

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.



# Temperatures and Related Conditions in Wisconsin Farmhouses ${ }^{1}$. 

By J, Ronems Dodar, senior architect, Didision of Frarm Buildirgs and Raral Housing, Burcall of Plant Judustry, Soils and Agricultural Bngincoriny, Agriwhltural fiescarch suministraiion, nom M. J. Laliock, professor, Department of Agrichllural Dngincering, College of Agricuthare, Dhiversily of Wisconsin:

CONTENTS

|  | Page |  | Puge |
| :---: | :---: | :---: | :---: |
| Introduction | 1 | Deseription of test houses and hab- |  |
| factors relating | 2 | its of the occupantis-Con. |  |
| Proeedure | 3 | Description of house No. 8-R. | 42 |
| Instruments | 3 | Deseription of house No. $\mathrm{g}_{\text {_ }}$ - | 45 |
| Desoription of lest houses and |  | Ouservations_ | 47 |
| hatits of the ocenmants | 7 | Dry-bulb temperatures at the |  |
| Descriplion of house No. | S | 60-inch levela------------ | 48 |
| Description of thouse No. 1-R. | 11 | Relative humidity | 50 |
| Description of house No. 2 | 12 | delfective fentjeratur | 51 |
| Deseriplion of house No. 2-I.- | 15 | Varinbility of tomperatures.-- | 51 |
| Description of housis No. 3 -.. | 15 | 'Temperature differences be- |  |
| Description of house No. 4 | 19 | ween heated rooms | 54 |
| Description of house No. ${ }^{\text {d }}$-1\% | 21 | Vertical temperature gradients | 56 |
| Deseription of house No. 5 .-. | 23 | Surface temperatures-..----- | 62 |
| Desuription of houst No. $5 \cdot 12$. | 26 | Nit movements in the con- |  |
| Description of house No. $6 . \ldots$ | 28 | struclion------------- | 64 |
| Description of house $\mathrm{No} 6-.\mathrm{N}_{\text {- }}$ | 31 | Air movements within rooms | 65 |
| Deseription of house No. 7 | 33 | Summary and conclusions.----- | 6 |
| Deseription of house No. 7 -R. | 35 | Appendix. |  |
| Description of houst No. S... | 39 |  |  |

## INTRODUCTION

That proper housing has an important effect on the well-being of the family is generally accepted today. As a rule, farm families are more fortunate in many respects than those living in crowded urban areas.

[^0]There is usually opportonity for an abudance of tresh air, sumshine, and exercise, and children have ample space to play safely outdoors. On' the other hand the dwelling plays a more important part in the life of the from family than in that of most uban families. In the colder sections of the country particularly, the life of the family is centered in the home during the long winter months.

It is evident, therefore, that if the farm home is to function satisfactorily the physical charateristics and particularly the themal nivironment are of considerable importance.

In 1985 the Bureau of Phant Industry, Soils, and Agricultural Engineering ${ }^{3}$ undertook a study of temperature and related factors that might affect the comfort and livability of farmhouses. This stady was to determine if possible the chief soures of discomfort, their causes, and the methods of correcting them so that farm families could improve their living conditions.
Two projecis were started, one at Madison, Wis., in cooperation with the Wisconsin Agricultural Experiment Station, which is reported in this publication, and the other at Athens, Ga., in cooperation with the Universily of Georgia. ${ }^{\text {. }}$

Wisconsin was selected as representative of a large section of the United States in which winters are long enough and severe enough to constutute a major factor in farmhouse alesign and construction and in the selection of equipment.

To obtain information on as many as possible of the factors aflecting the comfort and livability of tarmhouses, plans were made to carry on investigations in occupied houses. Farmers who wished to remodel or otherwise substantially improve their homes or who planned to build new houses were selected as cooperators in order that both existing conditions and the value of various improvements might be studied.

In the years 1936-10 and during the winter of 103if, more or less complete studies were made in nine houses, which as a group were failly representative of the houses of the regrion. Atter the studies had been completed five of these were completely remodeled, one was replaced by a new house, and two were insulated. Studies were then repeated in the improved houses in order to determine the effect of the changes.
In each of the old houses there were various features that caused dissatisfaction, but one problem-discomfort in cold weither-was found in all of them. The stadies made of thermal conditions during the winter in the existing houses and the eflect of the improvements made to the houses on air temperature, relative humidity, temperature distribution, and surface temperatures are discussed in this publication.

## FACTORS RELATING TO COMFORT

As a result of tests the American Society of Heating and Ventilating Enginers has developed the "effective temperature" (E. T.) scale or index. ${ }^{8}$ which is defined as "an empirically determined index of the

[^1]degree of warmth perceived on exposure to different combinations of temperature, humidity, and air novement."

It, was found in the tests by the American Society of Heating and Ventilating Engineers that in general most of the persons studied were comfortable, in winter between the linits of $63^{\circ}$ and $71^{\circ}$ effective temperatue ( E . T.) with an air movement of between 15 and 25 feet per thinute. The optimum was $66^{\circ}$ E. T.

The effective temperature index applies to rooms heated by central systems of the convection type. It does not apply to zooms heated by such radiant methods as fireplaces or heating stoves without jackets. It is based on relative humidities and dry-bulb temperatures taken at a height of 60 inches above the floor and on air motion measured 36 inches thove the floor. The eflect of surface temperatures is not taken into consideration, except that it is pointed out (p. 218 of reference given in footnote 5) that "Radiation between the orcupant of an enclosuta and the sucfaces of the room itself and objects within the room, including windows, heating and cooling equipment, and other oxcupants, has an important bearing on the feeling of warmth and may alter to some measurable degree.the optimum conditions for comfont pervionsly indicated."

While the ciltect ive temperature is of treat importance in evaloating the effects of various conditions on comfort, Petersen ${ }^{6}$ states (p. 82) that "from the point of view of physiological adaptation, the importance of the themic enviroment lies firequently less in the actual temperature level than in the instability of temperature-the frequent repetition of fluctuations and the amplitude of the flnctuations . . . The possibilites of stimulation or fatigue are greatly enhanced under such conditions."

## PROCEDURE

With these factors in mind, work was undertaken to determine the thermal conditions existing in these houses unter normal, everyday use, which had a delinite bearing on the comtort of the occupants. As a result no attempt was made to control or regulate the frequency with which the heating equipment was fred, the amount of fuel used, nor the daily routine of the family.

The following datia were obtained in each of the important rooms in the test houses:

1. Lir temperature at or as near the $60-\mathrm{inch}$ level as possible.
2. Relative humidity at the same level as the dry-bulb temperature.

3 . Laside surfate temperatures of walls, floors, and ceilings.
4. Temperatures at ratious levels between floor and ceiling.

In additoin to these data some information was obtained at selected points on air movement in rooms, temperaturs and air movements in the wall, floor, and ceiling construction (staci and joist spaces), and infiltration hlhrough windows.

## Instruments

dir temperatures and relative humidities were recorded contimuously in the varions hosees byems of hygothemographs, which

[^2]were placed in as representative locations as possible in the rooms being studied.

In the umimproved houses instruments were placed on pieces of furniture where they would be least likely to be disturbed. The disadvantage of this method was that the instruments were not always at the same height and were anywhere from 28 to 60 inches above the


Figuke 1.--Fygrothermograph on specialiy built stand.
floor. Later hygrothermograph stands were constructed that placed the instruments 60 inches above the floor (fig. 1). This height was selected, since it is the height used in determining effective temperature. It is also a common height for mounting thermometers and thermostats, as it is approximately the breathing level of a person standing erect.

For purposes of comparison the temperatures recorded by hygrothermographs placed at heights other than 60 inches were corrected
for height, using thermocouple radings taken at various heights above the floor as a basis.

Hygrothermographs were checked at the beginning of each week's run by means of a psychrometer. Ordinarily the instruments were checked at a time when temperature and humidity were relatively stable, as both the thermal and hunidity elements are somewhat siow in responding to sudden changes in temperature and humidity. As a rulo no adjustments were made in pen arms of hygrothermographs; instead, discrepancies were marked on the charts and corresponding corrections made in reading them.
In the majority of the tuimprover houses, surface temperatures and air temperatures in stud and joist spaces and in other inatesssible locations such as attics and storage spaces were recorded by means of thermocouples fixed in place. Copper-constantan thermocouples were used. Reference junctions were kept at $32^{\circ} \mathrm{F}$. by immersion in a vacum bot tle filled with crushed ice and water.

Electromotive forces (e. in. f.) developed by the thermocouples were read by means of a semiprecision type, portable potentiometer and readings were taken to the nemest whole deyrec.

Whenever practicable, thermocouples for recording surface temperatures, with as mach of the adjacent lead wires as possible, were embedded in the surface. When this could not be done the thermocouples were held in place with dratting tape.

Thermocouples used in measuring itic temperatures were shielded trom radiation by means of cardboard eylinders covered on the outside with aluminum foll and placed around the thermocouphes with the axis of the cylinders in a vertienl position. The ends of the cylinders were open to permit circulation of air around the themocouples and several inches of the lead wires adjacent to the thermocouples were coiled within the cylinder to minimize the eflect of radiation to or from the wires close to the themoconple, thus aflecting the accuracy of the readings.
Lead wires from the fixed thermocouples were carried to a terminal board, often located in the basement. Throngh this central terminal board connection of the lead wire of any desired thermocouple could be made to the potentioneter by means of spring or clip-1ype clothespins with copper-lined jaws commected to the free ends of lead wires extending to the potentiometer.
In addition to the fixed thermocolples, thermosouples mounted on a portable stand (fig. 2) were used to obtain wall, floor, and ceiling surface temperatures and air temperatures at vatious levels above the floor. The use of fixed thermocouples for recording surface and air ter'peratures was abandoned in the remodelel houses in favor of the portable stand. With this instrument the air and surface temperatures in a room couk be taken more ripilly and the necessity for an daborate wiring system was eliminated.
As in the case of the fixed thermoconples, hose used to measure air temperatures were shielded with cylinders covered with aluminam foil. Thermocotples for measuring surfaee temperathres were secured to the surfaces with drafting tape. Before readings were taken these were allowed to remain in phace long enough to assume the temperature of the sarface. It is likely that in sone instanes the temperature recorded was not the exact surface temperature, as the air temperature fudjacent to the tape probably affected it slightly. Care was taken in



 te instaltation wire in the ratrying ease betneath the tathe,
analymy data so that readings dith not inchule those that were ohrion-ly atfeeded by direet somight.

Lead wies from the themoxouples on the stand man o a switehboard located on a potemionoter table. Buas plass and jacks were thet for combertions. The introduction of brass and hatd copper into themocouple equents resulted in additional thermal junctions that might introture additimal electromotive tore into the circuit. Fon this rason care was taken to avoid diferences in tomperatare of these jometions. The table was wo lowed that the switeh and switchbond were shielded from sunlight or ditect radiation from heatime exumbent. Thombouphes to obtaim air temperatures were at hret mombted on the stand at heights of 16.3 and 6 , inches above the floter and at 3 ineles and ? inch below the ceiling. The upper section of the atam telescoped so that it wats adjustable io varions reilingheights.

Shotly atter the work was stathed the bejehts of the themocouples
 represtatative of he air temperathes to which the oceatants of the rosms were wased, and to 1 inch below the ceiling. Wall surface
 adjarent on the thermosouples recombing air tempentures at then
 Were obtane at the same time.
 in chaneng the lowtion am waiting for the themocouples to come
 was construted. Thi- mate it possible for the reatings of the ther-

relocated. As it took about a minute to obtain readings of all thermocouples on a stand in one location, there was usually enough time both to move the secoind stand and allow the thermocouples to come to equilibrium while the thermocouples on the first stand were being read.
Locations in the room where readings were to be taken were decided on in advance, and the strips of tape fastened to the wall, floor, and ceiling surfaces in the proper places and left in position during the day. This not only made for rapid locating of the stands but also avoided the necessity of waiting for the tape to assume the temperature of the surface to which it was attached.
In the carly studies portable stand readings were taken only at what seemed to be the more important locations in each room. Several readings might be taken along the outside walls of the room and one or two in the center. In small rooms readings were sometimes taken only in the center. Later when two stands were used these readings were taken in groups 1, 18, and 36 inches from the wall. The number of groups depended on the size of the room. Floor and ceiling surface temperatures were taken at each stand location, and wall surface temperatures at two points on the wall at each location when the stand was 1 inch from the wall.
A few measurements of infiltration around doors and windows were attempted. A boxlike enclosure, or "mask," covering the entire opening, was ased. This mask was fitted with a single tubular outlet to the room in which was mounted an anemometer. The mask was intended to receive all air entering at all points around the edges of the cloor or window and guide it to the outlet where it could be measured. Two types of anemometers were used, the windmill and the Hukill hot-wire thermocouple anemometer. Becanse of the time involved in making these measurements and becanse opening and closing of doors by the family in other parts of the house affected the reliability of the readings, these studies were discontinued and datio will not be presented in this bulletin.

Air movements in the stud and joist spaces were measured with the Hukill thermocouple anmometer. With this instrument velocities as low as $\mathfrak{j}$ teet per minute can be measured. It is particularly suited to the measurements of air currents in confined spaces.

This instrument, momted on a board, was also used in measuring air curreats and drafts in the rooms. Gmoke puffs, using ammonium chloride and cigarette smoke, were used in tracing air currents.

Another instrument, the velometer, was also used in obtaining readings of air movements, both in the joist and stud spaces and in the rooms.

## description of test houses and habits of the OCCUPANTS

The nine original houses in which studies were made ranged in size from 4 to 12 rooms; the condition varied from poor to good. Five of the houses were heated by gravity warm-air systems-one by a pipeless furmace, one by a one-pipe stean system, one by stoves, one by a circulator heater, and one by both a stove and a circulator heater. All of the houses were of wood-frame construction with wood siding except one that was stucco on wood frame and one that was built of split logs.

The changes made in the five houses that were remodeled consisted of adding or reurranging rooms, tightening construction, insulating, and in some cases replacing of remodeling the old heating equipment. The one now house that was built to replace the originul structure was of stone instead of frame, as the old house hard been. The changes made in two other houses consisted entirely of adding insulation. No changes were mate in the remaining two houses.

Descriptions of the structure and heating equipment of each of the houses studied, before and after improvements were made, are given on pages 8 to 47 .

In order to appreciate fully the conditions found in these houses, reference to the fabits of the families, the regrataty with which they fired their heating equipment, and the use they made of the varions rooms is essential. A discinsion of these babits is given along with the description of ench of the honses.

In general, it, may be stated that most of the families made a reasonable effort to firo their heating equipment with some regularity. Those in houses Nos. 1 and 6 dial not. There was some tendency, however, for all of them to wat until the houses began to feel cold or too warm before firing or checking the dampers, especially during the day when the men were not in the house and the women were busy in the kitchen.
In houses where the re were young children who were at home during tho day there was a good deat of running in and out of the hemse, sometimes with outside doors left open for considerable periods of time. This was especially true in houses Nos. 1, 4 , and 6 .
In some houses the imbility to heat all the rooms comfortably, either becmuse there was no provision for heating them directly or because of an inadequate heating system, led to closing of some of the rooms charing the winter and not using them at all. In other houses rooms were shat of principally to save fuel. In all cases frmily activities during the day and evening were largely confined to the kitchen with one ofber rom, ${ }^{\text {a }}$ usually the dining room or the living room, used to some extent in the evening.

In all of the honses except homse No. 1 , serond story bedrooms were shut off during the day ant not heated. In fact only in houses Nos. 1,2,7, and 9 were my bedrooms heated during the day. In most honses bedrooms were "warmed up" in the evening. In two of the houses, Nos. 2 and t, he inability to heat more than one bedwom resulted in actual overerowding, despite the fact that the were nore than enough bedrooms in the house.
After remoleling, greater use was mate of more of the rooms, ntthough the practice of slatting of the second story during the day still persisted in most cases.
In presenting the data, the discussion of conditions will be confuned largely to those found in the kitchen and the most frequently used rooms other than the kitchen, where an attempt to heat was made. Data on bedroom temperatares, however, are given in tables 4, 6, and 8, Appendix.

## Description of Holss: No. 1

House No. 1. shown in fgure 3. was buite in 1020. It was of the story-and-a-half type, with a full basement, and contained 10 rooms

[^3]




 tifurestame.

## 




 Gense in atares.



Inッй



 -antratarar.



## 











Fhome 4.-FIrst-floor plan of honse No. 1, showing the location of warm-alr redisters and cold-alr returns.
USE AND HEATING OF ROOMS
The fumily occupying this house consisted of the owner, his wife, a daughter aged 5 , and a boarder. During the day the house was occupied less than most of the other houses stndied. Both the owner and his wife were outdoors much of the time. The daughter also played outdoors a great deal, except in very bad weather.
All first-floor rooms were heated regularly during the day, afthough the kitchen was the only room useil to any extent. All meals were eaten there. All laundiy was done in the basement laundry room, which was located under the living room, and it was equipped with a wood-burning range for heating water. The dining room was used occasionally during the day, as the office desk and files were located there. It was also used in the evening by tho family. The living room was used only for entertaining. In very bad weather bedroom No. 2 was used as a playroom for the little girl.
As a rule, the second floor was shat of during the day by means of the door at the foot of the stairs. Bedroom No. 3, the only used bedroom on the second floor aside from bedroom No. 2, was heated only in the evenings.
In general the family did not fire very regularly and sometimes the fire was very nearly allowed to go out. This was because they were in the honse so infrequently and for such short periods of time

 registers and coldenio returns.
during the day. When the wife was in the house slue was usally busy with cooking or some other task, and the fact that the house was not warm dial not nppar to bother her. Another factor that affected the temperature was the lact that the family went in and out of the house a grom deal and frepurnty left ontside dooms standing open, sometimes for faily iong periods of time.

## Descuiprion of lloise No. 1 -R

Thae danges made in hanse Fo. 1 were not extensive. Those that: would be expected to have some effect on temperatare and homidity included repmiring and insulating the walls and ceiling with $30 \%$ inches of mineral wool, rephacing the ofd stucto and insalation board covering the ontside of the house with wool shingles, and reartanging the kitrhen so that the exterior door did not open directly into it (fig. 6). Storm sish were installed on the windows of the kitehen, oflice, and washroom. No alterations were made to the serond floor.
The result of thesin changes was to reduec the calculated heat loss ${ }^{8}$ from 95, 100 British thermal units (B. t. u.) per hour to $\mathrm{is}, 600 \mathrm{~B}$. t. at.

[^4]

Fraute 6.-First-foor phan of house No. 1-R, showing changes.
per hour, despite the fact that bedroom No. 6 was heated in the remodeled house. This amounted to a reduction in heat loss of 3.20 B. t. u. per hour per cubic foot of heated space.

No change was made in the heating system except that a register with a separate leader was provided for the kitchen and new registers in the new office (fig. 6) and washroom, served by a single leader, were installed.

## USE AND HEATiNG OF ROoms

Little change was made in the use of rooms in the vemodeled house. As separate office space was provided, however, the dining room was probably used less during the day than before. As a result the kitchen was less of a passugeway between the rear entrance door and the dining room. In addition to the rooms previously hented, bedroom No. 6 was being heated at the time readings were taken.

## Description of House No. 2

House No. 2, an exterior view of which is shown in figure 7, was also a story-and-thalf house, with one bedroom and an unfinished attic on the second floor. It had a full basement, except for an unexcavated area under bedroom No. 2 and the bathroom. The plan of the first floor is shown in figure 8.






## CONSTRUCTION DETAILS

Basement and fotndation walls-Stone and concrete. Condition, good.

Exterior walls.-Main part, bevel siding on exterior, 2- by 4-ituch studs, wood iath and plaster on inside. Condition of walls, main part, poor. Kitchen riing, good.
Floors.-Single wood floors in diaing room, bathooom, bedroom No. 3. Linoleum laid over wood floor in bathrem. Doubie floors in bedroom No. 1, living ruom, add kitelen. Linoleum laid over double wood floor in kitchen.

Geilili?s.--Wood lath and plaster. Condition, good.
foof - Main part, asphalt shingles over wood shingles on spaced shingle lath on north and east slopes of roof, wood shingles only on south and west slopes; kitehen wing, asphalt shingles over tight sheathing. Condition, good.

Sntulation.-None.
Windows.-Double-hung wood windows, Nos. 1, $8,9,12,13, \mathrm{~J} 4,15,16$, aud 18. Wood casements (hinged at side to swing in), Nos. 2, 3, 4, 5, 6, 7, 10, and 11. Fixed sash, No. 17. Fit of windows: First floor, good, Nos. 4, 5, 4, 7, 9, 10, 11, 16, 17 ; fair, Nos. 2, 3, 8, 12, 13, 19, 20 ; poor, Nos 1, 14, 15, 18, 21. Second floor, ull poor. Weatherstripping, none. Storm sash, none.

Euterior doors:-Wood, paneled, upper part glazed. Fit of cloors: . Fair, $A, B$, and $O$; poor, D. Weatherstripping, uone. Storm doors, A and D.

Ceiling heights.-FIrst floor, 7 feet 10 iuches; second floor, 7 feet 4 inches.

## HEATING SYSTEM AND COOKING EQUIPMENT

A gravity warm-air system was used. The following data were supplied by the manufacturers:

| Efficiency at bonnet $\qquad$ Combustion rate. 69 to 65 percent. 8 pronds per hour per |  |
| :---: | :---: |
|  |  |
|  | square foot of grate |
| Ratio of heating surface to grate area | 22 to 1. |
| Register temperature.--------... | 135 ${ }^{\circ}$ to $145^{\circ} \mathrm{F}$. |
| Diameter of grate | 20 inches. |
| Useader pipe capacity | 575 square inches. |

The furnace was equipped with a water pan. There were warrn-air registers only in the living room, dining room, kitchen, and bathroom. However, the grate area was sufficient to warrant additional ducts to the remaining first-floor rooms. This assumption is based on calculated heat losses, using an inside temperature of $70^{\circ} \mathrm{F}$. at the 60 -inch level and an outside temperature of $-15^{\circ}$.

On the other hand, all of the leaders except that supplying the batlroom appeared to be undersized for the register temperature claimed. In a number of respects this system did not conform to the Standard Gravity Code (which is a generally accepted standard for the installation of gravity warm-air heating systems) in that it was designed for much lower register temperature ( $135^{\circ}$ to $145^{\circ} \mathrm{F}$. as against $175^{\circ}$ ) but did not have sufficient leader capacity.

Wood was the fuel used aimost entirely for heating, as it was readily available on the farm. The gasoline range used for cooking the year around supplied little additional heat to the kitchen.

## USE AND HEATING OF ROOMS

Before remodeling, the dining room and the kitchen were the two most used rooms. The living room and bedroom No. 1 were shut off
entirely in winter because they conid not be satisfactorily heated. The result was rather crowded sleeping facilities, as the owner, his wife, and their two children all occupied bedroom No. 2.

The important problem was to heat comfortably at least one more bedroom and it possible the living room, in order to provide a satisfactory place for the children to play indoors in bad weather and to have a room on which the family could entertain. It was also necessary to accomplish this at minimum cost.

It was decided to insulate the house thoroughly rather than change the heating system, as it was thought that a decided reduction in heat loss would probably make the entire first floor habitable. Latar, when the family needed the second floor a new heating system could be installed or changes in the existing system could be made to provide registers in the rooms not served at the time.

## Description or House No. 2-1

During the summer of 1937 the side walls of house No. 2 and the tafter spaces of the main part of the house were filled with mineral. wool insulation. The ceiling of the kitchen was similarly insulated. The insulation was blown in, and as a result no sheathing was added to the walls of the main part of the house and no vapor barrier was provided in the walls.
In addition to the insulation the three windows in the west wall of tho living room were replaced with a bank of three new windows. This was done because of the poor condition of the original sash and to improve the appearance of the house. Two dormer windows were located on the second-floor room, Thich at the time was ased for storage but which the family later wished to finish off for an additional bedroom. All windows were provided with storm sash.
The wood shingles on the north, south, and west slopes of the roof over the main part of the house were covered with composition shingles to give a more uniform appearance. No change was made in the heating system.

The result of these improvements was to reduce the calculated heat loss of the entire first floor from 90,900 B. t. u. per hour to 45,000 B. t. u. per hour, or a reduction of about 50 percent.

## USE AND IIEATING OF ROOMS

After the changes were made the living room was regularly heated and used to some extent during the day. Bedroom No. I was occupied by the parents and the younger child. It was closed of during the day but opened in the evening to allow it to warm up before the family retired. The older child slept in bedroom No. 2.

## Description of House No. 3

House No. 3 (fig. 9 ) was approximately 50 years oid at the time studies were made. It was a two-story house, with six rooms on the first floor (fig. 10) and four bedrooms and a bathroom on the second floor (fig. 11).

There was a basement only mader the dining room and bedroom No. 1.







Fiovite 11.-Second-toor phan of house No. 3, showintr location of warm-air registers and cold-air returus.

The calculated heat loss, assuming only used rooms to be heated, was 64,335 B. t. u. per hour, or 7.69 B. t. u. per hour per cubic foot of heated space.

## CONSTRUCTION DETAILS

Basement and foundation toalls.-Stone, 18 inches thick. Condition, filir.
Exterior walls.-Wood siding, building paper, and sheathing on the exterior ; 2 - by 4 -inch studs, wool tath, and plaster on the inside. Thirty-meh-high wood wainscot in kitchers, Condition, falt.
Floors.-Double wood floors in kitchen, pantry, ana washroom, linoleun in titchen. Slugle woot tleors in other rooms. Condition, fair.
Geilings.-Wood lath and plaster. Condtion, fair.
fusulation.-None.
Windows.-Double-hung, wood windows, except Nos. 12 and 13, which are fixed sash. The fit of snsh is as follows: First floor: Good, Nos. 7, 12, 13; fuir, Nos. 1, 2, 4, 5, 6, S; Worr, Nos. 3, 9, 10, 11 . Storm sash, windows 7. 8, and 9. Second liour: All falr, except Nos. 6 and 7 , which were poor. Storm sash, windows 6 and 7 .
Exterior tioors.-Wood, paneled. Drors A and D glazed. Fit, all poor. Storm doors, none.
Geiling heighte sfeet.

## heating system and cooking equipment

The heating system was a gravity warm-air type. The furnace had a 24 -inch fire pot and at capacity of 622 square inches of pipe area. The total cross section area of the leaders was 346 square inches. The cross section area of the recircalating duct was 314 square inches. Humidity was provided by means of an evaporating
pan, located below the feed door, in which the water supply was maintained automaticaily.
There were warn-air registers only in the dining room and bedroom No. 1 on the first floor. The kitchen was heated by overfow heat from the dining roon, supplemented by heat from the woodburning kitchen range.

The leaders and stacks that supplied bedrooms Nos. 3 and 4 also served registers in the dining room and bedroom No. 1 on the firsi floor. As the only cold-air return was located in the northenst corner of bedroom No. 1, it is probable that most of the heat intended for these two second-floor rooms went into the dining room and bedroom No. 1.
The bathroom received heat from the kitchen range through a grille in the floor.
Calculations indicated that the furnace was more than adequate to heat those rooms with registers but not quite large enough to heat the entire hotise unless steps were taken to reduce the heat loss. The leaders and stacks supplying the dining room and bedroom No. 1 were larger than necessary for these rooms but not large enough to deliver sullicient heat to balance the heat loss for the entire first floor. The leader and stack that supplied bedroom No. 3, while adequate for the room, also comected to the second register in the dining room; and that which supplied bedroom No. 5 was adequate for that room but also supplied bedroom No. 1 on the first floor.

## USE AND HEATING OF ROOMS

With the exception of the dining room, which was the most used room except for the kitchen, and bedroom No. 1, this house was dificult to heat comtortably, even in mild weather. Even these two rooms were uncomtortable in cold weather. The living room could not be satisfactorily heated at all, as there was no register in the room, and consequently it was not used in winter. This was also true of bedroom No. 4. The rest of the second floor was hard to heat without forcing the furnace, but as the space was needed to accommodate the family, which consisted of the owner, his wife, and two children (a boy and a girl), these sooms were used. The bedrooms, however, took so long to heat up in the mornings that the bathroom, which received some heat, was used as a dressing roon.

Except in very cold weather, the entire second floor was usualiy shut off during the dity by means of the door at the foot of the stairs. This door was opencd to take the chill off the second floor a short time before the fimily retired.

The kitchen received most of its heat from the kitchen range supplemented by oreeflow heat from the dining room. In mild weather this room was not too unconfortable, but in severe weather the owner's wife used to stop her housework occasionally and warm her feet in the oven. She also wore overshoes to help keep her feet warm on such occasions. The pantry was usually cold, as the only heat came from the kitchen. Nevertheless, it was used when preparing meals and washing dishes.

This family made an effort to keep the occupied part of the house comfortable in cold weather, but it was a difficult task.

## Description of Holse No. 4

House No. 4 was 83 years old (fig. 12). It also was a story-and-ahalf house with five rooms, a front and rear stair hall, and a woodshed on the first floor (fig. 13), and four bedrooms and a storage roon on the second floor (fig. 14). There was a basement under all of the house except the woodshed.


Fibural. - -llouse No. 4 from the morthwest.


 low eave. There were a number of rhenets and storage areas under the eaves.

The structure was in fair comblition. The lack of subferoring, patheubarly with the whemed basemem, undobatedy condributed to disisomfort.


Frigue 14.-Second-floor plan of house No. 4.
The calculated heat loss, assuming only used rooms heated, amounted to 35,968 B. t. u. per hotur, or 4.94 B. t. u. per cubic foot of heated space per hour.

## CONSTRUCTIGN DETAILS

Basement walls.-Stone, 18 inches thick. Condition, fuir.
Eixterior waths-Bevel siaing, builing maper, square-edge sheathing on outslde, 2- by 4-fuch studs, wood lati, and plaster on inside. Conditlon, fatr.

Floors. Wood, sfugle thichness except in kitchen, which had double flooring and was covered with limoleum. Condition, fair.

Geilfing.-Plaster on wood lath. Condition, fals.
Roof-Wood sliagles on spaced shingle inth. Condition, poor.
Insulation.-None.
Wintous.-Wood, dable huns. Condition, poor. Fit: First foor, falr except in window No. 6 in kitchen, which was poor; second floor, poor. Stom sasia: Windows $5,6,7, S$, and 9 on first foor.

Exterior doors.Wood, maneled. Condition, Pair. Storn doors, Band E .

Ceiling heights.-Mnin part, first floor, 8 feet 2 inches; second floor, 7 fert 11 inches. East wing, first floor, 8 feet; seebud foor, 7 feet 6 inches.

## heating and cooking equipment

Heat was supplied in the living room by a mamally regulated oilburning, circulator heater, which was 3 years old. It was in good condition, and the manufacturers claimed it to be adequate in size to heat between 5,000 and 7,000 cubic feet of space. The coal- and woodburning stove that heated the dining room had an 18 -inch diameter grate and, although older than the circulator heater, was also in good condition. Cooking was done on an electric range.

This equipment appeared to be adequate to heat the entire first floor, as the space to be heated was only 7,287 cubic feet.

## USE AND HEATING OF ROOMS

The family occupying this house consisted of the owner, his wife, furd their 6 -year-old son. Prior to remodeling, the only rooms used in winter were the living room, dining room, kitchen, and bedroom No. 2. The second floo was shut of entirely, as there was no provision for heating it. Bedroom No. 2 was occupied by all three members
of the family, as it was the only room that recived any appreciable amount of overflow heat.

Both the liviner room and the dining room were used a great deal by the family, and fewer activities were carried on in the kitehen than vits the case in most of the houses studied.

The fumily made a zeal effort to keep the used rooms warm, but in spite of this they were uncomfortable in cold weather. Inability to heat the second floor resulted in crowded sleeping accommodations. The use of the dining room as the main entry was also undesirable because of the cold air admitled whenever anyone entered or left the house. The smatl son dreduently lett the door open as he ran in and out when at play.



## Deschiption or Hocse No. 4-R

('humes mate in house No. t included, among other things, rearangement of the first-and second-lloor plans to provide more livable roms, insulating walls and ceihogs installing new weatherstupped windows, laying a clouble floor in the living room, covering the old hoors in the kitchen and oftere with linolem, and installing a hew heating system. An exterion view of the remodeled house is shown in ligne 15 and the revised boor plans in fighes 16 and 17.

## constricotion detalls

[^5]Ceilings.-Second thoor, plaster on gypsum lath, 3 作 fuches of mineral wool insulation (except over bedroom No. 2 and stair hail, which was uninsulated and finished with wood lath and phaster).
In\&blation.--See walls und ecilings.
Roof-New wood shlimetes on spectal shingle lath.
Wintotes.-Wood, double hung. Fit, all good. Weatherstiliping: Nos. $9,10,11,1 \$, 10,20$, and 3 . Siorm sash: all windows.
Doors-Wood, paneled. Doors B and C ghzed. Fit, hood. Storm doors: All.


Fioule 16.-First-floor plan of house No. 1 - R , showing changes in room arringement and location of ward-air registers and cold-air returns.


Fitorer 17.-Second-flowr plan of house No. $4-\mathrm{R}$, showing changes in room armagement mad locations of warm-air registers and cohtaid feourns,

## heating sisiem and cooking equirment

The new heating system was a forced-watm-air type with an oitburning furnace. The furnace, according to the minntacturers, had a capacity of $100,000 \mathrm{~B}$. t. u. per hour and delivered between 1,000 and 1,200 cabic feet of air per minute. It was controlled by a thermostat located in the living room. The installation was good, the leaders, stacks, and registers all ippeared to be properly sized, and there were registers in all rooms. All of the warm-air registers were located just above the basebourd, except one in the living roou and those in the kitchen tud oblice, which were 7 inches above the floor. 'The register
in bedroom No. 3 was a floor register. Cooking was done on the electric range.
After remodeling there wero 7,317 cubic fect to be heated on the first floor and 4,082 cubic feet on the second floor. The total calculated hent loss amounted to 44,800 B. t. th. per hour, or an average of 3.93 B. t. u. per hour per cubic foot of heated space.

## USE AND HEATINC OF ROOAS

These changes in room arrangement and the installation of the new heating system resulted in some changes in roon use. Most important was the improvement in sleeping accommodations. Latudry facilities were provided in the basement, so that this operation was


Paure 1S.-Wist-floor phan of house No. 5, showing lomtion of warm-ail registers and coldair returns.
no longer performed in the kitchen and dining room as was the case before remodeling. Most family menls were enten in the kitchen, and company meals were served in the living room.
A. 11 rooms on the firsi floor except bedroom No. 1, which was a guest room, and the stair hall were regularly heated. The door from the living room to the stair hall was liept closed during the day. Only the hathroom on the second floor was heated at all times. The registers in the bedroms were shut of during the day and opened a short time before retiring. while the registers in the hall were partly closed at all times. The doors to the bedrooms were always kept closed.

Descriptron of Holse No. $j$
The originat part of honse No. it huilt in 1abe, consisted of the living room, bedroom No. 1 on the first floor, with the basement underneath, and bedrooms Nos. 2,3 , and $t$ on the second floor (figs. 18 and 10).

Later the dining room with the storare space above it, the kitchen, and the summer kitchen were added. The furnace was installed in 1933. The house had a full basement, and there was an unfinished attic over all of the second story except the unheated storage space.

froune 19.-Secondi-fleor phan of house No. $\overline{5}$, showing location of whm-ntr registers.


Finume 60. -House No. 3 from the southwest.
Shortly before studies were started the basement under the dining room and kitchen was excavated. The summer kitchen was detached and moved a short distance away, and the basement stairs in the kitchen were built. A photograph of the house is shown in figure 20.

## construction detalls

Busement walla.-Stone and concrete.
Brterior walls.--Bevel slding, building paper, and square-edge sleath-
Ing on outside; 2. by 4 -Inch studs, wood lath, and plaster on inside. Con-
ditlon of walls, poor.
Floors.-Double wood floors. Condition, poor.
Criling.-Wood lath and plister. Conultion, poor.
Rool.-Wood shingles on spaced shlnele lath; north, south, and west
slopes sovered with usphalt shitugles. Condition, poor.
Irsulation.--None.
Windows.-Wood, double hung, except Nos. 9 and 3 , which were stldag
sash. Fit, poor. Weatherstripping, none. Storm sash, all except No. 7.
Exterior doors.-Wood puneled anm glazed. Fit, poor. Weatherstrip-
plng, none. Storm doors, all.
Celling heights.-First tloor: Main part, 8 feet 2 mehes; soulh wing,
8 feet 6 juches. Kitchen and second Hoor: 7 Pect $\mathbf{6}$ Inches.

## heating system and cooking equipment

The gravity warm-air heating system was in good coudition, but the furnace did not appear to be adequate to heat the entire structure. The capacity of the furnace was only $85,000 \mathrm{~B}$. t. u. at the registers and the calculated loss 87,100 B. t. 1 ., which was probably a very conservative estimate of the loss in view of the actual condition of the structure. 'Whe heat loss per hour per cubic foot of heated space was 4.43 B. t. u.

The furnace was hand-fired and the damper manually regulated. The fire pot was 24 inches in diameter. According to the manufacturer the combustion rate was 6 pounds of coal per square foot of grate per hour. The efficiency at the bonnet, was 75 percent. The ratio of heating surface to grate nrea was 17.25 to 1 , and the register temperature $175^{\circ} \mathrm{F}$. ' Xhe humidifier was of the pan type, with the water supply controlled by float. Semibituminous coal and some wood were the principal fuels. A wood-burning yange was used for cooking.

## USE AND HEATING OF ROOMS

The family occupying this house consisted of the owner and his wife, and a daughter who was at home only over week ends.

The two most used rooms during the winter months were the kitchen and dining room, although the living room was used when the family entertained, which they did quite frequently.

All regular meals were eaten in the dining rom, and it was also used as the farm oflice and as a sitting room both during the day and in the evenings. This room was used move during the day than was the case in most of the other honses studied.
The most frequently used entrance was the east entrance to the kitchen, where the landing served as a vestibule. As there were no small children in the family the amount of traflic through the door was less than in some of the other houses. The front entrance was never used to any extent.
The bedrooms were not regularly heated during the day except in very cold weather. Usually the door at the foot of the stairs was opened and hent allowed to rise to the second floor in the evening before the family retired.

In general, this family made a reasonable effort to keep the house comfortable during the day, as both the owner and his wife spent more
time in the house than most of the cooperators. However, the furnace was often fired only when the house began to feel cool.

Despite all of their efforts the family stated that they could not maintain comfortable conditions in cold weather, although in mild weather heating was no problem.

## Deschiption of House No. 5-R

During the summer of 1936 , house No. 5 was remodeled. The house was enlarged somewhat, and the rooms rearranged. Figures 21 and 22 show the new arrangement of rooms and their sizes, and figure 23 shows an excerior view of the house.


Froun 21.-Fist-floor plan of house -F -R, showing location of waturair registers and cold-uir returns.

The house was insulated, new weatherstripped windows installed, all exterior siding, building paper, and sheathing replaced, most of the roof reshingleci, and the heating system remodeled. The changes in the structure resulted in a reduction in hent loss to $67,300 \mathrm{~B}$. t. u. per hour. Since the heated space was increased the rate of loss was only 2.96 B. t. ut per hour per cubic foot.

## CONSTRUCTION DETALLS

[^6]Floors.-Ilvigg room, new wrood floor lald over the old doable wood floor, Kitchen and washroom floors, linoleum over 1 -inch plywood subfloor laid over old foor, Diming room, suntoom, ant steond story rooms, double wood loors.

Geilings.-Fhrst story, gypsum lath and plaster. Celhngs over sunroom and washroon insulated with 3 inches of mineral wool. Second story, $/$-inch fiber-Insulatiog pinster base and plaster.


Frours 22.-Secondfoor phat of house $\overline{3}-\mathrm{R}$, showing lacation of warm-ail registers and cold-are returns.


Figure 23.-House No. $5-\mathrm{R}$ from the southwest.

[^7]HEATING SYSTEM AND COOKING EQUIPMENT
The orimimal fumace was retained and a booster fan installed in the bomet, which increased the efficiency by about 10 percent, according to the mamufacturer. This fan was controlled by a thermostat located in the bonnet. Thermostatic control for the dampers was also added and the themostat located on the east wall of the dining room. The system was extended to supply heat to all rooms in the house.

Semibicuminous coal and wood were still used as fuel in the furnace, but the wood-burning kitchen range was discarded and a new electric range substituted.

## USE AND HEATING OF ROOMS

After remodeling, all downstairs rooms were used regularly during the winter. The living room was used for all leisure activities. Evening meals were usually enten in the dining room, and breakfast and lunch in the kitchen. Only the sunroom was not used a great deal in cold weather and was frequently shut off. As before remodeling, the second floor bedrooms were not iegularly heated during the day except in very cold weather. However, they were usually heated up in the evening. The bathroom was heated at all times. The nev floor pian resulted in protection of occupied rooms from drafts when the rear door was opened. This was still the only entrance used to any extent. It also made it possible to cinse off the second floor without interfering with traffic between rooms on the first floor.

## Description of House No. 6

House No. 6 was about 100 years old, the oldest of the houses studied. There were four rooms on the first floor and four on the second floor. There was no basement under the house except for a small excarated area reached by a trap door, under the hall and bedroom No. 1. There was an attic over the second floor and over the kitchen wing, which was only one-story high. Plans of the first and second floor are shown in figures 24 and $2 \overline{0}$. An exterior vien of the house is shown in figure 26 .
This house was in the poorest condition of any of those studied. The calculated heat loss from the structure, assuming all rooms heated, was about 134,700 B. t. u. per hour, or 13.11 B. t. u. per hour per cubic foot of heated space.

## CONSTRUCTION DETAILS

[^8]

Figuse 2t.-First-floor plan of house No. 6, showing loention of heating and coosing equimment.


Flume $2 \overline{\mathrm{j}}$.-Second-floor plan of house No. 6.
lig room. Kitchen wing: Lapped siding, bullding paper, square edge sheathing on the outside; 2 - by 4 -inch studs, wood wainscot (4/8-inch beaded celling boards) 3 feet high, wood lath, and plaster above on the inslde. Condition of walls: Foor, siding bady cracked, open joints around windows and doorframes.
Floors.-First story, donble floors, no paper betseen. Second story, single floors. Condition of floors: Poor, floors sagged and cracked.
Ceilings.-Wood lath and plaster. Condition: Poor, plaster cracked.
Roof-Wood shingles on spaced sheathing. Condition, poor.
Insulation.-None.
Windows.-Double-hung wool windows. Fit, poor. Weatherstripplng, none.
Storm sash.-None.
Doors.-Wood, panelet. Fit of doors, poor. Weatherstriphimg, wone. Storm doors, B and O (sereen doors covered with thr pajer).
Geiling heights.-First story, 7 feet 8 inches. Kitcheu wing, 8 feet 9 inches. Second story, 8 feet.

## heating and cooking equipment

The heating equipment consisted of old-fashioned cast-iron stoves located in the living room and dining room and a wood-burning range





 rati wothl him war komk


 1! : 1 Hin.















 "un....

## Description of House No. 6-N

Owing to the poor structural condition of the old house it was decided not to attempt to remodel it but to huild a new one.

The new house was larger than the old one and contained 14,098 cubic feet of living space exclusive of the basement, as against 10,270 cubic feet in the old house. There was a busement under the entire house and an attic. Plans of the first and second floors are shown in figures 27 and 28 and an exterior view of the house in figure 29 .

 registers and cold-air returus.

 registers and cotd-ait returns.
On the whole the new house was very satisfactory, except for the poor fit of two of the doors and the omission of insulation in the ceiling of the second floor. The calculated heat loss was 83,200 B. t. ut. per hour, or $\overline{0} . S$ B. t. u. per hour per cubic foot of heated space.

## CONSTRUGTION DETAILS

Busement rithls.-Conerete, 12 inches thick. Condition, good.
Eaterior tralls. - Five-inch stone vencer, 1-inch air space, wood sheathIng on the outside, 2 - by t-inch studs, gypsum dath, and plaster on the insile. Two-lnch bianket-type mineral wool insulation in stud spaces. Condition, gaod.
Floors.-Double floors throughout.


Il.:









## 



 -






## 




 :




heated except by overflow heat from the first floor. In very cold weather the registers in the bedrooms were opened in the evening before the family retired.
On the whole, the family were well satisfied with the house and considered it very confortable even in very cold weather.

## Description of House No. 7

House No. 7 was about 20 years old. It was a large house, with four rooms and an entry on the first floor and three bedrooms and an unfinished storage spare on the second floor.


Figeles 30-First-floor plan of house No. 7, showing location of equipment.
There was a bascment only under the main part of the house. This was unusually damp and frequently had water standing in it. Figures 30 and 31 show plans of the first and second flows. An exterior view of the house is shown in figure 32 .

The framing for this house was of the balloon type. There was no fire stopping or other means of blocking oft the circulation of air through the stud and joist spaces.
The calculated heat loss: assuming all finished rooms to be heated, amounted to 80,400 B. t. u. per hour, or 5.67 B. t. u. per hour per cubic foot of heated space.

## CONSTRUCTIOA DETALS

Foundation walls.-Stone. Condition, noor.
Extcrior walls,-Main part: Bevel siding, buiding paper, T\& G sheathing on the outsite; $\underline{2}-$ by 4 -inch shads, wood lath, and phaster on the inside. fiorth wing: Bevel siding, $T$ \& $G$ sheathing on the outside; no interior finisls. Condition of walls, good.


Fictits di-Secondefloor plan of house No. 7.


Figuas fin-Hoase No. 7 from the soathwest.

[^9]
## HEATING AND COOKINC EQUIPMENT

The house was heated by a pipeless furnace, with the register located in the dining room at the open arch to the living room. It had a 24 -inch fire pot and should have been adequate, as it was supplemented by two kitchen ranges.
The furnace was hand-fired, and soft coal was ordinarily used for fuel although it was supplemented by wood. Soft conl and wood were also burned in the two kitchen ranges.

## USE AND HEATING OF ROOMS

Part of the time while readings were being taken the house was occupied by two tenant families. The family occupying the first floor consisted of man and wife and four children. The couple living on the second floor had no children.

All of the finished rooms in the house were used. On the first floor the living room, which was the most used room aside from the kitchen, was used for leisure activities during the day and in the evening and as a bedroom for the parents and the youngest child at night. The dining room was used for the evening meal and also as a place for the children to read and study in the evening. Breakfast and lunch were eaten in the kitchen. The kitchen was also used for ironing and laundry work in very cold weather, although the laundry was usually done in the entry, which was an unfinished room. The children also played in the kitchen a great deal in bad weather. Bedroom No. 1 was occupied by the remaining three children in this family.

On the second floor bedroom No. 3 served as a living room, while bedroom No. 4 was used as the kitchen and contained a vood-burning range. This was the room used for all cooking, eating, laundry, ironing, and most leisure activities. The family slept in bedroom No. 2.
In general, the house was difficult to heat satisfactorily. The dining room on the first floor was usually two hot. Although the living room was fairly comfortable in mild weather it was cold in severe weather. The second floor with the exception of the kitchen (bedroom No. 4) was uncomfortable.

## Description of House No. 7-R

Remodeling was started on house No. 7 during the summer of 1937. The revised plans are shown in figures 33 and 34 , and an exterior view in figure 35. It can be seen from these plans that the remodeling was quite extensive and that the house was enlarged considerably. In addition to the structural changes, which included insulating, a new heating plant was installed. However, at the time readings were taken the work had not been entirely completed and while the frames for the windows were installed none of the regular sash were in place except for three wood casement sash in the second story. Instead the well-fitted storm sash were being used.
On the whole the structure was better from the point of view of heating than it was before remodeling, even though infiltration around the windows may have been greater at times because of the lack of conventional double-hung sash.


Mloune 33 -Wirst-floor plan of house No. $7-\mathbf{R}$, showing location of warm-air registers and cold-air returns.


Froune 34.-Second-floor plan of house No. 7-R, showing location of warm-air registers stad cold-air returns.


Futcre Bo,--Honse No. $\mathbf{7}$-IR from the sonthwest.
 rooms to be heated, amounted to $96,000 \mathrm{~B}$, t. 4. per hour, or 4.78 13. t. u. per hour per cubie foot of heated space.

## CONS'RCCTION DETAILS

Basw ment tralls.-Toteretts Condition, goord.
 by tinch stad space liled with 3 sis fuches of wood fiber insumation



 tilner ilandatitm,

Romf. Wond shfughes un spaced shingle lath. Condition, falr.
frathlem. Sere exterior walls and cetionts.



 arme yol the the sexomal story.
 .1!


## HEATHAG SFSTEM AND COOKINC EQCIPAENT

The fored warmaif heating sestem appeared to be adequate and whll insallent. The lowation of regiseres is shown on the platis. In

 "ure pared over it feet abowe the flow in all important rooms. In the hall. Bathroma, foilet, ant washomens the hot-air registers were


delivering $2,225 \mathrm{c}$. f. m. It was equipped with gun-type oil bumer. There were three spun-glass filters, with total area of 1,280 square inches. The automatic humidifier was controlled by humidistat.

## USE AND HEATING OF ROOMS

Since the owner was carrying on the work of remodeling over a period of time it was not possible to wait until the house had been entirely completed to conduct studies.
Tho occupants were the owner, his wife, and four children. This was not a typical farm fanily, and as a result their habits were somewhat different than those of the other cooperators. The owner was in the milk business, and his working hours were those of a businessman mather than a farmer. His wife was very active in club work and other community activities, and the house was used for entertaining to a greater extent than the others.

The living room was used for most leisure activities and for entertaining. The children frequently read and studied in the dining room. The duning room was used for dimer in the evening, while breakfast and hanch were ustally eaten in the dining end of the kitchen. Bedroom No. 1 was not completed and was not used nor heated at the time these studies were made. The front stairs to the second floor were also unfinished and the back stairs leading from the entry were reguharly used by the family. Bedroons Nos. $2,3,4$, and 5 were occupied by members of the family and were regularly heated. Bedroom No. 6 was not finished and not heated and was used only for storage.

## Description of House No. 8

House No. 8 was a large rambling structure built in 1872. Plans The shown in figures 36 and $3 \bar{i}$, and a view of the exterior in figure 38 . The $?$-story main part was practically square, with four rooms on the first floor and two bedrooms and two unfinished rooms on the second story. A rear story-and-a-half wing contained it dining room, kitchen,


Frgcre 36.-wist-floor phan of house No. S, showing the location of rabiators.
and pantry on the first floor and one harge bedroom and storage room on the second floor. Attached to the rear wing was a woodshed. There was a basement under the entire house with the exception of the woodshed and the front part of the main section, The garage was located in the basament under the rear wing and reached by a ramp.


Ficure 37,--Second-floor phan of house No. S, showing the location of radiators.


Fioure 3 S.-Honse No. 8 from the southwest.
The windows were larger than in the other houses and there were six entrance doors to the house, one of which (door $\mathbf{E}$ ) was not used.
The caiculated heat loss, assuming all rooms that had mediators were heated, was 1:t5,37S B. t. u. per hour, or 8.04 B. t. u. per hour per cubic foot of heated space.

## CONSTRUCTION DETAILS

basement and foundation walls,-Stone and concrete. Condition, geot.

Exterior atalls.-Maln part : Devel sldang, builling paper, and squareedge shenthing on the outside; 2 - by 4 -inch studs, wood hath, and phaster on the inside. Rear wing: Bevel aiding on 2 - by tinch stats, shenthtug on inside. fursed with 1-by 2 -Inci strips, and fulshed with wood-beaded celling in the kltchen aud woot hath and plaster in the pantry and dintug room. Condltion, fair.

Floors.--SIngle wood floors, those in kitchen and pantry covered with Holeum.

Geiling.-Wood lath and plaster: Coudition, fult.
Roof.-Maln part composition shingles over wood shtagles. Condition, good. Rear wing, wood shlogies on spaced shingle lath. Condition, poor.

1usulation.-None.
Windows.-First story; Double-hung wood wingows except No. 33, which was a one-teat wood cusement. Fit of sash was as follows: Good, No. 3; poot, Nos. 4, 12, 13, and 14; rest, falr, The folleritig were fitted with storm sash : Nos. 1, $2,3,4,9,10$, and 12 .

Second story: Double-hung wood whitows excerf Nus. 16, 17, 18, 28 , 20, and 30, which were single sasiz the ted to sllde wet ween the studs, and No. 31, whiteh was a single sash himped it the the th swing out. Fit,


Eaterior doors,-Wood-panelef, exte,t A. w! init wat glazed. Gla\%ed thansous over doors 3 aud C. Flt, porr. Comu doors, none. Weatherstripping, none.

Ceiling heights.-Main part, first story, 30 reet $\sigma$ Inchea; second story,
 7 feet.

## HEATING SYSTEM AND COOKING EQUIPMENT

The house was heated by a one-pipe steam system that was 5 years old. Cooking was done on a coal range, and conl was used in the boiler.

Calculations showed that all of the rooms with radiators with the exception of the second floor bedrooms had adequate amounts of radiation to maintain inside temperatures of $70^{\circ} \mathrm{F}$. with in outside temperature of $-15^{\circ}$ F. and that the boiler was adequate to take care not only of the rooms with radiators but also those without. The downstairs rooms, aside from the kitchen, required a total of 256 square feet of radiation and had an actual total of 297 square feet. The total radiation required for bedrooms Nos. 2, 3, and 4 amounted to 213 square feet, but actually ouly 133 square faest were provided. Tho boiler had a capacity of 650 square feet of equivalent direct radiation.
The dining room, which the family thought to be the most comfortable, had more radiation than calculations indicated was necessary. However, as this room was used as an entry, an excess of radiation was probably necessary. The majority of the radiators on the first floor were 7 -tube radiators while those on the second floor were 5-tube.

## USE AND HEATING OF ROOMS

The family occupying this house consisted of the owner, his wife, their young son, and a relative who acted as housekeeper. The wife taught music in the local school and gave music lessons at home in the evenings.

In general more use was made of the first-floor roous than was the case in many of the houses studied. All rooms in which there were
radiators (fig. 36) except the second-floor bedrooms were regularly hated. However, as most of the first-floor rooms were difficult to heat comfortably in cold weather, the dining room was used more by the fanily than the other rooms except the kitchen.

During the day the housekeeper was often alone in the house and since she was active she usually preferred moderate temperatures. In the evening, on the other hand, the family wanted the rooms they occupied to be warm.

## Description of House No. 8-R

The changes in house No. 8 were quite extensive, and the usable space in the house was increased considerubly. The rear wing was wrecked and a new wing constructed. Rooms in the main part of the house were also rearranged (figs. 39 and 40 ), and the entire structure was tightened and put in first-class condition. Exterior walls and ceilings were insulated, and ceiling heights were reduced in the first story of the main part by furring down. A photograph of the house is shown in figure 41.

As a result of these changes the calculated heat loss was reduced to 65,400 B. t. u. per hour, or 3.03 B. t. u. per hour per cubic foot of heated spaco, $\Omega$ reduction of 62 percent.

## CONSTRUCTION DETAILS

> Basement walls.-Stone and poured concrete. Condition, good.
> Esterior walls.-Bevel siding, T \& G and shiplap sheathing on the outstde; 2-by 4 -inch stud space filled with 3 is inches of mineral wool, vaporproof paper, gypsum lath, and plaster on the inside. Condition, good.
> Floors.-Double wood floors throughout, linoleum in kitchen, dinette, washroom, and bathroom. Condition, good.
> Ceiling.-Gypsum lath and plaster ; $3 \overline{\%} / \mathrm{inches}$ of mineral wool insulation in second-tloor ceillng. Condition, good.
> Roof.-Wood shingles ou spaced shingle lath. Condition, good.
> Insulation-- See walls and cellings.
> Windows.-Vood, double-hung. Fit, good. Weatherstripping, all windows. Storm sash, all windows.
> Doors.-Wood, paneled and glazed. Fit, good. Weatherstripping, noue. Storm doors, all doors.
> deiling heights.-First story, main part, 8 feet 8 inches; rear wing, 8 feet 4 inches. Second story, main part, 9 feet 2 inches; rear wing, 7 feet $B$ inches.

## heating system and cooking equipment

The remodeled house was heated by a new forced warm-air system, although it is probable that the old system would have performed the task satisfactorily after the improvements were made to the structure. Cooking was done on a new electric range.

The furnace had a capacity, according to the manufacturers, of 178,500 B. t. u. per hour at the registers, with a blower capacity of from 2,700 to 3,125 cubic feet per minute. The air was filtered by four filters, with a total area of 2,400 square inches. These were filter pads of the replacerble type. Humidification was supplied by a pan-type humidifier, with the supply of water maintained automatically.

The fan operation was controlled thermostatically by the temperature of the air in the plenum chamber.


Figune 39.-First-floor plan of house No. 8-R, showing the location of warm-air registers and cold-air returns.


The furnaer was oil-fires, and the firing controlled by a thermostat located on the west wall of the living room.

Aecording to calculations the fintace was more than adeponte for the house, although the system as a whole did not appear to have been particularly well installed. The wam-air registers in all poons exeept the living room and the study were loented about 15 inches above the floor. The kitchen was difficult to heat, becanse the duct serving it was undersized and becanee the one hot-ait register was located at one end of the long narrow room. According to the owner, he kitchen was uncomfortably cold at times.



I SE AND HEATNG OF HOOAS

Aher the hemen wam remodeled thote wats made of all the rooms, an luey were now com fortable with the exepption of the kitehen. The

 eond wahee it was sonetines cloced off during the day. The study wita went bath by the owner as a fatmonice and by his wite when matkLug paper: for her shom work. The dining room was used for eveming neals. while the dinetie end of the kitchen was used at breakfast alli Jund hame.
'The trarangement of the rooms was of some adrantace in heating sine the number of entrames to the house was reduced from six to two, mither of which opened direetly into an ocenpied room.

## Driscription of Holse No. 9

Home No ! was bilt in 19: It was a one-story house of splitfug constantion, with a cellat only under bedroom No. 2. There was
an attic space only over the living room and the owner's bedroom. A plan of the house is shown in figure 42 and an exterior view in figure 43.
The calculated heat loss, assuming all rooms to be heated, was 64,994 B. t. u. per hour, or 12.17 B. t. u. per hour per cubic foot of heated space.


Fiound 42.-Floor plan of honse No. 9, showing location of heating and cooking equipnaent.


Fioure 43.-House No. 9 from the north.

## CONSTRUCTION DETALLS

Foundations.-Concrete. Condition, good.
Eixferiar walls.-Split logs (4 inches to 6 inches thices) ; two thicknesses of prepared roofing, 1 - by 2 -inch furring strips faished with $1 / 2$-inch box board, papered. Condition, good.
Floors.-Siagle wood touts coverel with linoleum. Condition, good.
Cciling.-1/4-inch bex board. Condition, good.

Root--Prepared roofing on wood sheathing. Insulation- None.
Windotes.--Nos. 1, 2, 5, and 10 made up of two six-light barn sash; one sash slld horizontally, the other sash was flred. Nos. 3, 4, 6, 7, 8, and 9 consisted of six-light barn sash hinged to swing in. All frames made of split logs. Fit of sash, poor. Weatherstripping, none. Storm sash, none.

Exterior doors.-Wood, paneled. Door (B) glazed. Fit, poor. Weatherstripping, none. Storm doors, mone.
Geiling heights.-Living room and bedroom No. 1, 7 feet 11 inches; kitehen and betroon No. 2, sloping, 7 feet 7 inches to 6 feet 4 inches.
heating and cookinc equipment
The house was heated by a circulator heater supplemented by a kitchen range and a fireplace, that was not used while readings were being taken. The heater was centrally located for good heat distribution. Wood was burned in both heater and range.

## USE and heating of rooms

The kitchen and the living room were the two rooms used during the day. All meals were eaten in the kitchen dining area, while the living room was used for most leisure activities.

All rooms in this house, including the bedrooms, were regularly heated during the day, and the family felt that their house was very comfortable.

## OBSERVATIONS

The records taken in the nine houses before remodeling indicate that on the whole, in cold weather, the thermal environment left much to be desired. After improvements were made to the houses, thermal conditions more nearly approached those usually considered desirable.

However, as no attempt was made to impose any controls on the habits of the occupants or the operation of the heating system or the type of fuel burned, it is impossible to attribute definitely the conditions found to any particular feature of the house or its equipment. Similarly, it is difficult to say just which of the individual improvements made to these houses contributed most to the more desirable thermal conditions in the remodeled houses. In order to make definite determinations it would be necessary to have control over all conditions and to have some basis for comparing the effect of individual features. On the other hand, people do not live under controlled conditions and these studies are important because they show what may be expected in the way of thermal environment in typical farmhouses under normal everyday use.
In addition, although definite conclusions cannot be drawn, there are some assumptions that can reasonably be made, based both on the data and on the reactions of the occupants to the environment.
Condlitions from which disoomfort might result, observed in some or all of the houses before remodeling, included:

1. Fluctuations in air temperatures throughout the day.
2. Inability to heat all rooms uniformly or, in fact, to heat some rooms at all satisfactorily without overheating other rooms.
3. Fairly wide differences between the air temperature and the ternperature of the exterior wall and ceiling surfaces.
4. Large vertical temperature differentials between the air near the floor, at the 60 -inch level, and at the ceiling.

Of these factors the large vertical temperature differentials, or more particularly the low air temperatures near the floor, were common to all the unimproved houses. Also these large differentials were factors over which the occupants had no control.

After the houses hat been remodeled or insulated, there were as a rule less pronounced fluctuations in air temperatures, less difference between the air temperatures in heated rooms, higher surface temperatures, and less differences between the temperatures of the air near the floor, at the 60 -inch level, and at the ceiling.

## Dry-Bele 'Femperateres at the 60-Inchi Level.

One of the purposes of this investigation was to determine if possible the air temperatures occupants of these houses were able to maintain or seemed to prefer. It also seemed desirable to find out how nearly the "effective temperatures" recorded in these houses corresponded to those which the majority of subjects found to be comfortable in the course of the tests made br the American Society of Heating and Ventilating Eugineers (A. S. H. V. E.).

In this particular discussion the temperatures referred to are always the dry-bulb temperatures 60 inches above the floor, unless otherwise indicated, and are those recorded during the day.

The day was assumed to be from $8 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. and was abitrarily selected as a basis for comparing conditions in the various houses. Although all of the families arose mach earlier, usually about 6 a. m., and fired their heating equipment at that time, this schedule wis chosen because it was thought that during the earlier moming hours with all of the activity connected with preparing breaklast and getting the children of to school, less attention would be paid by the family to the temperature of the house than after the early moming rush was over and the household had settled down to the routine duties of the day. It was also thought that by 8 a. m. the temperature should have rethed a reasomable level in all of the houses.

The average temperatures recorded in the most used rooms, the kitchen, and one bedroom of each house during periods of cold, moderately cold, and mikd outside temperatures are given in tables 2,3 , and 4, Appendix. Average relative hamidities and effective temperatures are also shown. In ouder to make them comparable, cemperatures recorded by hygrothermographs located at heights other than 60 inehes above the floor have been corrected by using the gradients recorded by portable stand readings. The temperatures shown in these tables represent areages of temperatures recorded during periods of from 1 day to 5 weeks, and it may be assumed that the temperature in the most used rooms, at least during periods of moderately cold and mild weather when excessive firing was not necessary, represent approximately the temperature levels the families wanted. Kitchen temperatures on the other hand may have been higher at times than the family wanted because of cooking, laundry, or other household tasks requiring heavy fring of the kitchen range. In bedrooms, as was pointed out earlier, there was rarely any ittempt made to maintain a comfortable temperature level, at least cluring the day.

As can be seen from tables 2 and 3 , the average temperatures mainbained at the 60 -inch level in the most used rooms and kitchens of these houses were much higher than is nomally assumed for the parposes of heating-plant design. They were also above the level at which the greatest majority of individuls who were subjects at the American Society of Heating and Ventilating Engineers research laboratories were com fortable during tests to detemine eflective temperatures. In moderately cold weather, ${ }^{9}$ a verage temperatures in the most used rooms of ath ot the unimproved houses but No. 1 and No. $S$ were between $73^{\circ}$ and $81^{\circ} \mathrm{F}$, and in mild weather only the average temperature in the dining room of house No. 1 was below $70^{\circ}$. No records were talen in a mamber of the houses during periods of cold weather; however, average temperatures in the most used rooms of the umproved houses in which records were obtained ranged bet ween $61^{\circ}$ and $80^{\circ}$, with all but the average dining room temperatures in houses Nos. 1 and 2 within the rame betwen $70^{\circ}$ and $80^{\circ}$.

The heating system in house No. 2 was not adequate, based on the calculated heat loss from the structure, and required heavy firing to mantain high temperatures in cold weather. The family in house No. I paid less attention to the temperature of the rooms than those in most of the other houses, and the investigators tound by actual experience that high temperatures could be mantained even in the most severe weather with very little extarattention to the furnace.

The temperatures in the kitchens of some of the umimproved houses were not fuite so high as in the most used roons, while in other houses they were higher (table :3. Appendix). In periods of mild weather average temperatures in the kitelens of atl the houses but Nos. 1, 4, and 5 were betwen for and $85^{\circ} \mathrm{I}^{\circ}$. In these three the average temperatures were $70^{\circ}$ or more.
In the improved houses the tendency seemed to be toward slightly lower temperatures exeept in cold weather. In the most need rooms in three of the honses average temperatures were between $70^{\circ}$ and $74^{\circ} \mathrm{F}$. in mild weather, and in the remaining three were between $75^{\circ}$ and $77^{\circ}$. In cold wether, on the other hand, average temperatures in three of the tour hones in which temperatures were meorded were higher than they had been in the mimpreved houses. In the kitchens of the improved hosses average temperatures during perionls of mild weather ratued frem a low of $66^{\circ}$ in house No . S-R to a high of $80^{\circ}$ in house No. © R. In houses Nos. $1-\mathrm{R}, \mathrm{A}$ R, and j - R average temperatures in the kitehens wore sighty higher than they had been before remodeling. Th moderately cold wather kitohen fomperatues were higher in lomens Nos. 1-R.I-R, and $6-\mathrm{N}$, and in cold weather they were higher in hotres Nos. $-\cdots$ and $0-\mathrm{N}$.

Only in the kitchen of honse No. S-R were aterage (emperatures below 70 F. This was appacenty emsed by the undersized duet supplying thes room.

Average temperatures in the bedrooms of the mimproved houses during priods: of mild weather canged from a low of $\overline{5} \boldsymbol{l}^{\circ} \mathrm{F}$. in house

[^10]No. 4 to a high of $75^{\circ}$ in house No. 9 (table 4 , Appendix). In moderately cold weather the lowest average temporature was $53^{\circ}$ in house No. 3, and the highest was $81^{\circ}$ in house No. 7. In only four of the seven unimproved houses in which bedroom records were obtained were temperatures above $70^{\circ}$ in mild weather and in only two during moderately cold periods. The average temperatures were below $70^{\circ}$ in the bedrooms of all of the four houses in which records were obtained in cold weather.
In the improved huses, bedroom temperatures were below $70^{\circ} \mathrm{F}$. in three of the five houses in which readings were taken in mild weather. On the other hand none were below $63^{\circ}$. In maderately cold weather readings were taken in seven improved houses. The average temperatures ranged from $61^{\circ}$ to $76^{\circ}$, with bedroom No. 2 in house No. 2-1 the only one above $70^{\circ}$. Readings were taken in only four improved houses in cold weather, and the average temperatures were below $70^{\circ}$ in three. They ranged from a low of $60^{\circ}$ in house No. 8-R to a high of $76^{\circ}$ in house No. 2-I.

The only conclusions that can be reached from an analysis of the data and the habits of the occupants was that the temperature at the 60 -inch level in any one directly heated room at any one time was largely the result of the attention given the fire by the occupants of the house. In other words, relatively high temperatures conld be maintained at the 60 -inch level in these houses.

## Relative Humidity

The relative humidities recorded in the unimproved houses were not so low as might be expected, in view of the types of heating systems and the high dry-bulb temperature maintained.
Average relative humidities in the most used rooms of the rumproved houses were for the most part within the range of 30 to 50 percent in mikd weather (table 2.). Only in house No. 3 was the average below 30 percent. However, in moderately cold weather average relative humidities were below 30 percent in four of the eight houses in which records were kept and below 30 percent in all of the five houses for which there are records when outside temperatures were below $11^{\circ} \mathrm{F}$. The lowest relative humidities were recorded in the dining room of house No. 3 , where the average was 21 percent in mild and moderately cold weather and 17 percent in cold weather.
In the kitchens of the unimproved houses (table 3, Appendix) average relative humidities were higher than in the most used rooms in four of the nine houses, slighty lower in three, and the same in one. In house No. 4 they were lower in moderately cold weather and higher in mild weather.

In mild weather the range within which the average relative humidilies of the kitchens of the unimproved houses fell was botween 30 and 68 percent (table 3). As in the case of the most used rooms they were lower in moderately cold and cold weather.

In the bedrooms of four of the six umimproved houses in which records were obtained humidities were higher than in either the most used rooms or the kitchens (table 4, Appendix). In one house (No. 2) they were lower than in the litchen but higher than in the most used room, while in house No. 6 they were higher than in either, except that in cold weather they were lower than in the kitchen.

In the most used rooms of five of the seren improved houses average relative humidities were as high or higher in all weather than they had been before improvements were made, and ranged from a low of 26 percent in house No. 6-N during a period when ontside temperatures were below $11^{\circ} \mathrm{F}$. to a high of 51 percent in house No. 5 -R during a period of mild wenther. In the kitchens, on the other hand, average relative humidities were higher in all weather in three of the houses and lower in one. In the other three they were higher in sone cases and lower in others.

In the bedrooms of the improved houses average relative humidities were not greatly different from those before remodeling in the honses where ermparable records were available. They decreased slightly in house No. 1-R. and inereased in house No. 7-R. In house No. 6-N they were higher in cold weather and the same in moterately cold weather. In house No. B -I they increased in cold wember. decreased in moderately cold weather, and were the same in mild weather.

The three factors that appeared to aflect the relative lumidity in these houses were first, the inside-outside temperature difference; second, tightness of construction; and third, moisture introduced as a result of cooking and laundry.

If the humiditying deviecs in the heating systems had any appreciable eflect on humidities it was not evident from these studies.

## Effective Temperatures

Like dry-luulb temperatures, effective temperatures were relatively high. Stuclies made in the American Society of Heating and Ventilating Engineers' researel haboratory indicated that 97 percent of the subjects felt comfortable at $66^{\circ}$ E. T. In the most used rooms of unimproved houses the effective temperature was above this level in all houses during mild weather except No. 1, where the effective temperature was $6 t^{\circ}$ (table 2, Appendix). In the rest the range was from $69^{\circ}$ in houses Nos. 7 and S to $75^{\circ}$ in house No. 9 .

In cold weather effective temperatures were below $66^{\circ}$ in the most used rooms of three of the six houses for which data are available. The range was from $58^{\circ} \mathrm{E}$. T. in the dining room of house No. 1 to $70^{\circ}$ in the dining room of house No. 3 .

Effective iemperatures were higher in the kitchens than in the most used rooms in the majority of cases. As might be expected they were generally lower in the bedrooms (talle 4) that in the most used toms.
In the most used rooms of the improved houses, during mild weather effective temperatures were lower in three cases than they had been in old houses and higher in two; while in cold weather they were higher in all cases except house No. 6 , where they were the same.
In mild weather they ranged from a 10 of $66^{\circ} \mathrm{E}$. T. in houses 7-R and 8-R to a high of $71^{\circ}$ E. T. in house No. 2-I. In cold weather the range was from $65^{\circ} \mathrm{E}$. T. in house No. $\overline{5}-\mathrm{R}$ to a high of $71^{\circ}$ in house No.2-I. As in the unimproved houses, effective temperatures in the kitchens were the same or higher than in the most used rooms in a majority of cases, while they were lower in the bedrooms.

## Varlablity of Temperatures

The fact that high average dry-bulb and effective temperatures could be and often were maintained at the 60 inch level in all of the unim-
-proved honses even in cold weather does not mean that the occupants were comfortable. Temperatures were variable, and occupanis of most of these houses were exposed to a fairly wide range of temperatures during the day.
In general the lowest temperatures of the day were recorded between \& and 9 oblock in the morning, for although henting efuipment was fired in most of the houses at about 6 a. m., the houses were very slow to heat up. After tempentures hatd leveled off, the ratiability in temperature depended largely on the attentiongiven the fire by the family: As might be expected rooms in the honses in which cost or a combination of coal and wood was used wete generally somewhat nore miform in temperature than in those in which wood alone or wood and comcobs were burned. Among the mimproved houses the most extreme ramges in temperatures were found in house No. ©, where diferences between maximum and mimmum temperatures amonted to ats much as $40^{\prime 2}$ E in the kitc hen and $30^{\circ}$ in the tiving room. The bouse was heated by stores in which wood and cobs were burned, and at the same time it was in the poorest eondition of any of the houses.

The least rate in temperature in the unimproved houses was fomed in the living room of house No. 4, which was leated by a cireulator heater buming oil. This house was in farly good condition.

As a group, temperatures in the insulated houses were less variable than in the uninsulated houses where the same type of fuel was used.
Here again there were exceptions that must be aftributed largely to the attention lamilies gave their heating systems. Figure 44 shows graphs of the range in temperature recorbled in megutary heated yooms in some of the houses for a selected week before and after improments were made.
As can be seen from figure 4 , 1 and $B$, ranges in temperature for these selectert week were more extreme on some days in the insulated house ( $\mathrm{N} 0.2-\mathrm{D}$ ) than in the old house (No. 2). This indicates rather dearly that regularity of firing is the most important consideration. There was mo change in the heating system in the insulated house and wool was bumed both before and affer insulating. Mew outside temperalures fell within the range of $20^{\circ} 10+0^{\circ} \mathrm{F}$. for both weeks.
Figure $41, C$, shows the relatively uniform temperature recorded in the living reom of house No. th. Here hrat was supplied ly an oilbuming ciralator heater. Althongh it was not themostatically contmided, at least here was a steady fow of heat. After the house was remodeled and the centrat, oil-fired. themostatically controlled forced wam-ate system was installed and the honse insulated. there was coniderably less variation in temperatme throughout the day. The areage range between maximam and minimum temperatures amounted to $4 i^{\circ} \mathrm{F}$. (fir. $4 t, D$ ) as compared to $8.8^{\circ}$ be fore remodeling.
$E$ and $F$ of figme it show conditions in homes Nos. 5 and $5-R$. Tere temperatures were comsidembly lens variable in the remodeled honse than in the old hone. The averase daity tange between maximum and minimum temperatures for the selected weok amounted to only $55^{\circ} \mathrm{F}$. in the living room of the remoleled house with arpage ont side temperatures between $21^{\circ}$ and $29^{\circ}$. compared with a daily aver-
 outside femperatures were betwen $21^{7}$ and $32^{\circ}$. A cembination of wool amd roal was bumed both before and after remoteling. When

Doys of the weck


Mon Tues Ved. Thurs Fri. Sat Sun
85 CHouse No 4
4
0
4
2
5
0
2
0
0
0
0
Mon. Tues wad Thurs fri Sot Sun


Tues, Wed Ithurs Fri Sal Sunt Mon.


Doys of the week


Mon Tues Wed. Thurs fil Sat. Sun.


Sat Sun Mon. Tues. Wed Thurs Fri


Fratar 44-Ranges between maximum and minimum dry-bulb te mperatures recorded between 8 a. m . and $10 \mathrm{p} . \mathrm{m}$. on each day of a selected week before and after improvements were made. The dots represent temperatures recorded at 2 -hour intervals during etich day. The black line connects the average daily temperatures, and the white area indicates the range in temperatures for each day,
the house was remodeled, however, a booster fan was installed in the bonnet of the gravity warm-air furnace and thermostatic controls for the dampers and fan were added. The fumace was still hand-fired. Even before remodeling temperatures were less variable in this house than in most of the others, largely because the furnace was fired regularly.
The comparison between an uninsulated house heated by a handfired, onc-pipe stean system, with conl the principal fuel, and an insuhated house heated by a thermostatically controlled oil-fired forced wam-air system is shown in figure $44, G$ and $A$. The variation in temperature in house No. 8-R was partly because the family usually kept the tempemare down during the day and turned the thermostat up later in the afternoon.

## Tempenature Differfices Between Heated Rooms

In the old houses there were fequently marked differences in temperature anong the regularly heated rooms at the same hour. There was little that the family could do about this condition in houses heated by central systems, as these differences apparently resulted from the fact that the rate of heat loss from these rooms differed considerably and the heating systems were not designed to compensate for this meven loss of heat. In addition, the temperatures in the kitchen were affected at times by the firing of the kitchen range for purposes other than heating.

In stove-heated houses, however, it was possible to maintain comparable temperatures in the different rooms, but this obvionsly refunired too much attention to fires to be very practical.

Typical examples of conditions found in four of the houses before and after remodeling are shown in figure 45.

In all these cases there was less difference between temperatures in the parious heated rooms after improvements were made than before. This also held true in the cther houses. The effect of insulation alone on these temperature differences is best shown by figure $45, A$ and $B$, which shows temperatures on typical days before and after remodeling in house No. 2 and 2-R. In this case no change was made in the heating system nor in the kind of fuel bumed.
The advantage of an oil-fired circulator heater over a wood-buming stove is shown by figure $45, O$. Temperatures in the living room were relatively even and high, while they were very irregular in the stoveheated dining room. Kitchen temperatures were understandably lover, as the kitchen was heated only by overflow heat from the dining ruom plus what little heat was given of by the electric range. In figure $45, D$, the small temperature differences between rooms and the abmost negligible fluctuation in temperature clearly illustrated the desimbility of a themostatically controlled heating system and a wellinsulated house.

The most marked improvement was that shown by house No. 6-N over house Yo. 0 (fig. £5. $G$ and $H$ ). This represented a change from a very poor house heated by stoves to a well-insulated house heated by a central gravity warm-airsystem. It is very apparent that the stoves in this old house were fired rather irregulary, as compared with that in house No. 1 (fig. $45, C$ ), and this accounts very largely for the wide
temperature differences. Even in the new house, with only the furnace to tend, this family made less attempt to maintain uniform temperatures than clid most of the other families.

The more unitorm temperatures throughout house No. 5-R as compared with those in house No. 5 (figs. $45, E$ and $F$ ) are probably due to


Fowume to --Comparison between dry-bub temperatures at the 60 -inch level for a typieni das in regularly heated rooms before and atter improvements were made.
the insulation and the rearrangement of rooms as well as to the changes made in the heating system. In the remodeled house the kitchen was less exposed than it was before, even though it was on the north side of the house. In addition the back door opened into the workroom tather than clirectly iuto the kitchen. As a result, the temperatures, which were lower in the kitchen than in the living and dining rooms
before remodeling, were now very close to those in these other rooms and in fact frequently a little higher. In every case where rooms were in exposed positions, as the kitchens were in houses Nos. 2, 5, and 6 , temperatures were generally lower than in the more protected rooms. This was tue even when heat was supplied both by a central system and by a wood- or coal-burning range.

## Verfical Temperature Gradients

As was pointed out earlicr vertical temperature gradients were the most obvious source of discomfort in the umimproved houses. In fact one of the major complaints of the occupants of many of these houses was that of cold feet during periods of severe weather. In the improved houses, on the other hand, these differentials were reduced considerably and according to the owners these houses are comiortable even in very cold weather.

Temperature gradients in the mimproved houses were extremely high in some cases. In the kitchen of house No. 6 , for example, difterences of as much as $60^{\circ} \mathrm{F}$. between the air 3 inches above the floor and 1 inch below the ceiling were observed. The minimum differential recorded was $21^{\circ}$. The average difference between the temperatures at these levels for the entire winter test period was $33^{\circ}$, while the average differences between the temperature of the air 1 inch above the floor and 60 juches above the floor was $31^{\circ}$. The kitchen was exposed on three sides and parily exposed on the fousth. There was no basement under it and it had an unheated attic above. The heat was supplied largely by the kitchen range in which wood and cobs were bumed, supplemented by overflow heat from the dining room. It represented the worst conditions found. Temperature differentials in the other rooms in the house, however, were nearly as bad. In the living room the minimun differential was $14^{\circ}$, the maximum, $35^{\circ}$, and the average, $26^{\circ}$, while in the dining room the minimam differential was $23^{\circ}$, the maximum, $47^{\circ}$, and the a verage, $34^{\circ}$.

The lowest average temperature gradients in the mimproved houses were found in the dining room of house No. 2 and the living room of house No. 1. These were $12^{\circ}$ and $13^{\circ} \mathrm{F}$.. respectively. Temperature differentials recorded in the dining room of house No. 2 at single locations ranged from $1^{\circ}$ to $29^{\circ}$, while in house No. 1 they varied from $7^{\circ}$ to $23^{\circ}$. Figure 40 illustrates the temperature gradients recorded in the most used rooms of the mimproved houses on typical days. As readings conld not always be taken in the various houses on days with the same or similar outside temperatures, they are not very comparable. They do show, hovever, the range in temperature to which the occupants of the old houses were exposed.
Figure 47 shows the gradients recorded in the most used rooms of the improved houses. In addition, maximum, minimum, arid average temperatures recorded at the vatious levels and the differential between floor and ceiling for all rooms in which readings were taken in both the old and remodeled houses are given in tables of to S, Appendix.
From acasual revier of the data it appeared that the magnitude of the temperature differentials between floor and ceiling was influenced chiefly by the rate of heat loss from the structure and the type of heating system.


Figune 40.-Average temperature gradients between air 3 inches above the foor and 1 inch below the ceiling in the most used room of each of the unimproved houses. Each dot represents the average of ail readings taken in the room at the sume time at the levelindicuted.


## KEY

$\square \rightarrow-\operatorname{D.R}$. House No, $-R \bullet$ L. R. House No. 6-N

$0-1$ L. R. House No.4-R A---4 L. R. House No. 8-R
$x \rightarrow-x$ L.R. House No. 5-R
Froune 47 .-Average temperature gradients between air 3 inches above the floor and 1 Inch below the ceiling in the most used rooms of each of the improved houses. Each dot represents the average of all readings taken in the room at approximately the same time at the level indicated.

Since no grood basis of comparison was possible the only means of arriving at any conclusion was through an analysis of the data that wouk separate as much as possible the influences of the two factors.
As the first step in this analysis the temperature gradients expressed in degrees per foot of height in the regularly heated rooms of both the mimproved and improved houses were plotted against differences in temperatures between the inside and outside air. The resulting carves indicated that in individual rooms the temperiture differentials genprally inereatsed or decreased with the inerase or decrease in the inside-outside temperature difference. Typical curves for honses Nos. 5 and 7 before and after remodeling are shown in figure 48 . These were selected for illustration becanse there was a sulficient range in outside temperatures during the periods when readings were taken to give a clear-cut picture of the effect ot inside-outside temperature differences on temperature gradients.
Similar curves were made to ascertain the effect of wind velocity. Its influence was also apparent, particularly in the rooms of unimproved houses, although less pronounced than that of inside-outsite temperature difference. This was becuuse its effect on a particular room varied not only with the velocity but also with the direction, both of which might change rapilly within a short period of time.
In the rooms of improved houses where windows were weatherstripped and fitted with storm sash the effect of wind velocity was much less apparent.
From this preliminary malysis it appeared that the rate of heat loss, of which inside-outside temperature difference and wind velocity are but components, was the most obvious factor affecting vertical temperature gradients. In an cffort to separate the effect of heat loss trom that of other variables the Bean Method of Graphic Correla(ion ${ }^{10}$ was used. Temperature gradients in all rooms that were reguharly used and heated luring the occupied period of the day in each of the unimproved houses are shown in table 1. In andition, data that might affect these gradients are shown, including calculated heat loss expressed in British chermat units per hour (using actaal inside and outside temperatures), wind velocity, and type of heating equipment. In addition to the known factors, there were unknown variables that probably affected the gradients, such as drafts caused by opening of doors or sudden increases in infiltation resulting trom gusts of wind and the like, which camnot be compensated for. Therefore the results obtained by this method of analysis can be considered only as indicalive of a trend.

Figure 49 shows the average temperature differentials in degrees per foot of height listed in table 1, plotted agrainst the computed heat loss in British thermal units per hour. The curve represents the relation between the temperature gradients and this factor. The deviations of any of the observations from this carve may be assumed to be due to other factors. For eximple the position (well above the line) of items Nos. $4,7, S, 13,16$, and 17 may be explained by the fact that each of these roons was adjacent to a room beated only by overflow heat from the room in question or to one heated only hy a kitchen range. This source of heat loss is not taken into acentm in the heat-

[^11]loss calculations. Another of these is the recorded wind velocity (a uniform velocity was assumed in heat-loss computations). However, as was pointed out previously, the effect of wind velocity is not the same in all cases. Rooms with few windows and no exterior doors, or, as in the case of a number of improved houses, with windows weather:stripped and fitted with storm sash, would not be affected by an increase or decrease in wind velocity to the same extent as rooms with more or larger windows or exterior doors and with the windows not weatherstripped or fitted with storm sash.

Table 1.-Relations between temperature differentials betwen air 3 inches aboou the floor and 1 ineh below the ceiling, heat loss, wind velocity, and leating aquipment.

| $\begin{aligned} & \text { heent } \\ & \text { no. } \end{aligned}$ | $\begin{aligned} & 1 \text { Iouse } \\ & \text { Nu. } \end{aligned}$ | '1'ype of room | Vortical tempers ture difcerontials per foot of helght | Eluat luss per hour ${ }^{1}$ | $\underset{\text { Wind }}{ }$ | T'ymor henting | Condithen of house |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ${ }^{\circ} \mathrm{F}$ | B. 1.4 | M.p. A. |  |  |
| 1 | $\dagger$ | L, ${ }_{1}$ | 1.6 | 5, 515 |  | Gravity hot alr . ....... | Unimpraved. |
| ${ }^{2}$ | \% | D. H | 1.8 1.0 | 13, 87.1 |  | ... ${ }^{10} 0$ |  |
| 4 | 3 | D. 12 | 3.0 | 0,431 |  | - 10 | $1 \%$ \% |
| 5 | 5 | L. R | 2.1 | 7, cios |  | . 0 | $1)$. |
| 9 | 6 | D. 16 | 21 | 10. Fistu |  | - ..do............. .i....- | 110. |
| 7 | 4 | \%.R. | 3.2 | 10, 460 | 14 | Clrenlator henter (oil) | Do. |
| 4 |  | L. 11. | 3.2 | 10, 070 | $\cdots \cdots$ | Circtator beater (wood)... | 12. |
| 10 | S | i. 1.1 | $\underline{1.5}$ | 11, 11.76 | $\overline{\mathrm{z}} \mathrm{i}$ | Stedild ....................... | 190. |
| 11 | 8 | Muste | 1.0 | 9, $5 \times 35$ |  | -do. | $1) 0$. |
| 12 | 8 | Sening roonh | 1.8 | 56, 097 |  | . - . du. | 1)0. |
| 19 |  | D. H.-..... . | 3.8 | 9,748 |  | Stovo (coul) ............... | 13. |
| 14 15 |  | L. R.-.......... | 3.6 4.6 | 13.907 | $11!$ | Stove (wood). .-.......... | 1)0. |
| 10 | 7 | L. 11. | 2.4 | B, 7icu |  | 11peless furunco | 15. |
| 17 |  | 1) M | 3.4 | 6. 150 | 8. | ... do......... | 120. |
| 15 | 1-17 | 1. T . | . 74 | 3.153 | 8 | Gruvily warth atr.- | Improved. |
| 10 | $\frac{1-14}{2-12}$ | 1). R,........... | 1.80 |  |  | ..-do. | 130. |
| $\bigcirc$ | ${ }_{2}^{2-1 / 2}$ | $\begin{aligned} & \mathrm{L} . \mathrm{T} \\ & \mathrm{E} . \\ & \hline \end{aligned}$ | 1.6 1.9 |  | 10. | ....d.do. | Do. |
| 2 | G-N | L. R.-......... | 1,3 | 7. 716 |  | ...do. | $1{ }^{1}$ |
| 3 | ${ }^{6-N}$ | D. R.... .. . ${ }^{\text {d }}$ | 1.3 | 3.730 |  | -ado........-.-.an- | 130. |
| 24 | 5-R | L. R... . ........ | 1.1 | 5,335 |  | Qravity warmi uir with booster fan. | Du. |
| 3 | 5-18 | D. R...... .... | . 9 | 3,040 |  | F-..do .arm......... . . | Po, |
| 38 | $\xrightarrow{1-8}$ | L, R........... | +129 | 3, 3 363 |  | Forcud warts al | 180. |
| 3 | 7 Tl | L. R. | 1.1 | ${ }_{5}^{5}$ S12 |  |  | Do. |
| 23 | 7-13 | D. R.... | . 9 | 5,535 | 14 | ..--. ${ }^{\text {do. }}$ | 120. |
| 30 | 88 | L. K. . . . . . . ${ }^{\text {c }}$ | 1.1 | +, $1+0$ |  |  | 18. |
| 31 | 8-12 | M. R.asie roon . .-. | . 6 |  |  | .....do ..... . . . . . . . . . . | Do. |
| 32 | $8-6$ | Masie roond . .- | , ${ }^{\text {b }}$ | 2,250 | 10 ;- |  | Do. |

[^12]An examination of the plans and descriptions of the various structures will show that rooms listed in table 1 as items Nos. 2, 5, 7, 8, 9 , $11,13,14,15,19$, and 22 would all be likely to be definitely affected by an increase or decrease in wind velocity. Deviations from in for these rooms ate therefore plotted against wind velocity (ig. $49, B$ ). The effect of wind velocity is apparent from this figure, although the curve may be distorted because of the positions of items 7 and 13 . These items represent two of the rooms that furnished overflow heat to other rooms and are thercfore considerably above the line in $A$. It appears that in these particular rooms higher or lower temperature gradients than would normally be expected may be largely accounted for by


Figuie 48. -The effect of inside-outside temperature differences on vertical temperatire gradients in the most used rooms in houses Nos. 5 and 7 before and after improvements were made. Each dot represents temperature differences between the air in inches above the floor and 1 inch below the ceiling in degrees per foot of height plotted against the difference in temperature between the inside air 60 inches above the floor and the outside air.
the effect of wind. Deviations from $B$ are then replotted against curve 4 (fig. 49, $\sigma$ ) and a second approximation drawn in view of the changed position of the items that have been corrected for wind effect. Item No. 8 could not be corrected, as the wind velocity was not known. As can be seen from the corrected curve, all items with the exception


F'foune 49.-Correlation of factors affecting vertica! temperature gradients in regularly liented rooms other than kitehens in tumproved and improved bouses : $A$, Relation of gradlents to hent loss (first approximation) ; $B$, relatlon of deviations from curve $A$ to wiml velocity; $C$, relation of sradients to heat loss corrected for effect of wind velocity (secom approximation).
of Nos. 8 and 17 are now reatsonably close to the line represeating the effect of heat loss.
The deviations that still exist are the result of factors that cannot be reasonably accomted for. An cxamination of this curve in connection with table 1 shows that they cannot be accomed for by types of heating, imasmuch as items representing the same type of heating system ate scattered above and below line 4 , and any attempt to draw any conclusions in this connection would not be justified, as the unknown factors previously mentioned are as likely to be responsible for a given deviation as is type of heating.

In these curves the effect of the insulation, stom sash, and genema improvement of the structure in the remodeled or new houses is very noticeable in the reduced vertical temperature difterentials, and the conclusion reached was that any change in either the structure or arrangement of rooms that redices heat loss tends to reduce these vertical differentials.

## Strface Temperatures

The surface temperatures of walls, floors, and ceilings observed in these houses may or may not have had an important effect on the feeling of comfort of the occupants. At present there is no available information on optimum sufface femperatures with which to compare those observed in these houses. It is generally believed, howerer, that surface temperatures reasonably close to the temperature of the air in the room are desitable in houses heated by convection systems. Effective temperature, for example. is based on the assumption that -urface temperatures of the ocenpied room will be within a few degrees of the dex-biblb temperature at the of-inch level.

Average surface temperatuves recorded in the unimproved honses were nealy as variable as the air temperatures, and in general the relation between the room temperatures and the surface temperatures was more apparent than between the surface temperatures and the watside sir temperature or the surface temperatures and the femperature differences betweel the air in the room and the outside air. As would be expected, however, the difference between the temperature or inside surfaces of exterion walls and the temperature of the air adjacent to the walls tended to be greater when the difference between inside and outside air temperatures increased. This tendency is not. fury apparent from the werages, as there was a considerable lag befween changes in inside air temperature and the corresponding change in the temperature of the surtaces. This lag was even greater with relation to changes in the temperature of the outside air. Therefore, the surface temperature did not necessarily reflect the temperature of the air in the room or the temperature of the ontside ar at the time the reading was taken. However, when contimious zeadings were taken this trend was observed.

Thermal characteristics of the exterior walls in the mimproved houses did not difter greatly. except in house No. 2. where sheathing was omitted, and in honse No. L, which hat 1 ind of mondatisn for sheathing, and these differences did not appear to be reflected in the temperatares of the inside surfaces of the exterior walls. This may have been due to the faet that heat hass through the entire wall between inside air and outside air was modified by convection curvents within
the stud spaces. which earried off heat into the attie because in most of the houses stud spaces wete not blocked off from the attic spaces. In the improved houses, on the other hand, where stad spaces were filled with insulation, differences between average ain and surface temperatures were mach less. A discussion of aid movements in the constrution is given later.

In tables 9 and 10 , Appendix, the arerage temperatures of the wall, Howr, that ceinge surfers and the adjacent aid tre given for the regularly heated rooms in ench hanse during the diay.
$A$ comparison of the data in these two tables indicates quite clearly the eflect of insulation on wall and ceiling surface temperature. Before insulating average surface lemperatures of exterior walls ranged from $\tilde{j}^{\circ}$ to $1 s^{3} \mathrm{~F}$. below that of the adjacent air. After remodelinur, average surlince temperatures anged from $2^{\circ}$ to $8^{\circ}$ lower than the average temperature of the adjacent air, except in the living room of house No. $6-\lambda$, in which an arernge difference of $12^{\circ}$ was recorded tor some unknown reason.

Ceiling surfite temperatures in ihe majority of the old houses averaged from $6^{\circ}$ to $1 \mathrm{t}^{2} \mathrm{~F}$. lower than the temperature of the air 1 inehbelow the ceiling, exerpt for two extremes: The kitelen of house No. 9 where the average difference was only $3^{\circ}$ and the dining room of house No. 6 where the average difference was $1 y^{\circ}$. In the insulated houses the average differences were largely between $0^{\circ}$ and $6^{\circ}$. In the kitchen of house So. 1, however, the average temperature of the ceiling was $3^{\circ}$ higher than the average temperature of the air 1 inch below.
Arerage surface temperatures of the floors in the unimproved houses were in most cases lower than tho of the walls and ceilings. Fhoos ranged from a low of $45^{\circ} \mathrm{F}$. in the living and dining rooms of douse No. 1 to a high of $73^{\circ} \mathrm{F}$. in the kitchen of house No. 5 . In the improved honses the range was from $55^{\circ}$ in the living room of hoase So. 2-J to $\mathrm{T}^{2}$ in the kitchen of house No. G-N.

Be fore remoteling, a a mate floor temperatures were below a $0^{\circ} \mathbf{F}$. in $\because$ of the 26 roms for which there are data, betwen $50^{\circ}$ and $60^{\circ}$ in $\bar{i}$, between 60 and $70^{\circ}$ in 14 , and above $70^{\circ}$ in 3 . After remodeling, arerage floo tempratures were never below $50^{\circ}$, and only in 1 roon were they below 60 . In 19 roms the temperatures were between $60^{\circ}$ and $70-$ and in -2 more they were above $70^{\circ}$.
In both the ohd and improved lonses the temperatures of floor surfitces adjacent to outside walls were usually below those near the center of the room and indicated in some cases appreciable heat loss at the edges of the floor and ends of the joist spaces. For example, in the liting room of house No. 6, during a period of cold weather, a werage lloor surface temperatures 1 inch from the outside walls were $13^{\circ} \mathrm{F}$. lower than those 36 inches from the outside walls, and in the litchen were $10^{\circ}$ lower. In the rest of the unimproved houses average temperature differences of from $4^{\circ}$ to $6^{\circ}$ were recorded in cold weather. In moderately cold weather average floor surface temperatures 1 inch from the outside walls were from $1^{\circ}$ to $8^{\circ}$ lower and in mild weather from $2^{\circ}$ higher to $5^{\circ}$ lower than those 36 inches trom the walls.
th the improwed houses arerage differences in temperature bet ween the floor surfaces 36 inches or more from the esterior walls and those alljacent io the walls were abont the satme or slightly greater than in
the old houses. In cold weather differences ranged from $2^{\circ}$ to $14^{\circ} \mathrm{F}$., in moderately cold weather from $z^{2}$ to $i^{\circ}$, and in mild weather from $2^{\circ}$ to $0^{\circ}$.

Although average floor surface temperatures were generaliy low in the usimproved houses, they were from $0^{\circ}$ to $11^{\circ}$ higher than the average nim temperature 3 inches above the floor in all bui 3 of the houses. In these (house No. 3. the living room and dining room of No. 1, and the dining room and kitehen of Xo. 4), the floors were from $1^{\circ}$ to $3^{\circ}$ colder than the air 3 inthes above the floor. In the improved houses floor surface temperatures were from 20 below to $3^{\circ} \mathrm{F}$. above that of the air 3 inches above the flow execpt in the living room of honse No. 1-R where floors were 7 coblder on the avenge than the adjacent air.
It can also be seen from these tables that average surface temperatures in those roms in the unimproved houses that were heated by stoves tended to be somewhat higher in comparison with air temperatares than did average surface temperatures in woms heated by parely convection systems." This was the result of madiant heat from the stoves; while all surfaces were not warmed equally, because of the varying distanees from the heat sonce, the higher temperatures of the walls close to the stoves tended to bring the average up.
It is appatent trom the daf that the important factors affecting surface temperatures were the themal characteristic of the walls, floors, and ceilings and the presence or absence of sources of radiant heat within the rooms. In the case of floors the presence or absence of a basement containing heating equipment also was a fictor.

## Ab Movenents in the Consthuetion

In most of the of houses balloon framing was used, with the result that convection currents could be set up, as the air was free to circulate Ihrough the stud spaces into the joist spaces and, in the story-and-a-hati houses, into the mheated spaces under the eaves. A typical wall section of house No. $i$ is shown in figure $50, A$, illustrating this rondition. It is apparent that with construction such as this the insulation lath on the exterior of the wall was not so effective as it mighi have been had the ends of the stud spaces been blocked off. In the insulated house, this condition no longer existed, as these upaces were effectively blocked off.

Anemometer readings in the sind and joist spaces of some of the old houses indicate that there were convection currents of sufficient relocity to increase heat loss.

Anemometer readings taken in house No. 1 in the joist spaces over The kitchen and living room and in the attic showed air velocities of from 5 to 29 fect per minute. Air morements in the joist space over the kitchen averaged 7 fect per minute orer a period of 4 days, and a thermocouple mounted in the space with the anomoneter showed an average air temperature of $41^{\circ} \mathrm{F}$. for the same period. At the same time the average femperature of the air 1 inch below the ceiting was $72^{\circ}$, and the ceiling surface, $63^{\circ}$. The arerage outside wind velocity was 6.3 miles per hour and the outside temperature - $5^{\circ}$.

During this same period the velocity of the air movement in the joist space ore the living roon averaged 16.4 feet per minute and


Fioure for-A, Wall gection of house No. 1, showing bow nir is free to clrenate withith the construction. This condirion was tyndil for most of the old houses. $B$. Wall section of houte No. $\mathbf{1}-\mathbf{K}$, showing hosy insulation preyents convection currents within the construction.
the temperature in the space averaged $40^{\circ} \mathrm{F}$. The average temperature of the air 1 inch below the ceiling was $64^{\circ}$ and the average temperature of the ceiling $56^{\circ}$.

The air movements recorcled in the attic space had an average velocity of 14.3 feet per minute and the air temperature was $36^{\circ} \mathrm{F}$. The temperature of the ceiling below was $43^{\circ}$. The outside conditions were the same during all these readings.

In house No. 3 readings were obtained of air velocities in the attic space over bedroom No. 3 . These were taken at 2 -hour intervals for a period of 5 days and showed an average velocity of 12 feet per minute, with a maximum of 26 and a minimum of 7 feet per minute. At the same time the velocity of the aix movements in a joist space under the kitchen floor varied between $\hat{6}$ and 8 feet per minute. Also during this same period air velocity in the second floor joist space over the kitchen averaged 9 feet per minute, with a high of 14 and a low of 7 feet per minute. During this period outside wind velocity ratied between 9 and 3 miles per hour and averaged 7 .

## Air Movements Within Rooms

The records obtained showed that air movements within rooms were for the most part of short duration, usually lasting only a fev
seconds. They were, however, fairly high in velocity on oceasion, partienary when doors in other parts of the house were open. They were most noticeable in such places as doorways mod open arehways between rooms and in the vicmity of cold-air registers. Fairly high velocities were also observed chose to poorly fitted wintows and ontside doors and near doors leading into unhented rooms. These movements appeared to die out within a few feet, however, and conld hardy be classified as drafts except within a very limited areat. In the remodeled or new honses, on the sther hand ais moments were so bow as to be umeasurable. Such gusts as were observed in the unimproved houses could not be dispovered exeept close to windows that hat heen left unlocked or close to poonly litted doors.

In house So. I radings with the exploration amometer were taken on 3 ditys with avenge outside wind selocities of a and 9 miles per hour. On the first day these air movements varied from a hight of 60 feet per minute on the floor in the rar entry opposite the outside door to a low of a feet per minute on the flow in the conter of bedrom No. 1. The arerage velocity of all mommens recorded in the living room on this thy was in feet per minute, with a high of 27 and $a$ low of 10 , all dose to the floor. At the same time the morements in the dining roon aremged it feet per minute, with thigh of 19 and a low of 1s. In the kithen the average was el feet per minute, with a high of 25 and a low of 15 .

On the serond day 4 geadings were taken in varionts parts of the house, showing relocities of from 92 feet per minute at the sill of window No, 11 in the dining roem to a low of 7 feet per minute in the southeast corner of the dining room 30 inches trom pach wall and 18 inches above the floor. The direction of most of these movements seemed to be from the interior of the woms towath the cold outside walls, lown these walls, and if there was no cold-air register along the outside walls, batk acto so the foor towal a cold-air register.

Exphomtion anmometer reatings in howse No. 3 showed that air movements in this house were not excessive. A total of nine readings taken within an hom in warms pars of the kithen ghowed an averge relocity of 10 feet per mimute, with a high of 23 teet per minute on the floor at the center of the doorway to the diaing rom and a low of 10 in the enter of the romatil the sounterat comer of the rom. In the dining wom velowities were higher, and on the same day and at approximately the same time a total of seren readings in carious parts of the row showed an a erage of 3 ? feet per minute, with a maximum velocity of 30 on the foor 12 inche from the renter of the siditing door to the laring room and a bow of esf leet per minnte in the northwest comer of the roon. Two readings in betroom No. 1 averaged 12 feet per minute, and one in the pantry howed 20 feet per minute. Duting the time these readings were taken there was andide wind velocity of $S$ miles per har from the north.

## st mathy and concicsions

Since these stulies were carried out under erervay hang conditions and abo attempt was made to control them, exact reasons for some of the efolitions observed were not always apparent. These studies did show that frequenty conditions were not what might be
expected. Howerer, the averages of a great many readings show trends that are cloat enough to watrant certain conchasions. These may be summed up as follows.
(1) The average dry-bulb temperatures and effective temperatures maintained in all of these houses at the 60 -inch level during the ocenpied period of the dity ( $8 \mathrm{a} . \mathrm{m}$, to $10 \mathrm{~g} . \mathrm{m}$.) were higher than is usually tonsithered comfortable. 'lhe arame dry-bulb temperatures in the regularly heated rooms fell for the most part within the range of $75^{\circ}$ to $80^{\circ} \mathrm{F}$., and the average oflective temperatures within the range of $65^{\circ}$ to $75^{\circ}$ under all outside weather conditions. As this hed true in the honses where any teasomble temperatures conld be maintaned simply by setting a themostat as well as in those with manally fired systems, it mast be concladed that these were the temperatures at which the uccupants were most comfortable.
(3) In reneral. the average relative humidities mantained in these honses, both improved and mimproved, cluring periods of moderately rokd nud midd weather were within the range generally believed to be desimble ( 80 to 50 perent). In very cold weather, however, the wetare cehative hamiditios in the majowity of the houses fell below this fagre. 'l'his was true of those with fumidifying devices in conmetion with the hating systems as well as those without. Observabions indiented that ontside temperatames had move eflect on the relalise homidity of a honse than did any other factor and that retarding the low of vapor to the outsite woild be a more effective means ot mantaming higher humidities than attempts to introduce moisture into the air.
(3) In ail the mimproved honses mol some of the remodeled houses thethations in dry-bulb tempeatumes were relatively large oud in
 the type of luel burmed, was lamely responsible for wide ranges in terngeratares. In addition, the rate of heat loss from the structure wat mobably a cont mating factor. In any event temperature fluctuation was a condtion ower which the ocenpants had some control even in the houses with the highest tate of heat loss and the poorest heating

(t) In the unimproved houses temperature distribution thronghout int honse wat rehtively poor and marked differences in tempentture belwern heated rooms wete the role, as were temperature diflereners in rarons parts of the same room. This was a condition over which the ocerpants had little control, especially in the houses with improperly designed or installed central heating systems. Unevan ates of heat losi from ditierent rooms and dacts or radiators not properly sized to take these discrepancies into account appened to be (he contributing fartors.
(5) The most obvious source of discomfort in the unimproved houses appeared to lie in the very harge differences in the air tempratare betwen floor and ceiling. This too was a condition over which the ocupants had no control. In general, large vertical tempranture differentish were most pronoumed in the more poorly constructed houses and tenked to decrease or increase with the decrease and increase in the diflerence batween inside and outside temperatures. This louds to the conclusion that these differentials were definitely aflected by the rate of heat loss from the structure and that any
change in the structure that would reduce heat loss would result in lower temperature differentials between floor and ceiling. It was believed that the type of heating equipment would also have a marked effect on temperature gradients, but analysis of the clata failed to indicate that this was the case with the types of systems observed.
(6) Surface temperatures in the regularly heated rooms of the tmimproved houses, while not so low in some cases as might be expected from the condition of the structure, were probably low enough to cause some discomtort in many instances. In the improved houses surface temperatures were gencrally appreciably higher. Records of air movements within the joist and attic spaces of these houses indicate that in all probability not only the themal properties of the wall, floor, and ceiling materials but also the type of construction were factors in determining surface temperatures. In other words it appears that framing that permits convection currents and encourages the movement of aft within the construction spates should be aroided and that whete balloon traming is used, fre stopping, solid blocking, or filling stud spaces with insulation is desimable.
(7) Air novements with the rooms of the old houses, while of short daration and not eleatly defined, were probably severe enough to cause considerable discomtort close to sources of air leakage, such as poonly fitted doors and windows. On the other hand such drafts were not measurable in the improved houses and do not appear to be a source of discom*ort in tightly built houses. Even in the old houses the temperature of the ais close to the floor rather than the rate of air movement was probably the principal cause of ascomfort to the occupants.

On the whole these studies point to the desirability of reducing heat loss from the structures by insulating, instaling storm sash, storm doors, and weatherstripping, and by locating important rooms so as to take advamtage of the sun and avoid prevailing winter winds. Tho advantage of having exterior doors open into entries, halls, or workrooms rather than into regularly occupied rooms was also apparent.
The importance of a properly designed heating system was also evident, although lower heat loss due to improvements in the structure appeared to compensate to a considerable extent for otherwise inadequate heating equipment. On the other hand the valuo of thermostatic control for heating equipment and of fuols requiring a minimum of attention in maintaming even temperatures was clearly demonstrated.

TABLE 2-Average dry-bulb temperatures, relative humidities, and effective temperatures naintained during the day at the $60-i n c h$ level in the most used rooms of the unimproved and inproved houses

| House | Room | Method of beatin | Type of fuel used | Average temperature of air when outside temperatures ( ${ }^{\circ} \mathrm{F}$.) wers- |  |  | Average relative humidity when outside temperatures ( ${ }^{\circ} \mathrm{F}$ ) were- |  |  | Average effective temperature when outside temperatures ( ${ }^{\circ} \mathrm{F}$.) were- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Below } \\ 11^{\circ} \end{gathered}$ | $\begin{aligned} & 11^{\circ} \text { to } \\ & 30^{\circ} \end{aligned}$ | $\begin{gathered} \text { Above } \\ 30^{\circ} \end{gathered}$ | $\underset{11^{\circ}}{\text { Belour }}$ | $\underline{11^{\circ} \text { to }}$ | $\begin{gathered} \text { Above } \\ 30^{\circ} \end{gathered}$ | $\begin{gathered} \text { Below } \\ 11^{\circ} \end{gathered}$ | $\begin{gathered} 11^{\circ} \text { to } \\ 30^{\circ} \end{gathered}$ | $\begin{gathered} \text { Above } \\ 30^{\circ} \end{gathered}$ |
|  |  |  |  | - $F$ | ${ }^{-} F$ | - 5 | Percent | Percent | Percent | ${ }^{\circ}$ E. T. | ${ }^{\circ} \mathrm{E} . T$ T | ${ }^{\circ} \mathrm{E} \cdot \mathrm{T}$ |
|  | Dining room | Gravity warm air 1-m-............- | Wood | 61 | 71 | 69 | - 26 | 37 | 34 | 58 | 66 | 6 |
| 3-1 | D.-.do........ |  | -.do | 72 | - 72 | 75 | 35 | 38 | 41 | 66 | 67 | 64 |
| $\begin{aligned} & 2 \\ & 2 \end{aligned}$ |  | do: | d0..........- | 69 | 78 | 77 | 26 | 27 | 32 | 64 | 70 |  |
| $3$ | do | do 1 | do.--------- | 80 | 78 | 87 | 31 17 | 29 | 49 21 | 71 | 72 | 71 |
|  | Living room. | Oirculator hieater | Oil |  | 77 | 78 |  | 44 | 47 |  | 71 | 72 |
| 4-R |  | Forcod warm air ${ }^{13}$ | do. |  | 74 | 72 |  | 40 | 43 |  | 66 | 67 |
| 5 | Dining room. | Gravity warm alr 1 | Cosl and wood. |  | 76 |  |  | 35 |  |  | 69 |  |
| $5-12$ | Living room-- | Gravity whrm air, booster fan ${ }^{\text {a }}$ | C.ado | 70 | 70 | 72 | 30 | 40 | 51 | 65 | 65 | 68 |
| 6 | Dining room.- |  | Wood........-- | 76 | 80 | 80 | 23 | 28 | 40 | 65 | 72 | 73 |
| $6-\mathrm{N}$ | Living room. | Gravity warm air ${ }^{2}$ | do | 75 | 74 |  | 26 | 38 |  | 68 | 67 |  |
| 7. | -do.-...-- | Pipeless furnace ${ }^{\text {4 }}$ | d |  | 81 | 76 |  | 28 | 33 |  | 72 | 69 |
| 7-R | do....... | Forced warm air ${ }^{3} 3$ | Oil |  | 72 | 30 |  | 35 | 44 |  | 66 | 66 |
|  | Dining room | One-pipe steam 4 | Coal | 75 | 74 | 75 | 27 | 31 | 40 | 68 | 68 | 69 |
| $8-\mathrm{R}$ | Living room.- | Forced warm air ${ }^{\text {a }}$ 3 | Oll | 77 | 76 | 75 | 29 | 33 | 35 | 69 | 69 | 66 |
| 8. | --.do.-.--m-- | Circulator beater ${ }^{2}$-................- | Wood |  |  | 85 |  |  | 30 |  |  | 75 |

1 Water pan for humidiflcation; water level controlled by float. Water pan for humidifcation; filled manually.
3 Thermostatic control of furnace.
4 No humidifying device
5 Equipped with humidistat.

Table 3,-Average dry-bulb temperatures, reiative humidities, and effective temperatures maintained during the day at the $60-\mathrm{inch}$ level in the kitchens of the unimproved and improved houses


For principal type of fuel used, see table 1.
Water pan for humidffication; water level controlled by float.
Water pan for humidification; filled manually.

- No register in room.
${ }^{3}$ Thermostatic control of furnsce.
- No humidifying device.
${ }^{7}$ Equipped with humidistat.

Table 4-Averags dry-bulb iemperaitures, relative humidities, and effective temperatures maintained during the aay at the $60-i n c h$ level in one of the bedrooms of each of the unimproved and improved houses

| House | Bedroom |  | Average temperature of air when outside temperatures ( ${ }^{\circ}$ F.) were- |  |  | Average relative humidity when outside temperatures ( ${ }^{\circ} \mathrm{F}$ ) were- |  |  | Average effective temperature when outside temperatures ( ${ }^{\circ}$ F.) were- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Beluw | $11^{\circ} \mathrm{to}$ $30^{\circ}$ | ${ }^{\text {A }} 30{ }^{\circ}$ | Below 11 | $11^{\circ}$ to $30^{\circ}$ | Above $30^{\circ}$ | $\text { Belour }_{11^{\circ}}$ | $\begin{gathered} 11^{\circ} \mathrm{tm} \\ 30^{\circ} \end{gathered}$ | Above $30^{\circ}$ |
| 1. | 1. | Gravity warm | - F. | 72 | ${ }^{\circ} \mathrm{F}$ | Percent | Jerccut | Percent | ${ }^{\circ}$ E. T. | ${ }^{\circ}$ E. $T_{6}$ | - E. T. |
| ${ }_{2}^{1-R}$ | 1 | --..do ${ }^{\text {a }}$-..... | 69 | 69 | 71 | 34 | 43 37 |  |  | 67 64 | 67 66 |
|  | 2 | -...do ${ }^{2} 4$ | 65 | 68 | 31 | 27 | 36 | 39 | 61 | 64 | 66 |
|  | 1 | - ${ }^{\text {d }}$ do ${ }^{8}$ | 76 46 | 70 | 73 | 30 | 35 | 39 | 69 |  | 67 |
|  | 5 | Overflow heat |  | 43 |  |  | 51 | 49 | 46 |  | - 51 |
| $4-\mathrm{R}$ | 3 | Fored warm air ${ }^{\text {a }}$ |  | 45 | 64 |  |  | **52* |  |  | 60 |
| 5. | 3 | Gravity warm air |  | 64 37 | 63 |  | 48 | - 52 |  | 61 | 60 |
| 5-1 | 1 | Gravity warm air, booster fan 2 |  | 68 | $\cdots$ |  | 35 | - 43 |  | 64 | 68 |
|  | 3 | Overflow heat .-.-............... |  | 68 | 62 | 33 | 47 | 81 | 60 | 6 | 61 |
| 6 | 1 | Gravity warm air 3 | 67 | 64 |  |  | 47 | 81 | 63 | 61 |  |
|  | 1 | Pipeless furnace ${ }^{\text {a }}$ |  | 81 |  |  | 33 | $40^{\circ}$ |  |  | $\cdots 71$ |
| $\begin{aligned} & 7-R \\ & 8 \end{aligned}$ | 2 | Forced warm air ${ }^{\text {O }}$ |  | 68 |  |  | 41 | 46 |  |  | 64 |
| $8-\mathrm{K}$ | 4 | One-plpe stuam Forced warm air |  | 59 |  |  |  |  |  |  | ...- |
|  | 1 | Overflow heat..... |  |  |  |  |  | 45 |  | 58 | - 72 |

1 For principal type of fuel used, see table 1.
1 Water pan for humidification; water level controlled by foat.
Water pan for humidifcation; filled manually.

- No register in room.
${ }_{8}^{5}$ Thermostatic control or furnace.
i Equipped with humidistat.

Table 5.-Oulside temperatures, wind velocity, heating equipment, a verage dry-bulb temperatures at various heights above the floor, and average temperature differentials in the most frequently used rooms of the unimproved houses



1 Average temperature 60 inches above the floor.
2 Thermocouple located 42 inches instead of 36 inches above the floor.

Tahle 6.-Outside temperatures, wind velocity, heating equipment, a verage dry-bulb temperaturcs at various heights above the floor, and aterage temperature differentials in bedrooms and miscellancons rooms of the umimproted houses

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{House} \& \multirow{3}{*}{1160 m} \& \multicolumn{12}{|c|}{A veruge dry-bulb temperatures} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{A verage temperature differentials between air 3 tiches above fleor and 1 inch below ceiling per foot of helght}} \\
\hline \& \& \multicolumn{3}{|l|}{1 inch below celling} \& \multicolumn{3}{|l|}{60 inches above floor} \& \multicolumn{3}{|l|}{36 inches above thoor} \& \multicolumn{3}{|l|}{3 Inclues above floor} \& \& \& \\
\hline \& \& Maxi- \& Mini- \& \[
\begin{aligned}
\& \text { Aver- } \\
\& \text { age }
\end{aligned}
\] \& Maxi mun \& Minimum \& \[
\begin{aligned}
\& \text { Aver- } \\
\& \text { age }
\end{aligned}
\] \& Maxi. mum \& Minimum \& Average \& Mayi- \& Mindmum \& \[
\begin{gathered}
\text { Arer- } \\
\text { age }
\end{gathered}
\] \& Maxi- \& Minimum \& \[
\begin{aligned}
\& \text { Aver- } \\
\& \text { age }
\end{aligned}
\] \\
\hline \& Bedroom: \& \({ }^{-} F_{74}\) \& \({ }^{\circ}{ }^{5} 5\) \& \({ }^{\circ} \mathrm{F}_{8}\) \& \({ }^{-1}{ }^{7}\) \& \({ }^{\circ}{ }^{5} 50\) \& \({ }^{\circ} \mathrm{F}_{61}\) \& \({ }^{-} F_{i}\) \& \({ }^{\circ} \mathrm{F}_{4}\) \& \({ }^{\circ}{ }^{\text {F }}\) 59 \& 65 \& \({ }^{\circ} \mathrm{F}\) \& \({ }^{-} F_{\text {c }}\) \& \& \({ }_{0}{ }^{5}\). \& \[
F_{i .7}
\] \\
\hline 1-n.......... \& \& 40 \& 56 \& 08 \& 80
81 \& \begin{tabular}{|}
56 \\
63
\end{tabular} \& \& \begin{tabular}{l}
79 \\
72 \\
\hline
\end{tabular} \& \& \({ }_{6}^{67}\) \& 63 \& -4888484 \& 57 \& 3.5 \& 1.7 \& 25 \\
\hline 3.......... \& \& (4) \& 65
84
84 \& 87 \& 88 \& 78 \& 84 \& 79 \& 65. \& 75 \& 267 \& 255 \& \(=64\) \& 3.8 \& 27 \& 3.0 \\
\hline \& 3 \& \& 47 \& 50 \& 47 \& 13 \& 40 \& 45 \& 42 \& 44 \& 41 \& 39 \& +0 \& 23 \& 1.9 \& 1.3 \\
\hline \& 1 \& 11 \& 60 \& 70 \& 70 \& 60 \& 88 \& 87 \& \({ }_{6}^{63}\) \& \({ }_{73}^{85}\) \& \({ }_{74}^{60}\) \& 59
50 \& 60
60 \& 1.4 \& \& \\
\hline \& 1 \& 97 \& 76
57 \& 84
62 \& \(\begin{array}{r}95 \\ 67 \\ \hline\end{array}\) \& 75 \& \& 80 \& 49 \& 73
57 \& 74
5 \& 30 \& 60
46 \& 2.8 \& 1.3 \& 2.1 \\
\hline \& 2. \& 75 \& \({ }_{63} 6\) \& 69 \& 72 \& 59 \& 815 \& 69 \& 55 \& 61 \& 61 \& 76 \& 51 \& 29 \& 1.8 \& 2.4 \\
\hline \& \& \({ }_{68} 8\) \& 55 \& 63 \& 60 \& 53 \& 60 \& 63 \& 50 \& 57 \& 56 \& 39 \& 49 \& 2.1 \& 1.6 \& 1.8 \\
\hline 6. \& 5 \& 68 \& 55 \& 62 \& \(\stackrel{64}{ }{ }_{9}\) \& \(\stackrel{52}{63}\) \& \(\stackrel{60}{14}\) \& \({ }_{77}^{61}\) \& \& 7 \& 65 \& 4 \& 31
62 \& 1.6 \& 1.3
.6 \& 1.4 \\
\hline \& 1. \& 81
83 \& 65
70 \& \({ }_{7}^{76}\) \& 88 \& \({ }_{70}\) \& 77 \& 80 \& 69 \& 75 \& 75 \& 66 \& 71 \& 1.1 \& .5 \& . 8 \\
\hline 7. \& 3 \& 85 \& 73 \& 84 \& 83 \& 72 \& 80 \& 184 \& 270 \& 377 \& 72 \& 61 \& 67 \& 3.0 \& 1.6 \& 2.2 \\
\hline \& 2 \& 86 \& 73 \& 81 \& 84 \& \(\begin{array}{r}73 \\ 79 \\ \hline\end{array}\) \& 80
40 \& 180

53 \& $\begin{array}{r}170 \\ 17 \\ \hline\end{array}$ \& $\begin{array}{r}377 \\ +38 \\ \hline\end{array}$ \& 70
51 \& 61
15 \& 67
34 \& 2 \& 1.5 \& $\underline{2.1}$ <br>
\hline \& Living room \& 85 \& ${ }_{6}^{29}$ \& 42 \& 58
83 \& ${ }^{19} 6$ \& 70 \& 53
80 \& $\stackrel{17}{59}$ \& 70 \& 75 \& 52 \& ${ }_{63} 8$ \& 28 \& .7 \& 1.6 <br>
\hline 2 \& Wathroom- \& ${ }_{04} 9$ \& 67 \& 78 \& 86 \& 64 \& 70 \& 80 \& 61 \& 72 \& 73 \& 57 \& 67 \& 3.3 \& . 4 \& $\pm$ <br>
\hline 2 \& Wasliroom \& 91 \& 72 \& 84 \& 86 \& 71 \& 81 \& 82 \& 70 \& 176 \& it \& 60 \& 70 \& 2.4 \& 1.6 \& 1.8 <br>
\hline
\end{tabular}



1 Average temperature 60 inches above the floor. : Taken at floor grill (overflow heat from first floor).
${ }^{3}$ Thernocouple located 42 inches instead of 36 inches above the floor. - Register shut off.

| House | Rnom | A yerage dry-bulb temperatures |  |  |  |  |  |  |  |  |  |  |  | A verage temperature differentials between air 3 inches above floor and 1 inch below celling per foot of helght |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 Inch below ceiling |  |  | 60 fuches above floor |  |  | 36 inches above floor |  |  | 3 Inches above foor |  |  |  |  |  |
|  |  | Maximum | Mini- | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | Maximun | Minlmum | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | Maximurn | Minimum | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | Maxi- mum <br> mum | Mini- mum | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | $\begin{aligned} & \text { Maxi- } \\ & \text { mum } \end{aligned}$ | Minlmum | $\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$ |
|  | Most-used rooms: | ${ }^{\circ}{ }^{5}{ }^{4}$ | ${ }^{0} \mathrm{~F}_{\dot{\mathrm{j}} 2}$ | ${ }^{\circ}{ }^{\text {F }} 7$ | ${ }^{\circ}{ }^{73}$ | ${ }^{\circ} \mathrm{F}_{71}$ | ${ }^{\square} \mathrm{F}_{72}$ | ${ }^{\circ} \mathrm{F}_{\mathbf{7 2}}$ | ${ }^{-1} F^{70}$ | ${ }^{-} F_{71}$ | ${ }^{\circ} \mathrm{F}_{67}$ | ${ }^{-}{ }^{-}$ | ${ }^{-1}{ }^{6}$ | ${ }^{\circ} \mathrm{F}$ - 86 |  | - 0 0.86 |
| 2-R............ | .-do. ${ }^{\text {dot. }}$ | 82 | 74 | 79 | 82 | 72 | 76 | 77 | 71 | 73 | ${ }^{69}$ | ${ }^{63}$ | 65 | 24 | 1.5 | 1.9 |
| 4-R |  | 79 | 70 | 74 | 77 | ${ }_{67}^{69}$ | 73 78 | 85 | 67 67 | 71 | 71 80 80 | ${ }_{64}^{64}$ | 67 | 1.3 | $\stackrel{5}{4}$ | 1.9 |
| ${ }_{6}^{5-\mathrm{N}}$ - |  | 89 <br> 85 <br> 8 | 67 73 | 78 | $\begin{array}{r}87 \\ 85 \\ \hline 8\end{array}$ | 72 | 78 | 85 80 | 67 70 | 75 | ${ }_{72} 8$ | 64 | ${ }_{68} 8$ | 1.4 | .8 | 1.3 |
| ${ }_{7-\mathrm{R}}$-1..... | do. | 78 | 73 | 75 | 77 | 72 | 74 | 74 | 69 | 71 | 70 | 64 | 66 | 1.6 | . 6 | 1.1 |
| 8-R.a...-.-. | -...do......-...-... | 82 | 65 | 76 | 79 | 65 | 73 | 76 | 63 | 71 | 70 | 01 | 67 | 1.7 | . 5 | 1.1 |
| 1-12.........- | Frequently used rooms: Living roan. |  |  |  |  |  | 71 | 71 | 70 | 71 | 67 | 65 | ${ }^{66}$ | . 74 | . 61 | . 74 |
| 2-R.-......... |  | 73 | 67 | 71 | 73 | ${ }^{66}$ | 70 | 71 | 63 | 68 <br> 7 | 63 73 | ${ }_{60}^{55}$ | 59 70 | 20 | 1.1 | 1.6 |
|  | Dining room | 87 84 84 | 70 77 | 77 80 | 84 81 81 | 69 75 | 76 79 7 | 80 78 | 68 72 | 73 <br> 75 | 73 73 | 60 67 | 70 70 | 2.0 1.9 | 1.4 | 1.3 |
| 6-N........- | -...-do.... | 88 | 71 | 84 | 75 | 69 | 72 | 73 | 67 | 70 | 69 | 63 | 66 | 1.4 | . 4 | .9 |
|  | $\cdots$ | 71 | 71 | 71 | 71 | 70 | 70 | 69 | 65 | 68 | 67 | 65 | ${ }^{66}$ | . 8 | . 5 | .$_{6}{ }^{*}$ |
| 8-R............. | Music room. | 77 | 66 | 73 | 77 | 65 | 72 | 76 | 64 | 71 | 72 | 62 | ${ }_{68}^{68}$ | .$^{8}$ | , 5 | . 6 |
| - |  | 76 | 74 | 85 | 76 86 | 74 76 | 75 <br> 81 | 72 78 | 70 | 71 75 | ${ }_{71}^{67}$ | 65 65 | 66 <br> 68 <br> 89 | 1.0 | .88 | 2.10 |
| -R-R.-........- |  | 86 | 71 | 77 | 81 | $\begin{array}{r}\text { - } 68 \\ \hline \quad 6\end{array}$ | 85 | 78 | 65 | 71 | 72 | 62 | 67 | 1.8 | .7 | 1.3 |
| 5-R.-.-....... | Kitchen. | 88 | 71 | 77 | 80 | 70 | 75 | 77 | 69 | 73 | 74 | 66 | 70 | 23 | . 3 | ${ }^{8}$ |
| G-N........... |  | 95 | 84 | 89 | 90 | 80 | 85 | 81 | 74 | 77 | 77 | ${ }_{64}^{69}$ | 73 | 27 | $\begin{array}{r}1.7 \\ \hline\end{array}$ |  |
| 7-R |  | 79 | 69 | 72 | 78 | 68 | 71 | 75 70 | 67 58 | 70 65 | 69 66 | 64 50 | 66 62 | 1.3 .6 | .$_{3}$ | . 5 |
| 8-R.-........ |  | 70 | 60 | 60 | 70 | 60 | 65 | 70 | 59 | 65 | 60 | 56 |  | . 0 | . 3 |  |

Table 7 -Outside temperatures, vind velocity, heating equipment, average dry-bulb temperatures at various heights above the floor, and average temperature differentials in the most frequently used rooms of the improved houses


[^13]Tames S-Outside temperatures, wind velocity, heutho equipment, a cerage dry-buld tentperatures at various heights above the floor, and average temprature differntials in the bedrooms and miscellancous rooms of the improved houses

| House | Room | Averige dry-bulb temperatures |  |  |  |  |  |  |  |  |  |  |  | A verage temprature differentlals between air 3 Inehes above lloor and 1 tnech below coiling per foot of height |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 inch below ceilling |  |  | co inches above tloor |  |  | 30 inches above foor |  |  | 3 Inches above floor |  |  |  |  |  |
|  |  | Maxi- | Mins- mun | $\begin{aligned} & \text { Aver- } \\ & \text { phe } \end{aligned}$ | Maxlnum. | Mini- | $\begin{aligned} & \text { Arer- } \\ & \text { age } \end{aligned}$ | Maxt | Miulmum | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | Maximum | Mint- <br> mum | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | MaxiHum | Mint- mun | $\begin{gathered} \text { Aver } \\ \text { Hage } \end{gathered}$ |
|  | nedroom: | ${ }^{\circ} \mathrm{F}_{7}$ | 70 |  |  |  |  | ${ }^{\circ} \mathrm{F}_{71}$ | ${ }^{\circ} r_{70}$ | ${ }^{-7} 70$ | ${ }^{\circ} \mathrm{F}_{67}$ |  | gis | ${ }^{\circ} \mathrm{F} .71$ | ${ }^{0} \mathrm{~F}_{0.40}$ | ${ }_{0}{ }_{0}$ |
| -1-R2 | 2 | 72 | 70 | 71 | 72 | 70 | 71 | 71 | 69 | 70 | 67 | 6 | 60 | . 74 |  | - 01 |
| 1-R | d | 69 | 07 | 98 | ${ }_{69}$ | ${ }_{69}^{67}$ | ${ }_{69} 6$ | 68 | ${ }_{0}^{0}$ | 67 | 65 | 6 | ${ }_{60}^{65}$ | - 34 | $\xrightarrow{.37}$ | $\begin{array}{r}37 \\ -25 \\ \hline\end{array}$ |
| $\frac{1}{2}$ | 1 | 71 | 97 | 67 | 71 | 64 | 67 | ${ }_{69}$ | $0_{3}$ | 6 | 63 | 57 | 59 | 1.2 | S | 1.0 |
| 2 | 9 | 80 | 71 | 74 | 7 | 70 | 73 | 74 | 6s | 72 | 67 | 61 | 65 | 1,4 | . 9 |  |
| 2-R | 3 | 58 | 50 | 54 | 56 | 51 | 54 | 55 | 50 | ${ }_{5}^{33}$ | 53 | 47 | 50 | . 67 | 1 | . 5 |
| 4-R | 1 | ${ }_{6}^{68}$ | 4 | 58 | 68 | 4 | 5 | 60 | 35 ; | 5 | ${ }_{63}$ | 43 | 54 | $\cdots$ | . 13 | 4 |
| $4-\mathrm{R}$ | 3 | 70 | (1) | 4 | 70 | 39 | ${ }^{13}$ | 67 | 58 | 62 | 65 | 57 | 60 | . 9 | +14 | . 6 |
|  |  | 79 | 67 | 73 | 78 | 60 | 72 | 76 | 65 | 70 | 3 | 62 | 67 | 1.7 | . 3 | . 8 |
| $5-\mathrm{R}$ | 2 | 75 | 61 |  |  | 36 | 08 | 74 | 53 | cs | 71 | 47. | 6 | 1.6 | 3 |  |
| $5-\mathrm{R}$ | 3 | 72 | 52 | 63 | 71 | 51 |  | 70 |  | 0 | 010 |  | 57 |  | -1 |  |
|  | 4 | 74 | 60 | ${ }_{6}^{64}$ | 71 |  |  | 60 |  | 00 |  | 52 | ${ }_{64}^{45}$ |  | 3 |  |
|  | 3 | 70 | 62 | 67 | 70 | ${ }_{67}^{69}$ | 67 | ${ }_{69}^{69}$ | 0 | ${ }_{67}^{68}$ | 07 | ${ }_{6}^{55}$ | $\stackrel{64}{65}$ | 1.0 | 1 | 1.0 |
|  | 2. | 71 | 68 | 70 | 70 | 67 | ${ }_{68}$ | 69 | ${ }_{60}^{6}$ | $\stackrel{67}{68}$ | 6 | 63 45 | ${ }_{50}^{65}$ |  | . 6 |  |
| 8-R | ]. | ${ }_{73} 8$ | 65 | 70 | 73 | 65 | 70 | 72 | 68 | 70 | 69 | 03 | 67 | .6 | . 3 | + 3 |
| 8-R.... |  | 75 | 73 | 74 | 75 | 74 | 74 | 75 | 73 | 74 | 70 | 69 | 69 | . 0 | .5 | . 6 |
| 8-12. | 4 | 71 | 70 | 70 | 72 | 30 | 71 | 71. | 69 | 70 | ${ }_{7} 8$ | 65 | 67 | ${ }^{5}$ | .3 |  |
| 8-12..... |  | 77 | 72 | 75 | 74 | 72 | 76 | 76 | 71 | 75 | 77 | 68 | 67 | . 98 | 0 | . 86 |
| $1-\mathrm{R}$ | Washroom | 74 | 72 | 73 | 72 | 72 | 72 | 73 | 71 | 72 | 6 | 67 | [S5 | -74 | .40 | .61 |
| 2-R. | Bathroom. | 84 | 74 | 79 | 81 | 72 | 77 | 77 | 71 | 74 | 49 | 01 | 67 | 20 |  | 1.6 |
| 4-R. | Offico. | 88 | 69 | 75 | 83 | © | 73 | 77 | 65 | 70 | 73 | 60 | 6 | 20 | $\cdot 4$ | 1.2 |
|  | Rear entry | 83 | 70 | 76 | 77 | ${ }_{6} 8$ | 72 | 75 | a | 69 | 72 | 60 | 65 | 2.0 | $\cdot 7$ | 1.4 |
| 4-R | Hall (first fioor) | 71 | 58 | 63 | 69 | 5 | 4i | 68 | 54 | 60 | 64 | 52 | 58 | 1.0 | 4. |  |
| +-R | Hall (second floor) | 73 | 55 | ${ }^{103}$ | 72 | 54 | 62 | 71 | 54 | ${ }_{70}^{62}$ | $\frac{49}{73}$ | ${ }_{6} 51$ | 60 | 8 | ${ }^{13}$ |  |
| 4-R. | Bathroon. | $\begin{array}{r}74 \\ 81 \\ \hline\end{array}$ | 67 | 78 | 83 | ${ }_{6}^{68}$ | 75 | 13 81 |  | $\begin{aligned} & 70 \\ & 74 \end{aligned}$ | 76 | 65 | 69 | $\stackrel{8}{8}$ |  | - |
| 5-R | V . shroo |  | 69 | 74 | 79 |  |  | 78 | 68 |  |  |  |  | 1.7 | . 5 | . 9 |
| 5-3 | B. hroou. | 86 | 67 | 78 | 86 | 65 | 78 | 82 | 67. | 76 | 44 |  | 72 | 1.0 | . 4 |  |



Tabre 0.-Atcrage temperaturas of wall, floor, and cciling surfaces ${ }^{3}$ and the air adjacent to these surfaccs in regularly heated rooms of the unimproted houses


TInless otherwise indicated exterior walls are constructed as follows: Bevel siding, building paper, and 1 -incl wood sheathing on exterior 2 by 4 studs; wood lath and plaster on interior. Floors are duble wood floors or subllooring covered with linoleum with no ceiling wist single foor pad partially heated room above. Interior partitions are wood plaster with single floor and partaliy heated room above. Thterior dartent.
2 The inaximum wind velocity recorded during the time readings were taken was 21 m. p. h.
${ }^{3}$ Average temperature 60 inches above floor.

- Exterior wall: Stucco on wood lath backed by b-inch insulation board (wood sheathing) on 2 by 4 studs; wood lath and plaster on interior
${ }^{5}$ Exterior wall: Bevel siding on 2 by 4 studs, no sheathing; wood lath and plaster on interior.
6 Floors, single.
- Area above unheated

Floors, double, covered with linoleum.

- No warm-air register in kitchen.

10 Floors, single, covered with linoleum, unhented space underneath.
${ }^{11}$ Floors, single, unheated basement.
${ }_{12}$ Floors, double, covered with linoleum, unheated basement
${ }^{13}$ Fxterior wall: T wo layers of bevel siding with building paper between on exterior; wood lath and plaster on interior.
${ }^{14}$ Floors, double, unheated space underneath. inside of studs, 1 -inch furring strips, wood lath and plaster.
inside of studs, 1 -inch furring
${ }^{15}$ Exterior wall: Split logs, verifeal, 2 layers of buildint paper; 1 -inch furring strips, 14-inch boxboard on interior.

Tabit 10-Average temperatures of wall, floor, and ceiling surfaces ${ }^{2}$ and the wir adjacent to these surfaces in tegularly heated roons of improved houses

| House | Room | Outside temperatures: |  |  | Aver-agetemper-aturediffer-ence be-twennsidu $3 n d$outsideair | Method of heating and cooking equipment | Average temperature- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum | Minimunt | Averuge |  |  | 60 -inch level |  |  | Air 3 inches above floor | Fioor surface | Air 1 <br> inch <br> below <br> celling | Ceiling surface |
|  |  |  |  |  |  |  | Air | Inside surface of ex- terinr walls | Surface of in terior partitions |  |  |  |  |
|  |  | $F$ | $F$ | $F^{+}$ | ${ }^{\circ} \mathrm{F}$ |  | $\bigcirc$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{0} \mathrm{~F}$. | - F | $F$ | ${ }^{\circ} \mathrm{F}$ | $F$ |
|  | Sliving room, ....... | 25 | 92 | 24 | 47 | Gravity wartu air 2 . .-........... -........... |  | 69 | 70 |  | 04 |  | $\therefore 71$ |
| 1-12 | Dining room......-. | $\stackrel{25}{95}$ | 21 | 23 | 49 |  |  | 67 | 71 |  |  |  |  |
|  | Fitchen | 25 | 21 | 23 | 49 | Gravity warm atr; electric rauge. $\quad . . .+$ \| | 72 |  | 73 | 60 |  | 75 |  |
|  | Siving room. .-..... | 31 | 11 | 24 | 46 | Gravity warm air | 70 | +65 | 65 | 65 | ${ }^{58}$ | 71 | 67 |
| 2-1. |  | 32 | 12 | $\therefore 24$ | 52 |  | 70 | 172 | 73 | 65 | 607 | 79 | 74 |
|  | Kitchen-...-...--- | 31 | 13 | 24 | 57 | Gravity warm nir; gas range.....-.-...-*-*- | 81 | 65 | 71 |  | ${ }^{6} 69$ | 85 | 780 |
|  | SLiving room....-.-- | 40 | 13. | 27 | 46 |  |  | 69 | 71 | 67 |  | 74 | 70 |
| R. | $\left\{\begin{array}{l}\text { Ofice } \\ \text { Kitchen } \\ \text { - }\end{array}\right.$ | 40 | 13 | 27 27 27 | 49 | Forced warmair; electric range | 73 70 | 69 | 68 | 68 68 | $\begin{array}{r}68 \\ \hline 69\end{array}$ | 75 | 72 |
|  | (Living room-m......-- | 42 | 15 | 25 | 51 | Gravity warmair, booster fan. | 76 | 71 | 74 | 68 | 169 | 77 | 72 |
| 5-R. | Dining room....... | 42 |  | 25 | 51 | -.-_do | 76 | 72 | 74 | 70 | 70 | 77 | 73 |
|  | Kitchen .............. | 40 | 10 | 23 | 49 | Gravity warm air, booster fan; electric range | 77 |  |  | 70 | 873 | 77 | 76 |
|  | Llving room. | 36 | 9 | 23 | 54 | Gravity warm air |  | ${ }^{3} 65$ | 74 | 68 | 60 | 78 | 73 |
| O-N. | Dining room. | 35 | 10 | 24 | 55 | ...do........... | 70 | 971 | 78 | 70 | 60 | 80 | 77 |
|  | Kitchen............. | 36 | 10 | 24 | -61 | Gravity warm air; wood range..........-*- | 85 | $\bigcirc 77$ | 84 | 73 | 74 | 89 | 85 |
|  | Living room......... | 60 | 10 | 33 | 41 | Forced warm air.......-....................... | 74 | 63 | 72 | 66 | 66 | 75 | 72 |
| - -12 | Dining room. | 80 | 16 | 32 | 40 | - do ......... |  |  | 69 | 006 | 65 | 74 | 70 |
|  | Kitchen.. | 44 | 20 | 32 | 39 | Forced warm air: electric range | 71 | 60 | 70 | . 60 | 65 | 72 | 69 |
|  | Living room | 45 | 3 | 23 | 50 | Forced warmi air, .-............................. | 73 | 69 | 72 | 67 | 66 | 76 | 73 |
| \&-R | Dining room. | 19 |  | 12 | 58 | m-.-do...n- |  | 65 | 70 | 06 | 60 | 71 | 68 |
| 8-R.... | Music room | 45 | 1 | $\cdots 2$ | 50 |  | 72 | 68 | 71 | 68 | 66 | 73 | 70 |
|  | Kitchen.: | 46 | 4 |  |  | Forced warm air; electric range............- |  | 59 | 63 | 62 |  | 66 |  |

[^14]${ }^{3}$ Average temperature to inches above floor.
${ }_{3}$ No sheathing.
${ }_{6}^{3}$ Floors, slingle.
TVneated storage above; roof insulated w

- Exterior wall: 6 -inch stone vencer, $1-\mathrm{inch}$ wood sheathing, 2 by 4 studs; 2 inches blanket insulation, gypsum lath, plaster.



[^0]:    ${ }^{5}$ Submitted for publicntion Mny 18, 1049.
    ${ }^{5}$ Acknowledgment is made of adrier and assistance given lig F. W. Duffee, chatrman, umb S. A. Witzel, professor, bepartment of Agracollural bigineering, ( 0 ollge of Agriculture, University of Wisconsin; and to d. G. Meyer, formerly of the Department of Agrientural Engineering, College of Agritulture, University of Wisconsin, O. E. Brunkow, formerly assochite architent, and O. S. Shivers, formerly agent, Division of Farm Ibuitdings and Rural Fousing, Buramu of Plant Indastry, Sobls, and Ayricultaral Fingincering, for their :issistance fon conducting the investigntions.

[^1]:    ${ }^{3}$ Then the Burean of Agrienltural Dngineming.
    'Smons, J. W., find Laniond, F. B. Factors affecting tempfratubes in
    
    *Amenichs Socthry of finarino and Fexthating bxarnlerq. meating, ven-
     1947. (See D. 2t4.)

[^2]:     Mish. 103t.

[^3]:    

[^4]:     tha foside tetuperatare of $70^{\circ} \mathrm{b}$. (at the to-inelo level) and and outside termperathe of $-15^{\circ} \mathrm{b}$. were assmond. Only thase rooms that were actually heated regularly or bensinnaly were forluded in the cnlentations.

[^5]:    faysoment iralls--Stome, is inches thick. (combition, goot.
    Extcriof tralls.-Womi siding, wool shesthing, buinhoy paper, 3-s fuctes of mintal wool, vaporphoof maner, wisum lath, and phater iexeegt in beflroons No. 1 and No, and suthe halh, where there is no insuhtion and the interim tinish is phaster the wood bath). ('ondition, noxk
    
     binle, and second stery. Condition, grod.

[^6]:    Exterior walls.-First story : Bevel siding, building paper, and 1 -inch square-edged sheathing on the outside; 2-by 4 -inch studs, gypsum lath, and plaster on the inside, $3 \%$ inches of mineral wool insulation In stud spaces. Second story: berel siding, building paper, and 1 -inch square edse sheathing on the outside, 2 - by 4 -fuch studs, $1 / 2$-inch fiber-insulating plaster base, und grpsum plaster on inside.

[^7]:    Roof.-Wood shingles and metal decking on 1 -inch wood sheathing over sunroom and washroom. Wood shingles on spaced shlngle lath on main roof, with the north slope coyered with asphalt shingles.

    Insulation.-See walls and ceilings.
    Windows.-Wood, double huag, except Nos. 2 and 3. Fit, good. Weatherstripping, all windows. Storm sash, all windows.

    Fiaterior doors.-Wood, paneled. Door B upper panels glazed. Fit, good. Weatherstrpphig, none. Storm doors, doors $A$ and $B$.
    eciliny heights.- Same as before remodeling, see page 2 y .

[^8]:    Foundations.-Stone. Condition, poor.
    Exterior toalls.-Main part: Two layens of lanped siding with building paper between on the outside; 2-by 4 -inch studs, wood lath, and plaster on the insitle, with "\$-ineh beaded ceiling wainseot 3 feet high in the din-

[^9]:    F'loors.-First story, double floors except in entry. Second story, single thoors throughout.

    Ceilings.-Wood lath and plaster. Conditlon, good.
    Rtsof.-Wood shingles on spated shingle lath. Condition, geod. Insulation.-None.
    3Fintows.-Wood, double hung, Fit, fuir. Storm sash, fill but Nos.
    1 and 8 . Weatherstripping, none.
    Doors.-Wood-pancled. Fit: Poor, A, B, and D; fair, O.
    Geiling heights.-First story, 9 feet. Second story, 7 feet 9 inche's.

[^10]:    - Far purpores of discussion, outside iemperatures have been abitrarily gromped at follows:
    (ohl wenther - outside dry-bulb temperatures below $11^{\circ} \mathrm{F}$.
    Modecately cold weather - outsite dry-bunt temperathres in to $30^{\circ} \mathrm{F}$.
    

[^11]:     Amer. Statis. Assoc. Joar. (N. S.) 24:3S6-397, illus. 1929.

[^12]:     were used.

[^13]:    A A verage temperature 00 inches above the floor.

[^14]:    1 Unless otherwise fidicuted exterior walls are constructed as follows: Bevel siding, 1 -inch wod sheathing on exterior, 2 by 4 stud space filled with insulating material; gypsum or wood lath and plaster on interior. Floors are double wood floors or subflooring covered with linoleum with no ceiling underneath with partially heated basement below. Ceild room above. merior partions are lath and plaster on both sides with heated room adjacent *The maximum wind velocity recorded during the time records were taken was 27 m. p. h.

