

The steadily inereasing population in the New York metropolitan area, sed the increased per capita consumaption since 1918, have resulted in a rapid rise in the demand for milk and cream. This increase may be attributed, in part, to the industrial prosperity of the city, which attracts people from other regions and provides a relntively high purchasing power for all the population. The latter factor is most evident in the rapidly increasing demand for grade A milk and for extra-heavy cream. The shift to the higher-quality product (grade A milk) and to the semiluxury (cream) is much more rapid than is the increase in the demand for all milk. This indicates that educational work as to the value of milk in the diet is needed to stimulate consumption, rather thanoa still greater buying power of the population.

Regular lluctuations in demend are cuused by the vacation movements of persons to and from the city, seasoual changes in tempera-
ture, day-of-the-week variations, and holidays. Irregular fluctuations in demand may be due to short-time temperature changes, business conditions, unusually high or low retail prices, and relative prices of other products that may be substituted. The range in these types of fluctuations are shown for different products in Table 35. They are grouped in this way in order to show the relative importance of the various factors that cause the variations. It should be remembered, however, that the period of time between the maximum and the minimum demand differs for the various types of fluctuations. That is, the range for day-of-the-week variation may be the difference between Sunday and Monday sales, whereas for seasonal variation it may be the difference between Junuary and July sales.

Table 35.-Comparabie magnitude of various types of fuctuations in the sales of dairy products in the New York metropolitan area

; From a 20 per cent decraase in temperature to a 20 per cent inerebso, ot a range of 40 per cent, t 4 times tho standurd deviatlon of suldes.

- Price of ruarts of krade A and krade B incroused 2 cents; priee of pints of grade 3 and quarts of grade 3 bulk fuctensedi 137 cunts.

DETERMLNATION OF THE QUANTITXES OF MLK AND CEEAM WHICH PRODUCERS

 MUST SUPPLYAlthough there is little hope that perfect adjustment between supply and demand in the New York milk market will ever be attained, some changes which will eliminate the present seasons of surplus and shortage appear to be necessary. The seasonal supply of milk can be changed more readily than can the demand, and the adjustment will therefore have to come about by making the production of milk during the shortage season sufficiently profitable to induce producers to change their present practice. The question of supply does not come within the province of this study, but the quantity of milk and cream that will be needed in the future can be computed rather accurately from the data on long-time trend and seasonal variation. It should be pointed out that a supply slightly in excess of the average requirement at any given period must be maintained to take care of the irregular fluctuations.

$$
90597^{\circ}-\ldots 8-5
$$

FORMULATION OF A MEINOD OF FORECASTING SAEES

Prediction of sales on the basis of regular or calendar variations can be made as far in advance as is desirable. Obviously, the longtime forecasts will be less certain of fulfillment than will the shorttime predictions, but the general method of applying these date is the same for all. In June, for instance, a dealer may wish to know what his demand will be in November in order to arrange for supplies to tide him over the shortage period. Taking his current sales as' a base, he would imorease or decrease them in proportion to the longtime tread of his business. Then from the proper seasonal-variation table he would find what percentage November sales were of June sales, and would correct for this factor. For a more immediate forecast he would correct for the day of the week and possibly for a holiday. Weather forecasts for the week would give him an approximation of the correction for the weather, while the daily temperature would serve as a guide for the bottling of the next day's milk.

Day-to-day predictions would be far more important than they are, were it not for the fact that dealers carry over a large amount of milk from one day to the next to cover the daily fluetuations. This stock of milk is not surplus, since it is sold as fluid milk or cream the next day. In addition to this, however, a certain amount of surplus in excess of the avernge sales must be carried. If demand can be forecast accurately, the amount of surplus will be decreased, less milk will be returned lrom retail routes, and less batter will be made in the city from milk that has paid a high freight charge.

aNalysis of demand as a factor in price

Milk prices, like prices of other products, are subject to the law of supply mad demand. A quantitative study, however, shows that there is little elasticity in the demand for milk so long as prices are kept within reasonable limits. For this reason, it is impossible to move a large amount of surphas milk into consumptive channels by lowering the price. On the other hand, a retail price which goes down I cent in the spring and up 1 cent in the fall, protects the interests of both consumers and producers. Under this system, the difference in the seasonal cost of production is more equitably distributed. Even more important than this is the fact that consumers, accustomed to occasional changes in the retail milk prices, do not materially curtail consumption if supply and demend conditions necessitate an advance. It was the lack of this system that was largely responsible for the disruption of the dairy industry in New York in 1916, whan public opinion delayed a price advance until a milk strike and a decreased production eventually forced a change.

APPENDIX

Table 36.-Day-of-the-weck variation int the retail sales of quarts of grade B milk in the New York metropolitan urca, by districts, $192 t_{4}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{District} \& \& \& \multicolumn{5}{|c|}{Porcentage or average sales for the week} \& \multirow[b]{2}{*}{Suturday} \\
\hline \& Suuday \& Mondey \& Tubsday \& Wednes-
day \& Thurstay \& Friduy \& \\
\hline \multirow[t]{5}{*}{Mauhadtan:} \& \multirow[t]{5}{*}{\begin{tabular}{r}
Per cent \\
02.8 \\
0.6 .2 \\
10.7 \\
100.5 \\
102.5 \\
\hline 102
\end{tabular}} \& Per ment \& Per cemi \& Per cemt \& Per cont \& Per cent \& Perceat \\
\hline \& \& 102.6 \& 101.9 \& 102.2 \& \& \& \\
\hline \& \& 10.4 \& 101.0 \& 101.1 \& 101.3 \& 101.8
101.3 \& 06. 0 \\
\hline \& \& 101.5 \& 100.2 \& 101.7

000.6 \& \& 100.7 \& [1. 8

\hline \& \& 590.0 \& W. 2. \& 100.7 \& 48.9 \& 0.8 \& 00.0

\hline Bronx: \& 103.7 \& 10.7 \& 99.6 \& 60. 8 \& \multirow[t]{2}{*}{$$
\begin{gathered}
9.0 \\
\text { yi. } \\
\hline 10.3
\end{gathered}
$$} \& \%3.0 \& 98. 0

\hline " \& \multirow[t]{2}{*}{101.6} \& \multirow[t]{2}{*}{100.8} \& \multirow[t]{2}{*}{98.78.8} \& \multirow[t]{2}{*}{100.6
1000.8} \& \& 100. 1 \& \multirow[t]{2}{*}{48.0}

\hline \& \& \& \& \& 68.1 \& 100.1 \&

\hline \multicolumn{8}{|l|}{}

\hline 10. \& 1013.7 \& 100.4 \& 100.1 \& 49.1 \& 99.0 \& 192. 4 \& 98. 3

\hline \& 101.5 \& 99.5 \& $1(x) 3$ \& 96.1 \& 98.1 \& 09.7 \& 48.2

\hline 12. \& 108.9 \& 48.9 \& 48.8 \& 9. 7 \& ${ }^{08.2}$ \& 97.3 \& ${ }^{98} 8$

\hline 13. \& 104.7 \& IOU. ${ }^{4} 8$ \& 90.4. \& 300. 91.8 \& 919.6 \& 59.2 \& 01.8.

\hline 14. \& 1103.6 \& 99.8 \& 93.3 \& \%s. 6 \& 48.9 \& 97.4 \& 88.9

\hline 15 \& 1103.8 \& Wi. 7 \& 60.5 \& 90. 6 \& 40.2 \& 0.3 \& 48.9

\hline \multicolumn{8}{|l|}{}

\hline 17. \& 102.8 \& 100.0 \& 99.9 \& 100.4 \& 88.1 \& 100.3 \& 96.9

\hline 1 B \& ${ }_{10 \times 6 .} 3$ \& 49.5 \& 50.2 \& \$91, 5 \& 48.1 \& 48.3 \& 98.5

\hline 20. \& 108.5 \& 518.1 \& 40.4 \& 98.2 \& 98.4 \& 97.8 \& 89.8

\hline 21 \& 108.4 \& 97.8 \& the 3 \& 98.6 \& 919.7 \& 88.3 \& 100.2

\hline 22. \& 100. 2 \& ${ }_{08 .} 97.3$ \& $0_{0 .} 9.7$ \& 00.3 \& 98.2 \& 98.5 \& 98.5

\hline \multicolumn{8}{|l|}{}

\hline Loug islated: \& 107.9 \& 97.2 \& 08.2 \& 09.1 \& 98.1 \& 97.6 \& 101.9

\hline 25 \& 104,2 \& 08. 3 \& 9, 2 \& 996.6 \& 99.6 97.6 \& 98.8 \& 101.0
103.0

\hline 21 \& 103.0 \& 08.7 \& 98.8 \& W. 5 \& 97.6 \& \&

\hline \& \& \& 91. 3 \& 99.8 \& 100.1 \& 100.4 \& 100.4

\hline 27--- \& 104.3 \& \& 100.4 \& 90.2 \& 18.8 \& 98.7 \& 951. 4

\hline 2 S \& 101.8 \& 118.1 \& 10.3 \& 90.3 \& 51.5 \& 08.8 \& 100.2

\hline 36 \& 39.9 \& 49.7 \& 08.7 \& 99.4 \& $9_{98.1}^{58}$ \& $\operatorname{lom}_{6} 5$ \& 104.3

\hline 31. \& 83, 4 \& \& \& 100.1
28.3 \& 100.1 \& 99.0 \& 102.2

\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \&

\hline 34 \& 104.2 \& 98.4 \& 03.4 \& 100.1 \& 90.3 \& 95.3 \& 09.3

\hline \% \& 103.6 \& 90.2 \& 89.8 \& 100.0 \& 09.8 \& 00.4 \& 98.2

\hline 3 a \& 103.7 \& 100.0 \& 98.9 \& 100.5 \& 0 \& 100.3 \& 100.3

\hline 37. \& 1060 \& 97.9 \& 100.7 \& 100.0 \& 09.8 \& 18.3 \& 09.0

\hline 388 \& 160.2
105. \& 89.1 \& 199.0 \& 99.8 \& 98.5 \& 90.0 \& 88.0

\hline 40 \& 104.5 \& 08.6 \& [10. 0 \& 100.2 \& 99.1 \& 99.3 \& 109.3

\hline 41. \& 107.4 \& 97.1 \& 90.2 \& 09.3 \& 90.4 \& 87.1 \& 100.8
105.5

\hline \multirow[t]{2}{*}{Wuighted a veras} \& \& \& \& \& \& \&

\hline \& 103.7 \& \%t. 5 \& 02.6 \& 09.8 \& 09.2 \& 00.3 \& 98.9

\hline
\end{tabular}

Table 37.-Day-of-the-week variation in the retail sales of quarls of grade A milk in the New York metropolitan area, by districts, 1924

District	Perceintagn of average sales for the week						
	Bunday	Monulay	Tuasday	Wednesday	Thursale	Frlday	Saturday
Munhattan:	Per cent	Per cent	Per cent		Per cent	Per cent	Per cent
1-0.....	$\begin{aligned} & 97.0 \\ & 06.2 \end{aligned}$	101.0 101.7	$\begin{aligned} & 100.7 \\ & 101.0 \end{aligned}$	100.7	100.8 1018 10,	Prent	Per cent
	65. 2	101.7	101.0 100.3	101.6 101.2	101.0 100.1	101.2	97.4
4.	100.4	90. 0	100.2	100.2	100.0	000	\% $\%$ \% 4
6.	100.8	190.0	100.1	100.0	00.0		
7	100.3	100.0	100.0	100.3	100.0	100.8	90.4
	100.8	100.3	90.7	100.3			
11.	110.7	[69, 8	100.2	100.0	100.0	100.7	90.2
11.	100.2	94.8	10.0	100.0	08.7	101.3	${ }_{99.0}^{99.4}$
12	101.3	100.0	100.0	100.3	90.3	199.6	${ }_{90.5}^{90.0}$
14.	160.0	100.2	100.1	100.5	188 7	100.5	00.1
15	100.0 101.1	$\begin{array}{r}100.4 \\ 90.8 \\ \hline\end{array}$	100.0	100.2 100.0	100.1	00. 9	99. 4
18.	101.3	0. 7	100.1	100.1	99.5	99.7	90.6
10.	100.1	100.4	100.4	300. 6	W2. 7	100.2	\% 6
20	101.3 102.1	${ }^{1} 10.3$	100.4	100.1	99.0	95.8	09. 1
21.	101.7	69.3	100.1	09.8	100.0	90.1	100.0
	1025	97.5	100.4	90.0	100.8	90.4	800.4
24	103.1	98.4	00.8	90.5	99.7		
20	60. 4	1 CO .2	99.7	100.6	90.0	100.8	${ }_{90.6}^{10.6}$
27.	101.2	90. 8	100.0	100.0			
2 z	100.7	100.0	100.3	$\underline{00.8}$	¢0.6 6	100.0	96.5
	101.4	P9. 0	100.5	19.8	99.4	99.5	100.4
	100.8	90.3	100. 0	59.9	98.8	90.8	101.4
32	100.8	96.8	100.1	09.9	99.5	90.7	101.2
${ }^{3}$	100.0	00.2	10 L .1	99.3	100.9	99.0	99.8
35	1020 1020	00.4	100.1	100.3	90.2	99.5	90. 5
3%	102.0	60.8 100.5	${ }_{09,6}^{90,8}$	100.0	99.5	00.6	90.3
	104.7	08.2	99.5	99.7	$\stackrel{89.7}{ }$	${ }_{\sim}^{100.7}$	${ }_{1015} 5$
38	101.6	90.6	100.2	100.1	90,5	99.5	
	101.1	90. 6	100.2	100.1	90.6	90.6	89.8
41.	100.1	100.1	100.0	100.8	99.7	100.5	99.8
42	102.3	188.8 98.6	100.0 90.3	${ }_{89.8}^{90.6}$	99.8 89.0	89.0 99.3	100.5
Woighted averate	100.5	10.0	100.2	100.3	90.8	99.8	99.4

Table 38.-Day-of-the-week variation in the retail sales of quarts of certified milk in certain districts in tice New York metropolitan area, 1984

District	Fercentage of average sates for the week						
	Sunday	Monday	Tuesday	$\begin{gathered} \text { Wednes- } \\ \text { day } \end{gathered}$	Thursiay	Friday	Saturday
Manhattan:	Per cent 94.0	Per cent 1027	Per cent 100.9	Per cent	Per cent	Per cent	Per cent
,	02.2	103.0	100.9 100.7	102.2	102.2 103.9		${ }_{\substack{06.2 \\ 96.5}}$
3	95.8	1027	99.8	101.8	100.4	1026 101.8	${ }_{97.7}^{95.5}$
5	101.5	99.1	88. 8	99.1	101.5	103, 0	97.0
	90.8	90.9	90.8	09. 9	100.4	100.0	100.0
8	80.5	100.1	09.6	100.1	101, 2	90.5	100.1
15.	100.8	100.3	90.5	90.8	100.0	90, 2	99.8
Queens: 21	00.5	100.7	90.15	100.6	100.6	99.8	99.6
SLaten Ighind: 3	89.9 100.1	100.3 101.0	${ }^{90.9} 8$	09.4	100.3	99.9	100.3
Westchester Cominy: 23	99.8	00.5	100.2	100.5	102.7	100.8	90.2 90.2
Weighted average	88.9	100.0	99.8	100.8	100.6	100.3	88.8

Table 30.-Day-of-the-week variation in the retail sales of pints of grade B milk in ceriain districts in the New York metropolitan area, 1904

District	Percentage of average ssies tor the week						
	Sunday	Mondey	Tuesday	Wertnesday	Thursday	Friday	Saturday
Mantatian:	Per cent	Per rent	Per cent	Per cent	Per cent 118.6	Pet cent 117.6	$P \in e_{\text {Al. }}^{\operatorname{cent}}$
		${ }_{1}^{136.6}$	114.6	1158	116.8	114.0	67.2
2	${ }_{65} 8.1$	110.7	110.4	112.2	111.0	112.0	781
3	${ }_{90}^{62} 6$	103.0	102, 8	103.3	103.4	103.3	89.3
	97.1	101.3	100.4	10.6	100.0	100.6	99.0
		104.8	105.6	10.5	507.0	105.2	B7. 8
8.	9.2	103.8	1020	102.5	103.1	112.0	8
	D3, 8	102.5	100.5	102.3	100, 1	1023	0.0
	82.9	105.4	104.6	100.1	105.6	105.1	90.3
13.	82.4	100.3	J13. 3	108. 5	107.1	10.3	86.1
15.	85.5	19.5	104.2	104. 6	104.6 106.0	$\begin{array}{r}1083 \\ 104 \\ \hline\end{array}$	90.4
16.	8.4	104.0	104.1 108.3	105.5 107.7	106.0 100.3	1006.4	B7. 5
Qubens: $21 . .$.	75.8 81.2	100.0	101.4	105.2	10.6	105.0	${ }_{9 i} 0$
	61.2	111.4	111.7	113.9	114.0	113.4 1024	75.3
Westehnster County	80.6	104, 4	104.3	107.1	10.0	10.4	9.2
	88.7	102.7	173.8	102.8	103. 6	102.0	96.3
3	85.1	10.4	104.7	105.2	105. 2	103.0	91.5
W	72.7	107.0	16.4	1088	107.5	108. 1	80.0 80.8
	88.8	103.1	102.8	102.8	102.8	103, 1	8.8
Wetghted nvo	77.6	166.8	106. 9	108.0	1080	107.2	85.5

Table 40.-Day-uf-the-week variation in the refail sales of half pints of extra-heavy cream in certain districts in the New York metropolitan area, 1924

Tanle 41.-Day-of-the-wede variafion in the retail sates of half pints of light cream in cerkith distriets in the New York metropolitan area, 1904

Dlstrict	Percentage of avernize sules for the meok						
	Sunday	Monduy	Tugslay	Wednesday	Thurstay	Friday	Saturdsy
MTunlattan:	Per cent紋 0	$\begin{array}{r} \text { Pre tent } \\ 120.0 \end{array}$	Per cent $\$ 10.4$	Por cert 116.4	Per enst 14.9	Per cent	Per cent 66.5
	91.4	102 n	100.7	105.	[13. 4	100. 8	94.8
4	1003	${ }^{10463}$	100.2	101.8	98.7	08.7	tol. 0
s....	1\% 1	197.0	M. 2	1985	87.0	On. 4	9
Mronx:	16.7	97. 0	10.3 3	103.3	$\mathrm{HH.}_{2}$	93, 7	950
1sioshisy:							020
	115.8	96	100.1	105.0	09.2	02.4	03,3
Quetris: ${ }^{\text {in }}$	107.0	10.4	1101.8	t04.8	98.8	95.1	85.1
Stnten falmil: ${ }^{\text {a }}$	15.2	$\bigcirc \mathrm{OH.5}$			95. 91	91.6	\%3.6
Wistelitster Gounty:	110.0	$4 \mathrm{Mz}$.	00.0	$\underline{08.0}$	${ }_{05}^{0.1}$	03.3 95.4	93.6
Nuw Jersuy $40 . .$.	100.8	02.7	95.1	107.3	97,6	95.1	1024
Weightert nves	108.0	88.0	00.7	303.5	97.8	00.6	00.4

Taule 42.-Day-of-the-weck varintion in the retail sales of half pints of condensed milk in certain Manhattan and Bronx districts, 1924

Distriet	Percentage of average satea tor the week						
	Sunday	Monilay	Tuesdiny	Wedness-	Thursiday	Frıday	Saturday
Mmbattun:	Per cemt 104.3	Per cent	Per cent yH. 3	Per cent	$\begin{array}{r} \text { Per cent } \\ 90.8 \end{array}$	Per cent 90.8	Per cent 106.7
$\stackrel{5}{5}$ Brohx:	101.8	Q8. 97.0	100.5 91.5	$\xrightarrow{104.3} \mathbf{1 5 . 8}$	93.1 04.2	95. 0.5	10.7 04.2
Weightaramer	108. 0	9 ta	90.0	105.8	18.8	9.7	110.5

Tanle 43.-Day-of-the-wcek nariation in the retail sales of quarts of buttermilk in certain districts in New York City, 1924

District	Percentage of nyersife sales for the Freak						
	Bunday	Mondey	Tuesday	Wednesday	Thursday	Friday	Saturtiay
Manhatan:	Per cent	Per cent	Per chnt	Per cent		Per cent	Per cent
1......		124.5	118.7	122.7	1215	124.5	80.7
	57.6	116.8	111.7	111.7	100.4	12.4	80.4
	60.3 01.5 15	114.3	107.9 1028	104.8	100.1	110.2	97.4
	87.8	97. 1	109.6	1025	104.2	90.3	105.5
	87.1	102.0	105.9	103.0	104.0	105.9	681
15.	67.4	[00. 7	112.0	104.4	00.0	08.7	
	78.2	100.4	110.0	105.7	101.0	109.6	88.1
	8.7	105.3	108.2	101.7	99.6	$10 \% 15$	${ }_{0}^{6.1}$
Wejghted av	70.4	106.0	100.5	206.3	1029	109. 5	94.5

Table 44.-Day-ffthe-week yariation in the retail sales of quarts of Crade B milk in the New York metropolitan area, by months, 1924

Motath	Fercontage of average sales for the weok						
	Sudiny	Afondis	'ruasdas	Wednesday	Thuridry	Friday	Suturday
	Ier cent	Per cent	Per cent	Per tent	Fer cent	Per cemt	Percent
Itamary -	104.3	悃 4	(\%) 4	99.3	08.0	(60.3	5ul
Fobruary	101.5	90. 2	19.11	493.7	98.0	W9. 1	W2. 3
Misrch.	104.7	90.2	09.2	\%03. 6	\% ${ }^{6}$	\%. 0	4 43.5
A.jr ${ }^{\text {did. }}$	In, 8	09.4	9×3	00.6	515	19.2	38.6
Alty	104. 4	612	(4) 4	400.9	06.5	Wi. 8	98.8
Inne.	1028	94.2	101. 6	100.15	100.0	Sk. 7	97.8
Iuly.	104.7	90.7	100.6	100.4	(1). 8	100.2	9
Aupust	102.2	43.8	60.2	10.1	60.3	109.23	9.5
Septomber	1020	100.	100.1	160.8	4, 4	10.	M1
Octoler...	103.6	10. 10	19.8	160.0	Mr	¢9.8	00.1
Noveratrar.	10 A .2	90.7	48.0	100.0 40.0	9, 9.3	488,8	90.1
Decomber.	16H. 7	W.2	4 CH - 1	90.0	10.2	18,8	\%.
Weiglated a	114. 7	frat 5	(w , 8	(x). 8	(\%) 9	$5{ }^{5}$	48.0

Table 45.-Day-of-the-reed pariation in the retail sales of quarts of grade a milk in the New York metropolitan area, by months, 1924

Month	Percentuge of averaga situs for the weok						
	Sunday	Munday	Tuesday	Wednes- iny	Thurshay	Friday	Solurdny
	Per cent 101.2	$\begin{gathered} \text { Per eent } \\ 40.8 \end{gathered}$	$\begin{gathered} P_{e} \operatorname{centr} \\ 1000.0 \end{gathered}$	Per cent 57.8	$\begin{aligned} & \text { Per cent } \\ & 00.7 \end{aligned}$	Per cent 63.7	Per cent 99.8
Februmy	10.0	\%9.0	99.9	500.5	100.1	90.4	Wi.2
Harch.	$1 \mathrm{ni.0}$	(K_{2}	90.8	100.0	Y) 8	91.8	90.8
Ajrll.-	101.0	9.9	100.2	100.4	90.8	49.6	90.8
May...	100.0	00. 0	100.0	100.2	100.2	100.7	100.1
Jupe...	(w) (1) $_{2}$	W0.7	101.0	100.0	100.1	120.0	98.8
Itriy-...	90.8	69.0	90.8	100.3	100.2	100.4	40.18
Saptotnter	100.6	100.6	(ix). 8	(1). 7	109.7	99.9	\% 7
October--	100.8	00.4	${ }_{500.7}^{10.2}$	${ }_{100.2}$	${ }^{100.1}$	(\%).	90.8
November	101.0	190.3	900.7	100.1	90.9	90.6	90.7
Wolyhted ave	100.5	110.0	[60. 2	100.3	90.8	W. 8	89.4

Tabue 46.-Day-of-the-weeks pariation in the retail sales of guarts of certified milk in the New Yort metropolitan areat, by months, 1924

Month	Percentaje of average sules for the week						
	Sunday	Mondry	Tuegany	$\begin{aligned} & \text { Wednas- } \\ & \text { day } \end{aligned}$	Thursday	Fridny	Saturday
	Per cent w. 1	$\begin{gathered} \text { Per cent } \\ \text { ino } 3 \end{gathered}$	$\begin{aligned} & \text { Per cent } \\ & \text { thoo. } \end{aligned}$	Per cent 100.5	$\begin{array}{r} \text { Per cent } \\ 100.0 \end{array}$	$\begin{array}{r} \text { Per cent } \\ \text { nou. } 7 \end{array}$	$\begin{array}{r} \text { Per cent } \\ 90.4 \end{array}$
Fobrumy	ML. 0	19.8	P0. 3	99.8	38.8	102.2	${ }_{\text {Wb }} 1$
Maseh.	90.50	100.1	100.0	100.7	101.7	99.2	8
Apri.	${ }_{0}^{48.2}$	100.0	100.5 100.0	100.5	101.8	10\% 7	19.1
	38. 8	880.9	100.8	101.0	49.0	100.5	00.1
July..	97.7	00.4	10.8	19.14	100.8	961. 8	40.1
Auglist	98.8	90. A	100.0	100.7	100.4	101. m_{1}	9
Soptember	4*8	102.6 100.5	101.0	90.9	50.0	100.5	99.4
Oetoreser-r	(10) 1	100.5	110.2	100.2	300.2	500.5	W0.3
Decomber.	90.2	100.8	100.0	100.2	100.2	100.0	[$\times 2.0$
Weighted ave	98.9	100.8	W. 8	100.4	100.0	$\underline{160.3}$	188.4

Table 47.-Day-of-the-wcek variation in the retail sales of pints of grade B mill: in the New Yort metropolilan area, by months, 192.4

Table 48.-Day-of-the-week variation in the retail sales of half pints of extraheavy cream in the New York metropolitan area, by months, 1904

Month	Percentare of averuge sales for the week						
	Sunday	Monday	Tuesday	シitunesduy	Thursisy	Frlday	Snturdsy
January	Per cent 1th. 3	Per cent	Per cint	Per cent	Per cent	Per cent	Per cent
Fedzuary	(16.3		91.5	92. 7	87.8	84.0	Of. 1
Mareh...	173.4	83.0 82.3	89,3 89.4	92.8	80.7	83.1	92\% 0
Ayril.	182.1	81.0	88.4	90.8	80.3	81.9	92.7
May	193.8	$7 \mathrm{~F}, 7$	88.0	80.8	85.9	85.1	40.9
Junem	190.0	81.0	87.0 87.5	89.0	82.9	79.8	87.8
July	179.7	81.8	87.5 90.5	89.0	88.1	79.8	87.8
Auktast.	179.7	81.8	90.5	91.7	85.8	822	88.3
September	171.7	883.4	89.0	90.7	85.8	82.2	88.3
Octaber.-	170. 1	83.0	V0. 3	0.2	88.7	83.0	91.0
November	1100. 13	87.3	20.3	03.2	* 1	84.1	01.2
December	1137.0	$\mathbf{8 . 3 . 0}$	880.9	03.4 97.3	88.4 88.5	81.8	92.2
Wafghted uv						82.	82.4
	176.4	83.4	88.8	92.3	80.2	82.1	40.9

Table 49.-Day-of-the-tweek variation in the retail sales of half pints of light cream in the New York metropolitan area, by months, 1924

Month	Percentage of average sales for the weelr						
	Sunday	Monday	Tuesday	Wodnesday	Thursday	Fitday	Saturdey
January,	Per cent 109. 0	Per cent 97.9	Per cent 1.00.	Per cent	Per cent	Per cent	Par cent
February	100.7	¢ob. 6	100.2	100.2	(97.4	97.4	97.9
Marel2.	108. 6	97.1	99.5	103,0	\%. 3	86.0	87.2
April.	109.4	90.3	100.2	105. 1	07.7	${ }^{65.4}$	85
June...	105.3	97.3	89.7	104. ${ }^{\text {d }}$	97.3	97.9	94.10
Juty-	1007.8	97.2	10.2	104.5	98.0	${ }_{0} 9.6$	90.0
Augut -	107.0	97.2	${ }_{90,9}$	104.2	98.0	07.2	93.1
Oeptobet	108.1	90.4	100.1	101.0	97.2	9.2	85.4
November	105.8	90. 3	100.9	1028	99.0	97.1	98.4
Dectuber		80, 0	${ }_{96}^{68}$	102.8	${ }_{68}^{88}$	95.83	96.4
Weighted uverap							
		6.0	99.7	103.5	97.8	90.8	00.4

Thase 50.-Day-of-thenweek variation in the retail soles of half pinfs of condensed milk in the New York metropolilan area, by months, 1924

Montta	Percentare of everage sales for the weak						
	Sunday	Monday	Tuestoy	Wednes-	Thutsuay	Frlong	Saturday
Jonuars	$\begin{gathered} \text { Per cent } \\ 100.3 \end{gathered}$	$\begin{array}{r} \text { Pet cent } \\ 0.0 \end{array}$	$\begin{gathered} \text { Per cent } \\ \mathrm{HF.2}^{2} \end{gathered}$	$\begin{array}{r} P a c \text { cent } \\ 108.3 \end{array}$	$\begin{array}{r} \text { Per cent } \\ \text { Ot. } \end{array}$	$\begin{array}{r} \text { Per cent } \\ 97.2 \end{array}$	$\begin{aligned} & \text { Per cent } \\ & 100.3 \end{aligned}$
Fobruary	104.1	98. 0	06.6	19.1	03.5	D6. 5	105.6
March.	111.0	\%2. 1	04, 1	11.0	91.0	825	103.3
Aprit	112.0	05.8	${ }_{092}^{08.1}$	105.8 107.8	92.0	98.2	1023
	100.0	98.1	100.0	109.3	92.6	92.6	107.4
duly.	103.8	\%8. 5	10t. 2	109.1	90.5	95.8	101.1
August.	104.3	101.3	02. 3	133.2	923	25. 3	10 A .3
Segitember	110.6	68.4	09.4	9.8	9.15	94, 8	103.8
Octaber-...	10.4 104.0	05.6	107.2	10.4 10.4	97.6 101.8	35.5 03.3	10.4 10.1
Noverntor	105.3	9.4	100.	105, 3	96.8	O. 4	100.9
Woly	106.0	96.8	90.0	105.8	93.8	0.7	108.8

Table 51.-Day-of-the-week variation in the retail sales of quarta of butlormilk in the New York metropolitan area, by months, 1924

Table 52.-Day-of-the-wcek nariation in the wholesale sales of quarts of grade B milk in the New York metropolitan area, by months, 1924

Month	Percentege of average sales for the week						
	Sundas	Mondey	Tuesday	Wednesdis	Thursday	Friday	Staturday
January	Per cent 97, 3	$\begin{gathered} \text { Per cent } \\ 101,3 \end{gathered}$	$\begin{aligned} & P a \text { cent } \\ & 100.1 \end{aligned}$	Per cent 87.7	$\begin{array}{r} \text { Per cent } \\ 00.8 \end{array}$	$\begin{array}{r} \text { Per cent } \\ 100.7 \end{array}$	$\begin{gathered} \text { Fer cent } \\ 106.1 \end{gathered}$
February	9.7	${ }^{98.9}$	98.7	90.6	88.7	10.1	106, 3
March.	${ }^{185} 8$	99.2	${ }_{69} 5$	98.6	00.4	102.4	${ }^{105.1}$
May..	98.8	89.8	100.2	${ }_{98.4}$	100.0	10.5	10. 7
June.	00.4	97.2	102.2	103.7	104. 2	100.0	101.4
July.	87.4	97.5	100.0	99.8	105.4,	107.8	1020
August	80.0	10.8	97.1	07.0	103.3	108.1	10.7
Septernber	9.11	98. 2	105.3	$\begin{array}{r}103.9 \\ 08.5 \\ \hline 0.5\end{array}$	108.7		
Oeloher---	92.0 05.2	t01.6	108.9 101.3	98.5	${ }^{100.0}$	101.7	10.4 104.2
December.	$0: 38$	100.0	100.2	102.0	08.4	101.6	104.0
Weightex aver	92.8	89.4	100.8	$\ldots 9.6$	100.8	1922	104.4

Talles 53．－Day－of－the－weet variation in the wholesale sales of pints of grade B milk in the New York melropolitan area，by months， 1924

Month	Porcentuge of average sales for the weok						
	Sunciay	Monday	Tresday	Welnes－	Thursday	Friday	Saturday
January	Per cent	Pet cent	Per cent				
Petruary	61.1	1116．5	114.8 115.0 1.8	14.1 115.0	（109．2	${ }_{115}^{116} 5$	77.8 74
Mareh．	48.3	116.6	11 fl 8	110.0	158． 4	1111.0	73.4 73.7
April．	48.2	113.5	117.13	116.6	155.8	115.7	72.7
Aluy－	45.9	47.18	116.9	117.5	315． 3	115.7	71.1
Junc．	＋3．4	11360	1182	118.7	125.4	11.7	6a．6
August	筑，	116.1	117.6	118.0	12.8	125.0	62.3
Statarthar	13.7	$11+5.4$	1180	113.1	119.7	12.17	03.0
Oclujert．	50.4	160．2	117.0	115.1	1115.4	117.3 1515	67.5
Novembtr	631	118.2	107.7	11.2	\％ins	115． 10.5	78．8
Duculat	53.7	115.3	14.8	113.8	118.7	104．2	74.5
Wotghtud aver	14．8	115.2	1 \％ 8	115.7	188.1	156．0	71，2

TAble 54．－Day－of－the－week mariation in the wholesale sales of grade B bulk milk in the New York metropolitun urce，by months， 1894

Month	Fercentage of avarage sales for the week						
	Sanday	Monday	Tucsuby	$\begin{aligned} & \text { Wellnes- } \\ & \text { day } \end{aligned}$	Thursdoy	Friday	Saturday
Janumry	$\begin{gathered} \text { Per cent } \\ \text { tit. } 0 \end{gathered}$	Per cent 17R 5	Per cent 103.8	Per cent 103.8	Per cent	Per cent	Per cent
tubrnary	74.1	168.0	103.9	10.8	193.4	106． 4	P9．9
Matreh．	73.5	［188．4	102.6	101.0	103． 4	107.8	100.3
Aytis	25.16	10．	Lax． 1		101.6	106.6	102.
Sutut		107． 6	1103.8	103.8	10.4	107.2	1023
Jnly	71.8	198.0	105.0	108.1 102.1 1020	103．8	1088 1102	90.9
Athetrsi	73.1	110． 0	\％ 8	1008	100.2	112.0	1008
Soptembrer	73.9	110． 1	107.7	106.3	10.4	104.8	100． 1
Oetober．．．	74.4	1 ma .8	102.5	105.0	102.3	107.0	101． 6
Nowenter	74.5 74.4	Y3．8	101.8 1034	104.1	104.3 105.5	100.4 105.0	100.1
Welghted aver	73.5	107.3	103.1	JOF． 2	104.3	107.2	100.4

Thale 55．－Duy－of－the－week variation in the wholesale sales of cxtra－heavy cream in the New York motropotitan area，by months， 1924

Montir	Percentage of nverago sales for the week						
	Sunday	Monday	Tuasdey	Wednes－ day	Thursday	Fricay	Saturday
January	Per cent	今er cent	Per cent	Pet cent	Per cent	Per cent	Per cent
Fobritury，	70.5	1515．8	81.3	89.2	92.6 93.6	109.1	137.2 138
March．	74.3	16.3	81.3	87.2	82.4	117.7	146.8
Aprti．	70.7	1 m .8	82.8	80.1	81.0	118.2	148．a
May．	7.42	102.0	13.3	91.0	72.2	114.9	146.9
Јu円	74.3	119.8	96．0	07.1	83.3	107.2	122.5
suiy．．．	30.7	115.5	87.2	02.0	103.5	118.8	134， 6
Aumbist	71，${ }^{\text {a }}$	104． 5	70.0	82.0	95.8	123.8	136.8
Soptonitrer	70．6	118.8	1683.2	80.9	72.4	109.7	145.4
Outhter	73， 5	［3T．9	80.5	88.8	80.7	104.3	147．41
Novomber	70.4	\｛41． 0	80.3	18． 2	80.2	12.0	148.15
Decumber	77.0	94.7	80.3	1031	92．4	108.3	140.2
－Weighted aver	72.4	176.7	88.3	01.4	86.8	112.2	140.3

Talles 56,-Day-of-the-week variation in the wholesale sales of light cram in the New York metropolitan area, by months, 1904

Table 57.-Day-of-the-week bariation in the wholesale sales of condensed milk in the New York metropolitan area, by months, 1924

Month	Preantage of averuge sules for tho week						
	Suntay	Mnndisy	Tuesday	Wedres- day	Thursday	Friday	Satursioy
Jannary	$\begin{gathered} \text { Per cent } \\ \text { son } 10.3 \end{gathered}$	$\begin{array}{r} \text { Per cent } \\ \text { shi } 7 \end{array}$	$\begin{array}{r} \text { Per cent } \\ \left.\begin{array}{r} \text { in. } \\ i n \end{array} \right\rvert\, \end{array}$	$\begin{array}{r} \text { Per cent } \\ 9 \mathrm{~h}, \mathrm{t} \end{array}$	$\begin{aligned} & \text { Per cent } \\ & 100,4 \end{aligned}$	Per cent 155. 3	Percent 15:.
Fubrestr	50.8	94.0	77.4	89.2	920	138. $\overline{7}$	147, 9
March.	43.5	115.2	7 F .5	80.7	417.1	1+3. 6	1 tal . 4
Ansil	40.8	125.3	80.0	77.8	78.7	243.3	15.1
M1ny-	40.1	100.7	91.9	96.4	$8{ }^{89}$	1393	157.9
Junt	10.1	142.6	100.4	101.10	77.0	121.7	114.3
July...	33. 0	14.2	87.6	95.0	104.2	1392	133.3
August-0.-	43.3	115.3	fifs. 6	9\%.6	95.0	140. 5	$1: 8.7$
Suptember	+4.6	114.4	108.4	0.3 .3	(2). 1	121.8	154.1
Seldeter.	13.0	140.7	80.1	pl. 1	63, 5	100.4	14is. 3
Nevermher	37.2	90, 1	70.7	$10 \mathrm{E}-4$	81.3	$1: 40.5$	1719.1
Decomisir	45, 0	193.8	81.3	118.7	70.3	127.9	1617, 61
Weishtel isver	+12. 7	114.5	80.0	m3. 4	83.6	130.6	148.3

Talle 58.-Dayof-the-weok variation in the wholesale sales of buttermilk in the New York metropolitan area, by months, 1924

Month	Percentage of avoruge sales for the week						
	Sunday	Manday	Tuesday	$\begin{aligned} & \text { Wednes- } \\ & \text { day } \end{aligned}$	Thursday	Friday	Saturdny
January -	$\begin{aligned} & \text { Pre cent } \\ & \text { AD. } 4 \end{aligned}$	Per cent 146, 1	$\begin{gathered} \text { Per cent } \\ \text { Dis. } 5 \end{gathered}$	Per cent 80.2	$\begin{array}{r} P a r \text { cont } \\ 1223 \end{array}$	$\begin{array}{r} \text { Por cent } \\ 11 f .8 \end{array}$	$\begin{array}{r} \mathrm{Percent} \\ 91.7 \end{array}$
Fehruary	31.4	124.3	118.7	102. 1	100.5	113.2	105.8
April.	4.	134. 1	12.1	114.2	100.5	110.6	04.8
May	4.15	120.4	100.3	1100.7	102.0 105.1	1190.0	1006
June.	30.4	1130	1.17 .0	127.3	120.0	113.7	$7 \mathrm{S}$.
July	3 m .6	126,2	103.3	1120	123.8	1220 0	88.2
Angust	法. 7	130.4	42.5	102.0	1293	1*3, 2	W. 0
Sopplenizer	33.5	1140	1.12 .1	117.8	mit. 4	100.2	88.0
October.	37.0	121.4	102.4	101.4	113,4	111.1	107.2
Nuvamiser.	40.5	1135.3	94, 0	45.8	105.3	124.8	103.5
1) ecember	35, 3	121.2	85.4	110.5	123i. ${ }^{\text {1 }}$	104.7	12it. 0
Woiglited aver	3.4	! 3 k, 5	100.0	10812	114.4	115.0	[1. 5

Table 59.-Effect of holidays on the retail sales of quarts of grade B milk in the New York metropolitan area, 1924

Distriot	Change in cutay																					
	$\left\lvert\, \begin{array}{c\|} \text { Naw } \\ \text { Years } \\ \text { Day } \\ \hline \end{array}\right.$	$\begin{gathered} \text { Lin: } \\ \text { cohns } \\ \text { Bfrth- } \\ \text { diny } \end{gathered}$	Wash. Ingten's 13irthduy	Eastor	Prassover week	$\left\lvert\, \begin{gathered} \text { Menno- } \\ \text { Fay } \end{gathered}\right.$	$\begin{aligned} & \text { Fourth } \\ & \text { of } \\ & \text { suly } \end{aligned}$	$\int_{\text {Labor }}^{\text {Disy }}$	$\begin{aligned} & \text { Yom } \\ & \text { Kip- } \\ & \text { pur } \end{aligned}$	Thanks giviug	$\underset{\substack{\text { Chrlst } \\ \text { 1uas } \\ \hline}}{ }$											
Marhattan:	Percent-8.8-7.7-4.2	Per cent	$\underset{c \in H}{P a}$	Per	Per ceuf	Per cemt		Percent	Percent		${ }_{\text {Per }}$											
							$\begin{aligned} & \text { cent } \\ & -8.2 \end{aligned}$			cent												
		-3.0	-8. 2	+2.	-3.4	-7.3)	-8.2	-126	-0.0.	-0.0	-0.9											
		-3.0	-1. 1		-1.2	-5.9	-7.0	-10.5	-1.2	-7.1	-0.5											
	-1.8	- 0.0	-2. 4	+1.8	+. 6	-1.8	-3.0	-4.7	-. 0	-2.4	-3.0											
Brax:																						
	- -1.8	-. ${ }^{1}$	$\begin{aligned} & -6 \\ & -.6 \end{aligned}$	$\begin{aligned} & +28 \\ & +1.2 \end{aligned}$	41.4	-1.8	-3.6	-8.7	$\begin{aligned} & +3.0 \\ & +1.2 \end{aligned}$	0	+1.2											
		-8			-.3	-. 8	-2.4	-5.3														
	- 6	-1.8	0	0	+ 5	-.6-.6	-3.0	-0.5-3.0		+3.0+1.8	+3.0+3.7											
10		-1.8			-0.4																	
	(1)+3.1-3	-1.2	+0+1.2	+2. 3		-1.8	-5.4	-3.0 -7.1	0	+1.8 +1.8	$\begin{array}{r} +3.7 \\ +2.4 \end{array}$											
12		${ }_{-0}^{0}$		-5	-3.1	-1.2	-2. 5	-3.4	-. 0	+0. 1	+5.5											
14		-3.8		+2.2	-1.7	-24	-3.8	-7.7	0	+2.4	+1.0											
16.	(i)	-1.2	\bigcirc	+1.1	-2.3	-4.2 +2.5	-2.4	-5.9 -4.3	+ 18 +08 +18	+1.2 +1.0	$\underline{+2.4}$											
18.		-1.8							-. 6		$\pm{ }_{+1.8}^{+1.8}$											
10		-1.2	-24	-. 0.5	-3.5	$\begin{array}{r} -3.0 \\ 0 \end{array}$	$\begin{aligned} & -4.8 \\ & -1.2 \end{aligned}$	-14.8	-1.2	+6.												
	+2.4		+1.2	0	-4.1	$+1.2$	$\begin{array}{r} 1.2 \\ +1.2 \end{array}$	-4. ${ }^{-3}$		$+\frac{3.7}{+7.3}$	+18 +4.0											
21		+	+1.0	-. 5	+1	0	-1.2	-6.1	\pm	+5.3	+8.9 +7.9											
24.	+1.8+4.6-4.3	$\stackrel{0}{0}$	$\begin{array}{r} +1.2 \\ -2.4 \end{array}$	+1.1+1.0	-1.1	+4.3	+5.5+2.4	$\underline{+2 .} 8$	0+1.2	+8.1+3.6	+7.4+4.2+4.0											
23																						
	-1.2	$\begin{array}{r} -1.2 \\ -.13 \end{array}$	$\begin{array}{r} -3.0 \\ 0 \end{array}$	$\pm .6$	-1.2	-1.8	-5.3	-7.2	0	0	+6.8											
						-1.2	-3.10	-7.8		+4.2												
50	+4.2	+2. 5	$\stackrel{0}{-0}$	-. 8.6	-2.			-2.5	-1.2	+6.0	+8.5											
31	-1.8	$\begin{array}{r} -3.0 \\ -3.0 \end{array}$	-1.0	$\begin{aligned} & -8 \\ & +48 \end{aligned}$	-1.3	-3.0	+1.2	-1.8	-1.2	+5.5 +1.2	+.6 -3.0											
Now ${ }^{32}$ Jo.....	-1.8		-2.4	$+1.2$	-1.1	-1.8	,	-1.8	+	-1.2	+6.											
${ }^{33}$ 3,	${ }_{-1.2}^{+1.2}$	-1. 2		-. 0	-1.2	-6	-1.8	-3. 7	+.6													
3		$\begin{aligned} & -1.2 \\ & -1.8 \end{aligned}$	+8.6	0	-1.1			-4. 7	+1.6	$\begin{array}{r} +3.0 \\ +12.0 \\ -1.0 \end{array}$												
	-10.8			0		+1.8	-12.7	-19.2	+. B		-15.0											
	+ 4	-24	- 11	0	-. 8	-3.0	-4.8	-7.2	0	+1.2												
3		-1.2 -.8	+3.1 +8.8		- 6	+1.2	- 1.8	-. 6	+2.4	+5, 6	+5.4+2.4											
319	-1.2	- 0	+88	+080					$-.0$	$+1.2$												
40.	+1.85	-	+8 +1.2	- 0	+ +1	$\underline{+}$	-1.8	-5.5			$\begin{array}{r} +2.4 \\ +4.3 \\ +3.0 \end{array}$											
41	+613+6.1	+1.2	+1.2+3+3.7	$+1_{0}^{1}$	-1.8	$\pm+1.8$	$+3.0$	$\begin{array}{r} -3.1 \\ +.0 \end{array}$	-. 6	$+8.6$												
										$+4.3$	+12.8											
Weig	-1,4	-1.2	-. 6	0	-1. 5	-1.2	-2.4	-8.0	0	+.i	+3.0											

[^22]Table 60.-Effect of holidajs on the retail sales of quarts of grade A milh in the New York metropolitan area, 1924

[^23] the holfchays.
i A verage change for the weele to percontages of tite average corrected sbies for the precading and the followity weok.
${ }^{1}$ Data not ayallable.

Tante 65.--Effect of holidays on the rekail sales of quarts of certitied milk in certain disibicts in the New York metropolitan area, 1924

I Forcontuge thange from the average corrected sates for the 3 days freecting and the 3 dnys fotlowing the tralestas:
 followiag week.
${ }^{5}$ Mata mot a willable.
Tabse 62.--Effect of holithus on the vetail sales of pins of grade B milk in certain tistricts in the New York metropolitan area, 1024

District	Chate fa stics ${ }^{\text {a }}$									
		Wash- ing- tons birin- fay	Enster	Pass ner wrek:	$\begin{aligned} & \text { Nemo } \\ & \text { rial } \\ & \text { Day } \end{aligned}$	$\begin{aligned} & \text { Forrth } \\ & \text { of } \\ & \text { July } \end{aligned}$	I.blior 1.D日	$\begin{aligned} & \text { Yom } \\ & \text { K, } k_{j} \\ & \text { jur } \end{aligned}$	Thanks givity	Christ-
Mabla	ler semt reat cout	$\begin{aligned} & p_{c r}^{c r} \\ & c c n t \end{aligned}$	Prir	Ier cem.	$\begin{gathered} \text { per } \\ \text { cut } \end{gathered}$	Prer		Prr	$\stackrel{\mathrm{Per}}{\mathrm{cem}}$	Fer
	-17.2-17.9	-4. 7	-2.1	-1. 1	-69. 1	-(i). 1	$i^{-50.1}$	-6.1	-666.0	${ }_{-651}$
	枟 4 -11.8	-45.8	+1.1	-3.0	,-17.7	-5. 5	- -3.8	-12.3	- \mathbf{i} it. 5	- 88.0
	-3s.	-31.fi	$+1.0$	-3.6	- 41.4	- H 11.8	- +1.0	-11.1	-35.4	-399.5
	-5.8 -8.7 -1.8 0	-10.3	\pm	-2.	-13.8	-11.5	-19.1	+1.7	-11.0	-9.7
Branx:					-5.3	-11.6	-0.4	-1.8	-f. 0	-4.7
	- 31.9 ¢ 51.1	-15.6	+ 4	-7.9	-10.0	-12.4	-13.8	-2.3	-17.if	
7	-3.6) -5.5	- -4.1	+3s 8	-3.5	-7.7	-25.1	-11.8	+. 6	-8.2	-4.2
${ }^{8}$	6.0 -2.1	-3.2	-. 6	-2.1	-5.8	-10.3	-12. 1	-. 6	-3.0	-7.1
		-7.6	+ 5 !	-5. 2	-24.6	-12.6	- -15.1	-14.7	-21.1	-17.7
	$\begin{array}{l\|l\|l\|} \hline-16.3 & -19 \\ \hline \end{array}$	12 26	1.1	-9	-10.0.	-18.3	- 717.1	-6.2	-18.2	- 18.3
	(3) -5 1	-10.0	-	-3.1	-2s. 1	-31.9	-354	-4.2	-21.7	- 4.7
Stntatishand: zi.	-19.1 -3.7	-38				-4it. 9	-22.0			
	-37.9 - 4 - 1	$-3 \bar{z} .4$	+2.2	-2.2	-48.0	-4. 7	-46.1	-5. 2	- 9.6	- 50.3
Lonk Ishates: $2 \mathrm{a} . .$. Wustchester (Cnumb: ss	- 0.0 - 6.9	$-\bar{t} .1$	-1.4			-14.				
New dersoy:						-		-1.	-16.4	-14.3
	55. $5-10.9$	-20.0	0		-20.0	-21. 0	-38. 8	± 6.9	-25. 8	-220
34	-9.6) -2.0	-68. 6	-20	-. 0	-13.1	-18.8	-15. 2	-1. 7	-11.0	-12.1
$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{array}{l\|l} -16.4 \\ -2.4 & -12.0 \\ -2.2 \end{array}$	-12.7	+i.1	-1.4	- 3.5	- 13.1	-24. 2	-. 0	-18.4	-20, 7
	$\begin{array}{l\|l\|l\|l} 911.4 & -12.0 \\ 10.1 & 3.4 \end{array}$	-16. ${ }^{-8}$	$\begin{array}{r}\text { O } \\ +1.4 \\ \hline\end{array}$	-2.8	-2.. 7	-31.1 -8.1	$\left\lvert\, \begin{array}{r} -24.3 \\ -0.8 \end{array}\right.$		-25.7 -8.7	-38.1
Welghted av.	2.0-18 4	-20.7	$+1.6$	-2.6	-26.5	-28.3	-20.8	-5.5	-25. 1	-3x. 1

[^24]Table 63．－Effect of holidays on the retail sules of extrt－heavy cream in certuin districts in the New York metropolitan arcu， 1944

[^25]| Month | （＇orichation hetweyn tempurature mad sales of－ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Quturts of grido is milk | | Quarts of grude A milk | | Jinlss of eride Bnilidk | | Grademilk Lulk | |
| | | J ＇robable error | | $\begin{gathered} \text { Prubable } \\ \text { veror } \end{gathered}$ | $\begin{gathered} \text { Correla- } \\ \text { tion } \\ \text { cuelli- } \\ \text { cient. } \end{gathered}$ | $\underset{\substack{\text { Prathull } \\ \text { orror }}}{ }$ | | Prnbuble arror |
| Apiril | ＋0， 6 | ± 11.134 | ＋0．¢\％ | ± 0.148 | ＋0．285 | $\pm 0.18{ }^{1 / 2}$ | ＋10．346 | ＋0． 140 |
| Mny | ＋．318 | 圭．135 | ＋ | 圭澵； | ＋+308 | ＋． 130 | ＋${ }^{50}$ | 产．1098 |
| July． | ＋．23s | 士．137 | ＋．335 | 圭勆： | ＋．45 | E． 118 | ＋ 50 | ± 123 |
| Stpliotilier | ＋． 50 | 土 | ＋．379 | 圭： 131 | ＋2，205 | 圭．137 | ＋．720 | $\pm \pm 061$ |
| All tam | ＋． 38 | 土． 0.52 | ＋．215 | 土 OFW | ＋${ }^{4}$ | ± 055 | ＋+770 | $\pm .052$ |

[^26]Table 65．－Correlation between the maximum temperature on a given day and the salcs of wilk on the following duy，by months ：

Month	Corrointion fotween temperature and sules of－							
	Quarts of grude B m H		Quarts of grade A zailk		Pints of grade 13 milk		Grade B bulk milk	
	Corrols－ com comll chent	Probable efrar	Cortola－ ton crefti－ cignt	Probable error	Correta－ tion coaffl－	Probabis arror	Correis． tion couff eiont	Probable error
Aprli．	$+0.176$	± 0.119	$+0.396$	± 0.104	＋0．572	土0． 083	＋0．421	± 0.101
May	＋100	$\pm .102$	＋0663	土． 121	＋． 258	$\pm .113$	＋．803	$\pm .043$
sumio．	＋ 438	＊． 100	$+.247$	土． 1170	＋． 212	± 101	＋． 697	$\pm .003$
July．．．	＋	士． 678	＋ 424	$\pm .100$	＋．52\％	圭． 087	$+.088$	土． 064
Augitst．．．．	＋ +880 +155	＋．065	+.485 +.171	土． 008 土． 120	+109 +189	＋101	＋884	$\pm .041$
Al1 3 mo	$+357$	$\pm .044$	＋．290	$\pm .048$	＋ 357	土． 014	＋． 1006	639

[^27]

[^0]:

[^1]: J NFW YORK GTATE DEPARTMENT OF PASMS AND MARKETS, STATIGTICA AELATIVE TO TAES DAIRY IN*

[^2]: T'Thlriy-aight records wero ontninetl by tho New York City Departinent of Heailh atud three ware obthined direstly frum Now Jersoy deulors.

[^3]: 210: 490.1026.

[^4]: ' Norton, L. J., and grrncers, L. a pheitutnary suavey of milk wakgeting in new yobe. N. Y. Gurnall Abz, Explt. Sta. Bul, 415: 4, tllus. 1025.

[^5]: - Frow unpubilsited data compated by Lelund Sponcer.

[^6]: ${ }^{t} 1915$ to 1923, with Aurgust. 1918, to Iuly, 1919, omitted because of intuenze epldemic. Corrected for secular trend and adjusted to 30-day month.
 Compiled from resports of the Bureau of the Census.

[^7]: ${ }^{1}$ Nof. 1, 1021, to Oct. 31, 1922, omitted because of millk-drivers' strize, which erused abnormal salos during the eanly part of 市hat yead.

[^8]: s Thef selinot trade in haif pints of milk is, of coufse, an excention if tho school perfol is courgared with thet vucution periad.

[^9]: 1 See Tablex 36 to 58 in tha mpendix for dny-or-the-weok variation by sections of the city and by months.

[^10]: ${ }^{1}$ ' Percontate ehango from the nvernge corrected sibles for the 3 dings proceding and the 3 daya followIng tho huliday.

 tavprowe chatrge for the weak in jercentages of the average corrected antes for the preceding and the
 following wook.

[^11]: ${ }^{1}$ Tha olfect of tho holkdays on sules of heavy cranm is measured hy flading tho percentage changes from

[^12]: 'Muximum tempernhure correctad for sensonul varintion. Sales of milk corrected for seetalar tread, seasomal variation, and holiftay viriation. Both expressed is percentage deviations from the neverge for the irrecedint ${ }^{3}$ weeks. Perfect pereemetnt between teraperature and siles would be expressed by the cof rolation coedfcient +1 . See Table of in the appendix for correlations by months.

[^13]: - Expressed us porcentage doviations from the avarage of the preceding 3 weeks,

[^14]: sensonal dayornimro corrected or seusounl varintion. Sules of milk corrected for secular trond and for seational day.orthe-weok, and holiday varintions. both expressed as percentage devintions from the avernik or the precexing 7 days. Perfect apremment betweon temperature and sales would be expressed by .

[^15]: to.177 corrolation coaflicient for daily temperatures mut sales of quarts of grads B milk on the same dny ts

 tho sume relations of daily und weekly sules.

[^16]: - For example the grass correlation of rehative lamidity bud sales of pints of grade A milk was

[^17]: 4 Chmmes in sales expressed ats fercemage devfutions from the avorme of the corrected sates for the 5 prevlots woeks.

[^18]:
 prices．

[^19]: 261); 603-510, 1925.

[^20]:

[^21]:
 texnils arig offered fir whatever they raty low worth.

[^22]: ${ }^{1}$ Percentage change from the avenuge correcteal sales for the 3 ctays precediag and the 3 days following the hollday.
 ${ }^{1}$ A verage change for the week in percontages of the average corracted sales for the preceding and the 1 ing week.
 ${ }^{1}$ Data not evalinble.

[^23]: ${ }^{2}$ Percentage change from tho average corrected sulas for the 3 days preeceling and the 3 deys foliowing

[^24]: ing the tolk kay.
 onlowink weck.
 T Data wot arathble.

[^25]: ${ }^{1}$ 1＇verentuge chage from the average corrected sathes for the 3 days preceding and the 3 days follow－ Ing tinet huliding：
 A wirnge elituge for the weok in grocentages of the avernge corrected sales for tho preceding and the fullowdis weok．
 ${ }^{3}$ ．Da da uot available．
 Table bi．－Correlation between the wectly ancruge maximum tenperalute and the weekly aterage sales of milh，by months

[^26]: ${ }^{1}$ Mnximutn tomperalure correcled for sensonal varintion．Snles of milk corrected for secular tread， sensomal tarlation，and holiday rarabion．Bath expressed as percentage devintions from che average for tho preceling weoks．Parfet agreentat Letweentengernture and siles would be exprossed by the correluhion coullicient + ．

[^27]: and for samonat，day－of＋tho－weok，and holiduy vartutions．Both expmased as percenture doviatiuns from
 by the corrolation cuellident +1 ．

