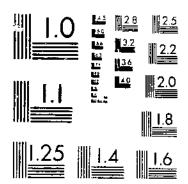


The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.


Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A TECHNICAL BULLETIN No. 12

OCTOBER, 1927

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C.

FERTILIZER TESTS WITH FLUE-CURED TOBACCO

 By E. G. MOBS, Agronomist, Office of Tobacco and Plant Nutrition, Bureau of Plant Industry, and Assistant Director, Tobacco Branch Station, North Carolina Department of Agriculture; and J. E. MCMURTREY, jr., Assistant Physiologist, W. M. LUNN, Assistant Agronomist, and J. M. CARR, Agent, Office of Tobacco and Plant Nutrition, Bureau of Plant Industry

THE TESTS REPORTED IN THIS BULLETIN WERE MADE BY THE UNITED STATES DEPARTMENT OF AGRICULTURE IN COOPERATION WITH THE NORTH CAROLINA DEPARTMENT OF AGRICULTURE, THE VIRGINIA AND NORTH CAROLINA AGRICULTURAL EXPERIMENT STATIONS, THE GEORGIA STATE COLLEGE OF AGRICULTURE, AND THE GEORGIA COASTAL PLAIN EXPERIMENT STATION

CONTENTS

. Pa	age (Page
Introduction Experimental data Location of tests and types of soil used Weither conditions Methods followed in conducting tests Tests at Chatham, Va Tests at Chatham, Va Tests at Chatham, N. C Tests at Oxford, N. C Tests at Oxford, N. C Tests at Timmonsville, S. C	1 3 0 11 13 14 17 25 26	Experimental data—Continued. Tests at Tifton, Ga	28 33 34 35 40 48 48

INTRODUCTION

The land now used for growing bright or flue-cured tobacco in the United States covers an area of approximately three-quarters of a million acres and produces, in round numbers, a little more than half a billion pounds, or more than one-third of the total tobacco production of the country. There is considerable fluctuation in the total number of pounds produced from year to year, owing largely to the demands of the market or the prices of the preceding year, but also to a considerable extent to the seasonal conditions. During the last quarter of a century there has been a rapid increase in the demand for flue-cured tobacco in the manufacture of cigarettes and for export, and this has been largely responsible for stimulating the production of this particular type of tobacco.

The use of fertilizers in the growing of flue-cured tobacco has been a general practice among tobacco growers for many years. The

51290°—27—-1

proper use of the various fertilizing materials employed in the production of this type of tobacco has been and still is a much-discussed subject. Figures are not available as to the total fertilizer tonnage used for bright tobacco, but probably the quantity used for tobacco ranks close to the number of tons used for the cotton crop grown within the bright-tobacco territory. As this type of tobacco is usually grown on the rather weak light types of sandy soil in this section, a liberal quantity of the proper fertilizing materials must be applied in order to produce the desired quality; but an excess of fertilizer, especially one high in ammonia, should be avoided, as such fertilization often produces an undesirable grade of tobacco. In order, therefore, for the grower to obtain the largest returns from the tobacco crop, yield and quality must belance. In other words, too small a quantity of fertilizer gives low yields, but a heavy application may injure the quality.

Flue-cured tobacco is grown in the southern part of Virginia, in the north-central and eastern sections of North Carolina, in the eastern section of South Carolina, in southern Georgia, and in northern Florida. The territory of southern Virginia and northcentral North Carolina, in the Piedmont section, is commonly known as the "old belt," whereas the size used in growing tobacco in the Coastal Plain section of the Carolinas and Georgia is known as the "new belt." The old belt covers that portion of the Piedmont section which includes the lower tier of counties of south-central Virginia and the two upper tiers of counties in the north-central portion of North Carolina. A large percentage of the total production for this section borders along the North Carolina-Virginia State line. The new belt includes practically all the section directly east of Warren, Franklin, and Wake Counties, N. C., extending almost to the coast in some places, and includes also the greater portion of that section south and southeast of Raleigh. Wilson, N. C., is near the center of production for this section and is the largest loose-leaf tobacco market in the country. Marion, Horry, Dillon, Darlington, Florence, Lee, Sumter, Clarendon, and Williamsburg are the principal tobacco-producing counties of South Carolina. In recent years tobacco growing has become of considerable importance in several counties of the southern part of Georgia and a few counties in northern Florida. The principal area of production in Georgia, however, centers around Coffee County.

In general, the differences between the tobaccos of the old belt and the new belt are mainly due to the differences in the types of soil upon which each is grown. The soils of the Piedmont section are residual in character, having been formed by the gradual disintegration of the underlying rock. Most of the soils in this section are clayey, but some are more or less sandy, and the sandy type, as a rule, produces the best type of bright tobacco. In the Coastal Plain section, or new belt, the soils are sedimentary or transported, having been brought down by the streams from the mountains or hill country to the west, and deposited in the sea, which at that time covered this entire area. A large percentage of the soils in this part of the tobacco belt belong to the more sandy types of soil of the Norfolk series and when naturally well drained are considered good soils for growing tobacco. It may be well to mention here that care should be taken to avoid the unusually deep types of sandy

soil, as they do not retain the soluble plant-food materials, especially during seasons of heavy rainfall. Tobacco soils of either the Piedmont or Coastal Plain sections should have a rather sandy or sandyloam somewhat incoherent topsoil to a depth of 6 to 10 inches underlain by a sandy, sand-clay, or clay subscil. Such soils, of course, are usually more or less deficient in plant-food supply, especially nitrogen, and naturally they contain little organic matter.

Prior to the Civil War it was a common practice among tobacco farmers, especially those of the old belt, to clear new lands every year or so, in preparation for the tobacco crop. In that period the newly cleared lands generally produced a grade of tobacco which commanded a relatively high market value, and the same holds true even at the present time. As this practice of clearing new lands continued from year to year, the forest or wooded areas in time became limited, so that during the last half century tobacco growers have been forced to return to the older cultivated areas. The older fields were more or less deficient in plant nutrients and organic matter, so it became necessary to supply these artificially in the form of commercial fertilizers and manure. The importance of the plant-food elements furnished by commercial fertilizers will be considered more fully in the later pages of this bulletin.

EXPERIMENTAL DATA¹

LOCATION OF TESTS AND TYPES OF SOIL USED

During the last few years experimental work has been in progress at several widely separated stations to determine the effects of the various forms and rates of application of fertilizers on the yield and quality of tobacco. This work has been conducted by the Bureau of Plant Industry in cooperation with the North Carolina Department of Agriculture, the Virginia and North Carolina Agricultural Experiment Stations, the Georgia State College of Agriculture, and the Georgia Coastal Plain Experiment Station. The experiments have been conducted at three points within the Piedmont region and at a like number in the Coastal Plain territory.

The locations are as follows: 3 miles north of Chatham, Pittsylvania County, Va.; 1 mile southwest of Oxford, Granville County, N. C.; 4 miles south of Reidsville, Rockingham County, N. C.; 1 mile west of Timmonsville, Florence County, S. C.; 2 miles southwest of Manning, Clarendon County, S. C.; 2 miles northwest of Tifton, Tift County, Ga.

The soils of the different counties in which the fertilizer tests have been conducted in the flue-cured district have been classified by the Bureau of Soils, and a brief description of the soil type used at each location is given herewith.

The soils on which the experimental plots are located near Chatham, Va., belong to the gravelly fine sandy loam or "gray lands" of the Cecil series. When dry the surface soils vary from a gray to yellowish gray, but when wet the color is somewhat brown or reddish brown. The topsoil is a fine sandy loam with an abundance of small

¹ Credit is due the following-named individuals for portions of these data, as indicated: R. P. Cocke, of the Virginia Agricultural Experiment Station, for results at Chatham, Va., for 1910–1912; J. C. Hart, formerly of this office and the Virginia Agricultural Experiment Station, for results at Chatham for 1913 and 1914 and at Tilton, Ga., for 1922-1925; E. H. Mathewson, formerly of this office, for results at Reldsville, N. C., for 1912-1921; Zack J. McKinney, formarly of this office, for results at Reldsville, O. Thomas, of this office, for a portion of the results at Tilton for 1925 and 1920; J. P. Young, of this office, for results at Timmonsville and Manning, S. C.

TECHNICAL BULLETIN 12, U. S. DEPT. OF AGRICULTURE

quartz gravel to a depth of 8 to 10 inches, and is underlain by a rather stiff or brittle red-clay subsoil for a depth of 3 or more feet. This is not generally considered the best type of soil in this section for growing tobacco, but it represents the character of soil on which most of the tobacco is grown in this part of the State and covers about 16 per cent of the total area of Pittsylvania County. Although the Cecil series are usually well supplied with potash, the total nitrogen is somewhat deficient.

 TABLE 1.—Chemical analysis of soil from unfertilized plot, Durham course sandy loam, North Carolina Tobacco Branch Station, Oxford, N. C.

[Sampla No. 2589, plot No. 9, surface soil to a depth of 624 inches, weighing 2,000,000 pounds per sere. Analysis by North Carolina Agricultural Experiment Station]

Plant-food constituents	Percent- age of con- stituents	Quantity of constitu- onts per acre (pounds)
Nitrogan (N) Phosphoric noid (P ₂ O ₅) Potash (K ₂ O) Lime (CaO)	0. 030 . 052 . 276 . 128	000 1, 040 5, 520 2, 560

Although of residual origin, the soils of the tobacco experiment station near Oxford, N. C., are sandy in character and contain little organic matter. The soil is derived mainly from granite composed chiefly of quartz and feldspar. All of the fertilizer tests in the general series (Table 10) and the potash-magnesia plots (Table 12) are located on the Durham coarse sandy loam. The open, porous, quartzlike topsoil consists of a gray to vellowish gray and sometimes whitish coarse sandy loam to a depth of 8 to 15 inches, and is underlain by a yellow to pale-yellow heavy, coarse sandy-loam subsoil which grades rather abruptly into a coarse sandy clay, becoming somewhat mottled in places. About 13 per cent of the soil area of the county belongs to this particular type. Table I shows the chemical analysis of the surface soil from an unfertilized area in proximity to the general fertilizer and the potash-magnesia test plots. The hydrogen-ion concentration of the soil from the fertilizer-test plots in the general series is shown in Table 2. The unfertilized plots on each field were sampled and a composite sample made for each field. The samples from the ends of the plots to which dolomite had been added were kept separate from the ends receiving no dolomite. These samples were taken and determinations made electrometrically in the spring of 1926.

TABLE 2.—Hydrogen-ion concentration of soil from unfervilized plots with and without addition of dolomile, Durham coarse sandy loam, North Carolina Tobacco Branch Station, Oxford, N. C.

[Sampled and analyzed by L. G. Willis, soil chemist, North Carolina Agricultural Experiment Station]

Field No.	No dolamite	Dolomito
2	5.98	7.38
3	5, 76	7.38
	5,66	7, 24

The special potash tests (Table 11) are located on the Durham sandy loam, and are situated on a different part of the farm from that occupied by the general fertilizer and the potash-magnesia plots. The topsoil consists of a light to yellowish gray, rather porous, sandy loam to a depth of 8 to 10 inches and is underlain by a 4 or 5 inch stratum of rather heavy, light-colored soil, which passes into a heavy yellow sandy loam to sandy clay, which may be mottled in some areas. Durham sandy loam is derived almost entirely from granite rock and when naturally well drained is considered one of the best types of soil in Granville County for growing tobacco. The Durham sandy loam occupies a little more than 6 per cent of the total soil area of Granville County, but is probably the most widely distributed of the Durham series.

The soil near Reidsville, N. C., on which the various fertilizer tests (Tables 8 and 9) with tobacco were located for a number of years, is of about the same general character as the soil described above for the special potash tests at Oxford. During the earlier period, beginning in 1912, tests with fertilizer (Tables 6 and 7) were conducted on another field, the soil of which belongs to the Cecil series and is similar in character to the soil of the experimental field at Chatham.

The soil on which the tobacco experimental work has been conducted at Timmonsville, S. C., has been classed as Norfolk sandy loam. The topsoil varies from a medium to a rather coarse gray sand to loamy sand for a depth of 4 to 6 inches and is underlain by a pale yellowish loamy sand to sandy loam of about the same texture, which extends to a depth of 10 to 20 inches, then passes rather abruptly into a light and sometimes mottled sandy clay. Norfolk sandy loam is the predominating type of Florence County, and the Norfolk series represents most of the soils of this entire section.

The soil used in the tests in Clarendon County, S. C., is of the same general character as that on which the plots are located at Timmonsville, differing from the latter mainly in degree of fineness of both the surface and the subsoil. The soil of the experimental field near Manning is of a somewhat finer texture than the soil at Timmonsville and has been classified as Norfolk fine sandy loam. The field is practically level, but well drained, and varies from 15 to 20 feet above the normal water level of the near-by streams. About 9 per cent of the soils of Clarendon County belong to the Norfolk fine sandy-loam type.

The soil of the experimental fields at the Coastal Plain Experiment Station, Tifton, Ga., is fairly uniform in general character and is slightly rolling. It is a grayish, rather coarse, incoherent soil which easily absorbs water. On account of the topography of the land and the open character of the soil, there seems to be little necessity for artificial drainage. In a survey made of the fields occupied by the various tobacco-fertilizer tests the soil has been separated into two types, namely, a light-phase Tifton sandy loam and a heavyphase Norfolk sandy loam. The Tifton sandy-loam type of soil covers more than half the area of Tift County, whereas the Norfolk sandy loam occupies only about 11 per cent of this area. The surface soil of the typical Tifton sandy loam is a gray, medium to coarse, sandy loam for a depth of 6 to 12 inches and carries considerable quantities of iron gravel or concretions. At a depth of 6 to 12 inches below the surface the subsoil consists of a yellow or orange-yellow and sometimes rather sticky sandy clay. A small quantity of iron concretions is often found in the subsoil. The Norfolk sandy loam at this location is a heavy phase of about the same characteristics as those described for the soil used at Timmonsville, S. C. The principal difference between the Tifton and the Norfolk sandy loams in this particular area is the presence of iron concretions in the former. The soil of the experimental fields as a whole is in reality of an intermediate type bordering between the more typical Tifton and Norfolk sandy loams, and there might well be differences of opinion as to the series to which the soil properly belongs. Too much importance, therefore, is not to be attached to distinctions made in the classification of different parts of the experimental field.

Tobacco-fertilizer tests have been conducted at Tifton from 1922 Some of these tests were located on soil classed as Tifton to 1926. sandy loam, while the soil on which others were located has been classed as Norfolk sandy loam. The percentage-composition tests begun in 1924 (Table 16) were located on the heavy-phase Norfolk sandy loam in 1924 and 1925. In 1926 these tests were shifted to another field, the soil of which has been classified as a light-phase Tifton sandy loam. In the years 1922 to 1924 the potash plots (Table 19) were located on the heavy-phase Norfolk sandy loam, but in 1925 and 1926 these tests were located on the light-phase Tifton sandy loam. From 1922 to 1926 plots 1 to 4 of the tests using ammonia from different sources (Table 18) were located on the heavyphase Norfolk sandy loam, whereas plots 5 to 20 of the same series were located on the light-phase Tifton sandy loam. The fertilizer tests in combination with cropping tests (Table 15) were located on the light-phase Tifton sandy loam during the entire period. The percentage composition tests begun in 1922 (Table 17) were located on the heavy-phase Norfolk sandy loam throughout the period covered.

WEATHER CONDITIONS

There is usually sufficient rainfall over the bright-tobacco territory for ordinary crop requirements, but this does not always come at the right time to supply the growing plant with the necessary water. Some years are very dry, especially at the critical period of growth, while others may be unusually wet during that same period. Either extreme materially affects both the weight and the quality of the leaf. Weather that is too dry and then too wet, especially when the plant is nearing the ripening stage, often causes what is commonly known as second growth. Tobacco plants which have made this so-called second growth ripen very slowly and are usually hard to cure, even to a fair degree of quality. As a general rule, however, tobacco plants produce heavier yields during the seasons of rather limited rainfall, or during the so-called dry years. When the rainfall has been heavy or excessive during most of the growing period, the leaf is usually thin, light, and chaffy, and the yields are much lower than during the comparatively dry seasons. The ideal growing season is one in which the temperature remains relatively high and the rainfall is sufficient for the plant to make rapid and uninterrupted growth from the time of transplanting until it reaches maturity. As practically all of the tobacco soils of the flue-cured district receive an application of fertilizers just prior to transplanting or about that time, the amount of precipitation which follows during the spring

and summer months is a very important factor. Heavy rains on the lighter types of soil, especially during the early part of the growing season, either wash away or leach out a considerable quantity of soluble plant-food elements, particularly the soluble nitrogen or nitrates and oftentimes some of the other soluble nutrients which have been supplied by the fertilizers, causing the plant to make a rather poor growth and show lack of green color. During the extremely dry years, on the other hand, there may be insufficient moisture to dissolve the plant foods supplied by the fertilizers, and this of course reduces both yield and quality.

The rainfall records in 10-day periods for the growing seasons and the monthly records for the fall and winter months at the different stations, or at points near by, are given in Table 3. The arrangement of the data by 10-day intervals serves to show approximately the distribution of rainfall through the growing season.

TABLE 3.—Rainfall at Danville, Va., Reidsville and Henderson, N. C., Florence, S. C., and Tifton, Ga., for 10-day periods during the months March to September, inclusive, and the total monthly precipitation for January, February, October, November, and December for the years shown

		Da	nvillo, V	8.	
Month and 10-day period (dates inclusive)	1910	1911	1912	1913	1914
January total	3.38 2.06	3. 15 1. 67	2.06 4.12	3.13 1.96	2. 16 3. 74
March: 1 to 10 11 to 20 21 to 31	.37	1. 14 . 89 . 78 2. 81	1. 10 5. 78 2. 84 9. 72	. 14 3. 42 1. 57 5. 13	.32 1.80 .55 2.67
Total	3.50	2.81 1.70 1.65 .32 3.67	9.72 -80 .76 2.16 3.78	0 3.08 T. 3.08	.75 1.55 0 2.30
May: 1 to 10 1 to 20 2 to 31	.47	.37 .20 .41 .98	.84 2.29 .46 3.59	. 22 . 83 3. 37 4. 42	1, 18 . 93 . 82 2, 93
June: 1 to 10	1.01 3.34 .80 5.15	.22 1.97 .08 2.27	1.17 1.67 1.79 7.63	.77 .88 2.55 4.20	.34 0 1.54 1.88
Jaly: 1 to 10		.76 2.18 .20 3.14	.64 1.48 .25 2.37	3.39 2.54 .25 6.18	1. 81 1. 70 . 27 3. 78
August: I to 10 1 to 20 21 to 31 	1.99 2.10	1.64 .38 4.01 5.43	.45 .38 0	2.33 .20 1.12 3.65	. 21 . 10 . 56
Total	5. 24 0 0	.24 .24 .38 .56 1.18	1.81 1.76 3.28 6.85	3.65 .14 1.18 4.95	0 .36 .20
October total November total December total Total for year	1.02	4. 94 3. 49 3. 48 36. 21	1.00 3.97 1.64 47.56	3.76 4.01 3.27 47.74	2, 45 2, 41 6, 27 32, 02

[Data in inches; T.=trace]

S. C., and Tifton, Ga., etcContinued	TABLE 3.—Rainfall	at Danville, Va., S. C., and Tifton.	Reidsville and Henderson, Ga., etcContinued	N.	с.,	Florence,
--------------------------------------	-------------------	---	--	----	-----	-----------

Month and 10-		Reidsville, N. C.											
day period	1912	1913	1914	1915	1916	1917	· 1918	1919	1920	1921	1922	1923	
January total February total	2.60 4.01	3. 43 2. 27	2.55 4.33				5.92		3.24			3.83	
March: 1 to 10 11 to 20 21 to 31	-] 5.50	. 57 3. 14 1. 86	, 46 2, 14 , 78	. 92 . 47 . 32	. 10	1 1.36	1.38 .39 1.91	.34	2.92	. 46	1.58	1.70 3.77 .41	
Total	9. 79	5.57	3.38	1. 71	1.64	7.36	3.68	4,03	4.59	1.40	5.69	5.88	
April: 1 to 10 11 to 20 21 to 30		. 02 2. 93 . 05	1, 40 1, 95 , 44	1.06 .47 0	1. 97 0 . 29	1.88 .19 .12	2.7% 1.1 2.73	1. 17 2. 25 1. 13	1.80 1.04 1.90	1.04	.73 1.27 1.14	1.23 1.54 1.78	
Total	3, 85	3.00	3. 79	1.53	2.26	2.19	6.78	4, 55	4.74	3.88	3.14	4.55	
May: 1 to 10 11 to 20 21 to 31	. 13 2.82 .07	1.30 .30 4.18	. 77 . 73 . 35	1.32 1.29 1.56	. 25 . 20 6. 54	2.05 .01 .94	. 84 1. 83 1. 04	2.97 1.67 1.79	. 94 - 65 - 73	. 76 . 82 1. 30	1.09 3.35 .09	1.23	
Total	3.02	5.78	1.85	4.17	6.99	3.00	3. 71	6.43	2.32	2.88	4.53	2.65	
June: 1 to 10 11 to 20 21 to 30	1.62 1.23 1.78	.95 .88 2.47	. 12 . 27 1. 12	2.99 .32 .06	2. 22 2. 24 2. 22	2, 10 . 50 . 68	. 49 . 57 2, 24	1.06 .37 1.86	3.57 1.02 .51	2.33 .34 .93	3, 50 8, 65 , 42	9 .81 .42	
Totai	4.63	4.30	1.51	3.37	6, 68	3.34	3.30	3.29	5. 10	3.60	12.57	1.23	
July: 1 to 10 11 to 20 21 to 31	1.33 .37 .32	3. 13 1. 29 1. 39	2.48 .39 .25	. 77 . 53 . 35	1. 64 1. 51 2. 38	. 76 2 74 . 67	. 30 1.31 1.02	.27 4.98 1.27	1.01 2.12 .21	. 65 . 58 . 03	4.64 2.66 0	1.40 .63 3.04	
Total	2.02	5.81	3, 12	1.65	5. 53	4.17	2.63	6.52	8.34	1.86	7.30	5.07	
August: 1 to 10 11 to 20 21 to 31	- 58 - 42 - 56	3.31 1.18 2.18	.06 .09 1.06	3.40 .44 7.30	. 09 2. 06 2. 23	. 69 . 00 1. 98	.09 4.24 .10	. 94 1. 22 . 10	2 38 5 03 556	. 15 . 62 . 04	. 59 1. 56 1. 06	3. 15 . 84 2. 17	
Total	1.56	6. 67	1.21	11.23	4. 98	8. 27	4.43	2.26	7.97	. 81	3. 21	6, 16	
September: 1 to 10 11 to 20 21 to 30	. 83 1.04 2.90	4. 31 . 92 . 74	. 56 . 13 . 52	. 72 0 . 61	.31 .66 .72	3. 19 . \$1 1. 39	1.74 1.08 1.50	.69 0 .16	. 29 . 40 1. 42	. 62 1. 39 1. 83	0 .94 0	1.50 .22 2.18	
Total	4. 83	5.97	1. 61	1.33	1. 69	4. 80	4.30	. 85	2.11	3 84		3.90	
October total November total. December total.	1, 51 3, 23 1, 37	4, 49 3, 50 3, 64	3, 53 2, 29 7, 23	5. 21 1. 78 3. 40	2, 43 . 99 2, 94	2, 75 1, 05 2, 49	1.57 2.10 4.46	4. 18 1. 65 1. 55	. 57 6. 07 5. 75	1.74 3.07 1.22	3. 48 . 25 3. 70	1, 15 2, 58 2, 81	
Total for year	42, 42	54.43	38. 40	42. 21	42. 12	40. 92	43, 39	4 3. 30	49, 82	33. 00	53. 28	42, 98	

r.

[Data in inches; T.=trace]

FERTILIZER TESTS WITH FLUE-CURED TOBACCO

TABLE 3.—Rainfall at Danville, Va., Reidsville and Henderson, N. C., Florence, S. C., and Tifton, Ga., etc.—Continued

Month and 10-		Henderson, N. C.											
day period	1913	1914	1915	1916	1917	1918	1919	1 92 0	1921	1922	1923	1924	
January total February total	3, 93 2, 06	3. 01 5. 28	6. 03 3. 53	1.72 3.79	4. 44 2. 29	5. 28 . 67	4, 06 2, 55	3. 14 2. 93	3.20 2.72	5.09 4.94	3, 42 3, 10	4.09 3.56	
March: 1 to 10 11 to 20 21 to 31	. 76 2.50 .49	. 56 1. 11 . 86	.44 1.10 .10	1. 43 . 05 . 24	3.32 1.36 2.50	1.68 .21 1.01	1.53 .17 1.22	.97 1.09 .58	.37 .54 1.62	5, 53 , 86 , 86	1.52 4.84 .24	. 73 . 53 2. 34	
Tota)	3. 75	2.53	1.64	1.72	7. 27	2,90	2.97	2.62	2. 53.	7. 25	6, 60	3.60	
April: 1 to 10 11 to 20 21 to 30	.34 2.26 ,35	. 69 1. 50 . 11	1.98 .68 0	2, 81 T. . 15	2. 77, . 25 . 15	2, 91 3, 34 2, 36	1, 20 2, 83 , 24	1. 41 . 77 1. 80	. 49 . 34 . 40	.41 1.27 .87	1.38 1.64 3.00	1. 68 1. 76 1. 04	
Total	2.95	2, 30	2, 66	2.96	3. 17	8.01	4, 27	3, 98	1.23	2.55	6. 02	4. 48	
May: 1 to 10 11 to 20 21 to 31	. 18 . 32 2. 17	. 45 . 41 . 81	2, 19 , 97 2, 82	. 10 . 53 1. 63	3. 83 . 07 . 64	. 16 4. 39 1. 83	1.80 1.80 2.19	- 86 - 77 - 65	1.06 1.84 .27	2.04 3.12 .72	.08 .61 .37	1, 92 3, 64 2, 72	
Total	2.67	1.67	5. 98	2. 26	4. 54	6.38	5.79	2. 28	3.17	5.88	1.06	8.28	
June: 1 to 10 11 to 20 21 to 30	.56 1.36 1.94	T. .85 1.07	1. 14 . 79 . 30	1.54 3.85 .71	2. 93 . 90 . 38	.55 .53 2.31	1.73 .25 2.03	2. 80 1. 94 1. 87	1, 44 . 57 1, 39	3.02 3.43 .46	.05 2.35 .11	1. 47 3. 14 1. 69	
Total	3.86	1. 92	1, 83	6. 10	4. 21	3.39	4.01	6.61	3, 40	6, 91	2.51	5.30	
July: 1 to 10 11 to 20 2; to 31	. 96 . 97 . 99	1. 10 1. 90 4. 13	1.45 .82 .76	1.01 .40 4.77	1, 14 3, 60 4, 80	. 19 . 29 1. 76	1. 83 8. 03 3. 72	1.15 2.62 .11	1.48 .89 0	1. 84 5. 28 1. 76	1, 04 2, 95 3, 24	3. 41 . 59 . 72	
Total	2.92	7.13	3.03	6.18	9.54	2. 24	13.58	3. 88	2.37	8.88	7.23	4.72	
August: 1 to 10 11 to 20 21 to 31	. 93 1. 19 1. 76	1. 91 2. 78 1. 08	1.65 .66 1.08		. 70 1. 12 1. 90	0 2.60 1.18	2.25 1.15 1.35	2.14 2.70 .11	T. .53 .09	. 57 1. 86 3. 36	2, 53 1, 05 , 91		
Total	3.88	5.77	3.39	5.83	3.72	3, 78	4.75	4.95	. 62	5.79	4.49		
September: 1 to 10 11 to 20 21 to 30	4.61 2.03 .12	. 94 . 75 1. 22	1.37 .29 .71	.35 .54 .85	$1.89 \\ 1.35 \\ .60$	1. 60 1. 52 . 74	0 0 . 59	, 80 0 2.45	.08 1.21 1.52	.02 .03 0	1. 47 . 51 2. 07		
Total	6.76	2.91	2.37	1. 74	3. 84	3.86	, 59	3.25	2. 81	. 05	4.05		
October total November total. December total.	6, 73 1, 59 4, 04	2.37 4.25 4.41	2,53 2,08 3,60	2, 18 1, 88 2, 74	2, 73 1, 07 2, 26	1.40 1.79 4.59	2, 58 ., 44 2, 19	1, 26 7, 05 5, 50	1.42 2.70 2.62	7.01 .34 3.80	1. 27 2. 24 2. 04		
Total for year	45. 14	43, 55	38. 67	39, 10	49.05	44, 89	47. 73	47. 45	28, 79	58.49	44.09		

[Data in inches; T.=trace]

51290°—27—-2

9

TECHNICAL BULLETIN 12, U.S. DEPT. OF AGRICULTURE

TABLE 3.—Rainfall at Danville, Va., Reidsville and Henderson, N. C., Florence, S. C., and Tifton, Ga., elc.—Continued

Month and 10-day			Flore	1ce, S. C					Tifton,	Ga.	
period	1914	1915	1916	1917	1918	1919	1922 1	1923	1924	1925	1926*
January total February total	2. 19 3. 73	6. 03 3, 20	2.01 3.03	3. 95 2. 64	2. 40 1, 49	2.20 2.94		7.04	5.77 4.43		11.02
March: 1 to 10 11 to 20 21 to 31	. 59	1.72 .93 1.10	2.26 T. 0	1. 02 . 12 13, 9	0 1, 12 , 25	3. 12 0 . 43		. 91 2 48 1, 85	3. 73 . 52 . 57		1.91 .43 5.96
Total	1.93	3. 75	2, 26	2.53	1. 37	3. 55		5. 24	4.82	. 69	8.30
April: 1 to 10 11 to 20 21 to 30	1.91 0.	1.75 .15 .10	. 93 . 06 . 05	1, 58 - 36 - 85	1.69 4.55 1.70	. 78 . 63 . 55	0 .18 .12	. 56 . 62 . 20	1. 37 3. 86 . 18	1, 26 . 02 0	1.53 2.02 0
Total	2, 37	2.00	1.04	2,79	7.94	1.99	. 30	1.38	5.41	1.28	3.55
May: 1 to 101 11 to 202 21 to 31	. 30 T. 1. 40	1, 30 2, 46 2, 95	0 1.09 1.16	1.79 - 62 - 80	.85 7.43 0	.88 .26 1,18	. 58 . 81 5. 69	1.24 1.41 2.02	- 36 - 61 - 55	0 2.58 0	.04 3.31 0
Total	1.70	6, 71	2.25	3. 21	8.28	2.32	7.08	4.67	1. 52	2,88	3, 36
June: 1 to 10 11 to 20 21 to 30 Total	.82 2.06 1.00 3.88	1. 10 . 40 1. 53 3. 03	. 90 J. 91 . 86 3. 67	2.49 1,11 3.50 7.10	2,75 .50 .18 3.43	.50 0 2.44 2.94	1.86 .59 .45 2.90	L 53 2.07 5.27 8.87	3.92 .80 1.72 6.50	1.57 2.84 1.59 6.00	1.65 0 1.23 2.88
July: 1 to 10 11 to 20 21 to 31 Total	2.30 .20 .75 3.31	1. 21 1. 66	. 83 15. 22 4. 23 20. 27	4. 25 3. 13 . 57 7. 95	, 68 2, 50 3, 57 6, 75	.32 4.47 3.87 8.66	.28 3.27 2.16 5.71	1.25 2.40 .86 4.51	1.85 3.01 .57 5.43	1.40 1.04 .90 3.34	I. 51 1. 38 4. 69 7. 56
August:			==		; <u> </u>			=	4.40	=	
1 to 10 11 to 20 21 to 31 Total	1.84 .92 1.43 4.19	3. 61 8. 01 1. 43 13. 05	2.21 .61 .71 3.53	.35 .60 .49	4.47 T. 0	3.05 .83 .52	. 54 1. 24 . 1 3	.05 .69 3.40	. 80 1. 85 . 56	. 63 . 51 . 80	.24 2.78 1.18
	4.18	10,00	3. 33	I. 44	4.47	4.40	2, 21	4. 14	3.21	1.94	4.20
September: 1 to 10 11 to 20 21 to 30	. 59 1. 10 1. 30	. 34 T. .82	. 16 . 94 1. 15	.93 0 4.44	4.30 1.40 .20	1.71 0 T.	. 15 1. 34 0	. 18 0 . 89	1. 30 5. 52 5. 19	0 1, 42 1, 49	. 35 . 44 2.06
Total	2.99	1, 16	2.25	5. 37	5.90	1.71	1, 49	1.05	12.01	2 91	2.85
October total November total December total	2.66 2.30 3.09	4. 29 1. 54 3. 59	2 60 . 90 2.35	1.00 1.30 1.87	2, 30 1, 77 6, 04	3.48 .52 1.03	3, 79 . 75 4. 68	. 58 2.01 2.17	1.01 .26 0.63	6.63 2.93 4.65	
Total for year	34.34	51.22	46. 16	41.15	52.14	35.74		43. 63	57.00	44. 38	

[Data in inches; T.=trace]

Rainfall not recorded for January, February, and March, 1922.
 Records not available for October, November, and December, 1926.

The Weather Bureau stations nearest the different experimental fields are as follows: Danville, Va., 15 miles south of Chatham; Henderson, N. C., 12 miles east of Oxford; Reidsville, N. C.; Florence, S. C., 11 miles east of Timmonsville and 40 miles northeast of Manning. The data in Table 3 were compiled from the published records of the Weather Bureau with the exception of the rainfall records at Tifton, Ga., which were furnished by the Coastal Plain Experiment Station.

METHODS FOLLOWED IN CONDUCTING TESTS

The composition of materials employed in making the various fertilizer mixtures used for the tests is given in Table 4. There were slight variations from season to season and for the different locations from the percentage composition as given, but the percentages shown in the table are an accurate indication of the average composition of the materials used.

TABLE 4.—Average content of principal constituents of materials used in mixing fertilizers and for liming

		Pero	entage con	position	
. Kind of fertilizer material	Phos- phoric acid (P ₁ O ₁)	Ammonin (NH3)	Potash (K1O)	Magnesîa (MgO)	Lime (CaO)
Precipitated bone. Acid phosphato. Basic slag. Raw bone meal. Stable manure. Cottonscod meal. Dried blood. Nitrate of soda. Ammonium sulphate. German sulphate of potash. American sulphate of potash. American sulphate of potash. American sulphate of potash. Sulphate of potash. Sulphate of potash. Sulphate of potash. Sulphate of potash. Sulphate of potash. Calcita.	17.0 21.0 2.5	4.0 .375 7.0 16.0 18.0 25.0	25.0 12.6		

The materials used in the various tests were mixed a few days prior to their application in the field. The mixtures were applied in the drill, and the quantity for each row was weighed, so as to insure a uniform application. The distribution was made by hand in a furrow opened for the purpose, after which the land was ridged for transplanting the tobacco. The tobacco was generally transplanted by hand after a rain or natural season, but in some years it was necessary to water the plants when transplanted. The fertilizer was usually applied in the field a week or 10 days prior to transplanting.

In fertilizer formulas given in the following pages the phosphoric acid (P_2O_5) is expressed first; ammonia (NH_3) second; and potash (K_2O) third. For example, the formula "8-5-10" signifies that the fertilizer mixture to which it applies contains 8 per cent phosphoric acid, 5 per cent ammonia, and 10 per cent potash.

The yields and values given in Tables 5 to 19, inclusive, were obtained as here described. In general the cultural and other practices of handling the crop were about as used by the grower of this type of tobacco. The tobacco was harvested by the cutting method at Chatham, Va., for the entire period reported. This method was used in the earlier years at Oxford and Reidsville, N. C., but in later years at these localities the priming method of harvesting was used. The priming method of harvesting was used at Manning and Timmonsville, S. C., and Tifton, Ga., for the entire period reported.

12 TECHNICAL BULLETIN 12, U. S. DEPT. OF AGRICULTURE

After harvesting and curing, care being taken during these operations to keep the tobacco from the various treatments separate, the leaf tobacco was graded and weighed. Those grades which were of about the same quality were run together and rold on the loose-leaf warehouse floor. The weights and prices obtained in this manner were used in making calculations of the yields and gross values per acre.

The plots used ranged from one-seventieth to one-twentieth of an acre in size. Most of the plots were one-fortieth acre in size and were replicated as many times as conditions permitted. In some experiments a treatment was represented only once, and in others it was represented several times. An extra space of 1 to 2 feet was always allowed between plots. In some cases the tobacco was grown in a rotation with other crops; in other cases it was grown in continuous culture.

The yields in pounds of leaf per acre show wide fluctuations from year to year, due to weather conditions, but as a rule they are fairly consistent in showing differences between the various treatments. The gross value per acre shows an even greater fluctuation than the yield in pounds of leaf, and the differences may or may not be in the same direction as differences in yield. This is due largely to the fact that market demands for the crop each season vary considerably and also to the effects of weather conditions on yields and quality. However, the gross returns for the various treatments are generally consistent in showing differences in the same direction, at least as to the broader differences.

TABLE 5.—Acre yields and gross values of leaf tobacce in tests of fertilizers from different sources and at different rates, with and without lime, at Chatham, Va., 1910–1914

			Fertilizer tre	slineat	
Treat- ment No.	Formula	Rate per		Source	
	FOILIDIA	acro (pounds)	Phosphoric acid	Ammonia	Potash
1	2	3	4	5	8
8 9 10 11 12 13 14	8 + 7	1,400 1,400	None Acid phosphate do Urknown Acid phosphate Unknown Acid phosphate Acid phosphate do	None. do. Dried blood. do. do. do. do. Dried blood. do.	Do. None, Bulphate. Do. Unknown. Sulphate. Unknown. Sulphate. Do.

[The yields and gross values shown in columns 7-13 record the effects of builders' lime applied broadcast in the spring at the rate of 1 ton to the acre in 1910 and 1911]

¹ Unfertilized plots, average of duplicates; other treatments not duplicated. ¹ Factory-mixed goods,

TABLE 5.—Acre yields and gross values of leaf tobacco in tests of fertilizers from different sources and at different rates, with and without lime, at Chatham, Va., 1910-1914-Continued

				· · ·	Acro	yield (of leaf t	obacco	(pound	ls)				
Treat-			!	Idmed				-		U	nlimed			<u> </u>
ment No.				· · · · · · · · · · · · · · · · · · ·		Ave	ngo			·			Avo	rage
	1910	1911	1912	1913	1014	1910 1912	101 0- 1914	1910	1911	1912	1913	1914	1910- 1912	1910- 1914
1	7	8	9	10	11	12	13	14	15	16	17	8 L	19	28
13333333	1, 540 1, 520 1, 180 1, 080 1, 490 1, 080 1, 150 1, 440	310 000 870 250 810 980	340 500 500 520 520 520 520 520 520 520 52	540 480 580 600 820 820 820 820 820 820 820 820 820 8	860 880	405 720 503 623 707 570 570 570 753 917 997 703 703 703 703 703 847 7937 828 847 937 828 807 1,080	656 632 638 772 678 758 1,000 950 861 S56	580 730 130 820 1,050 1,250 1,450 1,450 1,450 1,440 1,040 1,150 1,150 1,150 1,150 1,280	460 340 350 220 880 880 1,030 600 860 520 600 860 610 710 720	190 4600 3900 490 510 766 720 540 540 680 550 680 550 680 550 680 550 680 550 650 650 650 650 650 650 650 650 65	³ 1, 020 \$ 820	460 560 340 920 1,000 1,080 1,080 1,080 1,080	1,063 747 607 1,043 747 803 977	1, 130 1, 010 854 864
					Acr	e valuo	of lenf	tohneed	o (dolla	rs)		,		
7 8 10 11 12 13 14 15 16 17	109.54 128.96 125.57 93.87 90.37 115.07 94.38 89.59	43.55 12.60 13.50 13.80 13.10 15.80	15. 64 80. 37 30. 80 34. 70 33. 30 30. 00 88. 95 100. 50 71. 07 71. 80 121. 35 100. 287 89. 85 66 78. 30 88. 70	9.80 65.60 40.76 71.20 110.65 55.70 \$64.20 \$62.00	28.02 40.00 28.80 38.80 31.40 31.44 72.80 50.00 76.40 	37, 58 55, 96 37, 53 55, 08 78, 22 84, 17 65, 38 62, 91 84, 39 76, 92 75, 76 84, 92	51. (9) 27. 97. 30, 27. 34. 34. 31. 12 47. 49 74. 74 74. 74 88. 04 66. 45 73. 01 82. 34	53,95 47,63 84,47 78,54	32.80 9.20 20.80 48.49 8.60 29.20 59.90 74.10 33.60 44.20 65.12 41.10 47.10 56.40 47.10 56.40 47.10 56.40 47.10 56.40 47.10 56.40 47.10 56.40 47.10 56.40 59.40 50 59.50 50 50 50 50 50 50 50 50 50 50 50 50 5	37. 25 80. 83 52. C0 74. 30 48. 77 127. 32	7.00 6.40 8.80 5.60 38.65 75.33 124.20	18.40 21.20 10.00 70.80 30.40 54.60 71.60 98.00 191.60 74.80 81.60	53, 49 27, 57 33, 04 65, 59 37, 85 61, 77 88, 42 96, 82 69, 08 58, 71 96, 64 69, 07 72, 31 88, 86 68, 48	37. 30 22. 08 23. 58 66. 69 29. 91 55. 77 92. 76 103. 15 52. 36 69. 05

Low yields caused by poor stands.
 Fertilizer formula for this year, 8-3-7.
 Fertilizer formula for this year, 8-4-7.

TESTS AT CHATHAM. VA.

Table 5 shows yields and values of tobacco obtained on plots one-fortieth acre in size at Chatham, Va., for the years 1910 to 1914 inclusive.² The numbers of the different treatments given do not represent the same location with respect to one another for the different years. A given treatment was always located on the

³ A summary of a portion of these results and those of similar tests for later years at the same location has been published. See HUTCHESON, T. B., and BERGER, D. J. EXPERIMENTS WITH BRIGHT TOBACCO AND OTHER CROPS GROWN ON BRIGHT TOBACCO FARMS. Va. Agr. Expt. Sta. Bul, 233, 19 p., illus. 1923.

14 TECHNICAL BULLETIN 12, U. S. DEPT. OF AGRICULTURE

same plot when tobacco was grown on the experimental field. Tobacco was the only crop which received fertilizer in the rotation. The rotation used was tobacco; wheat; two years of clover, timothy, and redtop; corn; thus making a five-year rotation. The lime treatment as given was applied to one-half of each of the original plots, which were one-twentieth acre in size, thus giving one-fortieth acre for each treatment. Builders' lime was applied broadcast in the spring in 1910 and 1911, at the rate of 1 ton to the acre. The lime effects shown for 1912, 1913, and 1914 resulted from the previous limings.

TESTS AT REIDSVILLE, N. C.

Table 6 shows yields and gross values per acre of tobacco grown on plots one-twentieth acre in size near Reidsville, N. C. The numbers as given do not represent the same location of plots with respect to one another for the different years, nor do they show the arrangement of the plots. Each individual treatment, however, was always located on the same plot when tobacco was used in the rotation, this being the only crop fertilized in the rotation. The rotation practiced was tobacco, oats, and one or two years of herd's grass (redtop). The yields in 1912, 1915, and 1919 were obtained from plots located on the same area; in 1913, 1917, and 1920 the tests were located on a second area; and in 1914 and 1918 the tests were located on a third area. The yields for 1916 are omitted because the series for this year was not in the regular rotation plots.

TABLE 6.—Acre yields and gross values of leaf tobacco in fertilizer tests at Reidsville, N. C., in stated years

Treatment No.	Fortilizer			Acre yi	eld of leaf	tobacco (pounds)		
	formula	1912	1913	1014	1915	1917	1918	1919	1920
1 2 3 5 5 7 8 9	0-0-0 0-4-0 8-0-0 8-4-0 6-2-3 6-3-3 6-4-3 8-4-3 8-3-3	443 530 439 513 807 742 717 709 538	386 696 533 804 761 856 1,060 1,060 1,048 228	612 766 736 1,030 970 968 1,189 1,229 856	515 721 684 875 780 865 838 838 801 601	520 484 488 751 843 885 975 1, 030 700	530 693 837 866 883 1,081 1,151 1,141 901	454 575 550 035 800 950 925 860	460 900 790 1,035 1,142 1,280 1,460 1,484 1,484 1,128
		÷ •••	Áve	rage by y	Av.	eråge by f	by fields		
		1912-1914	1915, 1917, 1916	1919-1920	1912- 1915, 1917, 1918, 1920	1912- 1915, 1917, 1920	1912, 1915, 1919	1913, 12917, 1920	1914, 1918
1	0-0-0 0-4-0 8-0-0 8-4-0 6-2-3 0-3-3 0-3-3 0-3-3 0-4-3 8-4-3 8-4-3 8-3-3 8-3-3 8-3-3	480 604 569 784 846 855 989 995 707	518 033 079 831 835 944 988 1, 021 734	457 738 670 835 971 1, 115 1, 193 894	494 684 840 884 954 1,056 1,076 779	489 671 632 814 873 953 1,039 764	471 (899 558 674 796 852 827 600	455 693 604 863 915 1,007 1,165 1,187 852	586 730 786 951 927 1,025 1,170 1,185 879

[Rate of application 1,600 pounds per acre except as noted in text and footnote 4]

⁴ In treatment 9 only 900 pounds was used; during 1918-1920 treatments 2, 3, and 4 received only 800 pounds of the fertilizer shown in the formulas.

	Fertilizer			Acre val	ue of leaf	tobacco (doliurs)		
Treatment No.	formula	1912	1913	1914	1915	1917	1915	1919	1920
1 2 3 4 5 5 6 7 8 9	U-D-O D-4-C 8-4-O 8-4-O 6-2-3 0-2-3 0-3-3 8-4-3 8-4-3 8-3-3	24.00 27.70 24.21 26.12 44.71 40.46 38.84 36.87 30.22	38, 17 92, 67 100, 46 161, 76 172, 02 188, 45 235, 80 235, 88 147, 34	46.02 39.02 62.73 57.08 100.63 90.79 89.58 93.63 81.05	52, 97 55, 06 03, 36 89, 68 84, 64 93, 95 101, 70 56, 43	159, 90 124, 40 149, 75 223, 19 203, 63 272, 67 290, 64 311, 94 222, 92	132, 64 153, 94 233, 39 206, 41 256, 82 248, 37 275, 24 284, 05 265, 60	293, 14 379, 90 399, 50 423, 15 583, 04 656, 10 673, 03 481, 60	50, 00 127, 85 90, 70 162, 22 190, 30 225, 55 245, 30 239, 66 189, 64
		<u></u>	Å∆€	aruga by y	enrs		۸۷e	rage by f	iejds
		3912-1914	1915, 1017, 1918	1919, 1920	1912- 1915, 1917, 1918, 1920	1912- 1915, 1917-1920	1012, 1915, 1919	1913, 1917, 1920	1914, 1918
1	0-0-0 0-1-0 8-0-0 0-2-3 0-4-3 0-4-3 8-4-3 8-3-3	38.06 53.15 02.47 81.85 105.96 106.57 121.41 122.13 86.20	115, 17 111, 33 148, 83 173, 76 201, 50 204, 98 216, 41 232, 56 181, 65	171. 57 253. 85 249. 60 292. 68 388. 63 440. 83 459. 40 335. 62	71, 96 88, 76 104, 80 1322, 72 158, 97 155, 74 179, 89 186, 25 +141, 89	99, 61 125, 15 141, 64 169, 62 212, 45 227, 04 241, 53 184, 35	123. 37 154. 44 162. 36 179. 65 238. 76 263. 49 265. 06 199. 42	82. (19) 114. 97 116. 64 182. 38 208. 66 228. 89 257. 41 262. 49 186. 63	89, 33 96, 48 148, 06 133, 05 133, 05 133, 05 133, 05 182, 41 188, 84 173, 33

TABLE 6. —Acre yields and gross values of leaf table	ucco in fertilizer lests at Reidwille,
N. C., in stated years-C	ontinued

Acid phosphate was used as the source of phosphoric acid (P_2O_5) , dvied blood as the source of ammonia (NH_3) , and sulphate of potash as time source of potash (K_2O) , in all mixtures reported in Table 6. The rate of application was 1,600 pounds per acre except for treatment 9, where 500 pounds per acre of factory-mixed product was used, the sources of materials being unknown. During the period 1918-1920, treatments 2, 3, and 4 received only 800 pounds of the fertilizer shown in the formulas. The yields and value for treatment 9 for the years 1913, 1914, 1915, 1917, and 1918 are averages of duplicate treatments.

 TABLE 7.—Acre yields and gross values of leaf tobacco in fertilizer tests using ammonia from different sources at Reidsville, N. C., in stated years

Trest- ment	Source of ammonia		Асте у		f leaf inds)	tobac	co .	A	re valu	e of lea	f tobacc	o (della	urs)
No.	Soliton to aminomia	1911	1914	1915	1918	1919	Aver- age	1911	1914	1915	1918	1919	A ver- 6g6
123	No fertilizer Annoonium sulphate Orled blood Jitrate of soda	: 822	967	809 855	520 944 1, 681 1, 056	454 880 950 1, 020	514 892 938 938		89, 49 90, 79		222.46 248.37	431.00 656.10	227.09

[Formula, 8-4-6; rate of application, 800 pounds per acre]

TECHNICAL BULLETIN 12, U.S. DEPT. OF AGRICULTURE

Plot	í	llzer treatment	A	.cre y	ield (po	of lea und	uf tobi s)	1000	A	cre valı	ie of lea	l tobacc	o (dolla	I 3)
No.	For- wula	Source of potash	1919	1920	1921	1922	1923	Aver- age	1919	1920	1921	1922	1923	Aver- age
1	850	None	690	594	508	473	929	639	372. 14	20.87	27.35	45, 94	115.55	116, 37
2 3	8-5-134	{Sulphate {Muriate	662 716	777 857	876 877	648 404	928 894	778 762						137.64 153.92
4 5	}8-5-3	(Sulphate Muriate	621 426	576 531			823 1, 016	054 744	325.52 216,40					118.93 123.78
6	8-5-0	None	329	576	824	342	910	596	80.30	17. 99	68. 18	37, 51	147.00	70, 20
7 8	}8-5-434	{Sulphate {Muriate	586 (538	706 983	911 963	482 619	1, 104 928	770 826		37, 74 124, 83		44, 55 90, 40		144.99 176.85
9 10	}8-5-10	(Sulphate (Muriate	002 648	822 922	84 i 903		1, 051 1, 139	759 860		40. 94 118. 36	09. 20 105. 73			
11 12	}8-5-0	None	{491 {482	586 612	893 684		858 806	658 603	249. 64 225. 85		61, 99 48, 84	36, 17 35, 08		100, 50 93, 42
53 14	} 8 -5-154	(Sulphate (Muriate	604 622	628 756	824 804	403 202	506 920	633) 690 ₁	345, 32 402, 55	33, 48 76, 57	78.39 94.30		145, 35 178, 11	124, 99 155, 13
15 16	}8-5-3	(Sulphate Murlate	632 744	646 768	877 876	508 551	965 946	726 777	331.71 408.58	32, 65 84, 68	74. 37 77. 81	39, 37 , 71, 87	168. 39 181, 16	129.30 176.82
17	8-5-0	None	553	428	543	416	684	525	296.79	15, 52	37.48	56. 09	100. 33	101. 24
18 19	}8-5-4 <u>5</u> 5	(Sulphate Muriate	709 744	760 881	800 807		1, 086 1, 051	802 830	423, 75 495, 65	42, 79 100, 73	70, 55 80, 49	36. 37 103. 20	190. 33 190. 69	154, 56 196, 55
20 21	}8-5-10 }	(Sulphate Muriate	760 8:12 1	741 I, 154	788 923		1, 034 1, 069	767 936	432, 54 534, 06	37, 53 127, 39	65, 30 89, 85	48. 24 113. 10	193, 25 186, 38	
22	8-5-0	None	710	700	823	516	683	686	419. 52	15, 05	71.33	68.86	144. 58	143.93

TABLE 8.—.4cre yields and gross values of leaf tobacco in tests using polash from different sources and at different rates at Reidsville, N. C., 1919-1923
[Rate of application, 800 pounds per acre]

TABLE 9.—Arre yields and gross values of leaf tobacco in fertilizer tests using potash from different sources, in combination with calcitic and dolomitic limestones, at Reidsville, N. C., 1921-1925

Plot	Fertilizer trea	stment	Acre	yield (po	of leaf to unds)	bacco	Acr	e value o (dol	f leaf tob lars)	acco
No.	Source of potush	Form of limestone	1921	1922	1923	A ver-	1921	1922	1923	A ver- age
1	American muriate	Calcitic	1, 009	892	1, 558	1, 173	135.66	212, 45	287, 32	211.81
2		None	769	661	1, 191	880	102.19	179, 57	225, 09	168.95
3		Dolomitic	928	761	1, 313	1, 001	140.01	185, 64	237, 34	187.60
4	German muriate	Calcitic	806	621	1,349	925	111, 74	159, 18	253, 12	174, 68
5		None	849	761	1,235	948	137, 68	173, 24	243, 25	184, 72
6		Dolomitic	877	805	1,349	1,010	123, 11	204, 23	266, 74	198, 03
7	American sulphate	{Calcitic	795	713	1, 235	915	78, 24	174, 79	248. 91	167, 31
6		{None	871	700	1, 192	921	71, 44	115, 41	223, 74	136, 86
9		[Dølomitic	840	692	1, 348	900	107, 80	169, 60	280, 56	185, 79
10	German sulphate	Culcitie	859	788	1,200	949	100, 60	184, 51	216, 76	107, 29
11		None	789	735	1,236	920	73, 95	143, 70	233, 07	150, 24
12		Dalomitie	736	720	1,279	914	84, 41	175, 50	240, 37	108, 76
13 14 15	Sulphate of potash tragnesia	Calcitie None. Dolomitic	894 771 771	823 643 774	1,296 1,104 1,226	1, 004 839 924	113, 03 98, 80 89, 33	219, 74 160, 78 178, 52	242, 17 219, 82 230, 88	191, 65 159, 82 166, 24
16 17 18	Kainit.	Calcitie None Dolomitie	683 665 765	796 775 775	$1,278 \\ 1,384 \\ 1,306$	919 941 069	87. 21 97. 95 108. 50	219, 91 204, 37 194, 47	224, 50 235, 16 254, 40	177, 21 179, 16 185, 79

[Formula, 8-5-41/2; rate of application, 800 pounds per acre]

The comparison of tests using ammonia from different sources is given in Table 7 for Reidsville, N. C. This table was compiled for the years in which the respective treatments were represented. The plots were one-twentieth acre in size, and the treatment numbers do not indicate the location of plots in relation to one another. The rotation used was the same as that given for the plots in Table 6. Plots receiving treatment were fertilized at the rate of 800 pounds per acre of an 8-4-6 mixture. The phosphoric acid was derived from acid phosphate, the ammonia from the sources indicated, and the potash from high-grade sulphate.

The yields and values reported in Tables 8 and 9 were obtained from plots one-seventieth acre in size, iocated near Reidsville, N. C. These tests were carried on, for the periods shown, in continuous tobacco culture. The plot numbers show locations of plots with respect to one another, and their arrangement was in a series shown by the numbers. The limestones used were finely ground and applied in the drill at the rate of 1,000 pounds per acre before transplanting the tobacco. The plots shown in Table 9 received 800 pounds per acre of an $8-5-4\frac{1}{2}$ formula. Acid phosphate was the source of phosphoric acid and dried blood the source of ammonia in tests given in Tables 8 and 9, the sources of potash being as indicated in the tables. All plots in Table 8 received the formulas shown at the rate of 800 pounds to the acre.

TESTS AT OXFORD, N. C.

Tobacco yields and values in the series at Oxford, N. C., testing the percentage composition, rate of application, and sources of fertilizer are shown in Table 10. The cropping system followed during the period 1913 to 1918, inclusive, was as follows: First year, tobacco; second year, oats cut for hay followed by a catch crop of cowpeas turned under and field seeded to crimson clover; third year, crimson clover turned under for corn, which was followed by a rye cover crop. The rye was turned under in the spring for tobacco the fourth year. The oats received 100 pounds of nitrate of soda broadcast on all plots in the spring. The corn received a mixture of 100 pounds of cottonseed meal and 200 pounds of acid phosphate at planting time and a top-dressing of 100 pounds of nitrate of soda about the time the corn began to tassel.

51290°—27-----3

TABLE 10.--Acre yields and gross values of leaf tobacco in tests of ferlilizer from different sources and at different rates, with and without dolomitic limestone, at Oxford. N. C., 1918-1924

.

~

[An astarisk (*) in connection with column numbers (27-32 and 54-50) denotes that ground dolomitic limastone was applied broadcast at the rate of 1 ton per acre 30 to 40 days prior to transplanting the tobacco. In the other cases (unstarred) no dolomitic limestone was used]

Piot			Fertilizer (trestment		Acre	valus c (do	f leaf to llars)	bacco
No.	Formula	Rate per acro		Source			Field		Aver-
		(ibs.)	Phosphoric acid	Ammonia	Potaslı	{ 3, 1913	1, 1914	2, 1915	1 1012
1	2	3	4	5	6	7	8	•	18
1	8-3 -3 8-5 -10	800		ammonium sul- phute (14), cotton-	Unknown Sulphate			128.83	105.96
2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 21 12 23 24 15 26 27 28 29 10 11 12 23 24 15 26 17 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	8 5 5	800 3,000,000 800,000,000 800,000,000,000,000,000,000,000,000,000	do	seed meu (23), dried blood (26) Dried blood (26) Cottonseed meul		125.20 106.60 108.40 113.20 107.70 101.20 107.00 45.80 107.20 45.80 107.20 58.80 78.20 90.00 88.40 123.20 125.60 125.60 125.60 125.60 125.60	74, 93 82, 12 79, 94 88, 75 88, 75 86, 10 87, 79 86, 10 87, 10 79, 55 86, 41 107, 10 79, 55 86, 41 107, 10 79, 55 86, 41 107, 10 79, 55 86, 41 107, 10 20, 20 70, 55 80, 41 107, 10 20, 20 70, 55 80, 41 107, 10 20, 20 70, 55 80, 41 107, 10 20, 20 70, 55 80, 40 10, 50 80, 40 10, 50 10, 50 10	85,46 68,49 69,58 90,81 78,76 19,76 88,36 88,36 86,35 55,564 31,50 84,82 39,92 44,77 75,24 86,33 89,92 84,82 39,92 84,82 83,92 92,47 75,24 107,15 75,24 107,14 107,14 109,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 100,14 10,14 100,1	91, 39 85, 40 83, 66 83, 66 83, 66 85, 76 36, 76 100, 15 78, 48 83, 85 80, 80 35, 46 50, 10 45, 79
30 31 32 33 34 35 36	8-5 -5 8-334-10 8-5 -10 8-394-10 8-394-10 8-5 -10 8-5 -10 0-0 -0	800 . 800 .	do	ammonium sul- phute (%, cotton- seed meal (%), driad blood (%). Dried blood Ottonseed meal Ammonium sulphate Dried blooddo. None	do	114.60 78.00	79.02 61.17 47.50 34.82 57.02	79. 27 89. 68 101. 95 82. 26 89. 51 100. 65 7. 57	90, 96 76, 28 84, 22 67, 43 91, 51 93, 52 23, 19

TABLE 10.—Acre yields and gross values of leaf tobacco in tests of fertilizer from different sources and at different rates, with and without dolomitic limestone, at Oxford, N. C., 1913-1924—Continued

					Acre v	alue of l	eaf tobr	ieco (do	ilars)			
Plot No.	Ferti- lizer formula		Field		A 787.		Field		A ver-		Field	
	1012040	3. 1916	1, 1917	2, 1918	age, 1916– 1918	3, 1919] 1920	2, 1921	nge, 1919- 1921	3, 1922	1, 1923	2, 1924
1	Ż	11	12	13	14	15	16	17	19	19	29	21
1 2 3 5 7 8 0 10 12 13 14 15 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34	8-2 -2 8-5 -10 8-5 -5 8-334-10	ini. 06 128, 49 191, 57 224, 05 192, 62 196, 57 224, 05 192, 92 196, 57 228, 41 203, 48 110, 57 228, 41 190, 57 228, 41 190, 57 228, 41 190, 57 190, 5	$\begin{array}{c} 160, 02\\ 168, 54\\ 158, 54\\ 152, 70\\ 110, 12\\ 120, 34\\ 156, 45\\ 210, 84\\ 162, 40\\ 143, 99\\ 210, 84\\ 162, 40\\ 143, 99\\ 200, 40\\ 179, 78\\ 200, 40\\ 179, 78\\ 200, 40\\ 179, 78\\ 201, 47\\ 164, 10\\ 179, 78\\ 201, 47\\ 164, 10\\ 179, 78\\ 201, 47\\ 164, 10\\ 179, 78\\ 201, 47\\ 164, 10\\ 179, 78\\ 201, 47\\ 172, 62\\ 135, 69\\ 164, 45\\ 134, 47\\ 156, 61\\ 135, 69\\ 134, 47\\ 156, 61\\ 127, 62\\ 135, 61\\ 124, 30\\ 204, 25\\ 186, 92\\ 172, 04\\ 204, 25\\ 186, 92\\ 186, 92\\ 172, 04\\ 204, 25\\ 186, 92\\ 172, 04\\ 204, 25\\ 186, 92\\ 172, 04\\ 186, 92\\ 186, $	141. 63 134, 83 148, 20 214, 43 167, 05 101, 40 121, 95 191, 20 102, 18 113, 53 248, 00	$\begin{array}{c} 173, 15 \\ 130, 70 \\ 130, 70 \\ 154, 36 \\ 31, 14 \\ 170, 64 \\ 200, 80 \\ 174, 71 \\ 170, 90 \\ 09, 04 \\ 68, 44 \\ 143, 60 \\ 158, 32 \\ 143, 92 \\ 143, 92 \\ 145, 47 \\ 142, 57 \\ 144, 82 \\ 145, 47 \\ 142, 57 \\ 144, 82 \\ 145, 47 \\ 142, 57 \\ 144, 82 \\ 145, 47 \\ 142, 57 \\ 144, 82 \\ 158, 32 \\ 15$	165, 58, 241, 56 40, 04, 228, 20 312, 30, 212, 212, 212, 212, 212, 212, 212, 21	120, 50 153, 20	86.46 73.20 90.51.20 90.52.90 93.52.90 93.52.90 94.50 37.80 93.52.90 94.50 93.52.90 94.50 95.20	$\begin{array}{c} 144.\ 60\\ 117.\ 43\\ 93.\ 38.\ 26\\ 121.\ 65\\ 121.\ 65\\ 174.\ 52\\ 174.\ 52\\ 174.\ 52\\ 174.\ 52\\ 174.\ 52\\ 177.\ 55\\ 122.\ 93\\ 122.\$	$\begin{array}{c} 100, 32 \\ 154, 32 \\ 103, 44 \\ 113, 04 \\ 149, 28 \\ 86, 64 \\ 194, 04 \\ 243, 12 \\ 202, 56 \\ 165, 60 \\ 167, 52 \\ 126, 70 \\ 174, 00 \\ 182, 48 \\ 158, 80 \\ 171, 84 \\ 142, 98 \\ 144, 78 \\ $	229. 20 61. 80 179. 40 202. 80 216. 80 153. 20 196. 20 198. 40 272. 20 198. 40 272. 20 195. 00 180. 60	81.20 91.20 47.80 54.20 43.60 55.20 11.00 83.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 108.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 99.80 77.80 90.80

PARLE 10.—Acre yields and gross values of leaf tobacco in tests of fertilizer from different sources and at different rates, with and without dolomitic limestone, at Oxford, N. C., 1913-1924—Continued

[An asterisk (*) in connection with column numbers (27-32 and 54-59) denotes that ground dolomitic limestone was applied broadcast at the rate of 1 ron per acro 30 to 40 days prior to transplanting the tobacco. In the other cases (unstarred) no dolomitic limestone was used]

.

-	-												
			·		د بینان بر محد	tere val	ue of lea	af tobaç	co (doll	ars)			
Plot No	Forti- lizer formula) Aver- nge,	Ave	rage by	field			Field			Aver-	Aver-
	 	1022 1924	1913- 1924	3	1	2	1, 1920	2, 1921		I, 1023	2. 1924	вке, 1920- 1924	nge, 1920– 1924
i 	2	22	3	24	25	26	•27	*28	•29	*30	*31	• 32	33
1 2 3	-1000-01-000-000-000-000-000-000-000-00	$\begin{array}{c} 135, 33, \\ 151, 40, \\ 90, 15, 10, \\ 128, 60, \\ 90, 15, 10, \\ 115, 40, \\ 90, 15, 10, \\ 115, 30, \\ 115, 1$	$\begin{array}{c} 132, 57\\ 127, 168\\ 127, 168\\ 126, 98\\ 126, 98\\ 176, 21\\ 128, 177\\ 123, 857\\ 126, 857\\ 120, 84\\ 151, 76\\ 120, 84\\ $	102.38 182.13 182.13 185.12 132.49 171.97 132.49 171.97 132.49 171.97 132.49 171.97 132.49 171.97 132.49 132.10 174.786 132.10 174.786 132.10 174.786 132.10 174.786 132.10 174.786 132.10 174.786 132.10 174.786 134.10	134, 280 114, 280 114, 280 114, 280 114, 280 114, 280 114, 290 137, 390 137, 390 137, 390 137, 390 137, 390 137, 390 143, 380 143, 380 144, 381 144, 377 146, 317 123, 744 146, 377 146, 380 146, 377 146, 380 146, 377 146, 380 147, 380 147, 380 112, 390 112, 390 112	75, 87 94, 46 120, 24 70, 31 95, 46	161,080,000,000,000,000,000,000,000,000,00	115.6.00 155.50 115.50 115.50	$\begin{array}{c} 160,08\\ 224,64\\ 220,08\\ 165,84\\ 202,08\\ 193,20\\ 160,09\\ 179,04\\ 49,68\\ 197,76\\ 213,60\\ 232,96\\ 190,76\\ 189,12\\ 189,12\\ \end{array}$	323, 60 344, 20 251, 40 255, 60 251, 40 295, 20 322, 80 356, 20 199, 20 356, 20 199, 20 356, 20 199, 20 356, 20 357, 40 257, 40 356, 20 356, 20 356, 20 357, 40 356, 20 356, 20 356, 20 357, 40 20 356, 20 357, 40 20 356, 20 357, 40 20 356, 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 20 357, 40 30, 40 357, 40 377, 40 30, 40, 40	206. 60 235. 00 235. 00 213. 50 213. 5	196, 80 46, 24 224, 50 169, 50 169, 50 162, 15 219, 01, 130, 48 74, 90 207, 75 168, 02 235, 99 49, 49 207, 75 168, 03 208, 17 202, 02 194, 48 207, 56 196, 26 201, 05 196, 26 202, 02 196, 26 196,	120, 94 108, 57 117, 41 130, 20 110, 15 104, 87 120, 29 104, 87 120, 39 104, 87 105, 30 105, 30 10, 3

.

,

TABLE 10.—Acre yields and gross values of leaf tobacco in tests of fertilizer from different sources and at different rates, with and without dolomitic limestone, at Oxford, N. C., 1913-1924—Continued

		i				Acre	yield	(рсин	ds)				
Plat No.	Fertilizer formula		Field		Aver-		Field		A ver-		Field		A ver-
		3, 1913	1. 1914	2, 1915	1913- 1915	3, 1916	1, 1917	2 1918	1916- 1918	3. 1919	1. 1920	2 1921	1919- 1921
1	\$	ĸ	35	36	37	38	39	40	\$1	42	43	4	45
1	8-3 -3 8-5 -10	640	595	790	675	506	670	622		762	860		827
2	8-5 -10	510	660	648	616	672	655	668	648	655	740	680	692
3	8-5 -10	500 500	685 735	59S 522	594 586	771 849	670 455	-674 576	705 560	729 050	820 880	660 540	738 675
4	8-5 -10	540	665	529	578	892	525	553	657	717	820	640	728
6	5-5 -10	720	710	631	687	962	575	582	706	912	820	520	751
7	8-334-10	640	615	565	667	\$99	855	562	772	800	740	480	673
8	9-3%-10	600	550	688	613	812	670	539	674	557	380 880	440	459
9. 10.	8-5 -10 0-0 -0	580 280	705 475	530 169	605 305	932	590 70	623 275	712 172	675 143	308	480 380	678 274
11	6-5 -10	340	845	591	659	\$82	800	664	782	679	680	680	680
12	6-0 -10	500	615	547	574	1,006	780	773	853	815	760	780	785
13	6-5 -10	620	735	453	603	999	700	630	776	748	580	920	749
14		610	660 355	387 200	562 337	955	730 470	721 509	802 531	645 584	520 280	760	042 488
15	0-5 -10 8-5 -0	390 380	600	163	1 381	615 605	175	395	392	261	440	600 460	988
17	S-0 -10	400	315	167	314	505	285	491	427	567	800	500	622
18			1 510	508		915	285 770	733	506	832	900	720	817
19.		400	150	295	282	191	30	254	158	159	180	320	220
20		600	490	526	539	687	620	684	664	092	900 1.000	660 720	751 828
21.	6-5 -10 6-5 -10	500 500	620 655	527 587	549 577	819 816	645 530	60S 61S	651 655	765 946	880	580	802
23	6-5 -10	040	795	547	60	822	540	622	661	811	600	460	644
24	6-5 -10	600	705	566	624	801	585	559	648	700	500	420	560
25		650	655	624	663	797	500	666	654	092	560	440	564
26	8-5 -10	640	755	857		1,019	665	761	815	1,028	860	660	849
27		500 580	815 820	737	654	726	610 690	705 783	680 755	734 955	840	500 600	591 892
29	8-5 -10	660	655	911 585	633	610	090	(63	755	908	1,120	000	092
29			(6.61		000	1.010	620	759	1	786	600	560	649
30	8-5 -5	600	680	574	618	646	865	583	631	714	560	450	585
31	8-314-10	580	620	059	620	915	790	680	795	639	800	600	696
32	S-5 -10	720	455	701	625	960	675	790	808	776	640	560	659
33	8-3-4-10	660	395	665	573	831	465	645	647	485	420	340	415
34	8-5 -10	700	510	647 638	619	830 960	615 730	646 987	697 892	679 821	820 960	660 800	720
36	0-0 -0	440	000	81	167	265	160	178	201	170	120	300	197
		1	1 404	1	1]	1.00	1	1.00	1		l ~~	1

TABLE 10.—Acre yields and gross values of leaf tobacco in tests of fertilizer from different sources and at different rates, with and without dolomitic limestone, at Oxford, N. C., 1913-1924—Continued

[An asterisk (*) in connection with column numbers (27-32 and 54-59) denotes that ground dolomitic limestone was applied broadcast at the rate of 1 ton per acre 30 to 40 days prior to transplanting the tobacco. In the other cases (unstarred) no dolomitic limestone was used]

							А	cre yi	eld (p	ound	s)					
Plot No.	Ferti- lizer formula		Field		Av- er-	Аv- ег-	Aven	age by	field			Field			Av-	Av-
		3, 1922	1, 1923	2, 1924	856, 1922- 1924	age, 1913- 1924	3	1	2	1. 1920	2, 1921	3, 1922	1 1923	2. 1924	age, 1920- 1924	age, 1920- 1924
1	2	46	47	48	49	50	51	52	53	•54	*55	•54	+57	*58	•53	
1 2 3. 6 7 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 21. 22. 23. 24. 25. 27. 28. 29. 31. 32.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	850 860 870 950 960 960 9760 1420 9760 9770 9760 9770 9760 97700 97700 9770 97700 97700 97700 97700 97700	980 t, 150 900 850 940	6400 350 350 350 350 350 500 500 550 550 5	847 840 827 753 783 783 830 727 753 840 850 727 753 840 727 753 840 727 753 840 727 753 840 727 753 840 727 753 840 753 753 840 775 775 850 775 775 775 850 775 775 775 850 775 775 775 775 775 775 775 7	6199 716 678 733 695 591 6720 2720 770 740 6833 516 698 505 740 6833 516 608 759 721 252 252 608 800 701 813 800 701 813	720 654 752 894 820 677 737 737 737 737 737 725 632 632 632 632 632 632 632 632 725 632 632 725 632 725 725 730 725 730 737 737 737 720 835 835 835 832 835 832 835 835 835 835 835 835 835 835 835 835	749 8365 765 765 765 761 7761 821 751 751 751 751 751 751 751 751 751 75	495 518 487 487 487 503 239 614 705 666 012 409 409 409 772 623 674 574 574 574 574 574 570 611 609	390 940 940 940 540 540 540 540 540 1,100 980 1,020 980 1,020 980 1,020 980 1,020 980 1,020 980 1,020 980 1,020 980 1,800 280 280	900 960 683 880, 340 940 940 920 920 920 920 920 920 920 920 920 92	[760] 1,003 1,003 1,000 1,000 900 900 900 900 900 900 900 900 900	$\begin{matrix} 1, 220\\ 2, 220\\ 1, 200\\ 1,$	820 800 720	980 928 1,002 956 1,138 944 864 892	532 788 792 714 740 680 688 332 724 814 814 814 814 800 0540 0540 0540 0540 0540 0540 0540
33 34 35 36	8-5 -10 8-334-10 8-5 -10 8-5 -10 0-0 -0	960 880 780 960 1 350	820) 780: 860 , 090 380	560 460 560 580 240	780 707 733 883 327	718 580 692 814 223	854 714 747 870 309	048 515 701 820; 165	653 528 628 751 1 195	800 760 800 ,020 220	720 1 720 1 800 600 1 360	0101	, 020 , 280 , 240 , 340 , 280	560 620 840 880 60	828 870 912 984 280	708 576 736 582 290

The cropping system as followed from 1919 to 1924, inclusive, was as follows: First year, tobacco followed by winter oats; second year, oats cut for hay and followed by soy beans, which were turned under; third year, rye harvested for grain. During this period the oats received 100 pounds of nitrate of soda as a top dressing to all plots. No fertilizer was applied to the rye. The object in making the above-stated change in the cropping system was to eliminate corn, which seemed to lower the yield and quality of the tobacco.

The plots were originally one-twentieth acre in size, but beginning with the year 1920 one-half of each of the plots was treated with finely ground dolomitic limestone applied broadcast at the rate of 1 ton per acre. This application was made 30 to 40 days prior to transplanting the tobacco, each year. These divided plots were then harvested separately to get the effect of the dolomite treatment.

The above-described modifications account for some of the differences. It will be noted that the first three-year average gave marked decreases in yield where ammonia and phosphoric acid were left off, but this difference is not so marked for the last threeyear average. This is due to the fact that some of the other crops used in the rotation had received ammonia and phosphoric acid applications to all plots. The improvement on the no-ammonia plot is doubtless due to the use of legumes and the creeping in of wild legumes.

These plots were arranged in two series according to plot numbers. Plots 1 to 18 were in one series and plots 19 to 36 in another series, with a 10-foot roadway between. Plots 1 and 19 were opposite each other. The plots were originally one-twentieth acre in size, but they were divided when the liming treatment was begun, each plot thereafter being one-fortieth acre in size. The ammonia from the inorganic sources was applied at three-fourths the normal rates, since this form is known to be more readily and more completely available than the organic ammoniates.

The plots at Oxford, N. C., used in testing potash derived from different sources, as reported in Table 11, were kept in tobacco continuously with a rye cover crop during the winter. These plots as laid off were one-twentieth acre in size, but each plot was divided at harvest time into two equal parts, thus giving duplicate series, A and B, of onefortieth acre area. Beginning with 1920, however, series B was limed with ground dolomitic limestone applied broadcast at the rate of 1 ton every three years. These plots were arranged in the following order: 10, 9, 1, 2, 3, 4, 5, 6, 7, and 8. Plots 9 and 10 were added after the test had been under way for two years. The results for 1916 were lost. In 1915 potash was applied at the rates of 20, 40, and 60 pounds per acre, but thereafter the rates were as indicated in Table 11. All plots received dried blood as the source of ammonia and precipitated bone as the source of phosphoric acid. The formulas shown in the table were applied at the rate of 800 pounds per acre.

TABLE 11.—Acre yields and gross values of leaf tobacco in fertilizer tests using potash from different sources and at different rates, with and without dolomitic limestone, at Oxford, N. C., 1915, 1917-1924

Rate of application of fertilizer mixtures, 800 pounds per acre. Yields and values marked with an asterisk (*) were obtained by the use of ground dolomitic limestone applied broadenst at the rate of I ton every three years. In columns showing average yields and values, 1917–1924, the results obtained from the dolomite treatment are not included;

	Fertilizer	treatment				Асте	yield	of lea	f toba	acco (po	unds))		
Plot No,	Formula	Source of	1915	1917	1916	1919	1920	1921	1922	1023	1924		vera	50
		potash							1024	1021	1824	1917- 1924	1017- 1910	1920- 1924
1-A 1-U	8-5-0	None	(440 1374	$\frac{267}{365}$	480 467	230 195	260 •440	540 •420	600 660	670 *550	260 *400	394	(326	466
$2-\Lambda$ 2-D	8-5-14	Sulphate	1600	577 500	631 703	358 403	200 600	440	700	660 •700	320 640	510	342 522 555	494 476
3-A 3-B	8-5-11/2	Muriate	{740 {610	671 610	723 625	453 413	520 640	520 *640	600 640	950 •910	460 *560	505	/610 1549	*076 610 *718
4-A 4-B	8-5-3	Sulphate	(814 (680	724 650	778 663	490 455	460 620	580 *640	640 •780	840 •860	400 •700	600	(664 (589	588 720
5-A 5-B	8-5-3	Murinta	(800 (700	683 680	827 787	575 513	620 *820	640 •720	720	890 1,000	500 •780	676	(605 (600	674 856
0-A 0-II}	8-5-452	Sulphate	{710 {710	655 682	720 761	493 545	000 •040	660 760	640 *940	820 900	360 •720	}€31	624 663	616 •814
7-A 7-B}	8-5- 41/2	Muriato	(690 (900	700 755	810 868	$\substack{613\\613}$	780 *780	600 850	740 •020	880 870	500 920	720	728	700 *874
8-A 8-B}	8-5- O	None	(354 510	384 447	437 416	$\frac{263}{275}$	400 *460	440 *400	560 *580	600 740	370 390	423	/361 (379	480 514
9-B)	8-5-10	Sulphate	{	589 605	$\begin{array}{c} 695 \\ 682 \end{array}$	443 348	700 580	520 *020	760 *740	850 *720	600 *560	623	(570 (585	680 644
0-B}	8-5-10	Muriate	{	700 755	874 837	570 485	800 *920	640 •760	760 •840	930 *930	440 020	708	715 692	714 81

					Acre val	ue of le	af tobac	co (doll	ars)			
Plot No.	1915	1017	1.010	1010							A verage	· ·
·	1913	1917	1918	1919	1920	1921	1922	1923	1024	1917- 1924	1917- 1919	1920 1924
1A 1B 2A 2B 3B 3B 3B 3B 4A 5B 0A 4-B 5B 0A 4-B 1	46.67 75.00 66.14 104.19 104.19 84.97 122.50 117.60 93.24 103.30 95.86 05.03 110.07 43.47 63,77	78, 50 151, 56 152, 60 188, 83 172, 16 208, 21 198, 08 192, 65 196, 72 183, 57 191, 04 222, 65 214, 08 79, 20 93, 12 151, 18 192, 45 214, 08	228, 60 207, 32 245, 04 360, 29 350, 97 280, 60 329, 96 330, 35 372, 48 59, 53 101, 70 235, 70	50, 07 955, 30 208, 42 104, 22 104, 427 104, 427 104, 427 104, 427 104, 427 104, 427 104, 427 104, 427 105, 52 274, 30 224, 335 58, 25 105, 52 105, 52 105, 52	*40,40 32,80 *105,20 06,80 *126,60 *126,60 *0,80 *0,40,80 *0,40 *147,20 *147,20 *147,20 *147,20 *16,80 *90,42 155,66 *16,80 *16,80 *15,60 *17,50	*55,00 121,60 176,20 150,86 168,40 *119,00 183,60 182,60 *247,80 *247,80 77,60 *73,40	191. 52 205. 68 168. 48 222. 96 171. 60 *213. 12 213. 36 *279. 60 180. 72 *259. 92 200. 32 *245. 04 143. 04 *138. 95 191. 76	125.00 145.40 175.40 209.60 221.10 188,50 *201.90 203.80 *255.00 177,40 *237.30 177,00 164.20 134.40 134.40 154.00	*73, 40 54, 60 *135, 80 85, 20 *126, 00 *126, 00 *170, 20 *1453, 40 *165, 20 *170, 20 *1453, 40 *163, 40 *61, 80 *61, 80 *133, 00	<pre>> 61, 98 >142, 12 >169, 49 >175, 53 >224, 86 >190, 16 >255, 63 > 89, 43 >149, 64</pre>	(78.57 (144.21 (194.00) (193.88 (192.17) (216.58 (212.48) (282.75) (245.45) (274.08) (217,82) (248.45) (320.25) (76.99) (100.11)	92, 30 94, 28 109, 18 * 143, 90 141, 24 * 169, 37 1569, 37 1579, 37
10-A 10-D	i	108, 87 215, 35	351, 60 314, 28	372, 72 320, 40	115.20 *218.40	199, 40 *203, 80	217, 92 230, 64	197, 40 *211, 60	69, 40 •112, 80	233. 96	(309, 00 (283, 34	159, 86 195, 45

The comparison of calcitic and dolomitic forms of lime when used in combination with potash from different sources is shown in Table 12. The calcite, no-lime, and dolomite treatments were arranged in three parallel series with the following sources of potash extending across each: American muriate, German muriate, American sulphate, German sulphate, sulphate of potash magnesia, and kainit. The series were separated by spaces of 3 feet. One series receives calcitic limestone, finely ground, at the rate of 1,000 pounds per acre, applied in the drill prior to transplanting the tobacco. A second series received no limestone, and a third series received dolomitic limestone, finely ground, at the same rate and applied in the same manner as the calcite. These plots were one-fortieth acre in size. Tobacco was grown on these plots in continuous culture with a cover crop of rye during the winter. All plots were fertilized with a mixture analyzing $8-5-4\frac{1}{2}$ at the rate of 800 pounds per acre. Acid phosphate was the source of phosphoric acid used, dried blood the source of ammonia, and the sources of potash were those indicated in the table.

TABLE 12.—Acre yields and gross values of leaf tobacco in fertilizer tests using potash from different sources, in combination with calcitic and dolomitic lime-stones, at Oxford, N. C., 1921–1924

	Fortilizer treatn	ient			yield to (po			Acre value of leaf tobacco (dollars)						
Plot No.	Source of potash	Form of lime- stone	1921	1922	1023	1924	A v- er- 1921- 1924	1921	1922	1923	1924	A ver- age, 1921- 1924		
1 2 3	American muriate	Calcitic None Dolomitic	780 920 1, 020	660	950	640	; 793	275, 50 343, 30 364, 30	126.24	270, 20	92,00	207.94		
4 5 6	German muriate	{Culcitie None Dolomitie	940 720 1,000	640	790 1,080 1,380	440	720	349, 20 260, 60 405, 80	131.28	307.50	55.00			
7 8 9	American sulphate	{Caluitie {None Dolomitic	640 600 920	480	790 700 1, 110	120	550	203, 70 190, 40 364, 30	86.16	216.30	51.00			
10 11 12	German sulphate	{Calcitie None Dolomitic	600			500 400 520	560	309, 70 185, 50 347, 40	88.09	206.30	49,40	132.32		
13 14 15	Sulphate of potash mag- nesin.	Calcitic None Dolomitic	1, 060 1, 100 900	720	1, 020 1, 050 1, 200	540	I 853	351, 10 398, 69 337, 90	150.00	337.10	77.40	219. 05 240. 78 234. 79		
16 17 18	Kainit	(Calcitic None Dolomitic	1, 040 1, 000 1, 140	800	'I, 160	760	930	349, 00 344, 70 373, 50	160.32	364.40	129,80	249, 81		

TESTS AT TIMMONSVILLE, S. C.

The results of fertilizer tests at Timmonsville, S. C., are given in Table 13. These tests were conducted in a three-year rotation system over a period of six years. By this arrangement each fertilizer plot occupied the same area every third year during the six-year period. The rotation system was as follows: First year, tobacco followed by winter oats; second year, oats cut for hay, after which the field was seeded to cowpeas (broadcast), which were cut for hay; third year, land planted to cotton. The winter oats received 100 pounds of nitrate of soda per acre as a top dressing in the early spring of the second year, and the cowpeas received 300 pounds of acid phosphate per acre just prior to the time of seeding. Cotton received a mixture of 400 pounds of acid phosphate, 300 pounds of cottonseed meal, and 50 pounds of nitrate of soda per acre drilled in at the time of planting.

The fairly liberal application of acid phosphate on the cowpeas and cotton undoubtedly increased the yields of tobacco, especially on the plots receiving no phosphoric acid. All plots were onetwentieth acre in size and arranged in the field according to numbers, as 1, 2, 3, and so on. The phosphoric acid was derived from acid phosphate, ammonia from the sources indicated, and potash from sulphate of potash.

51290°—27—4

	t			<u> </u>		— —	· · ·									
			re 	tinzer	treatment	· · · · · · · · · · · · · · · · · · ·			Acro	2 yie	1 of f	eaf to	bacc	o (po:		
Plot No.	Form	10	Rate per		Source of	smmonin		1014	1016	1018	1917	1918	1010	I— ,	verag	
	- F (4 144		ucre pounds)		adured of	aminomat		2.014	1910	1910	1917	. 1910	1919	1914- 1916	1917- 1919	
L	0-0 -	- Q	Q	Nor				760	220	570	740	580	610	517	643	580
10 11	8-31/-		1,000 1,000	Driv	d blood			1, 100	620 395	897 577	830 1, 180		710 730	872 684	747 957	810 820
12	10.028	"β	1,000	Am	ate of soda monium si	ulphate		860	510	700	790	780	800	720	723	722
2 14	}8-5 -	14	1,000	Drie Cot	ed blood tonseed me tory produ	nl		1, 340 820	790 485	777	970	1,080 900	495	694	868 788	946 741
15	l ° °	- 3 [800		-			· ·		850		1, 230			883	890
7 18	6-0 6-254 6-355	- 5	1,000	Nor Drie	ið :d blood			940 980	560	730	1,020 630	640	610	759	790 627	693
17 8	0-355- 0-355-		t, 000 1, 000	1	do				•	824 540		1,260 690	!	066 730	1, 027 830	846 780
a 8 5	0-3%	- 5	1,000		do do do			1,240	520 820	780	1,100 1,240	1,230	680	847	1,003	925
13	8-5 -	1	t. 000		dø			920	740	760		800	580	807	780	203
4 19	10-5 - 8-5 -	-10 - 5	1,000						720 760	920 936	740 1, 240	960 1, 220			735 1, 050	854 998
9 18	6-314- 8-314-	- o	$\frac{3}{1000}$		do do do			1, 140	430 555	520	690 1, 180	860 850	595 745		715 925	708 897
3	8-354	10	1,000	1				•	•	950	630		830	930	793	862
	0-0 -	- 0	9	Nor	10			1,020	480	517		1,080	410	672		
					Aer	e value of	leaf to	baeco	(dol	lars)						
Plot	No.	1914		915	1916	1917	191		19				Ave	erage		
		1914		315	1540	.1914	193		19	19	1914	-1916	1917	-1919	1914	-1919
		82.	00	7.30	84. 33	129. 70	174	. 60	13	7.00	. 1	57.88	1	47. 10	1	02,49
10		148. 128.		34.50 29.47	117.13 97.69	203.55 291.90		7.40 5.20		5. 01 7. 75	R)0. 18 15. 26		91, 99 38, 28		46, 08 81, 77
12		101.	25	41.20	98.59	104.40		1. 20		0. 05		35. 26 9. 71	1	79. 55	1	29.63
2		168. 96.	.08	36. 10 38. 85	143.63 110.41	233.30 220.10	303	3.60 3.00	9	8.00 3.70	1 8	15. 91 31. 78	2	51.63 05.60		83, 77 43, 69
}5 7		154.		51.10	86, 54 58, 00	254.00 262.30		9.80 7.40		4.00 7.00		97. 37 32. 19		69. 27 19. 20		183, 32 140, 69
16		110. 116. 69.	40 ļ	18.10 47.50 43.60	88.04 95.23	202.30 142.50 227.00	213	5.70 L 80	13	7.90 5.20 2.18	ļ (52, 19 53, 98 59, 30	1	19.20 64.47 64.66	1 1	24. 22 166. 98
8		122.		38.85	89.41	197.60		3. 40		2.20		33. 72	_	17.73	,	50.73
6 5		147. 123.		39.90 64.60	119.60 105.49	260, 85 279, 40		3. 50 2. 20		1. 80 0. 65)2. 21)7. 82		67. 65 24. 68		84, 63 60, 95

 TABLE 13.—Acre yields and gross values of leaf tobacco in tests using fertilizer from different sources and at different rates at Timmonsville, S. C., 1914–1919

TESTS AT MANNING, S. C.

251. 80 351. 60

400.80

303, 20 273, 50 262, 80

343.20

245, 80 188, 80 284, 10

147, 90 274, 80 208, 50

124, 10 156, 50 141, 50

131.93

146.80

127.00

13_____

9.

З.

20....

19_____

18.....

54, 00 44, 20 44, 00

14. 85 37. 82 46. 50

22.05

94. 16 ,116. 70 129. 82

71, 40 112, 12 138, 80

69. Oł

202, 60 210, 08 267, 50

185, 42 226, 70 201, 63 140, 68 157, 94 186, 30

129, 07

162.81

158.07

110, 20 89, 85 117, 60

105, 15 131, 80 133, 58

88, 60

90, 75 105, 80 105, 11

72, 73 98, 91 114, 52

72.99

The test plots at Manning, S. C. (Table 14), were of the same size, shape, and arrangement as those at Timmonsville. The primary purpose of these tests was to determine whether nematode or rootknot injury can be controlled by crop rotation based on the use of resistant or immune crops when combined with the proper use of fertilizers. With this object in view for the 1915 tobacco crop,

oats and Brabham or Iron cowpeas were grown for two years on soil which was heavily infested with nematodes. The cowpeas were seeded broadcast in 1913 and cut for hay in the fall. Oats were seeded in the fall of 1913 and cut for hav in the spring of 1914, after which the land was seeded again to cowpeas, which were turned under in the fall as a green-manure crop. The same rotation was followed prior to the 1918 tobacco crop. In preparation for the 1917 experiments with tobacco, the land was cropped to corn followed by a cover crop of rye in 1913; in 1914 a crop of Iron cowpeas was turned under and oats seeded in the fall; in 1915 a second crop of corn was grown and oats seeded in the fall; in 1916 Iron cowpeas were grown and cut for hay. The 1916 tobacco crop was destroyed by a storm. In the first-named rotation each crop of cowpoas received 600 pounds of acid phosphate per acre, while the oat crop received only 100 pounds of nitrate of soda per acre. The crops grown prior to the 1917 tobacco crop were fertilized as follows: The corn received 200 pounds per acre of a mixture of 300 pounds of acid phosphate, 200 pounds of cottonseed meal, and 100 pounds of sulphate of potash; the cowpeas received 400 pounds per acre of acid phosphate and 50 pounds sulphate of potash; the oats received a top dressing of 100 pounds per acre of nitrate of soda. The rate of application of acid phosphate on the cowpeas doubtless has been largely responsible for the fact that the tobacco plots receiving no phosphoric acid show almost normal The crop of cowpeas turned under in the fall of 1914 unvields. doubtedly supplied this soil with additional nitrogen. Acid phosphate and sulphate of potash were the sources of phosphoric acid and potash, respectively, used in these tests.

•	F	'ertilizer	treatment	Acra		of leaf to unds)	obacco	Acre value of leaf tobacco (dollars)				
Plot No.	Formula	Rate per acre (lbs.)	Source of am- monia	1915	1917	1918	A ver- age, 1915, 1917, 1918	1015	1017	1918	A ver- age, 1915, 1917, 1918	
1 10 11 12	0-0 -0 8-335-5	0 { 1,000 { 1,000 { 1,000 { 1,000	None Dried blood Nitrate of soda Ammonium sul- phate.	470 600 445 705	1, 200 1, 341 1, 565 1, 260	350 620 865 650	673 854 958 902	26, 67 41, 35 28, 36 41, 28	211, 50 376, 20 451, 70 267, 90	88, 15 220, 90 233, 15 178, 55	108. 77 212, 82 237. 74 162, 57	
2 14 15	}8-5 -10 8-3 -3	{ 1,000 { 1,000 880	Dried blood Cottonseed meal Factory product	(365 945 665	1, 710 1, 355 1, 245	830 770 545	1,068 1,023 818	50, 64 69, 01 47, 07	331, 35 367, 00 356, 00	228.65 227.87 164.90	203, 55 221, 13 189, 32	
7	6-0 -5	1,000	None	580	1,072	410	687	49, 72	286, 85	104. 85	147. 14	
16	6-23⁄2-5	1,000	Dried blood	695	1,335	1,000	1, 010	45, 97	253, 60	302. 22	246. 73	
17	6-33⁄3-5	1,000	do	985	1,225	785	998	60, 98	340, 50	244. 77	215. 42	
8	0-3}4-5	1,000	do	610	1, 395	725	910	40, 64	390, 20	218, 45	216, 43	
6	8-3}4-5	1,000	do	705	1, 395	735	945	42, 33	303, 90	199, 95	182, 06	
5	8-3}4-5	1,000	do	410	1, 350	855	: 872	24, 83	270, 00	214, 87	169, 90	
18	8-5 -10	1,000	do	1, 070	1, 335	735	1,047	76, 31	383, 39	219, 25	226, 29	
4	10-5 -10	1,000	do	730	1, 675	800	1,068	48, 85	336, 90	240, 50	208, 45	
19	8-5 -5	1,000	do	840	1, 385	825	1,017	57, 31	396, 85	261, 30	238, 49	
9	6-315-0	1,000	do	770	905	695	820	57, 02	199, 00	179, 30	145, 11	
18	8-315-5	J,000	do	660	1, 255	735	883	48, 29	349, 50	233, 55	210, 45	
3	8-315-10	1,000	do	660	1, 595	375	943	42, 67	333, 50	193, 55	189, 91	
20	0-0 -0	0	None	350	525	560	478	19, 93	100, 50	127, 52	82, 65	

TABLE 14.—Acre yields and gross values of leaf tobacco in tests using fertilizers from different sources and at different rates at Manning, S. C., 1915, 1917, and 1918

The feature of chief interest in the results at Manning is the demonstration that by proper fertilizing and the use of highly resistant crops in the rotation normal yields of tobacco can be obtained on nematode-infested soil, even where the infestation is heavy. Prior to the initiation of the rotation tests it was impossible to obtain a profitable yield of tobacco even though fertilizers were used.

TESTS AT TIFTON, GA.

The yields and values presented in Table 15 were obtained from plots one-fiftieth acre in size at the Coastal Plain Experiment Station, Tifton, Ga. In these tests tobacco was grown in continuous culture and in two-year rotations with cotton, corn, peanuts, and sweet potatoes. The plan followed requires only a single series of plots for tobacco in continuous culture, while two series are necessary for each of the rotations with other crops, as indicated in the table. Plots 4, 12, 20, 28, and 30, not included in the table, are control plots with respect to other features of the crop-rotation tests which need not be considered here.

TABLE 15.—Acre yields and gross values of leaf tobacco in cropping tests of different formulas and rates of application of fertilizers at Tifton, Ga., 1922-1926

[Tobacco following tobacco was always located on the A series of plots. Tobacco following cotton, corn, pennuts, and sweet pointees was located on the A series of plots in the years 1922, 1924, and 1926, but in the years 1923 and 1925 tobacco following these crops was located on series B, C, D, and E, respectively]

	Fertii	iizer treatn	nent	Acr	a yields	s of leaf	tobacc	о (рош	ıds)
Preceding crop and plot	Formula	Rate per ucre (pounds)	Dolomite (pounds)	1922	1923	1924	1925	1926	Aver- age
Tobacco:			· · · · · · · · · · · · · · · · · · ·		i	·			
1-A 2-A 3-A 5-A 6-A 7-A 8-A Cotton:	6-334-0 0-334-434 6-0 -434 6-334-434 6-334-434	500	None. None. None. 1,000 None. None.	872 475 1, 169 1, 353 853 1, 350 594	712 370 702 1,414 881 1,361 491	408 254 037 701 789 987 31	872 182 1, 201 1, 098 1, 198 1, 388 62	583 600 752 1,068 982 1,100 273	689 376 910 1, 127 941 1, 237 290
9-A and 1-B	6-335-0 0-335-435 0-0 -435 6-335-435 6-335-435 0-0 -0	500 500 500 400 500 1,000 0	None. None. None. 1,000 None. None.	1, 100 528 1, 116 1, 172 784 1, 428 350	658 455 503 925 1,016 1,289 133	465 287 587 625 672 923 31	650 100 962 975 1,048 1,326 103	601 414 554 676 801 1, 054 177	708 357 744 875 864 1, 204 159
17-A and 1-C	6-336-0 0-3 3 6-454 6-0 -454 6-336-454 0-0 -0	500 500 500 500 500 500 1,000 0	None. None. None. I, 000 None. None.	1,059 469 1,012 1,175 906 1,512 562	906 798 1, 018 1, 236 1, 502 1, 622 462	431 200 655 900 956 1,056 68	489 66 733 966 1,087 1,855 75	405 423 630 733 793 878 138	658 391 810 1,002 1,067 1,385 261
25-A and 1-D	6-336-0 0-335-435 0-0 -452 6-336-454 6-336-454 0-0 -0	500 500 500 500 500 1,000 0	None. None. None. None. 1,000 None. None.	831 525 1, 272 1, 134 991 1, 312 531	1, 423 816 1, 124 1, 071 1, 328 1, 353 459	472 353 992 1, 167 1, 195 1, 353 122	500 106 866 1, 134 1, 181 1, 622 59	166 362 764 1,024 962 1,133 152	678 432 1,004 1,106 1,131 1,355 265
33-A and J-E 34-A and 3-E 35-A and 3-E 37-A and 5-E 38-A and 6-E 39-A and 7-E 40-A and 8-E	6-33-6-0 0-39-6-41-6 6-0 -41-5 6-33-6-41-5 6-33-6-41-5 6-0 -0	500 500 600 500 500 1,000 0	None. None. None. None. 1,000 None. None.	900 528 950 1, 481 953 1, 528 503	948 421 1, 247 1, 036 837 1, 619 198	634 387 931 1, 254 1, 297 1, 578 351	528 50 787 1,031 1,297 1,378 103	505 141 570 724 1,054 1,300 108	703 305 857 1, 105 1, 088 1, 481 253

TABLE 15.—Acre yield	s and gross values of	leaf tobacco in	cropping tests of different
formulas and rates of	application of fertili	zers at Tifton,	Ga., 1922–1926––Con.

.	Acre value of leaf tobacco (dollars)										
Preceding crop and plot	1922	1923	1924	1925	1920	Average					
Fobacco:				j		[
I-A	62.12	135, 19	61, 49	59.28	72.58	78.11					
2-A	4.75	25.75	7,62	.1.82	51,99	18, 39					
3-A .	69, 95	108,80	120.74	97.38	101.25	99.62					
5-A	109.64	408.76	128, 50	88.19	164.37	179.89					
0-A	56, 94	217.82	120.87	95.97	137.08	125.74					
7-Α	159, 73	406, 96	164.37	116.44	226.22	214.74					
8-A	5.94	16.65	. 31	. 62	7.09	6.12					
Cotton:	0.01	10.00									
9-A and 1-B	55, 59	76, 84	45, 60	48.94	66.08	58.25					
10-A and 2-B	23. 74	16.07	8.02	1.00	25.89	14.00					
11-A aux 2-B	34.23	25.64	111.83	70.10	41. 55	56.67					
13-A Rad 5-B	116.26	208.49	92.67	65. 53	77.88	112.05					
74-A and 0-B	77. 16	218. 06	102.94	80.68	104.31	116.75					
	157.55	354.94	177.96	101. 94	279.67	214.41					
MLA and SLR	3, 50	2.68	. 31	1. 63	3.54	2.21					
10-A and 8-B	D. 00 j				0.01						
17-A and I-C	36, 31	151.08	32, 25	35, 34	41.00	59, 52					
18-A and 2-C	31.06	63.88	6.00	. 56	32. 51	22. 62					
10-A and 3-C	64. 89	207.82	108.01	59.00	67. 78	101.50					
21-A and 5-C	127. 77	303.03	164. 52	66.35	104.34	153.20					
22-A and 6-C	81. 22	384.72	180.24	73.44	98.41	163.61					
23-A and 7-C	185. 31	469, 10	223, 04	144.98	172.66	239.10					
24-A and 8-C	5.62	33, 82	. 66	.76	2 70	8.72					
Centits:		00.0-			~ 10						
25-A and 1-D	19.01	323.58	35.62	32, 20	3.97 İ	82.88					
20-A and 2-D	9.58	104.05	10.59	1.061	24.84	30.02					
27-A and 3-D	79.18	220.14	191.36	59.12	62, 38	122.44					
20-A and 5-D	56.06	240.98	167.03	80.60	128.61	143.22					
30-A and 6-D	97.68	323. 21	203, 59	90.54	104.17	185.04					
31-A and 7-D	126, 14	395, 84	285.79	119.48	223.05	230.06					
32-A and 8-D	13.00	19.02	241	. 59	3.00	7. 02					
weet potatoes:	10.00	10.0.			v . vo	1.94					
33-A and 1-E	26.63	183.01	83.03	38.75	43.13	74.91					
34-A and 2-E	12,90	19, 70	11.61	. 50	18.33	12.61					
35-A and 3-E	60.26	194, 41	152.94	54.75	39.71	100.41					
37-A and 5-E	157.93	241.77	243.00	67.96	60.58	155.46					
38-A and 6-E	68.15	231.34	277.16	89.00	131.80	159.49					
39-A and 7-E	197, 40	441.88	349.78	111.23	249.86	270.03					
40-A and 8-E	6.81	9.01	17.55	1.03	4, 87	8.03					
West and one second sec	v. 01 (0.111	41,044	4.00	-1, Q(0.00					

The fertilizer treatments, as shown by the formulas and rate of application, represent 30 pounds of phosphoric acid in the form of acid phosphate, 15 pounds of nitrogen in the form of dried blood, and 22½ pounds of potash as sulphate of potash magnesia. These particular rates were used in order to supply the same total quantities of plant nutrients over a period of years as were used in certain other rotation tests which are not here considered. The cotton, corn, peanuts, and sweet potatoes received the same fertilizer treatments as the tobacco.

The area on which these plots were located had been brought under cultivation only recently when these tests were begun. The tests, therefore, may be regarded as fertilizer experiments on virgin soil.

The results of the tests involving differences in percentage composition of the fertilizers applied at the 1,000-pound rate are shown in Table 16. These tests cover only a short period, but the treatments are duplicated, making the results fairly dependable.

The plots were one-fortieth acre in size and arranged in parallel series, A and B, as indicated by the numbers. These plots were located on the same area in 1924 and 1925, but in 1926 they were moved to another location because of nematode infestation of the land first used. The areas on which these tests were located had been under cultivation for several years prior to their use for these tests. The phosphoric acid was derived from acid phosphate, the annonia from dried blood, and the potash from its sulphate.

TABLE 16.—Acre yields and gross values of leaf tobacco in tests with different formulas of fertilizers al Tifton, Ga., 1924–1926

[Rate of application of fertilizer mixtures, 1.900 pounds per acre: on heavy-phase Norfolk sandy loam in 1924 and 1925 and on light-phase Tifton sandy loam in 1926]

	Ferti-	Acre	a yield of (pou	ieaf tob nds)	rcco	Acre value of leaf tobacco (dollars)					
Plot No.	lizer for- mula	1924	1925	1920	A ver- age	1924	1925	1925	Average		
I-A.	8-5-5	$\left\{ \begin{array}{c} 1,252\\ 1,217 \end{array} \right.$	1, 521 1, 621	1, 112 1, 326	1, 295 1, 388	218, 59 251, 38	206. 99 215, 66	222, 40 261, 93	215, 99 242, 99		
2-A. 2-B.	} 8-4-5	{ 1, 417 { 1, 145	1,710 1,433	1, 257 1, 191	1, 461 1, 256	276. 62 237. 24	245, 19 230, 46	281, 06 238, 33	267. 61 235. 34		
3-A	\$ \$-3-5	$\left\{ \begin{array}{c} 1,240\\ 1,172 \end{array} \right.$	1,560 1,438	$1,230 \\ 1,053$	1, 343 1, 231	214, 21 224, 51	290, 25 263, 97	275, 24 215, 85	259, 90 234, 78		
4-A	8-2-5	{ 1, 129 { 1, 059	1,494 1,302	$1,128 \\ 1,055$	1,250 1,139	216, 95 201, 05	269, 71 223, 63	235, 43 171, 76	240.70 198.81		
5-A 5-B	8-0-5	{	$\frac{1,022}{1,236}$	980 845	963 977	158, 13 177, 35	164, 90 213, 11	124, 07 117, 01	149, 23 169, 16		
6-A 6-B	} o-o-o	{ 461 576	803 735	348 619	537 643	48, 30 73, 13	68.31 55,92	20, 77 48, 15	45, 79 59, 07		
7-A	}12-3-5	{ 1, 169 i{ 1, 000	$1,720 \\ 1,580$	1, 288 1, 184	1, 392 1, 377	229, 53 212, 61	310, 23 283, 81	291, 90 223, 31	277, 22 239, 91		
8-A	}1 0-3- 5	} 1,217 } 1,211	1, 690 1, 644	1, 114 1, 186	1, 342 1, 347	237, 83 228, 54	289. 01 321. 51	278, 67 218, 42	268, 50 256, 16		
9-A 9-B	} 9-3-5	$\left\{ \begin{array}{c} 1,159\\ 1,315 \end{array} \right.$	1, 519 1, 580	1,007 1,086	$1,228 \\ 1,327$	216. 61 284. 31	253. 52 313. 61	232, 41 189, 38	234, 18 202, 43		
10-A	} 7-3-5	$\left\{ \begin{array}{c} 1,150\\ 1,277 \end{array} \right.$	1,902 1,692	1, 287 1, 058	1, 446 1, 342	191, 43 263, 56	294, 87 327, 66	237, 71 180, 41	241, 34 259, 21		
II-A IJ-B	} }6-3-5	{ 1,096 1,350	1, 541 1, 717	$1,120 \\ 1,062$	1, 252 1, 376	191, 97 276, 79	264, 95 381, 10	247, 62 167, 72	234, 85 241, 89		
12-A 12-B	4-3-5	{ 1, 156 { 1, 413	1, 608 1, 729	1, 109 1, 086	1, 291 1, 409	226.00 277.42	239. 85 212. 02	196, 18 188, 63	220.71 226.02		
13-A 13-B	} 0-3-5	{ 1, 195 { 1, 242	$1,277 \\ 1,537$	89 9 970	1, 124 1, 250	235, 16 210, 53	205. 06 213. 29	80, 89 107, 19	173, 70 177, 00		
14-A	} 0-0-0	{ 886 684	550 989	779 678	738 784	149.60 73.28	61. 57 84. 64	78, 99 89, 32	96. 72 82, 41		
15-A	8-3-8	$\left\{\begin{array}{c} 1,303\\ 1,283\end{array}\right.$	1, 881 1, 585	I, 215 1, 262	1, 466 1, 377	266, 79 275, 23	306. 38 249. 50	277, 84 265, 51	283.67 263.41		
16-A		{ 1, 260 { 1, 051	2, 029 1, 440	1, 2[3 1, 161	$1,501 \\ 1,217$	245, 92 202, 59	335. 17 211. 61	257, 86 164, 58	279.65 199.59		
17-A	8-3-4	{ 1, 215 1, 185	1, 698 1, 806	1, 186 941	1,365 1,311	217.09 179.62	214.66 201.57	202, 23 181, 41	211, 33 187, 58		
18-A	} 8-3-3	{ 1,172 { 1,057	1, 583 1, 452	1, 132 1, 072	1, 296 1, 194	207. 72 151, 60	211, 14 146, 93	178, 17 181, 93	199. 01 160. 17		
19-A 19-B	8-3-3	{ 1, 188 { 1, 180	I, 424 1, 269	1, 253 864	1,298 1,104	173, 29 189, 82	128, 79 153, 82	162. 83 160. 47	154.97 169.90		
20-A 20-B		{ 455 724	1, 115 920	575 819	715 821	9, 10 41, 53	69.40 64.10	51, 44 90, 33	43, 31 65, 32		

ì

FERTILIZER TESTS WITH FLUE-CURED TOBACCO

The tests with fertilizer applied at the 800-pound rate but differing in percentage composition (Table 17) during the years 1922 to 1926, inclusive, were located on the same area for the entire period. The plots were one-fortieth acre in size and were arranged as shown by the numbers. The phosphoric acid in the mixture was derived from acid phosphate, the ammonia from dried blood, and the potasl. from its sulphate. The area on which these tests were located had been in cultivation for several years prior to the initiation of the tests.

TABLE 17.—Acre yields and gross values of leaf tobacco in tests with different formulas of fertilizers at Tifton, Ga., 1922–1926

[Rate of application of fertilizer mixtures, 800 pounds per acre, on heavy-phase Norfolk sandy loam]

	Ferti-	Y Y	ield of	leaf to	obucca (3:00111d	s)	Acre value of leaf tobacco (dollars)					
Plot No.	lizer for- mula	1022	1923	1924	1925	1926	A ver-	10.55	1923	1924	1925	1926	A ver- age
i 3 4 5	8-3-7 8-3-3 8-3-5 5-2-5 8-4-5	708 1,003 670 1,052 873	915 808 918 860 1, 091	641 583 680 658 863	1, 169 1, 211 1, 359 1, 404 1, 451	901 791 1,052 733 969	867 379 937 941 1, (137	100, 27 150, 79 101, 52 102, 97 123, 97	227, 39 193, 78 239, 96 191, 04 290, 30	136.03 135.69	232,02 214,09 252,56 253,38	195, 43 187, 41 187, 73 141, 24 217, 01	177, 77 170, 19 186, 86 164, 70 210, 32

The results of the tests using ammonia from different sources are shown in Table 18. These tests were on the same area for the entire period reported. The plots were one-fortieth acre in size and arranged in series in the order indicated by the plot numbers.

The fertilizer mixtures were made up from acid phosphate, ammonia from the sources shown in the table, and sulphate of potash. The formulas shown were applied at the rate of 1,000 pounds per acre. The sulphate of potash and acid phosphate application rates were reduced to compensate for the phosphoric acid (P_2O_5) and potash (K_2O) which the cottonseed meal contained. However, no reduction was made for the content of these materials in manure, which accounts in a measure for the high yields obtained when manure was used. The manure was applied in the drill at the rate of 4 tons per acre. These tests were located on an area which had been under cultivation for several years.

Table 19 gives the yields and values obtained in the use of potash from different sources. These plots were one-fortieth acre in size and arranged in the order shown by the numbers. The plots were located on the same area from 1922 to 1924. On account of nematode infestation of the area first used, these tests were moved to another location in 1925. In 1926 this test was located on a third area. All the areas used had been in cultivation for a number of years prior to the tests.

The fertilizer mixtures were made up of acid phosphate, which furnished the phosphoric acid; 150 pounds of dried blood and 50 pounds of nitrate of soda per acre, which furnished the ammonia; and potash from the sources shown in the table. Thus the percentage of ammonia was slightly higher than is indicated by the formulas stated. The fertilizer mixtures were applied at rates equivalent to

32 TECHNICAL BULLETIN 12, U. S. DEPT. OF AGRICULTURE

1,000 pounds per acre. In 1926 the potash used on plots 6 and 15 was derived from a mixture consisting of one-half high-grade muriate and one-half high-grade sulphate.

TABLE 18.—Acre yields and gross values of leaf tobacco in fertilizer tests using ammonia from different sources at Tifton, Ga., 1922–1926

Pla		Fertilizer treatment		Acre yie	ids of lea	f tobace	e (jound	la)
No		Source of ammonia	1922	1923	1924	1925	1926	Aver- age
1				1, 092	621	1, 504	704	949
2 3 4 5 7 8	8- 3-6	Cottonseed meal. Dried blood. Ammonium sulphate. Dried blood (52), nitrate of soda (50). Dried blood (52), nitrate of soda (50), cottonseed meal (55).	1.098 993 93	1, 367 1, 496 1, 320 1, 200 1, 178	967 1.039 1.351 1.128 871 971	2.001 1,691 1,933 1.777 1,000 1,853	1, 378 904 1, 480 1, 256 1, 323 1, 343	1,332 1,220 1,451 1,282 1,180 1,278
8	1		1,070	1, 245 1, 380	098 1, 121	1, 598 2, 150	1,399	1, 252 1, 502
10 11	8-414-0 8- 0-0	Mamire (36), nitrate of soda (36)	593	1,767	1, 550 658	2,271 1,269	1,901 1,091	I, 763 909
12 13 14 15 18 17 18	11	Cottonseed meal Dried blood Mitrate of soda Anmonium sulphate Dried blood (bg), nitrate of soda (bg) Dried blood (bg), nitrate of soda (bg), cottonseed meal (bg). Manure	1,078 1,233 1,168 1,110 1,403 1,203 1,203	1,306 1,183 1,672 1,475 1,237 1,425 1,293 1,316	933 i, 000 i, 392 i, 126 912 i, 007 895 P59	1,607 1,705 1,905 1,712 1,631 1,695 1,718 1,892	1, 272 1, 352 1, 616 1, 376 1, 364 1, 502 1, 344 1, 692	1, 251 1, 264 1, 564 1, 371 1, 251 1, 406 1, 291 1, 415
20	8-45-0	Manure (35), aitrate of soda (36)		1,766	ī, 012	1, 962	1,862	1, 559
Tlot		Fortillzer treatment	1	Acre vai	ue of leaf	tobucco	(dollars)	<u> </u>
No.	Formula	Source of amtnomia	1922	1923	1924	1925	1926	Aver- age
1	8- 0-6	None	95.60	212.62	128.73	230. 96	145. 85	362.77
2345678 9	8- 3-6	Cottonseed meal Dried blood Mitrate of soda Amtnonium sciphate Dried blood Dried blood (\$4), nitrate of soda (!4). Dried blood (\$5), nitrate of soda (!5), cottonseed meal (\$5). Manure	106, 54 88, 96	322, 12 365, 82 402, 72 341, 58 298, 92 293, 24 315, 09 366, 04	220, 26 208, 26 305, 24 268, 70 175, 71 212, 73 219, 14 286, 26	343, 42 328, 67 409, 32 310, 66 285, 34 375, 41 264, 96 479, 28	316.45 225.67 341.41 270.99 284.34 324.38 347.52 513.73	273, 56 252, 78 313, 05 256, 18 236, 46 270, 59 265, 50 302, 42
10 11	8-41/2-6 8- 0-6	Manure (36), nitrate of soda (14)	186. 04 54, 85	516, 24 174, 60	392, 76 145, 35	510.66 212.85	485, 46 234, 33	418. 23 154. 40
17 19	8- 3-6	(Cottonseed meal. Dried blood Ammonium sulphate. Dried blood (15), nitrate of soda (16). Dried blood (15), nitrate of soda (16). Dried blood (15), nitrate of soda (16), cottonseed meal (15). Manure.	155, 30 137, 42 158, 84 164, 80 167, 12 186, 67 215, 52 220, 75	340, 54 305, 62 445, 26 401, 26 323, 12 377, 37 340, 22 351, 30	222, 17 225, 10 315, 03 270, 85 204, 96 222, 36 184, 70 226, 88	341, 54 329, 16 365, 15 278, 65 275, 34 340, 85 810, 57 448, 88	298, 54 335, 40 479, 01 353, 66 346, 00 384, 13 363, 66 428, 00	272. 84 216. 54 352. 40 203. 86 203. 37 302. 56 282. 87 335. 12
20	8-134-0	Manure (35), nitrate of socia (15)	181. 80	495, 71	238, 42	340.41	531.37	359, 38

[Rate of application of fertilizer mixtures, 1,000 pounds per acre]

.

TABLE 19.—Acre yields and gross values of leaf tobacco in fertilizer tests using potash from different sources and at different rates at Tifton, Ga., 1922-1926

[Rate of application of fertilizer mixtures, 1,000 pounds per acre. In 1926 one-half the potash used on plota 6 and 15 was derived from high-grade muriate and one-half from sulphate]

Plot	 	· Fortilizer treatment ·		Aero yiel	d of leaf	topacco	(pounds	······
No.	For- mula	Source of petash	1022	1923	1924	1925	1926	A ver- age
1	8-3-0	Νυπο	6 7 63	704	635	1, 045	904	778
2 3 4 5	8-3-3	American sulphate. American muriate. Sulphuse of polash magnesia. Kainit.	800 745	1, 105 1, 417 1, 099 1, 298	936 (128 807 788	1, 462 1, 385 1, 409 1, 730	1, 386 1, 451 1, 400 1, 493	1, 155 1, 196 1, 992 1, 237
6 7 8 9	} 8-3-6	American sulphate. Oerman sulphate. German nuriate. Sulphate of potash magnesis.	000	1, 135 1, 118 1, 211 1, 068	757 746 660 733	1, 498 1, 450 1, 614 1, 518	1, 587 1, 450 1, 644 1, 633	1, 135 1, 202 1, 192
10	8-3-0	None	443	671	432	1, 215	1, 132	779
11. 12 13 14	8-3-3	(American sulphate American nurinte Sulphate of potnsh magnesia Kalnit	680 790 1, 015	1 077 ·	636 526 633 824	1, 368 1, 521 1, 177 1, 734	1, 350 1, 402 984 2, 048	1, 138 1, 041 922 1, 362
15 18 17 18	8-3-6	A merican sulphate German sulphate German muriate Sulphate of potash maguesia	700 858 957 1, 075	1, 118 1, 132 1, 379 1, 315	737 707 1, 049 850	1, 382 1, 623 1, 807 1, 587	1, 710 1, 593 1, 656 1, 615	1, 143 1, 370 1, 288
19	8-3-0	None	220	777	195	1, 113	1,098	681
20	8-3-0	Oerman sulphate (14), kainit (14)		¦ 		1, 710	1, 627	
Piot		Fertilizer treatment	Л	cre value	of leaf to	obacco (c	tollars)	
No.	For- mula	Source of potash	1922	1923	1024	1925	1926	Aver- age
1	8-3-0	None		174.80	196. 96	100. 78	109, 22	107. 30
2 3 4 5	5-3-3	A merican sulphate. A merican muriate Sulphate of potash magnesis Kainit	79.53	351.51 441.49 302.75 346.81	215, 03 209, 88 179, 55 169, 53	241. 44 225. 88 221. 24 267. 32	333, 37 376, 83 357, 61 393, 74	248, 63 274, 29 232, 95 251, 30
6 7 8 9	8-3-6	Antorican sulphate German sulphate German muriate Sulphate of potash magnesia	04.81 117.27 132.17 141.03	323. 60 310. 22 344. 67 303. 21	172, 12 165, 42 139, 63 157, 36	251, 18 259, 33 212, 66 245, 47	434.38 877.45 431.67 426.31	245. 94 252, 16 254. 68
10	8-3-0			117, 99	52. 20	174. 75	172.24	11L 27
11 12 13 14	8-3-3	American sulphate American muriste Sulphate of potash magnosia Kainit	118, 82 114, 96 137, 59	363.50 308.79 259,00 327.74	131, 52 110, 38 137, 65 188, 91	189, 31 193, 81 174, 51 230, 47	290, 48 349, 64 221, 40 547, 91	218, 68 216, 29 181, 50 286, 52
15 16 17 18	8-3-6	A merican sulphate Oerman sulphate. German muriate Sulphate of potash magnesia	81, 11 71, 89 117, 49 86, 84	317.37 299.71 385.39 373.86	156, 17 134, 21 259, 15 186, 65	229, 07 233, 95 298, 19 267, 40	476.87 392.34 408.53 423.82	226, 42 293, 75 267, 71
19 26	8-3-0 8-3-6	None German sulphate (12), kainit (14)	13.37	i25.68	6.45	90.18	159.15	78,97
<i>A</i>)	0-0-0	German surpointe (32), samit (32)		· · ·		293.92	403. 51	

DISCUSSION OF RESULTS

At least 10 chemical elements are essential to normal plant growth, namely: Carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, potassium, calcium, magnesium, and iron. Some investigators believe that certain other elements need to be taken into consideration, but in field practice the foregoing list includes those most

likely to be deficient. Since ordinarily the supply of carbon, hydrogen, and oxygen are beyond practical control in the field, they are not considered here. The remaining seven are present in varying quantities in agricultural soils, and their relative abundance determines the fertilizers to be used to the best advantage. In ordinary fertilizer practice heretofore only three of the above-named elements have been taken into account, as follows: Phosphorus, as phosphoric acid (P_2O_5) ; nitrogen, as ammonia (NH_3) ; and potassium, as potash (K_2O) . It is now known that on some soils another element, magnesium, is of considerable practical importance. In the case of tobacco this is especially true of the flue-cured district, where the soils are usually very low in nearly all of the plant-food elements. It has been found that some tobacco soils have a very low content of magnesium, and a marked increase in the yield and quality of the product usually results when this element is supplied in addition to the three commonly regarded as important. The. practical significance of the remaining essential elements in fertilizer practice, as applied to tobacco culture, has not yet been definitely determined.

PHOSPHORIC-ACID TESTS

The first component of a complete fertilizer mixture to be considered is phosphoric acid (P_2O_5) . It is deficient in practically all of the virgin soils of the flue-cured tobacco district. This is well shown in the results on new land at Tifton, Ga. (Table 15.) In this case it is evident that phosphoric acid is the most important constituent of the fertilizer with respect to both yield and quality of the tobacco crop. Such marked responses may not be obtained, of course, from phosphoric acid on old lands which have previously received applications of this nutrient. (Table 16.) In the form of acid phosphate, phosphoric acid is commonly one of the chief constituents of factorymixed commercial fertilizers. It usually increases yields of tobacco of this type where the other essential elements of plant food are present. Even when used alone on these soils, where a rotation is practiced, it shows relatively large increases, when compared with unfertilized plots, in both yield and quality of product, as indicated in the results at Chatham, Va., and Reidsville, N. C. (Table 20.)

Under special conditions, one or another of the elements of a complete fertilizer may be omitted, but under all ordinary circumstances on the soils in question, phosphoric acid should not be omitted from the mixture unless heavy applications have been made in years immediately preceding. Excessively heavy applications of acid phosphate will leave enough residual phosphoric acid in the soil for several crops, although the immediate effect on the tobacco crop may be harmful.

The yields and values given in Table 20 show that phosphoric acid is an essential component of a complete fertilizer which is to be used over an extended period on the same soil. Although there was no increase in yields from the use of this material at Manning, S. C., this is not to be considered as contradictory, since these plots were located on a different area each season and these areas had been fertilized heavily with acid phosphate in previous years in growing cowpeas for nematode control. The residual phosphoric acid in each case was enough to take care of the needs of the tobacco crop for a season.


The figures are not altogether consistent in indicating the exact quantity to be used for best returns. In most instances 8 per cent phosphoric acid at the rates of application used at the different localities did not give any larger yields than the 6 per cent formula at the same rate and from the same source when the ammonia and potash remained constant. There is evidence in the figures (Table 20) that there was no increase in yield for the higher rates of phosphoric acid over the lighter rates; in fact, the heavier rates, 8 and 10 per cent of phosphoric acid, seem to have lowered the yields and values of the product at Oxford, Timmonsville, and Manning. The results at Tifton show little or no increase in yield where the mixtures analyzed more than 7 per cent phosphoric acid; however, some of the values are slightly increased by higher percentages. Where this material is used in excessive quantities on the light sandy soils it often causes premature ripening ("firing") of the lower leaves of the plant, which usually decreases the yield. At Reidsville and Chatham, where heavier soils are found, the yields and values obtained with the 8 per cent mixtures were slightly better than with the 6 per cent.

TABLE 20.—Average acre yields, gross values, and prices of leaf tobacco in fertilizer tests using phosphoric acid from different sources and at different rates at several localities in stated years

	F	ertilizer	treatment	Yleid		Price
Location, date, and treatment or plot No.	Formula	Rate per acre	Source of phos- phoric acid	Y leid (ibs.)	Gross value	per 100 pounds
Chathais, Va., 1910-1912: 1 2 6 9 14 15 Reidsville, N. C., 1912-1915, 1917, 1918, 1920: 1 3 7 8 Oxford, N. C., 1913-1924: 15 5, 9, 24, 27 11, 14, 20, 23 13, 22 Timponsville, S. C., 1914-1919: 5 5 5 13 14 Manulug, S. C., 1915, 1917, 1918: 8 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	per acré 0 1, 400 1, 400 1, 400 1, 400 1, 400 1, 600 1, 600 1, 600 800 800 800 1, 600 1,	phoric acid None	293 550 573 1,053 977 494 844 1,056 1,076 516 670 606 762 731 731 780 925 853 854 910 945	\$10.37 \$3.49 37.85 96.89 72.31 80.88 71.96 104.80 170.89 180.25 81.83 125.51 131.80 134.63 131.80 150.73 138.463 160.95 146.63 167.94 216.43 182.06	pounds \$1,59 9,73 8,72 9,11 9,00 8,89 14,57 16,27 17,04 17,31 18,94 18,93 19,65 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 18,93 19,95 19,97 19,9
5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,000 1,000 500 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	do. None. A cit phosphate 	1,047 1,068 372 1,043 1,335 1,345 1,278 1,287 1,394 1,314 1,314 1,350 1,187	160, 90 226, 29 208, 45 19, 70 148, 76 258, 57 262, 33 248, 31 247, 34 250, 28 238, 37 175, 35 89, 57	19.43 21.01 19.52 5.30 14.26 19.37 19.50 19.43 19.22 17.95 18.14 18.14 18.77 14.77

Where no phosphoric acid is used in the fertilizer mixture the plants are slow to start growth after transplanting and commonly are very late in maturing, although if allowed to remain on the hill long enough, the tobacco finally makes a fair-sized plant. (Fig. 1.) Such a plant is usually green and hard to cure properly. The right use of phosphoric acid is of great aid in insuring the proper ripening of the tobacco plant, which is essential for good curing, a matter of great importance with flue-cured tobacco.

The phosphoric acid of the fertilizer mixtures was derived from acid phosphate, basic slag, and raw bone meal, as illustrated by the data in Table 20, relating to Oxford, N. C. In this table the use of basic slag and raw bone meal shows slight improvement in yields over acid phosphate, but in Table 30 (p. 50), where dolomite is used, this difference changes in favor of acid phosphate. The reason for this difference, therefore, would seem to be due to magnesia furnished by the basic slag and raw bone meal. The basic slag and raw bone meal produce a plant which matures later than a plant on

540. 1.—Tobacco showing effects of phosphoric acid (P2O3) in the form of acid phosphate. Plot 14 (B) fartilized with 800 pounds per acro of 0-5-10 mixture, plot 15 (A) fartilized with 800 pounds per acre of 0-5-10 mixture, Oxford, N. C., 1924 crop. (See Table 10 for yields and values)

which acid phosphate is used. This fact indicates that phosphoric acid in this form is not so quickly available as in the acid-phosphate form, for when phosphoric acid is omitted a late-maturing plant is the result. Acid phosphate therefore is the most satisfactory source of phosphoric acid, as judged by these tests.

AMMONIA TESTS

The second ingredient of the fertilizer mixture, as usually expressed in the formula, is ammonia. On account of its nitrogen content it is the most expensive component of the fertilizer mixtures used in growing flue-cured tobacco. Generally speaking, nitrogen is the most deficient element of plant food in the soils on which this type of tobacco is grown. The organic matter in these soils is very low, owing to their nature; and since most of the nitrogen of the soil is a constituent of its organic matter, when the one is low usually the other also is low. This element is essential to the proper growth of the plant. To make maximum growth, the tobacco plant must be grown in a soil in which ammonia is relatively abundant or the

fertilizer used must carry a liberal supply of this ingredient. On the other hand, to obtain flue-cured tobacco of fine quality a coarse or rank type of growth must be avoided. It is essential, therefore, that the nitrogen or ammonia supply be under the control of the grower. This type of tobacco must be grown under conditions of comparative nitrogen hunger. If the nitrogen supply is too abundant in the soil the quality of the leaf for flue curing is damaged. The leaf will not cure properly and will be rough and unfit for the purposes for which flue-cured tobacco is used. Whether derived from the soil or from fertilizer, the ammonia must be readily available to the growing plant. Flue-cured tobacco is grown best with a source of ammonia which promotes rapid and uninterrupted growth. When ammonia is too abundant in the soil or fertilizer the leaf in curing remains green or turns red, brown, or sometimes almost black in The best product is obtained where the ammonia becomes color. partially exhausted at ripening time, resulting in a loss of the darkgreen color of the leaves while they are yet in the field. This loss of color which starts in the field is continued in the barn, and the yellow or very light green becomes fixed in the curing process. The proper use of nitrogen gives a very light green or yellow leaf on curing, which, when the cured tobacco leaf is packed down, results in the desired clear lemon or orange-yellow color of flue-cured tobacco.

The figures given in Table 21 demonstrate strikingly that the supply of ammonia must be carefully controlled to produce tobacco of the desired yield and quality. With ammonia as its only fertilizer, flue-cured tobacco gives a fair yield, but the quality of leaf obtained is poor, as shown by the average price per 100 pounds. The quality is even poorer than where no fertilizer at all is used. This comparison is shown in treatments Nos. 1 and 3 at Chatham, Va., and treatments Nos. 1 and 2 at Reidsville, N. C. The tendency in practically every instance is to decrease the quality of the tobacco where the ammonia supply is increased abnormally without corresponding increase of the other fertilizer elements. This is especially true as regards the potash supply, which will be considered in later pages. When the supply of ammonia from a given source is increased, and the supply of phosphoric acid and potash kept constant, there is a marked tendency in some seasons for the leaf-spot diseases, including wildfire and blackfire, to be more prevalent. The proper quantity of ammonia for best yields and quality of flue-cured tobacco necessarily varies for different sources, soils, and seasons. The data presented are not very extensive, but the indications are that 30 to 40 pounds of ammonia per acre, in the fertilizer combinations tested, can be used to advantage, thus obtaining a good yield and quality.

•		Fertil	izer trentment	[
Location, date, and treatment or plot No.	Formula	Rate per acre (pounds)	Source of ammonia	Yîchî (pounds)	Gross value	Price per 100 pounds
C h a th a m, Va., 1900-1012: 1	$\begin{vmatrix} 0-4 & -0 \\ 8-0 & -7 \\ 8-1 & -7 \\ 0-2 & -3^{1}_{2} \\ 0-3 & -3^{1}_{2} \\ 8-3 & -3^{1}_{2} \end{vmatrix}$	1 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400	Notte. Dried blood. None. Dried blood. Dried blood. do. do	293 553 1,063 747 903 977 763 853 853 870	\$16, 37 27, 57 65, 59 90, 62 60, 07 72, 31 86, 80 68, 48 73, 20 70, 39	\$5, 69 4, 99 9, 20 9, 11 9, 25 9, 00 8, 89 8, 89 8, 88 8, 68 8, 58 8, 09
1 5 6 7 Reidsville, N. C., 1911, 1914, 1915, 1918, 1919;	$\begin{array}{rrrr} 0-0 & -0 \\ 0-4 & -0 \\ 8-2 & -3 \\ 6-3 & -3 \\ 6-4 & -3 \end{array}$	0 1,600 1,600 1,600 1,600	None. Driad blooddo. do. do.	489 671 873 953 1,030	99, 61 125, 15 212, 46 227, 04 241, 53	20, 37 18, 65 24, 34 23, 82 23, 25
1	0-0 - 0 S-1 - 0	0 \$00 \$00 \$00	None. Ammonium sulphate Dried blood. Nitrate of soda	514 802 935 938	109, 14 172, 77 227, 09 242, 81	21, 23 19, 37 24, 29 25, 89
5, 0, 27, 34 6, 32 7, 31 8, 33 1, 20 1	} 3-331-10 8-5 −10	800 800 800 800 800 800 800	None. Dried blood. Cottonscet meal. Nitrate of sodn. Amnonium sulphate. Nitrate of sodn (28), am- monium sulphate (29), dried blood (26), cottonseed moal (26).	577 690 722 732 558 756	108, 44 135, 39 164, 81 148, 09 97, 10 156, 29	18, 79 19, 62 22, 83 20, 23 17, 40 20, 67
S. C., 1914-1919; 10,	6-0 - 5 8-2!4- 5 6-3!4- 5 8-3!4- 5 8-3 -10	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	None do Nitrato of soda Ammonium sulpitate Dried blood Cottonseed meni	660 613 846 / 810 722 ; 946 ; 741	140, 69 124, 22 166, 98 146, 08 161, 77 129, 63 163, 77 143, 69	21, 32 17, 92 19, 74 18, 03 19, 73 17, 95 19, 43 19, 39
16,	6-0 - 5 6-21z- 5 6-315- 5 8-335- 5 8-5 -10	L, 000 L, 000 L, 000 L, 000 L, 000 L, 000 L, 000 L, 000 L, 000	None Dried blood	687 1, 010 963 854 958 902 1, 068 1, 023	147, 14, 245, 73 215, 42 212, 82 237, 74 162, 57 203, 55 221, 13	21, 42 24, 43 21, 56 24, 92 24, 82 18, 02 19, 06 21, 62
1, 11 2, 12 3, 13 4, 14 5, 15 6, 10 7, 17	S-0 - 6 S-3 - 6	I, 000 I, 000 I, 000 I, 000 I, 000 I, 000 I, 000 I, 000	Cottonseed meal Dried blood Nitrate of soda Annonium sulphate Dried blood. (3). nitrate of	929 1, 252 1, 242 1, 508 1, 327 1, 216 1, 342	163. 59 273. 20 250. 66 332. 70 275. 02 249, 92 280. 58	17, 61 21, 15 20, 91 22, 07 20, 72 20, 55 21, 35
S, 18	8-4 <u>1</u> 5- 6	1,000 1,000 1,000	soda (14), cottonseed meal	1, 272 1, 459 1, 661	274, 19 348, 77 388, 80	21, 56 23, 60 23, 41

TABLE 21.—Average acre yields, gross values, and prices of leaf tobacco in fertilizer tests using ammonia from different sources and at different rates at several localities in stated years

38

	•	Fertil	zer treatment		·······	
Location, date, and treatment or plot No.	Formula	Rate per sere (pounds)	Source of ammonis	Yield (pounds)	Gross value	Price per 100 pounds
Tiftou, Ga., 1922- 1928 (cropping tests): 3, 11, 19, 27, 35 5, 13, 21, 20, 37 Tifton, Ga., 1922- 1928:	6-0 - 434 6-335- 434		None Dried blood	873 1, 043	\$96. 13 148. 76	\$11.01 14.28
4 3 5 Titton, Ga., 1924- 1928:	8-2 - 5 8-3 - 5 8-4 - 5	800 800 800	do do do	041 937 1,037	164, 70 186, 96 210, 32	17, 50 19, 94 20, 28
1, A and B 2, A and B 3, A and B 4, A and B 5, A and B 6, A and B	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,000 1,000 1,000 1,000 1,000 1,000 0		1, 342 1, 359 1, 287 1, 105 970 590	$\begin{array}{c} 229,49\\ 251,48\\ 247,34\\ 219,76\\ 159,20\\ 52,43\end{array}$	17, 10 18, 50 19, 22 18, 39 16, 41 8, 89

TABLE 21.—Average acre yields, gross values, and prices of leaf tobacco in fertilizer tests using ammonia from different sources and at different rates at several localities in stated years—Continued

FIG. 2.—Oroup of tobacco plants showing potash deficiency. Plot 16, dolomite added, at Oxford, N. C., 1924 crop. (See Table 10 for yields and values.) Note the drawn, rough leaves, markedly crimped under at this and margins. Compare with Figures 3 and 7

The source from which the ammonia is derived is of some importance. The yields given in Table 21 show no marked, consistent differences in using ammonia from different sources except at Oxford, N. C., and Tifton, Ga. At Oxford the cumulative effect of ammonium sulphate has become very marked in depressing the yield where no lime is used. However, when dolomitic limestone was used in addition to the different ammonia carriers (Table 30, p. 50), the ammonium sulphate at Oxford shows a marked improvement in yield, which is only slightly lower than yields from other sources. The quality of leaf produced, as indicated by the price per 100 pounds, is as good as that from any other ammonia carrier. Where the ammonia was derived from mixed sources at Oxford there is a slight increase in yields (Tables 21 and 30), indicating that none of the materials tested, when used as the sole source of ammonia, is as good as the mixed sources. Results at Tifton, however, show that nitrate of soda and stable manure produced decidedly the best yields

and quality when compared with the other sources of ammonia. Ammonium sulphate, cottonseed meal, dried blood, and mixed nitrogen carriers gave about the same yields and value when compared one with the other. From the results at Tifton covering a period of five years, it seems that nitrogen is not a very important limiting factor in this particular soil, especially as compared with similar tests in other localities. This fact possibly explains the abovestated results with the different sources of ammonia.

The organic ammonia carriers used in these tests do not show, on the average, any advantage over the inorganic. It is true, however, that there is less danger of an oversupply of ammonia and of its loss from leaching when organic sources are used. It would seem best therefore to use mixtures of the two, thus combining the best qualities of both.

FIG. 3.—Group of tobacco plants showing type of growth obtained when the essential plant-food elements are supplied. Note the smooth leaf surface of these plants. Plot 9, dolomite added, as Oxford, N. C., 1924 crop. (See Table 10 for yields and values.) Compare with Figures 2 and 7,

POTASH TESTS

Potash, the last constituent usually expressed in the fortilizer formula, is possibly the most important ingredient of the fertilizer mixture for tobacco when quality is to be considered. Most of the soils of the flue-cured tobacco belt, especially the more typical tobacco soils, are deficient in this nutrient. A tobacco crop of the best quality always contains considerable potash in the ash. Under field conditions the growing plant always shows a characteristic, more or less abnormal type of growth when this particular fertilizer constituent is deficient in the soil and not supplied in the fertilizer. (Pl. 1, A.) The plant is smaller in size in most cases. (Figs. 2 and 3.) The leaves are puckered and rough and show considerable mottling of a light-yellow color. (Pl. 1, A.) The mottling begins at the tip of the leaf and is often followed by the appearance of small centers or specks of dead tissue. (Pl. 2, A, B.) These specks later enlarge

PLATE

В

TOBACCO PLANTS OF FLUE-CURED TYPE, SHOWING CHARACTERISTIC SYMPTOMS OF POTASH DEFICIENCY (A) AND OF MAGNESIA DEFICIENCY OR SAND DROWN (B)

(For detailed description of these symptoms, see text)

Tech, Bul. 12, U. S. Dept. of Agriculture

The chloresis or motiling begins at the (ip, as shown in initial stage (A) and progresses as shown in the later stage (D). Note the numerous small spots which represent dont itsue. This spotting or localized dying of the listue distinguishes the symptoms of patients deficiency from these of magnetis deficiency or small down.

FERTILIZER TESTS WITH FLUE-CURED TOBACCO

and coalesce, forming large dead areas around the margins and between the veins of the leaves. The dead areas fall out in some cases, causing the margins to become ragged and leaving large holes in the interior portions of the leaves. The parts of the leaves which remain green continue to grow around the dead tissue, giving the leaves a rough rim-bound type of growth. The plant as a whole has the appearance of being dark or bluish green overcast with a rusty or copper color.

Under some conditions the use of potash seems to control partially several of the leaf-spot diseases, including wildfire and blackfire, especially when used at a liberal rate. When the weather conditions favor the development of leaf-spot diseases the physiological breakdown herein described resulting from potash deficiency probably allows the organisms causing certain leaf spots to gain entrance into the plant tissue, and these hasten the breakdown of the leaf

FIG. 4.—Tobacco plants showing extreme damage sometimes caused by leaf spot when potash is omitted from the fertilizer. Compare with Figure 5, showing results from a liberal application of potash. Plot 10, Oxford, N. C., 1017 crop. (See Table 10 for yields and values)

tissue. At any rate, it is known that potash in some way aids in maintaining the general vigor of the plant. On those plots which were fertilized with a mixture carrying heavy rates of ammonia with little or no potash the various leaf-spot troubles have been more prevalent, causing serious damage; but with more potash added to the fertilizer there has been much less damage from leaf spot. This difference was especially noticeable at C ford, N. C., in 1917 (Table 10), when the leaf-spot diseases caused serious losses generally. (Figs. 4 and 5.)

It would seem from the data in Table 22 that, with the rates of ammonia and phosphoric acid used in these tests, 40 to 60 pounds of potash (K_2O) per acre gives as satisfactory a yield as when heavier rates are used. In certain instances higher rates gave better yields, but on the whole the fertilizer mixtures carrying 5 or 6 per cent potash when used at 800 to 1,000 pounds per acre gave the most economical returns and a product of good quality. These results

indicate that there is no special reason for increasing the rates of application of potash beyond 40 or 60 pounds except for the purpose of partially preventing or controlling the various leaf-spot maladies. Accurate data are not readily obtainable as to the most profitable rates of applying potash as an aid in the control of leaf-spots other than those due directly to potash hunger.

No consistent differences in the yields are obtained where American muriates and sulphates are used in comparison with the German salts. In practically every instance the muriate gives a better yield and value of tobacco than the sulphate of potash, owing in part to the fact that the muriate gives somewhat better protection against firing than does the sulphate. As will be shown later in this bulletin, however, the advantage of the muriate over the sulphate may be materially reduced when an adequate supply of magnesia is added

Fig. 5.—Tobacco plants showing comparative leaf smoothness when fertilized with a liberal application of potash. This plot received a fertilizer analyzing 8-5-20 at the rate of 800 pounds per acts. Lower rates of potash than this have seemed to control the leaf-spot trouble in average sersons. Plot 18, Oxford, N. C., 1917 crop (See Table 10 for yields and values). Compare with Figure 4.

Moreover, at this point, it is well to call attention to the to the soil. fact that the figures as to values are somewhat misleading. The values as given were obtained in such a manner as to rive no consideration to one of the important factors of quality in flue-cured tobacco, namely, the burn or fire-holding capacity of the leaf. Since the prestige of flue-cured tobacco has been built up largely on the fact that it is especially suitable for manufacture of cigarettes and pipe-smoking tobaccos, this type of leaf must possess good burning qualities if it is to attain its widest degree of usefulness in this direction. The question of the burn, or fire-holding capacity of cured tobacco leaf, has been studied by careful investigators in extensive experiments too numerous to mention here. One of the outstanding results of these investigations is that tobacco grown with potash salts high in chlorine as the sole source of potash is likely to show a poor burn, and consequently a poor aroma, when compared with tobacco grown with potash derived from sources with a low content of chlorine.

It is undoubtedly true that there are various other factors which may influence the combustibility of tobacco, so that the effects of a given percentage of chlorine in the fertilizer will not be the same under all conditions. It is to be expected, of course, that other things being equal, the extent of the injury to the quality of tobacco will depend on the quantity of chlorine furnished by the potash salts used in the fertilizer.

TABLE 22.—Average acre yields, gross values, and prices of leaf tobacco in fertilizer tests using potash from different sources and at different rates at several localities in stated years

		Fert	llizer treatment			1
Location, date, and treatment or plot No.	Formula	Rate per ucre (pounds)	Source of potash	Yield (pounds)	Oross value	Price per 100 pounds
Chatham, Va., 1910- 1912, 1914:						
1	0-0 -0 0-0 -7 8-1 -0 8-1 -344 8-1 -7	0 1,400 1,400 1,400 1,400 1,400	None Sulpilate None Sulpilate do	500 523 1,023	\$13, 53 27, 28 60, 05 84, 22 97, 12	\$4, 78 5, 46 7, 30 8, 23 9, 09
4	8-4 -0 8-4 -3	1, 600 1, 600	None Sulpluate	840 1, 076	132, 72 186, 25	15, 80 17, 31
1, 6, 11, 12, 17, 22. 2, 13 3, 14	8-5-0 } 8-5-154	800 { 800 { 800	None Sulphate Muriate	' 718	104, 28 131, 32 154, 53	16, 87 18, 34 21, 14
4, 15 5, 18	} 8-5 -3	{	Sulphate Muriate	761	124, 12 150, 30	17. 99 19. 75
7, 18 6, 19	} 8-5 -4 <u>14</u>	{	Sulphate	786 831	149.78 166.70	19.06 22.47
9, 20 10, 21 Oxford, N. C., 1914- 1924:	} 8-5 -10	{	Sulphate Muriate	763 898	143. 27 195. 69	18, 78 21, 79
16	8-5 -0 8-5 -5 8-5 -10 8-5 -20 8-5 -10	800 800 800 800 800	None. Sulphatedo do Murfate	703 779	56.08 122.69 131.80 147.17 181.84	12.60 18.82 18.70 18.89 21.93
1, 8	8-5 -0	900	None		85.71	20.96
2 3	} 6-5 -11/3	1 300	Sulphate	595	142, 12 169, 49	27. 57 28. 49
4 5		{	Sulphate Muriate	609 670	175, 53 224, 86	28, 62 33, 26
6 7	} 8-5 -41/2	{ \$00 \$00	Sulphate Muriate	720	190.16 255.63	30, 14 35, 50
9 10 Timmonsville, S. C., 1014–1919:	<i>,</i>	{ 800 800	Sulphnte Muriate	623 708	169, 64 (233, 96	27. 23 33. 05
96 183 Namalag, S. C., 1915, 1917, 1918:	6-3}5-0 1-3}5-5 5-3}5-5 8-3!5-10	1,000 3,000 1,000 1,000	NoneSulphatedo	925 897	120, 07 184, 63 162, 81 158, 07	18, 28 19, 96 18, 15 18, 34
9 48	8-35-0	1,000 5,000 1,000 1,000	None. Sulphatedo do do] 945	145, 11 182, 06 210, 45 189, 91	17, 70 19, 27 23, 83 20, 14

TABLE 22.—Average acre yields, gross values, and prices of leaf tobacco in fertilizer tests using potash from different sources and at different rates at several localities in stated years—Continued

		Fur	tilizer treatment			
Location, date, and treatment or plot No,	Formula	Rate per acre (pounds)	Source of potash	Yield (pounds)	Gross vulue	Price per 100 pounds
Tifton, Ga., 1922- 1928: 1, 10, 10 2, 11 3, 12 4, 13 5, 14 7, 16 8, 17 9, 18 Tifton, Ga., 1922- 1926 (cropping	8-3-3	1,600 1,000 1,000 1,000 1,000 1,000 1,000 1,000	None. American sulphata. Sulpinte of potash magnesia. Ksinit. German sulphate. German muriate. Sulphate of potash magnesia.	1, 110	\$90, 18 233, 76 245, 29 207, 23 218, 96 236, 18 272, 96 201, 20	\$13, 29 20, 40 21, 92 20, 58 20, 69 20, 74 21, 23 21, 06
tests): 1, 9, 17, 25, 33 5, 13, 21, 20, 37 Tilton, Oa., 1922- 1926 (formula tests):	6-3²≰-0 8-3⅔-1}£	500 500	None Sulphate of potash magnesia_	697 1, 043	70, 73 148, 76	10, 30 14, 20
2	8-3 -3 8-3 -5 8-3 -7	800 800 800	Suiphatado	879 937 867	170, 19 186, 50 177, 77	19, 36 19, 94 20, 50
14, A and B 15, A and B 16, A and B 3, A and B 17, A and B 18, A and B 19, A and B 20, A and B	8-3 -4 8-3 -3	1,000 1,000 1,000 1,000 1,000 1,000	None	761 1, 422 1, 359 1, 257 1, 338 1, 245 1, 201 768	89, 57 273, 54 239, 62 247, 34 190, 43 179, 59 162, 47 54, 32	11, 77 19, 24 17, 63 19, 22 14, 91 14, 42 13, 53 7, 07

From the standpoint of the smoker it is extremely difficult, if not impossible, to determine the exact degree of combustibility which flue-cured tobacco should possess for the best results, or to specify the quantity of chlorine required to exert a given effect on the combustibility of the tobacco. In this connection, however, it is to be remembered that any shortcoming in bright leaf as to combustibility will favor increasing partial substitution of other and better burning types for blending purposes on the part of the manufacturer in order to insure satisfactory combustibility in the finished product. Obviously, the interests of the flue-cured tobacco industry as a whole will be best served by the general use of fertilizers which will aid in producing free-burning tobacco, in addition to insuring satisfactory results as to the other elements of quality and as to yield. It is to be remembered also that differences in burning qualities are not taken into account by buyers in arriving at comparative valuations for different crops or grades of fluc-cured tobacco, so that relative market prices do not accurately reflect differences in smoking qualities. On the other hand, the demand for the bright type of tobacco as a whole, the ability of the tobacco to withstand the competition of other types, and the general price level it is able to maintain will be materially affected in the long run by the quality of the product, and one of the prime elements of quality is good burn.

In order to obtain direct evidence as to the effects of different forms of potash on the burning qualities, samples of the cured leaf from the potasin-test plots were subjected to systematic tests in several instances, and the results are shown in Tables 23 to 28. In making these tests the leaf was ignited at several points by means of an artificially prepared punk stick, and a record was made of the number of seconds the ignited leaf continued to glow. In some cases the tobacco also was made into cigarettes which were tested as to fire-holding capacity, rate of burn, and color of ash.

 TABLE 23.—Potash from different sources and applied at different rates as related to the burn or fire-holding capacity of leaf tobacco grown at Oxford, N. C., 1916, 1917, and 1923

[Tests made by the punk-stick method. See Table 11, page 24, for details of fertilizer treatment]

:	Forti	lizer treatment		Duration of glow by grades (seconds)											
121.00					19	10 ero	жр			1917 erop			1923 crop		
No.		Source of potash	Trash lug or third lug	Sand kug or second hug	Best or first lug	First leaf	Second leaf	T i p s o r third leaf	Average	Lug	Leaf	Tips	Averigo	No dolomíte	Dotomite
1	8- 5 -0	None						••••		7.3	9.3	7.0	7.9		
2 3	8-5-134	(Sulphate	10.5 8.4	9.0 12.3		12.0 9.7	10. 1 10. 4		10, 5 10, 5	11.5 8.8	10, 1 8, 1	7.2 6.2	9.0 7.7		
4 5	} 8-5-3	Sulphate	9.4 5.3			11.7 S.7	12.4 8.6	12.4 8.9		9.7 5.4					
6 7	} 8-5-455	(Sulphate Murlate	10, 5 5, 8		10. 0 7. 1	10.3 7,3	9.0 5.7	8.5 7,2	9.9 fl.7	8.8 4.8	10.6 7.0	7.6 5.1	9.0 5.0	12.7 9,4	11.8 [7.1
8	S S0	None	10.0	12.4	11, 5	11.7	11, 2	11.5	11,4	11.7	10. 6	7, 5	9,9		
9 10	} 8-5-10	(Sulphate Muriato			 '					16, 7 5, 5		6.0 3.6	11.6 4.3		14.4 8.3

TABLE 24.—Potash from different sources and applied at different rates as related to the burn or fire-holding capacity of cigarettes made from leaf tobacco grown at Oxford, N. C., 1915-1917

[See Table 11 for details of fortilizer treatment]

		Fertilizer treatment	Average duration of clgarette burning (minutes)				
Piot No.	•		Ceased	Ceased to glow			
	Formula	Source of potash	1915 crop	1916 стор	sumed, 1917 crop		
t	8-5-0	Note	4, 8	4, 5	6.3		
2 3	} 8-5-1¥	{Sulphate		5.3 4.6	7.3 8.3		
4		(Sulphate Muriate		5.2 4.4	7.3 7.3		
6 7	} 8-5-4}42	/Sulphate	10. Q 9. 6	4.7 3.5	6.2 9.5		

TABLE 25.—Relation of potash from different sources in combination with calcitic and dolomitic limestones to the burn or fire-holding capacity of leaf tobacco grounat Oxford, N. C., 1924

[Tests made by the punk-stick method. See Table 12 for details of fertilizer treatment]

Plot		Average duration of glow (seconds)						
No.	Source of potash	Calcitic limestone	No lime- stone	Dolomitic limestone	Average			
1-3 4-6 16-18	American muriste German muriste Kainit	7.31 7.22 5.08	7.09 6.09 3.12	6.87 7.39 4.53	7.09 6.90 4.24			
7-0 10-12 13-15	American sulphate German sulphate Sulphate of potash magnesia Average for salts of high and low chlorine content:	10, 35 11, 39 10, 27	8. 03 7. 54 8. 47	8, 73 8, 39 6, 49	9,04 9,11 8,41			
1-6, 16-18 7-15	Chlorida galte	6. 54 10. 67	5. 43 8. 01	6. 2 6 7. 87	6.06 8,85			

TABLE 26.—Relation of potash from different sources to the burn of leaf tobacco grown at Clarkton, N. C., 1923

[All plots received 900 pounds per acte of 8-5-414 formula. Acid phosphate was the source of phosphorie acid, dried blood the source of ammonia; source of petssh was as shown]

			Average of eigarette trials				
Plot No.	Source of potash	Punk-stick method, duration of glow (seconds)	Con- sumed before ceasing to burn (per cent)	Ceased to glow (minutes)	Color of ash		
1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	American muriate. German muriate. American sulphate. German sulphate. Sulphate of potush magnesia. Kaint. A verage for sults of high and low chlorine content: Chloride sults.	11.66	25 25 26 23 24 25 24 25 24 25 24	2. 91 0. 30 10. 93 13. 15 8. 38 2. 83 4. 92 10. 83	Black, Do, White, Do, Gray, Black, Do, White,		

TABLE 27.—Potash from different sources and applied at different rates as related to the burn of leaf tobacco grown at Wentworth, N. C., 1925

[Tests made by the punk-stick method. All plots received the formulas shown at the rate of 800 pounds per acro. Acid phosphate was the source of phosphoric acid; animonia was derived from dried blood, nitrate of soda, fish meal, cottonseed meal, and ammonium sulphate, one-fifth from each; potash as indicated]

Plot No.		Fertilizer treatment	Duration of glow by grades (seconds)						
	Formula	Source of potash	Lugs	Leaf	Tips	Аустаде			
1	8- 3- 0	None	4.1	4.3	5.8	4,7			
23	8-3- 234	(Sulphate Murinte	6. 0 3. 5	7.3 5.4	6.9 6.1	8.7 5.0			
6 7	8-3- 74	/Sulplinte (Muriate	7.3 1.1	8.1 2.0	8.1 4.0	7.8 2.4			
10 11	} 8-3-1234	Sulphate	6.7 1.0	5.5 2.1	6. 2 3. 0	6. I 2. 2			

TABLE 28.--Potash from different sources and applied at different rates as related to the burn of leaf tobacco grown at Tifton, Ga., 1926

[Tests made by the punk-stick method. See Table 60 for details of fertilizer treatment]

Elat		Fertilizer treatment	Duration of glow (seconds)						
Plot No.	For- mula	Source of potash	First priming	Third priming	Fourth priming	A verage			
1, 10, 19 2, 11 3, 12 4, 13 5, 14	8-3-0 8-3-3	None American sulphate American muriate Sulphate of poinsh magnesia Kalut.	5.2 5.7 1.2	9.0 8.7 6.2 7.6 2.8	7.2 7.6 5.6 0.9 4.0	7.2 6.9 5.7 6.7			
6, 15 7, 16 8, 17 9, 18 20	8-3-6	American sulphate (36), American muriate(35) German sulphate. German muriate. Sulphate of potash magnesia. American sulphate (36), kainit (36)	5.2 5.0	6.7 7.2 4.3 6.7 2.8	6.4 6.9 4.0 5.8 4.0	2.7 5.8 6.4 3.6 5.4 2.3			

From Tables 23 to 28 it can readily be seen that in practically every instance flue-cured tobacco grown with potash derived from salts carrying large percentages of chlorine, such as muriate and kainit, show a lower fire-holding capacity and a slower burn than leaf grown without potash or with its potash derived from salts carrying little or no chlorine, such as high-grade sulphate of potash and sulphate of potash magnesia. In practically every instance this harmful effect on the burn of salts containing considerable quantities of chlorine becomes more marked as the rate of potash application increases. In view of the fact that high-grade muriate of potash

FIG. 6.—Tobacco, fertilized (A, plot 11) and unfertilized (B, plot 10), Oxford, N. C., 1924 erop. (See Table 10 for yields and values)

does not seem to harm materially the burn of the leaf when used at the lighter rates, there probably would be some advantage in using a mixture of muriate and sulphate as sources of potash, provided the quantity of chlorine supplied is not in excess of 20 to 25 pounds per acre, thus obtaining maximum results as to yield without serious injury to the quality of the product.

Although these burning tests (Tables 23 to 28) give a direct comparison of the effect of potash salts high in chlorine and low in chlorine on the combustion of leaf tobacco in different localities, the data presented are not to be construed as accurately portraying the burning qualities of tobacco of a given locality, since the results usually cover the crop for only one year on the particular soil areas used in the tests.

FERTILIZER RATE-OF-APPLICATION TESTS

Flue-cured tobacco is grown mostly on soils which require fertilizers, and by their use the grower is able to control to some extent the yield and type of growth of the crop. As a rule this type of tobacco is grown under conditions of restricted plant-food supply, especially with respect to nitrogen or ammonia. It is only by the intelligent use of fertilizers that the desired product is obtained.

Table 29 and Figure 6 show conclusively the necessity for the use of a fertilizer to produce flue-cured tobacco on the soils used in these tests. The results as to the best rate to use do not show very striking differences in some instances, but in every case where the rate of application was increased the yield also was increased. The gross return per acre in each case shows enough increase in yield for a profit above the cost of the fertilizer. It can be seen that there is a tendency toward decrease in quality of the tobacco where the rate of application is increased abnormally. This is shown in the price per 100 pounds of leaf in the Reidsville and Oxford, N. C., figures.

	Fertilizer	lrestment			_	
Location and treatment or plot No.	Formula	Rate per acre (pounds)	Yield (pounds)	Gross value	Price per 100 pounds	
Chatham, Va., 1010-1912:	0-0-0	0	203	\$16.37	\$5.59	
10 12 Reidsville, N. C., 1912–1915, 1917, 1918, 1920:	} 8-3-3	800 1,400	747 1,043	69. (18 96. 64	9.25 9.27	
1 9 	0-0-0 8-3-3 8-1-3	0 500 1,600	494 779 1,076	71, 96 141, 89 186, 25	14.57 18.21 17.31	
10, 19, 36	0-0-0	0	248	35, 52	14. 32	
4, 25. 2, 5, 24, 27. 3, 28. Timunonsvillo, S. C., 1914-1919;		{ 600 800 1,090	638 677 758	120. 01 127. 70 138. 68	18. 81 18. 86 18. 30	
1 15 Mauning, S. C., 1915, 1917, 1918:	0-0-0 8-3-3	0 500	580 890	102, 49 183, 32	17.67 20.60	
L 20 15		800	576 818	95.71 189.32	16.62 23.14	
8, 16, 24, 32, 40	0-0-0	G.	246	8.54	2.60	
5, 13, 21, 20, 37 7, 15, 23, 31, 30	6-335-434	{ 500 1,000	1, 043 1, 332	148, 76 233, 80)4.20 17.55	

TABLE 29.—Average acre yields, gross values, and prices of leaf tobacco grown in fertilizer tests for different localities in stated years

MAGNESIA TESTS

The question as to whether lime is required for tobacco to give the best yield and quality has been much studied and very little understood. The use of lime is not usually recommended, because in some sections it favors the development of black root rot (*Thielavia basicola*), and under special conditions, particularly where the soil contains considerable humus, it liberates ammonia in the soil for the growing plant, giving a rank, dark-green growth which is very undesirable for flue-cured tobacco. It is known that tobacco is not as sensitive to soil acidity as are some other crops, and as a rule the plant seems to grow best on moderately acid soils. It appears that under some conditions the cautious use of lime for tobacco may give profitable returns.

In the fertilizer tests at Oxford, N. C., where a liberal supply of phosphoric acid, ammonia, and potash had been used, it was found that a characteristic chlorosis developed (pl. 1, B), which lowered the yield and quality of the tobacco produced. This trouble was found to be due to an insufficient supply of magnesia in the soil and fertilizer. It was found that by using dolomitic limestone this trouble could be corrected, the yield increased, and the quality improved. (Tables 30 to 32.) This chlorosis was also remedied by using potash salts carrying magnesia and was partially controlled by light applications of cottonseed meal and other organic sources of ammonia carrying magnesia. Basic slag and raw bone meal when used in the fertilizer mixture seemed to control partially this trouble. Muriate of potash also seems to give partial control of this trouble, but this effect is not lasting when it is used continuously on the same soil. Symptoms of magnesium deficiency are more noticeable in wet seasons and on sandy soil, and for this reason it is commonly known as "sand drown."

The fact that this chlorosis is prevented by various salts of magnesia, such as the sulphate and the chloride, shows that the value of dolomitic limestone as a remedy for the trouble does not depend on its action in correcting soil acidity. A clear distinction is to be made, therefore, between the use of lime, as such, for tobacco and the use of dolomitic limestone as a remedy for sand drown or magnesium deficiency.

I

		Fertilizer treatment			Dolomite treatment			No dolomite			
Plot No.	Formula	Rate per acre		Source		Acre	Асте	Price	Acre	Acre	Price
		(pounds)	Phosphoric acid	Ammonia	Potash	yield (pounds)	value	per 100 pounds	yield (pounds)	value	per 100 pounds
10, 19, 36	0-0-0	0	None	None	None	344	\$44.50	\$12.94	307	\$37.50	\$12. 21
4, 25. 2, 5, 24, 27. 3, 26.	8-5-10	{ 600 800 1,000	do	Dried blooddodo	do	962 965 1, 013	$\begin{array}{c} 205.87\\ 203,43\\ 213.61 \end{array}$	21, 40 21, 08 21, 09	663 711 784	106: 33 114. 86 115, 24	16. 04 16. 15 14. 70
17	8-0-10	800	do	None	do	700	148, 62	21.23	654	99, 65	15. 24
5, 9, 27, 34. 6, 32 7, 31 8, 33	1 0 0 10	800 800 800 800 800 800 800	do do do do	Dried blood Cottonseed meal Nitrate of soda. Ammonium sulphate	do	942 893 918 846	197, 69 185, 12 186, 57 174, 76	20, 99 20, 73 20, 32 20, 66	721 724 734 556	113.26 129.97 118.61 78.38	15, 71 17, 95 16, 16 14, 10
1, 29	8-5-10	800	do	Ammonium sulphate (½), nitrate of soda (½), dried blood (½), cottonseed meal (½).	đo	960	194. 47	20. 26	788	124. 68	15. 82
15 5, 9, 24, 27 11, 14, 20, 23 12, 21 13, 22	0-5-10 8-5-10 } 6-5-10	800 800 800 800 800 800	Basic slag	Dried blood	do	732 959 998 934 936	136, 48 200, 41 214, 88 177, 77 175, 09	18. 64 20. 90 21. 53 19. 03 18. 71	600 686 730 869 800	74. 98 109. 33 119. 71 142. 03 125. 84	12, 50 15, 94 16, 40 16, 34 15, 73
16 30 27, 34 18 29, 35	8-5-0 8-5-5 8-5-10 8-5-20 8-5-10	800 800 800 800 800	do do	do. do. do. do.	Sulphate	584 804 934 1, 036 1, 061	74, 90 176, 84 193, 69 235, 99 234, 14	12. 83 20. 47 20. 74 22. 78 22. 07	540 662 726 860 864	49. 39 103. 40 115. 39 135. 08 153. 85	9, 15 15, 62 15, 89 15, 71 17, 81

TABLE 30.—Summary of the effects of dolomitic limestone on yields, gross values, and average prices of leaf tobacco in tests of fertilizers from different sources and applied at different rates at Oxford, N. C., 1920-1924

TABLE 31.—Summary of acre yields, gross values, and average prices of leaf tobacco in fertilizer tests using potash from different sources and applied at different rates, with and without dolomitic limestone, at Oxford, N. C., 1920–1924

	. I	Fertilizer treatment	Do	omite trea	tment	No dolomite			
Plot No.	Formula	Source of potash	Yield (lbs.)	Gross value	Price per 100 pounds	Yield (Ibs.)	Oross value	Price per 100 pounds	
1	8-5-0	None	494	\$94, 25	\$19, 09	466	\$92.30	\$19. 81	
2 3	} 8-5-11/2	(Sulphate Muriate	676 718	143. 00 169. 37	21, 29 23, 59	476 610	109, 18 141, 26	22. 94 23. 16	
4	} 8-3-3	(Sulphaie Muriate	720 856	· 156, 40 208, 92	21. 72 24. 41	588 674	128. 74 160. 59	21, 89 23, 83	
6 7	} 8-5-435	(Sulphata Muriate	814 874	193.24 192.41	23. 74 22. 01	016 700	138, 58 174, 30	22, 50 24, 90	
8	6-5-0	Noue	514	92.75	18. 04	486	89. 2 9	18.37	
9 10	8-5-10	(Sulphate (Muriate	644 814	149. 05 195. 45	23, 14 24, 01	686 714	137, 87 159, 86	20. 10 22. 39	
Avera	ge, withou	t regard to sources of potash:	:						
1,8 2,3 4,5 6,7 9,10	8-5-0 8-5-11 <u>/5</u> 8-5-3 8-5-415	None. Sulphate and muriste do do	504 697	93, 52 156, 64 182, 66 192, 83 172, 25	18, 56 22, 47 23, 18 22, 85 23, 63	476 543 631 656 700	90, 80 125, 22 144, 67 156, 44 148, 87	19, 08 23, 06 22, 93 23, 78 21, 27	

[See Table 11 for details of fertilizer treatment]

TABLE 32.—Summary of acre yields, gross values, and average prices of leaf tobucco in fertilizer tests using potash from different sources in combination with calcilic and dolomitic limestone, at Oxford, N. C., 1921-1924

Plot	Fertilizer treatment	Yield	Gross	Price		
No.	Source of potash	Form of limestone	(pounds)	value	per 1 00 pounds	
1 2 3	Ameriçan Inuriate	Calcitie None Dolomitie	673 793 900	\$162.98 207.94 247.44	\$24, 22 26, 22 27, 49	
4 5 6	German muriate	{Caleitie None Dolomitie	720	176, 44 188, 60 280, 30	24, 75 26, 19 29, 35	
7 8 9	A merican sulphate	Calcitie None Dolomitie	598 550 848	132, 82 135, 97 237, 39	22, 21 24, 72 27, 99	
10 11 12	German sulphate	Calcitie None. Dolomitie	500	175, 06 132, 32 239, 58	23, 88 23, 63 28, 25	
13 14 15	Sulphate of potash magnesia	Calcitic None Dolomitic	853	219, 05 240, 78 234, 79	26, 08 28, 23 28, 12	
16 17 - 18	Kalnit	Calcille None Dolomitic	930	217, 32 249, 81 285, 29	24, 75 26, 86 26, 71	
1.4	ze for potash salts of similar composition: A merican and German mariates	Calcitic None Dolomitic	693 757 928	169, 71 198, 27 263, 87	24, 49 20, 19 28, 43	
7, 10 8, 11 9, 12	American and German sulphates	Calcitic None Dolomitic	666 555 848	153, 94 134, 15 238, 49	23. 11 24. 17 28. 12	
13, 16 14, 17 15, 18	Sulphate of potash magnesia and kminit	Calcitic None Doiomitic	859 892 952	218, 19 245, 30 260, 04	25, 40 27, 50 27, 32	

.

[See Table 12.for details of fertilizer treatment]

This trouble of magnesium deficiency is very characteristic, as is illustrated by Plates 1, B, and 3. Ordinarily it develops first on the lower leaves of the plant, usually beginning at the tip and progressing inwardly on the leaf toward its base, along the margins and between the veins. The malady advances progressively from the lower leaves of the plant upward. The relative severity and progress of the disease are shown by the extent of the loss of green color in the leaf. (Pl. 1, B.) At times only the tip of the leaf will be pale green or almost white; then again only the veins will remain green, and in extreme cases even the veins lose most of their green color and the entire leaf area of the plant becomes almost white. In all cases observed the bud tends to remain green. This type of chlorosis is distinguished from the mottling characteristic of potash deficiency in that the leaf tissue does not break down so readily (compare pls. 2 and 3). Plants manifesting symptoms of potash deficiency show discolored areas of the leaf of a light-yellow color which occur in splotches between the veins, and on these specking frequently is to

F10. 7.— Group of tobacco plants showing magnesia deficiency. Plot 9, no-dolomite portion, Oxford, N. C., 1924 crop. (See Table 10 for yields and values.) Note small size of plants. Compare with Figures 2 and 3

be found; whereas the discolored areas caused by magnesia deficiency give a very light-green or almost white color and progress more regularly from the tip toward the base of the leaf at the margins and between the veins. The magnesia chlorosis also progresses more uniformly from the base of the plant upward (compare pl. 1, A and B). The puckered or savoyed effect commonly seen in cases of pronounced potash deficiency is absent in magnesia deficiency. In magnesia deficiency the leaf has usually reached full size before the translocation of the magnesia from the lower to the upper parts of the plant takes place, and the plant therefore is not as rough (compare figs. 2 and 7) as a plant showing potash deficiency. Both troubles are sometimes confined largely to one side of the leaf.

The lime used on the Chatham, Va., field was builders' lime, which does not contain much magnesia, and it was applied broadcast in the spring before the tobacco was transplanted. At this location the liming does not seem to have given any benefit when a liberal application of fertilizer was used. It does show, however (Table 33), an

TOBACCO LEAVES, FLUE-CURED TYPE, SHOWING CHLOROSIS OR SAND DROWN CAUSED BY MAGNESIUM DEFICIENCY Leaf A has lost practically all green color except at its base and along the large veins. These leaves represent very well the stages that may be seen on an individual plant from its base upward (A to D)

increase in the yield on the unfertilized plot and on all plots receiving only acid phosphate or sulphate of potash. It also shows an increased yield when used in combination with either nitrate of soda or ammonium sulphate as sources of ammonia. In most cases where dried blood has been used as the source of ammonia the use of lime actually shows a decreased yield.

TABLE 33.—Summary of the effects of lime on acre yields, gross values, and average prices of leaf tobacco in tests of fertilizers from different sources and applied at different rates at Chatham, Va., 1910–1912

i			Fertilizer tre	atment			Limed		1	Unlime	i
Treat- ment No.	For-	Rate per		Source	-	Yield		Price			Price
110.	mula	acre (lbs.)	Phosphoria acidi Ammonia		Potash		Gross value	per 100 lbs,	(lbs.)	Oross value	per 100 Ibs.
1	0-0-0	0	None	None							
2	800	1, 400	Acid phos- phate.	do	None	405 720	\$20, 96 73, 88	\$5, 18 10, 26	293 550	\$16. 87 53. 49	\$5.59 9.73
3	0-1-0	1,400	Noue	Dried blood.	do	593	31.22	5.26	553	27.57	4.99
4 5	0-0-7 8-0-7	1, 400 1, 400	Acid phos- phate.	None	Sulphate	623 707	37.58 55.96	6.03 7.92	553 713	33, 04 65, 59	5, 97 9, 20
67	0-4-7 8-4-0	1, 400 1, 400	None	Dried blood.		570	37. 53	6.58	563	37.85	6. 72
-			Acid phos- phate.	do		753	55.08	7,31	790	61, 77	7, 82
8 9	8-4-31/1	1,400 1,400	do do	do	Sulphate	917	78.22	8. 53	1, 030	88, 42	8, 58
10	8-3-3	800	Unknown	Unknown	do	996	84.17	8.45	1,063	96.82	9, 11
iĭ	8-3-6	800	Acid phos-	Dried blood.	Unknown Sulphate	783 703	65, 38 62, 91	8.35 8.95	747 667	69.08 58.71	9.25 8.80
12	8-3-8	I. 400	Unknown	Unknown	Unknown.	923	84.38	9.14	1.043	96.04	9.27
23	6-2-3}5	1,400	Acid phos- photos	Dried blood.	Sulphate		85. 39	10. 08	747	69.07	9.25
14	6-3-31/2	1,400	do	do		937	76.92	8, 21	803	72.31	9, 00
15	1	(1, 40)	do	do	do	828	75.76	8,15	977	66.88	8.89
16		1,400	do do	Cottonseed meal.	do	897	84. 92	9. 47	763	68.45	8.98
17	8-3-3/2	{1,400	do	Nitrate of soda.	do	1, 080	90.16	8.35	853	73. 20	8. 58
18 .	J	1, 400	do	Ammonium sulphata.	do	1,076	83, 72	7.82	870	70.39	8. 09

Lime, as ground limestone in both the calcitic and dolomitic forms, seems to have given some increases in yields and values at Reidsville, N. C. There is no indication in Table 34 that the use of magnesia in any form produced increased yields. However, in another test at Reidsville, which is not reported here, magnesia gave larger yields and better quality of leaf.

The question of the value of lime at Oxford, N. C., seems to be one largely of the magnesia which the lime contains. Ground dolomitic limestone gave strikingly better yields whenever used in combination with phosphoric acid, ammonia, and potash from sources which are low in magnesia. From Table 30, showing the effects of dolomitic limestone on the action of different formulas and rates of application of fertilizers from various sources, it can be seen that this form of lime gave only slightly better yields when used without any fertilizer, but when fertilizer was used there was a marked improvement in both yield and gross value of the crop per acre. The quality of the leaf tobacco produced was very much improved, as is indicated by the average price per 100 pounds. The largest increase obtained was where dolomitic limestone was used

with ammonium sulphate as the source of ammonia. (Table 30 and figs. 8 and 9.) The dolomite treatment also shows a marked improvement in the yields and values of all plots receiving acid phosphate as the source of phosphoric acid. This is especially so where 600 pounds of the 8-5-10 formula and 800 pounds of the 6-5-10 formula were applied. (Table 30.)

TABLE 34.—Summary of acre yields, gross values, and average prices of leaf tobacco in fertilizer tests using potash from different sources, in combination with calcitic and dolomitic limestone, at Reidsville, N. C., 1919–1923

Plot	Perr ^a or treatment				Price	
No.	Source of potush Form		Yield (pounds)	Gross value	per 100 pounds	
1 2 3	American muristo	Calcitic	1, 173 880 1, 001	\$211, 81 168, 95 187, 66	\$18. 0 19, 2 18. 7	
4	German muriste	Calcitic	925	174, 68	18, 8)	
5		None	948	184, 72	19, 4)	
6		Dolomitic	1, 010	198, 03	19, 6)	
7	A merican salphato	Calcitic	915	167. 31	18. 24	
8		None	921	136. 86	14. 86	
9		Dolomitie	960	185. 79	19. 35	
10	Gorman sulphate	Calcitic	949	167, 29	17. 63	
11		None	920	150, 24	16. 33	
12		Dolomitic	914	168, 76	18. 46	
13	Sulphate of potash magnesia	Calcitic	1, 004	191, 65	19.09	
14		None	839	159, 82	19.05	
15		Dolomitic	924	166, 24	17.99	
16	Kninit.	{Calcitic	919	177, 21	19. 29	
17		{None	941	179, 16	19. 04	
18		(Dolomitic	969	185, 79	19. 17	
1,4	American and German muriates	Calcitic	1, 049	193, 25	18. 42	
2,5		None	914	176, 84	19. 35	
3,6		Dolomitic	1, 006	192, 85	19. 17	
7, 10	American and German sulphates	Calcitle	932	167, 30	17, 95	
8, 11		None	921	143, 55	15, 59	
9, 12		Dolomitic	937	177, 28	18, 92	
13, 16	Sulphale of potash magnesia and kainit	Calcitic	962	184. 43	19. 17	
14, 17		None	890	169. 49	19. 04	
15, 18		Delemitic	917	176. 02	18. 59	

[See Table 9 for details of fertilizer treatment]

Where dolomitic limestone was used (Table 31) in combination with different rates of application of sulphates and muriates of potash it is evident that this material is most effective in increasing the yield and value of the crop when used in connection with sulphate of potash. The sulphate treatments more nearly approach the muriate of potash treatments in yield and value of crop when both are used in combination with dolomitic limestone, as shown in Tables 31 and 32.

That the action of dolomitic limestone is largely one of supplying magnesia is shown in Table 32, giving results where calcitic and dolomitic limestones are compared with no-lime treatments in connection with the use of different sources of potash, some of which supply magnesia while others do not. Calcite in combination with the muriates gives no beneficial effects, but dolomite shows marked increases in yields when used with the muriates. Calcite shows some better yields over no limestone when used with the sulphates of potash, but dolomite gives much greater differences in conjunction with the sulphates of potash. The sulphate yields more nearly approach those of the muriates when both are used with dolomite, as heretofore pointed out in other instances. Where the potash salts carrying magnesia, namely, kainit and sulphate of potash magnesia, are used, there is no beneficial effect from the use of calcite.

The use of dolomite (Table 35) does not show any increase in yields at Tifton, Ga., which, doubtless, is due to the fact that the potash was derived from sulphate of potash magnesia. In Table 22, where sulphate of potash magnesia was used to supply potash at the rate of 60 pounds per acre, there was a slight increase over German sulphate of potash, which furnishes little or no magnesia. In another test at Tifton, the results of which are not reported here, decided increases in yields and quality of the tobacco were produced where magnesia was supplied.

Fra. 8.—Oroup of tobacco plants showing poor growth and severe magnesium-deficiency symptoms or sand drown. No-dolomite end of plot 8, which received ammonium sulphate as its source of ammonia, Oxford, N. C., 1924 crop. (See Table 10 for yields and values.) Compare with Figure 9

TABLE 35.—Summary of effects on acre yields, gross values, and average prices of leaf _bacco in fertilizer tests, with and without lime, at Tifton, Ga., 1922-1926

	Fert	ilizer tre	atment				
Plot No.	Formula	L	mestone	Yield (pounds)	Gross value	Price per 100 paunds	
		Rate	Source				
5, 13, 21, 22, 37 6, 14, 22, 30, 38	}0-3 35- 1½{	None, 1,000	Dolomite	1, 043 1, 018	\$148.76 146.13	\$14. 26 14. 35	

[See Tuble 15 for details of fertilizer treatment]

It would seem, therefore, from the foregoing results (Tables 30-35) that the use of ground limestones on the soils represented is not likely to give marked increases in the yield of tobacco unless the limestone carries a considerable quantity of magnesia. Since the magnesia requirement of tobacco is low, it will be advisable to use comparatively small quantities of dolomitic limestone to avoid any complica-

tions from root diseases and the liberation of ammonia, which usually result from using lime freely for tobacco. Where no lime has been used previously, the initial application may be comparatively heavy, perhaps 1,000 or more pounds per acre, applied broadcast. If potash salts carrying magnesia are used in quantities supplying 10 to 20 pounds of magnesia per acre, under average conditions little or no increase can be expected from the use of lime on tobacco. This is largely true at least with the fertilizer mixtures used in these tests, for in such mixtures the phosphates used supply sufficient calcium for the plant-food requirements of the tobacco crop. It is possible, however, that some tobacco soils are so acid as to require liming for best results, independently of the supply of plant nutrients in the soil.

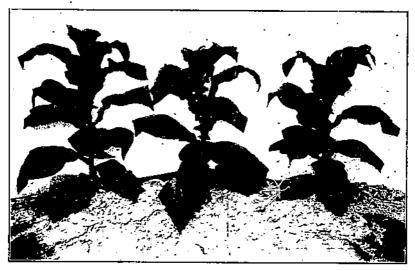


FIG. 9.—Group of tobacco plants showing good growth, smooth leaf, and no magnesium-deficiency symptoms. Dolomite-treated end of plot 8, which received ammonium sulphate as its source of ammonia, Oxform, N. C., 1924 crop. (See Table 10 for yields and values.) Compare with Figure 8

SUMMARY

This bulletin presents the results of field tests with fertilizers used for growing flue-cured tobacco, made up from different materials and varying in their analyses and rates of application. The localities at which the data were collected are fairly representative of the flue-cured tobacco district, especially of the old-belt section. The tests located in the new-belt section are less extensive, and for this reason the conclusions to be reached will have a somewhat more limited application in the new-belt region. The soil types represented, namely, Cecil gravelly fine sandy loam, Durham coarse sandy loam, and Durham sandy loam, in the old belt, and Norfolk fine sandy loam, Norfolk sandy loam, and Tifton sandy loam, in the new belt, are typical tobacco soils of the flue-cured district. These soils are more or less deficient in plant food, thus making the production of flue-cured tobacco dependent upon the use of fertilizers.

As far as these tests indicate, phosphoric acid is an essential constituent of the fertilizer mixture on all soils of the flue-cured district for the production of tobacco. It is especially necessary on virgin soils. Acid phosphate gave better results than basic slag or raw bone meal as the source of phosphoric acid. On the lighter sandy soils as found at Oxford, N. C., and Timmonsville and Manning, S. C., the mixtures analyzing 6 per cent phosphoric acid (P_2O_5) gave as good yields and quality as the higher percentage mixtures, when the rate of application of the fertilizer ranged from 800 to 1,000 pounds per acre. This holds true at Tifton, Ga., in regard to yields, but the values are somewhat better where the content of phosphoric acid was increased. Where phosphoric acid is supplied in excess there is a tendency to lower the yield and value of the crop produced, especially on the light types of soil. At Chatham, Va., and Reidsville, N. C., where the heavier soils are found, a fertilizer analyzing S per cent phosphoric acid gave yields and values above those of mixtures analyzing 6 per cent phosphoric acid when the rate of application per acre was 1,400 and 1,600 pounds, respectively.

The ammonia supply for growing bright tobacco should be carefully controlled, as this type of tobacco can not be grown to its highest perfection where ammonia is present in excessive quantities. The quantity of ammonia required for flue-cured tobacco varies with the season, soil, and source, but the data presented show that as much as 30 to 40 pounds per acre can be used and a satisfactory yield and quality obtained. Ammonia, from whatever source, gave yields and values larger than those with no ammonia. When used over a period of years on the same soil without the use of lime, nitrate of soda showed average yields and values which were considerably better than were obtained with ammonium sulphate. However. nitrate of soda gave only slightly larger yields and no better quality than did animonium sulphate over a period of years on a soil limed with ground dolomitic limestone. Dried blood gave good yields and quality of tobacco except on soils deficient in magnesia, and when this deficiency was supplied on such soils by liming with ground dolomitic limestone, good yields and quality were obtained. On soil deficient in magnesia, cottonseed meal gave a higher yield and quality than other sources of ammonia when no dolomite was applied. Cottonseed meal usually gave good yields and quality on the light soils, but did not do so well on the heavy soils. Stable manure produced satisfactory yield and quality of tobacco in tests at Tifton, Ga. The inorganic ammoniates, nitrate of soda and ammonium sulphate, have given satisfactory yields and values when compared with the organic sources, dried blood, cottonseed meal, and stable manure. Ammonia derived from a mixture of nitrate of soda, ammonium sulphate, dried blood, and cottonseed meal usually gave somewhat better yields of tobacco than those obtained from any of these materials as the sole source of ammonia, and there was no decided difference in the quality of the product.

Potash is perhaps the most important single constituent of the fertilizer mixture for growing tobacco from the standpoint of quality of product, as is indicated by the low average value per 100 pounds when this constituent is absent from the fertilizer mixture. The growing plant exhibits characteristic symptoms when potash is deficient. When potash is used at a liberal rate it serves to maintain the vigor of the growing plant, giving it considerable resistance against the leaf spots and other diseases. The results of these tests indicate that, over a period of years, about 40 to 60 pounds of potash per acre is sufficient in the fertilizer combinations tested; but it was observed during the tests that higher rates gave greater resistance against leaf-spot diseases in certain seasons, especially when the weather conditions were favorable to their development. In these tests muriate gave yields higher than those with sulphate of potash, but this larger yield from the muriate is offset by the fact that there is a tendency to injure the combustibility of the leaf, which is an important element of quality for this type of tobacco. However, the results indicate that a portion of the potash, at the above-mentioned rates, may be safely derived from potash salts containing chlorine, provided the quantity of chlorine supplied is not more than 20 to 25 pounds per acre. Such a mixture can be used without serious injury to the combustibility of the leaf, thus combining a good yield with the desired quality.

Although fertilizers are necessary to produce flue-cured tobacco, the proper rate at which a fertilizer of a given analysis is to be applied for maximum yield and value necessarily varies considerably for different soils and conditions and therefore can be ascertained only within wide limits. Where the rate of application is excessive there is a tendency to decrease the quality of the leaf tobacco produced.

The necessity for including magnesia in the fertilizer mixture used or making an application of ground magnesian limestone on some of the soils used in the production of tobacco in the flue-cured district is shown by the data. When magnesia is deficient in the soil and not supplied in the fertilizer mixture or by liming, the yield and quality of flue-cured tobacco may be greatly lowered. The characteristic symptoms of magnesia deficiency are readily recognized in the growing plant. Magnesia can be supplied in the form of potash salts containing this material or by ground magnesian limestone. The results presented do not show any great benefit from liming other than from the magnesia supplied by the ground limestones used. Since the magnesia requirement of tobacco is low, if the magnesia is derived from dolomite it will be advisable to use comparatively small quantities, so as to avoid the possible harmful effects from root diseases and the liberation of ammonia, which usually result when the soil is heavily limed for tobacco.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE

September 21, 1927

Secretary of Agriculture Assistant Secretary Director of Scientific Work Director of Regulatory Work Director of Extension	R. W. DUNLAP. A. F. Woods, Walter G. Campbell.
Director of Personnel and Business Adminis-	
tration	W. W. STOCKBERGER
Director of Information	NELSON ANTRIM CRAWFORD
Solicitor	R. W. WILLIAMS.
Weather Bureau	CHARLES F. MARVIN, Chief
Bureau of Animal Industry	JOHN R. MOHLER. Chief
Bureau of Dairy Industry	C. W. LARSON, Chief.
Bureau of Plant Industry	WILLIAM A. TAYLOR Chief
Forest Service	W. B. GREELEY Chief
Bureau of Chemistry and Soils	C. A. BROWNE, Acting Chief
Bureau of Entomology	L. O. HOWARD, Chief
Bureau of Biological Survey.	PAUL G. REDINGTON Chief
Bureau of Public Roads	THOMAS H. MACDONALD Chief
Bureau of Agricultural Economics	LLOYD S. TENNY Chief
Bureau of Home Economics	LOUISE STANLEY Chief
Federal Horticultural Board	C. L. MARLATT, Chairman
Grain Futures Administration	J. W. T. DHVEL Chief
Food, Drug, and Insecticide Administration	WALTER G. CAMPBELL, Director of
	Regulatory Work, in Charge.
Office of Experiment Stations	E. W. ALLEN, Chief.
Office of Cooperative Extension Work	C. B. SMITH, Chief.
Library	CLARIBEL R. BARNETT, Librarian.

This bulletin is a contribution from

Bureau of Plant Industry Office of Tobacco and Plant Nutrition gist, in Charge.

59

....

.

٠

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS U.S.ODVERNMENT PRINTING OFFICE WASHINGTON, W. C. AT 15 CENTS PER COPY

* **-**

. . .

.

• • • • •