

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

## S <br> T A RT




MICROCOPY RESOLUTION TEST CHART


# STUDIES OF THE OCCURRENCE AND ELIMINATION OF KEMP FIBERS IN MOHAIR FLEECES 

\author{

Ry. .J. I. ffabmy <br>  <br> CONTENTS <br> Characterdsthes aiz mohatr <br> Tws kmis of hatr eresthe at butmals <br>  <br> Irwathetion ar mars........... <br> Sretlmathe of Hincs -........ <br> beseriptiso of sumples......... <br> flacussiton of raxalts - <br> Krony tu mathir phent....... <br> Wanalathan af sommersial woshatr … --...... <br> Extatazation of hapowel mo hair from fereve. <br> | tags |  | 5 rat |
| :---: | :---: | :---: |
| 1 | Discunsion an rawnte-4ontimned. Mulatir flemern under the mitro- |  |
| $\because$ |  | 9 |
| F | Nthts- | 11 |
| 3 | Wherghnotorraphs of mohatr |  |
| 4 | kemp | 12 |
| $\frac{1}{3}$ | Summervatrons bn bit in komp | $1:$ |
|  |  | 18 |
| 6 |  |  |
| ! |  |  |

## CHARACTERISTICS OF MOHAIR

Mohair is the long, lustrons cont of the Angora goat. The comtries which lead in its production are Tukey, South Africa, and the Gnited shates. It is atm important textile fiber on account of its luster. lengrth. fineness, strength, and spinning qualities. Its lack of telting gatities makes it a particularly ratuabie fiber. The great objection mandacturers have to molair is that it commonly contains shomter, coarse, undesirable filers, known as kemp. Besides taking dye poorly. these fibers often cause a loss in combing of as much as afout 18 per cent of the original weight of the mohair. In addition to this it is not possible to remove them completely from the good mohair.

The purpose of the investigation here reported was to study some of the characteristics and properties of kemp fotind in mohatir produced in the Cnited States. South Ifrica, and Tumkey that may be applied in the production of better molair. In the Trited States and South Africa flocks were berun hy erossing Angoras. which grow long, fine fleeces, with the orfinary common grats, which grow a coat of coarschair fibers. With this as the heginming, large flocks have been established, and the mohair from these two countries to-day ranks well with that grown in Turkey. This has been accomphished

[^0]through long periods of carefn, selective freeding. A better understanding of this accomplishment may be obtained what the ancestors of these common goats are considered. They probably had feeces very similar to the wild Asiatic or Rocky Mountain trouts ( $6, p, 162$ )." The wool and hair covering on roats in some of the foreign countries, where they have been allowed to run in a semiwild condition. seems to be but a step toward the high development of the Heeces fomd on one improved Angrora groats. In the yeur 1005 a type of goat corresponding to the Angora was reported in Asia Minor ( $\%$. $p .4 t \geqslant)$. Just how it was developed and established is not definitely known. Wweherer ( $10, \beta, f, 4)$ suggests that the Angoras origrinated by way of mutation. The prepotency of the Ancrora goat is clearly shown when it is recalled how ereat a part the first importation ( $8, p, 2.30$ ) from Tarkey to South Africa played in their development in that country. In this first importation of 13 Angropas only ${ }^{2}$ of the animats were potent. South Afrian now contains more than 2,000000 Anurora goats, and produces fully $12,000,000$ ponnds of mohair ammally. In spite of the great improvements made in the quality of mohiar in the Conited States and other countries, there are still possibilities for further improvements.

## Tha kinds of hatr covering of animals

Most animals wheh grow wowh hatr, or fur have two eoats, an outer or so-ealled protective covering. and an undercont which proFides wimoth. The development of these two coats raries with the clmate in which the animals live and it has also been greatly modified under conditions of domestication where protection has been provided and speciat attention has been given to their breeding. In the case of the fur-bearing ammats the fane undercoat is the true fur.

The wild groat has these two kinds of hair. The outer coat of coarse haris constitutes the great bulk of covering on these animals. The hairs are very coase and brittle and have large, meduliary canals which are filled for the most part with thin-walled partitions containing air. The chticular scales are observable with diffeulty. They surbund the cortex, which constitutes only a small portion of the fiber. 'These coare hairs have a close resemblance to the kempy and conrse medulated fibers of unimproved Angoras.

The fine, downlike fibers which constitute the undercoat are yery fine and delicate and bear reamblance to the improsed mohair of to-day. They have a well-defined chticular scale kevelopment with a well-developed cortex, but enticely lack the meduilary development found in the large fibers. These finer fibers appear like very fine mohair fibers. The two kinds of fibers are shown in Figure 4.

## EXPERIMENTAL PROCEEURE

## PREPARATION OF FIBERS

The samples of fibers were first cleaned by mostening in as mach 9.7 per cent aleohol as the wonld atsubth. This was followed by squeering out the exess between pieces of chean blotting paper. Each sample was then similarly treated in chlorotorm. For a quick examination the samples were stated in aboholie pievic acid soltation

[^1]and examined microscopically after having been mounted in water, glycerin, or diaphane under a 100 diameters' magnification. Fibers dyed a light shade of red were found to photograph satisfactorily.
When this colow was desired the small locks were tied with a fine, cotton thread at both ends and in the middle. The lock was then placel in about 100 c . c. of warm water made alkaline with two drops of concentrated canstic soda and heated to $180^{\circ} \mathrm{F}$. This solution was then poured off, and the lock was rinsed with warm water. The fibers were boiled in a water solution of satranin until stained to a pale reddish color. The sample was then rinsed in warm water repeatedly, and dried between pieces of blotting paper after having been moistened in alcolol solution until the exeess of water was removed from the fibers. By being moistened in absolute alcohol and dried between pieces of blotting paper the samples were satisfacto-


 used for freeztos the sperimens to be cross sectioned
rily dried for mounting in diaphanc. Equipment used in the work is shown in Figures 1. 2. and 3.

## SECTIONING OF FIBERS

Cross sections and longitudinal sections of fibers were prepared from stained fibers and were obtained throngh the use of a freezing mirrotome. The fibers were thoroughly moistened with water and frozen in ice in a vertical position for cross sections, and in a horizontal position for longitudinal sections. As the sections were cut by the microtome lanife they accumulated in one little droplet on the edge of the knite. This was best transferred to a slide by bringing the slide close to the edge of the lenite, when the droplet was readily blown by means of a glass tabe to the slide. When sections of individual fibers were made they were wiped off the knife with a piece
of mooth. hard-surfaced filter paper, and removed fi m the paper by means of a sharp nede under the low power of the microscope.

## DESCHIPTION OF SAMPLES

Locks of hair from the skins of wild groats were obtained from the National Musenm. The commercial samples of mohair originated in ramous sections of the [nited States, Sonth Africa, and Turkey and were obtained from one of the largest manufacturers of mohair plush. Samples of mohair plush were also obtained frum a large domestic manufacturer. 'Twentyseven samples of mohair of known breeding were obtaned from J. M. Jones and J. L. Lush, of the Texas Agricultural Experiment Station, who have been making an exanaustive study of the diameter measurement of wool and mohair fibers since 1923.

The commercial samples of mohair included the more common commercial grades of Texas, Oregon, Middle West, Turkish. "White Cape," and "Basuto Cape" mohair. The plush samples were all of good quality and from the same manufacturer. Twelve of the plush samples were manofactured in 1926 . Twelve other samples were manufactured about 1916.

The plush samples were examined for kemp both with the naked eye and under a binocular with T.5 diameters' magnification. The cleaned and dyed locks of mohair were also examined for the presence of kemp under the binocular with 7.5 diameters' magnification. For the examination of the caticle, cortex, and medula of fibers. magnification on the mocroscope of 100 and 250 diameters was nsed. For cxamination parposes the fibers were held in place on slass slides by means of strips of athesive tape and then monted in water. glycerin, or diaphane, as desired. When long fibers were examined
from base to tip they were momed on slides which were especially prepared from cleared photographic plates.

## MEASUREMENT OF ENMWRES

The length of the locks of mohair and of the kemp were measured in millimeters. The lenoth of a representative lock was measmred before cleaning, and after cleaning and dyeing the average length of five kemp fibers was taken as the length of the kemp. The diameter of all the molair and kenp fibers was measured with a ratelet-stop micrometer caliper having an enlarged barrel graduated in four-hundredths of a millimeter. All the kemp fibers were measured at the same point mieroscopically by means of a graduated


Fig. 3.-Miefometor caliper used to measuring (linmeter of mohair filits. The

 vides untiform funtact for the thers mensured, The leas facilitates reading the grmbuntions
evepice. The mohair fibers were measured about one-fourth of the distance from the base end to the tip end of the Gbers. The kemp fibers were measured one-half centimeter from their base end. An arerage of 20 measurements was made for the dianeter of the mohair fibers. The measurements on the fibers were made at a teniperature of about $\tilde{\sigma}^{\circ} \mathrm{F}$. and at a relative humidity of about 30 per cent.

## DISCUSSION OF RESULTS

## KEMP N MOHAIR PLUSH

The mohair fibers in 12 different samples of mohair phash were examined both with and without magnification. In these fabrics komp or coarse, stiff, bristlelike fibers may be found readily, with
the naked eye, scattered throurh the fabric. These fibers show up as whitish fibers, rarely if ever taking the dye to the same degree as the other mohair fibers. With a low-power binocular (about 7.0 diameters magnification) they show up very prominently.
Figure 5 shows kemp in a piece of mohair phash photographed seren times actand size. Similar fabrics were exmmed which were manufactured by the same concern more than 10 years ago. Some kemp was found in all samples examined, but there was more kemp in the ofler samples than was found in those made in 1026 or about 10 years later. This would indicate that in the last decade growers made progress in decreasing the quantity of kemp through their breeding operations.


Whi, 4. Hatir thers from Ashatic gont showing the two ktads of hat coverinar
 onter covering ; the small bibers are the undereat. Arathifed 250 diameters

## ネ~NAMINATION OF COMMERCIAL MOHAIR

Forty-seven samples of mohair were selected according to grade by an expert mohair grader at the sorting room of a large plush manufacturer. Thirty-five of these samples were main sorts and 12 were off sorts. Lach sample was examined for the presence or absence of kemp and medulated fibers. The samples of Texas 3's and Cape Low matchings were the only commercial samples containing only one kind of fibers which were found free from kemp. Thres of the samples of beaxds contained course, mohair fibers, some of wheh were medulhted and some were underfibers. These fine underfibers were very much like those found on the wild goat. A representative lock of each of these samples was measured for length.

Table 1 shows the results obtained from these measurements on 35 samples of the main sorts together with average lengths and diameters of kemp and mohnir fibers.

The length ot the locks of mohair ranged from 85 to 280 millimeters. The lengrt of the kemp fibers ranged from 15 to 73 millimeters. The dianeter of the kemp fibers ranged from 0.016 to 0.044 millimeter.
Measurcments on sumples in each grade for the lengths and diameters of kemp and mohar fibers are shown in the line of averages. These averares show that the diameter of kempy fibers shows a tendency to increase with the length of kemp and with the diameter of mohair fibers. The average diameter of all the kemp fibers at their base, as found with the micrometor caliper, is only 0.0002 milhimeter greater than that of the mohnir tibers. The examination of



a latge number of fibers with the microscope showed that the kemp fibers were somewhe harger than the surromding mohat fibers and that they increase in diameter as measured at different points from the base toward the tip of the fiber. At the tip end these fibers taper down to a sharp point. The average of five fibers, which were typical kemp fibers, measured at five different points along their lengrth from the base end to the tip end, was recorded. At these five points begiming at the base end, the kemp fibers measured $0.033,0.043,0.063,0.085$, and 0.01 milimeter. The diameter of the kemp fibers from this same lock from which these kemp fibors were taken, when measured widh the micrometer caliper at their base end, was found to average 0.029 millimeter. This result is 0.01 millimeter less than that obtained with the microscope. This led to a comparison in results obtained by the use of the microseope and
micrometer caliper. Fifty mohair fibers ank bo kemp fibers were monsured at the same point microscopienlly and with the micrometer caliper. The results obtained are shown in 'lable 2. Each observation represents the averare rading for a group of five fobers.

Tuble I.-Comparison of lenothe and diameters of mohair and kemp fibers is sti samples of commerriel mohair, arranged accordiny to manufactarer's grades


- Na sample.

Tame 2.-Diancter of mohnir and kemp fibers measured at the same point microscopicully and micrometrically, cach obsercation being the actrage of fite fibers


These results show that the measurements obtained with the micrometer catiper are uniformly less than the results obtained by the use of the microscope. This is probably explained partiathy by a slight squeging of the fibers in the micrometer caliper. It is also due patially to the tendency of the micrometer caliper to measure through the shortest diameter when the fibers are not exactly cimolar. With the microscope the increased diameter due to its being fiattened out by the cover glass is very slight. With the mienseope there is a tendency to measme throum the longest diameter when the fibers are not circular. Table 2 also shows the diameter of kemp, libers measured at the same point on their diameter at which they were measured with the micrometer caliper. The incrused diameter when mensured by the microscope clearly shows that the kemp fibers are orat in cross section even at their base.

## ENAMINATION OF IMPROVED MOHAIR FROMI FLEECES

Twenty-seven samples from mohair fleces were given exactly the same examination as the 47 commercial sumples of mohair. 'These fleeces were from well-bred animals, 18 of which were registered Angoras. Six of these samples were found entirely free from kemp. The a coage length of the sumples was 228 milimeters, and the averaye lrngth of the kemp was 26 millimeters. The average diameter of the mohair fibers, as measured with the micrometer caliper, was 0.033 millimeter, while the diameter of the kemp at its base Was $0.02 ;$ milhmeter. As has already been pointed out, the kemp fibers are squeeged together more than the mohair fibers. This means that the kemp, ibers are actually somewhat larger than the figure given above. All these kemp fibers were masared mieroscopically and showed an aremage diameter of 0.046 millimeter. This is only 0.013 millimeter more than the diameter of the mohair fiber when measured with the mictometer calliper. In the well-bred animal longer mohair and shorter kemp of at smaller diameter were found.

## molialr fibers under the microscope

The general appearance of mohair fibers under the microscope is very much like that of wool fibers of the same diameter if compared at the same relative position on their length. There is much variation in the pattern which the cuticular scales make on both mohair and wool fibers. Some mohair fibers have a very prominent scale formation, although there appears to be a smaller number than on wool fibers of the same diameter.
Mohair fibers have a general appearance of greater smoothness than is possessed by wool fibers even where the scale formations of both are rather prominent. A comparison is shown in Figures 6 and 7.

When mohair and wool fibers are examined throughout their entire lempth it is found that the scile development at the tip end of the fibers is more readily seen than at the base end. The difference in scale derelopment at the base and tip ends of the fibers is shown in Figure 8. Mere one sen see the scale development at the base and tip ends of the same fibers.


Fig. 6.-A comparison of sate fommation, the mare in the centor is a wool giver ; the two mithe cutsibe are mbinte fibers. Haghitied 200 diameters

 scale formation and the smouthess of the twe kinds of nuers. Mintithed e30 dumpters

## MEDULLAE DEVELOPMENT IN HAIR FIBERS

Fansman ( $3, p, \bar{b}$ 倍) classified medulhe of hair into five classes which he designates as absent, discontinuous, intermediate, continuous, and framental. Each of these terms is self-explanatory as they refer directly to medulae development in hair fibers. From the standpoint of the presence or absence of medullae we may divide mohair fibers roughly into three classes. In the first would come the absent, or fibers entirely free from medullae; then the fragmental, in which farments of medulae occur along the length of some of the fibers: and finally, those with continnous medulae. in which the

 fibers ace shown on the laft; (i) portions of the same tibers are shown on the right. Magaitied : 50 diameters
medula presents an unbroken apparance throughout nearly the entire length of the fibers.

## compabisos of mentidate in moilair

A fiece of mohair may be considered icleal if it is made up entirely of a long, dense growth of bright, lastrous fibers free from any medullated fibers. Such mohair fleeces are not frequently found. In wool such fleces are most often fomd in well-bred Merino sheep ( $2, p$. $3 \sim 6)$. In mohar it is foum that as the fibers become coarser there is a more frequent occurrence of the methulated fibers. Similarly
wools have varying amounts of fibers with a discontinuous and a continuous mednlla. As wool fibers become conrser the presence of medulae is more freduent. This is in agreement with the findings of Ffasman ( $\%, p, 053$ ) in his examination of the medullae of the hair of 200 species of mammals. From the standpoint of the mohair growers these facts should have considerable significance. This woud lead to the belief that breeding for coarser fibers in the feeces of mohair would bring with it a tendency of these fleeces toward an inereased number of medtulated fibers. With the increased tendeney of bucks toward medultated fibers there would be a sacrifice of the luster of the fleece. lireeding for coarser mohair, according to Rose $\left.(\delta, p .8, j /)^{\prime}\right)$ lowers its desimableness and puts it in competition with crossbred wools. The maximum luster shonld be maintained in the mohair fleee. Inster caries with it other desirable qualities, such as unitomity of fiber and lack of medulation. Duerden and Ritchie $(2, p .3 \%(j)$ state, "Where kempy fibres oecur in the Merino they may be looked upon as the retention of an ancestral, hereditary character whirh hats not yet been bred out."

It sems reasonable to believe that the climination of kemp can be accomplished by following a careful plan of breeding. This wouk be a great accomplishment on the part of mohair breeders. With the elimination of kemp there would probably be a reduction of medullated fibers in the courser fleeces and a general inerease of luster in all these fleeces.

Kemp, which is the extreme type of medntlated mohair fiber, is very objectionable to the mohair manufacturer. It is easily recognized by an experienced eye, being so much coarser than the surrounding fibers. In both wool and mohair these kempy fibers are as a weneral rule short, very course at the base, and come to a sharp point at the tip. In wool the kempy fibers are generally said to resist dye $(1 ; 7,7.410 ; 7, p .99 ; 9, p .788)$ or to dye less readily than the other fibers, and show up as uneven places in the finished Hoods, although Duerden and Ritchie ( $O, p, 37.1$ ) state, "Despite all the opinions quoted, our experiments prove that kemp fibers dye just as readily as those of true wool." All the mohair plush samples examined by the writer showed that mohair lemp under practical mitl conditions failed to take the dye as readily as other mohair thers. The short tip of the kemp fiber, which is not medullated, dyes readily, whereas the heavily medullated portion is not dyed. The rate of dyeing for the finer fibers is so meh greater than for the kemp that in the dyeing of light shades there is very little dye faken up by the kempy fibers in the time required for the desired shade. Fren in the darker shades the difference in color of the kempy fibers may be rearily seen, as shown in Figure 9 . The kemp in this sample is very long; it failed to take the dye and showed ap as the darker-colored fibers.

## MICROPHOTOGRAPHS OF MOHAIR KEMP

A better understanding of mohair kemp is obtained from microphotograpls. Some of the same fibers shown in Figure 9 were photorraphed under the mieroscope and are shown in Figure 10. These fibers show different degrees of medulation from good mohair fibers to kemp. When the mertula is filled with air it shows up in
the microphotograph as black. Fiber D (fig. 10) is a kempy fiber with a portion of the medulla without air. This part of the fiber is nearly transparent. The two smallest fibers are without medullae.

Figure 11 shows cross sections and a longitudinal section of a kemp fiber. These were made from fibers similar to those used for Figures 9 and 10.

The good mohar is circular in form, while the kempy fibers vary in form from sections with flattened sides to those which are circular. The longitudinal section clearly shows the spongy, cell-like nature of the medula of a mohair fiber. Air lodged in theso spaces gives a kemp fiber its snow-white appearance.

## OBSERVATIONS ON AIR IN KEMP

Kempy fibers were mounted on a slide in a thin solution of diaphane and were watched for their behavior under the microscope.


Fig. 0.-Showing about onehalf of a snall lock of mohnir with kemp. The coarse, shorter flbers are kemp. Aetual size

Wherever there happened to be a slight break in the fiber the diaphane worked slowly into the medulla of the fiber. The air was seen bubbling out at the breaks in the fiber as the diaphane worked its way in. The interchange of diaphane for air under these conditions was a very slow process. The cover glass was slightly depressed while the fibers were under observation, and the air could be seen as it worked its way more rapidly out of the fibers in the form of small bubbles. This air held in the medulla probably increases the difficulty of the dye penetrating the fibers and partially accounts for their decreased rate of dyeing. The effect of this air on the passage of light is readily seen in the same manner. When kempy fibers have had their air removed in this manner they become transparent.
Figure 12 shows four microphotographs of mohair kemp. which were taken while they were being cleared with warm sulphuric acid. The fibers were motuted on as side in water and covered with a
cover glass. The acid was dropped on the slide and worked under the cover ghass.


Fig. IO,-Gond mobaid withont modnlit, and different degress of mednitation. A,
 tions; L , coairse, kempy lnohelr. Mitgnîfed $2 \overline{5} 0$ dianmeters

## SUMMARY

Of 47 commercial mohair samples examined, of which 35 represented main sorts, three showed entire freedom from kemp. Two of these samples contained tine underfibers, which were objectionable from the standpoint of unitormity.

Of 27 samples from inproved Angora goats 6 were free from kemp. Two of these samples had many medlulhated fibers, also objectionable because of their close resemblance to kemp.

 lintinal section of mohair kromp; C, etoss sectlon of motafr kemp. Mngnifled jó diamulters

The average length of the commercial mohair samples examined was 150 millimeters and that of the improved mohair 228 millimeters. The arerage length of kemp from these two groups of samples was 36 and 26 millimeters. respectively. The improved Angoras, therefore, had the shorter kemp and the lontrer mohair.


 parent blers after ate to removed. Mipmiliex so thameters

With the micrometer caliper the diameter of the commercial mohair was 0.029 millimeter. and that of the improved mohair was 0.033 millimeter, while the diameter of kemp for the same groups of fibers was 0.030 and 0.022 millimeter, respectively.

The aretuge dimmeter of the kemp meatured microsopically was 0.052 ．whereas that of the improved mohair was only 0.046 millimeter．

The difficulty encountered in finding kemp in each of the samples of improved mohair indicated that there was less of it than in the commercial mohnir．
＇The ammpes of mohair which were very lustrous were free from medullated fibers．As the fibers became conrser there was a greater tendency toward medolated fibers．

Jut？ ding from the quality of the mohair samples from the improved Angoras，it shonk be possible through systematic hreeding for animals free from komp to extablish flocks of Angoras entirely fuee from lemp，ant ia this manner areatly to improve the quality of mohare grown in the Tnited States．

## LITERATITRE CITED

（1）Itmwaxiv， F ， 1 I ．


（2）Drritus．s，J．le．nut liotente，M．
咞！illus．
（3）IJu＂NusN，L， A ．


（d）H．twkesworti．A．
 Svilies．
（5）HAYES，7，L．
 Nat．EIist．l＇rue． 11 ：405－432．
（0）ĽロロたたKER．IR
 （＇nmbridge．
（7）M，（atiews．． 11.

 and Landon．
（8）Rose，P．I）．
 1）ept．Agr．Jour．8：2：30－237．illus．
（9）＇Troutpe T．E．
 Lombln，New Yurk［ete．l．
（10）WYedtamz．E．
 Ziluhturgsbiol．4：119－143，illus．

[^2]


[^0]:    
    

[^1]:    

[^2]:    АJMITTIONAL COIIES
    aF TIIS PIULIEATHS MAY BE FHOCVBFU FROM
    THE STMERINTHNDENT OF DACLSESTS G．S，GUYERNMENT PRINTINO OFFICE W．4．illsfitins，H．C．
    A CENLS ${ }_{\nabla}^{\mathrm{NE}} \mathrm{PK}$ COPY

