

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MOCROCOPY RESOLUTION TEST CHART NATHOHRL BUREAU OF \$TANDARDS-1963-A

THE PRODUCTIVENESS OF CORN AS INFLUENCED BY THE MOSAIC DISEASE

By Ejeo F. Stoneberg, Assistant Agronomist, Offee of Cereal Crops and Diseases, Bureau of Plant Industry ${ }^{1}$

Abstract

Cooperative Investigattons by the Office of Cereal Crops and Diseases, Bureau of Planf Industry, and the Louisiana Agricultural Experiment Station, Baton Rouge, La.

Introduction
Review of literature

8ymptoras of tite mosaic disease.
Spread of the mosaic disouse.
Effect of tho mosaic disoase on Yinids
Effect of the mosuic diseuso on suckering.

CONTENTS
Page
Experiments at Baton Rouge-Continued
Effect of the mosaic disease on the number of cars......-................................
Effect of tha mosaic disease on tho filling of the ears 9

11
-

INTRODUCTION

During the past few years the mosaic disease has been very prevalent on corn in the sugar belt of Louisiana, especially in fields adjacent to sugar cane. ${ }^{2}$ Cornfields with 50 to 100 per cent of mosaic-diseased plants have not been uncommon in many localities. As the disease affects sugar cane, the principalcrop of the region, planters as a rule have been very much interested in it. On account of the reports of severe losses, some of the planters believe that the mosaic disease is injuring the corn crop materially in Louisiana.

[^0]In order to obtain definite data on the effect of the mosaic disease on corn, experiments were startiod at Baton Rouge, La., in 1925 and rontinued in 1926. The results of these experiments are given in this bulletin.

REVIEW Of Literature

The mosaic disease of corn has been recognized for a number of years. Kunkel ${ }^{3}$ states that its presence and destructive nature in the Hawaiian Islands were recognized by Lyon as early as 1914. Weston, ${ }^{4}$ in 1917 , reporting what probably was the mosaic disease in the island of Guam, stated: "This trouble did not appear neariy so destructive or extensive as in Hawaii, but in one field at Umatac it was causing considerable loss."

Brandes ${ }^{5}$.observed the mosaic disease affecting corn in Porto Rico in 1919 and stated ${ }^{6}$ that the disease was seen in Louisiana in the stummer of 1919 and in Georgia in 1920. He wrote: "No figures are available on the amount of loss sustained on account of injury to corn." Although Brandes believed that no great damage had as yet been dene in this country, he said: "Where n large percentage of the plants ":s affected the loss due to decreased size of ears is appreciable." He added: "When infection takes place early in the growing season, partini or complete sterility of the ears results."

Brondes and Klaphank ${ }^{7}$ published data in 1923 on the effect of the mosaic disease on 17 different varieties of corn tested in southern Georgia. The average weight of ear from 10 healthy plants was larger than the average weight of ear from 10 nosaic-diseased plants in each of the 17 varieties, some of the differences being large. The 10 -plant yield of the healthy plants also exceeded that of the diseased planis in 11 varieties, the yield of the discased plants being in excess in the other 6 varieties. The average difference in yield per 10-plant comparison was 74 grams in favor of the healthy plants.

In 1921 Kunkel ${ }^{3}$ stated: " 9 varicties of sweet corn, 2 varjeties of pop corn, and 14 varieties of field corn have been shown to be susceptible to the disease. Several varieties are somewhat resistant but no variety is known to be immune." He further stated that all mossic-discased corn plants are more or less dwarfed, with shortened internodes. From his report it would appear that the mosaic disease of corn is more serious in Hawnii than in the United States.
Later, in 1927, Kunkel ${ }^{8}$ suggested that the mosaic disease prevalent in corn in Hawaii is distinct from that which owerrs in corn in Louisiana and other Southern States.

EXPERIMENTS AT baton rouge in 1925 and 1926

A plot 400 feet long and 132 wide was used for the experiments at Baton Rouge in 1925. This plot was lecated between plots of sugar cane in which 100 per cent of the finnts were diseased. The

[^1]plot was planted February 26 with Calhoun Red Cob corn, the variety most commonly grown in Louisiana. Germination and emergence were reasonably good, satisfactory stands were obtained, and early growth was normal.

Four plots on different parts of the expeximent station farm were used in 1926. All of these were adjacent to plots of sugar cane infected with the mosaic disease. Plots 1 and 2 were planted with Calhoun Red Cob corn February 26 and 27 , respectively. For some unknown reason the plants in plot 1 emerged more quickly and grew more rapidly than those in plot 2 during most of the season. Plot 3 was planted March 15 with Yellow Creole corn, a variety grown widely in the sugar-cane belt of Louisiana. In plot 4 ware planted, for comparative purposes, 13 varieties of corn, White Calhom being used as the check. Unfavorable conditions prevented the planting of plot 4 until May 11, after which the corn made unusunlly rapid growth owing to the warmer weather.

The varieties and sources of seed used in plot 4 were as follows:
C. I. (Cereal Investigations) No. $220 \times$ C. I. No. 218 (a eross between selfed lines), Calhoun Red Cob, Yellow Creole, White Greole, and White Calhoun from the Louisiama Agricultural Experiment Station, Baton Rouge; Gocke Rrolific and Mosby Prolific from the Nississippi Delta Station, Stoneville, Miss.; Deltn Prolific and Cheke Prolific from the Stotneville Pedigreed Seed Co., Stoncville, Miss.; Hastings Prolific from W. H. Burus, Prankinton, La.; Adam's Paradise from J. J. O'Beirne, Lake End, La.; Imperia! White from Bowie Lumber Co., Bowic, La.; and Whatiey Prolific from Whatiey Bros, Helena, Ga.

The procedure followed was practically identical in 1925 and 1926. One week after the first evidence of mosaic was noted, all plants showing symptoms of the mosaic disease were labeled with dated tags. At weedy intervals thereal'ter, until the plants were fully developed, all other plants showing symptoms were tagged. Further observations were made on the disensed plants until maturity.

When the rorn had matured completely the ears were harvested. The ears from the plants which had shown symptoms of the disease for the first time during each of the different weeks were gathered separately. For each diseased plant an adjucent or near-by healthy plant was selected as a standard for comparison or check. In all of the expermeats, except that involving the miscellaneous varieties in 1926, a group of 10 diseased and 10 near-by healthy plants was treated as a unit ol compurison, the number of such groups constituting the number of replications. In the varietal plot in 1926, because of the small number of plants of each, the comparisons were based on the total numbers of mosnic-diseased and comparable healthy plants of the miscellaneous varieties.

SYMPTOMS OF THE MOSALC DISEASE

The symptoms of the mosaic disease in corn during the early growing season are similar to those of the mosaic disease in sugar cane. The symptoms are most apparent in the young leaves. The mosaic mottling may nppear as more or less irregular patches or stripes of light green surrounded by normal dark-green tissue, or the light green may predominate and entirely surround small islands of normal green tissue. In the plants grown for these experiments the sharply defined mosaic motting gradually disappeared as the season advanced. In 1925, even with carefal examination, the diseased
plants previously showing excellent visible symptoms could be identified only by the tag after June 26 . The diseased plants seemed to grow as rapidly as the healthy ones in both seasons. No dwarfing or shortening of the interrodes was observed, and there was no apparent difference in height at maturity.

Table 1.-Numbers of healthy corn plants and numbers and percentages of mosaicdiseased corn plants at the end of successive weeks, beginning with the first visible evidence of the disease and ending with full plant development, at Baton Rouge, La., in 1905 and 1926

SPREAD OF THE MOSAIC DISEASE

The mosaic disease spread rapidly and at a comparatively uniform rate during the growing season in 1925. Data on the spread during each of the five weekly periods are given in Table 1. Of the total number of plants, 7.7 per cent showed symptoms during the first week, 16.9 per cent of the remaining healthy plants showed symptoms during the second week, 16.8 per cent during the third week, 15.2 per cent during the fourth week, and 7.7 -per cent during the fifth week. By this time the piants were fully developed, and 50 per cent of all the plants in the plot had shown symptoms of the mosaic disease.
The mosaic disease spread less rapidly in 1926 than in 1925, but at a comparatively uniform rate except in the varietal plot, where its increase was most rapid during the second week. Data on the spread are also given in Table 1. In 1926, by the time the plants were fully developed, 20.3 per cent of the plants in plot 1 (Calhoun Red Cob) had shown symptoms of the disease, 12.4 per cent in plot 2 (Calhoun Red Cob), 6.8 per cent in plot 3 (Yellow Creole), and 26.6 per cent in plot 4 (White Calhoun). With the exception of Imperial White, in which only 12.5 per cent of the plants showed the disease, the percentage of infection in the varietal plot was comparatively uniform, ranging from 20.4 per cent for White Creole to 38.9 per cent for C. I. No. $220 \times$ C. I. No. 218.

EFFECT OF THE MOSAIC DISEASE ON YIELDS

Date on the yields of mosaic-diseased and of healthy plants in 1925 are given in Table 2. As previously noted, the data on 10 diseased plants and 10 adjacent healthy plants constituted a single comparison. The numbers of such comparisons or replications on which the average yields for plants developing symptoms duriag the different weeks are based are given in column 3 of Table 2. The total actual yields of ear corn and the computed acre yield are shown in columns 4 to 7 . The mean differences in yield, in pounds per 10 -plant comparison and in bushels per acre, are given in columns 8 and 9. These differences are the means of the differences for the numbers of replications stated in column 3. This accounts for the slight discrepancies between the differences indicated by columns 4 and 5 or 6 and 7 and those shown in columns 8 and 9. The probable errors shown for the differences also were computed directly from successive differences, to avoid any effect of correlated variation.
Yields from the plants showing symptoms of the disease during the first week were slightly larger than those from the healthy plants, whereas the yields from the other groups of diseased plants were slightly smaller than those from the corresponding heal thy plants. The differences in yield were small, however, ranging in 1925 from an increase of 1.7 bushels to a decrease of 2.8 bushelg. They are less than three times their probsble errors, oxcept in one case, and consequently can not be considered very significant. Considering all of the comparisons, the acre yield of the diseased plants was $1.6 \pm$ 0.45 bushels less than that of the healthy plants. This difference is 3.6 times its probable error, and the odds are large that it was not due to chance. It is reasonable to conclude, therefore, that the yield of the diseased plants was reduced slightly in these experiments.

Thable 2．－Yields of ear corn from mosaic－diseased and from healthy phants of corn at Baton Rouge，La．，in 1925 and 1926
［Valnes in coiums 8 and 0 ，incheding tie probnble errors，wero couputed directiy from the successive ditferenes in the $10-\mathrm{phnat}$ comparisons！

Phot and mately		Totnl mecundyfek＇（younds）		Acre yield（busheis）		Ditfernce in yield		
		Mosnic－ dhansed phants	Benithy junts	Mosatic－ disensed phats	Henitly plants	Per 10－mifant compurison （peands）	Yur nere （busheis）	
1	$\geqslant: 3$	4	di	\％	7	8	J	
1925 plat：								
Cahona 1hed		968． 7	200.1	40．4土1．0	38.7 ± 1.1 $42.8 \pm .7$	＋0．344土0．22	$+1.7 \pm 1.1$	
	May 4 45	373.7	$3 \mathrm{lli}, 3$	40.2 ± 1.9	$42.1 \pm$	－．$-374 \pm$ ． 15	$-2.8 \pm .8$	
	Muy 11： 31	253． 8	2855.	31． $18 \pm$	41．4土 ． 6	－．36\％－ 15	1．${ }^{\text {．} 7}$	
	Mins 10	1（10）． 8	14．4． 6	43.0 ± 1.2	42.7 ± 1.2	$-304 \pm .38$	－1．8土2．5	
totnd or aver－								
	（R3）	1.3523	1，485， 6	40．1土 ． 42	41．7土．41	－． $327 \pm .00$	－1．6土 ． 45	
1926，yiot ：								
	Mny $17{ }^{\text {a }}$（ 8	61.8	82． 8	37，4土 ． 6	$38.0 \pm .8$	－．125土 ． 20^{\prime}	－．6土	
Culboun Ret Cob．	Muy 24 e	45.0		38．8土 8.3		$-1.417 \pm .31$	－ $8.8 \pm \pm$	
	Muy 31；析	40.0	63．	37．1土 ． 5	41，	－1．417	－ $4.8 \pm \pm .5$	
	（Jube 7 \％${ }^{\text {a }}$	38．8：	44.1	37．0土1．4	42.7 ± 1.0	－1．000土 ． 35	-5.1 ± 1.7	
Total or aver－ Hge．	25	193） 3	211.9		41，0t 50			
1026，plot 2：								
	May 25.6	37．4						
Cnhoun Red	jume 1 ，	21．61		36．2土	38．4土．8	$-460 \pm .301$ $+.033 \pm .16$	-2.2 ± 1.5 $+.3 \pm .8$	
	$\begin{array}{lll}\text { June } & 8 & 3\end{array}$	18．0	24.6	$20.0+1.0$		$-2.001 \pm$ ． 25°		
Total or aver－ agen	14	23．0．	85.2	$33.0 \pm .57$	37． $5 \pm .64$		88	
1920，plot 4：								
	（June 170	32.2	34.8	26．0ㄴ． 1	28．121．1	－． $433 \pm .40^{\prime}$	-2.1 ± 1.9	
Whita Cuhoun－－	jume 24,14	77.1	81.8	26． 7 ± 1.0	$28.0 \pm .8$	－．271土 ． 21	-1.3 ± 1.0	
	Jug ：${ }_{\text {a }}$	41． $3^{\text {P }}$	42	$28.6 \pm \pm 1.1$	23．2土 2.5	－．109土 ． 21	－ 6 ± 1.0	
Totnl or aver－ age． \qquad	$2 i 5$	150.4	157.9	27，0土 ， 61	$38.3 \pm .08$	$-.270 \pm .17$－	1．3土． 78	
1920，varietal flot： C．1．2201×C．1．218．		i						
	99	12． 01	14.5	21.5	24.2	－－552	-2.7	
（from Missis－								
tion）－－．．．．．．－	－ 3^{3}	10．2．	10．7	37.2	38.1	-2004		
Hastiuss l＇rolizac－Calhoun ked	\cdots－${ }^{3}$	（1）31，	25．If	41， 7	35．7	＋1．233	46.0	
	36	31.6	31.8	51.5	51.3	＋．083．	＋．2	
Cob－－．．．．．．	202	1 th .9	13.8	3 35． $3^{\text {a }}$	39.4	＋1．091		
Whllite Creole	30	24，3	23.8	30.2	38．6．	＋1．133	$+$	
	18	1i． 1 ］	11.6	36.6	55．if	＋．313	＋1．5	
Adirm＇s Paralise Imperial white．．	351	19．7	21.8		30.2	$\bigcirc .800$	-3.0	
	24	20.8	29．8	42.0	${ }^{412.85}$	－ 2.8000	-13.6	
Detta Prolife． Cocke Proline （from Stote－ rithe Pedigreed Seed Co．）．．．．．．	20	15．0	15.3	36.3	4.8 37	－ 5158	-2.8	
				35.4	4. 44.5	－1．880	-.7 -9.1	
Total or aver－ nge fornill va－								
						－		

The yields of the diseased and of the healthy plants in 1926 are also given in Table 2．Plot 3，planted with Yellow Creole corn，was harvested accidentally before records could be obtained． The differences in plots 1 and 2 and for White Calhoun in plot 4 are
clearly in favor of the healthy plants. Even the one difference in favor of the diseased plants (plants in plot 2 first showing symptoms of the disease during the week ending June 1) is less than its probable error. The average difierences for Calhoun Red Cob corn in plots 1 and 2 are in good agreement, being 3.8 and 3.6 bushels per acre, with a probable error of ± 0.69 bushel in each case.

The yields from the White Calboun plants in plot 4 exhibiting symptoms of the mosaic disease during each of the three weekly periods were less than those from the corresponding healthy plants. The differences in yield ranged from 0.6 bushel to 2.1 bushels. Each of these, as well as the average difference, 1.3 ± 0.79 bushels, is less than three times its probable error.

The yield data in 1926 for the varieties other than White Calhoun in plot 4 are given in the last section of Table 2. The limited numbers of plants made it possible to obtain only relatively few pairs of healthy and disensed plants oif any one varicty. All of the data for each variety accordingly were treated as a single test, as shown in Table 2. The differences in the acre yields from the healthy and mosaic-diseased plants ranged from 13.6 bushels in favor of the healthy plants of the Imperial White variety to 6 bushels in favor of the diseased plants of the Mosby Prolific variety. The 12 differences were divided almost equally as to direction, the bealthy plants yielding more in 7 varjetics, and the diseased plants yielding more in 5 varieties.

If it is assumed that the variation io the differences is evidence of differences in tolerance among the varieties, it necessarily would follow that the productiveness of about half of the varieties had been increased by the mosaic disease. It is highiy probable, however, that the variation was almost entirely that to be expected with the small samples used. The data for the Calhoun Red Cob variety are particularly good evidence along this line. In plots 1 and 2 the acre yields from the mosaic-diseased plants of this variety were 3.8 ± 0.69 and 3.6 ± 0.69 bushels less than those from healthy plants. In the varietal plot, on the other hand, there was an indicated superiority for the disensed plants of 5.2 bushels.

Considering the data in Table 2 as representing a comparison between bealthy and mosaic-disensed corn plants, without reference to variety, the acre yield of 300 discased plants was 1 bushel less than that of 300 comparible healthy plants. This is in good agreement with the lower yield of 1.3 ± 0.72 bushels from the diseased plants of White Calhoun, the check variety in the same plot.

The data in Table 2 indicate that the mosaic disease probably was responsible for a decreased yield in both the Calhoun Red Cob and the White Calhoun varieties in 1926. The decreased acre yields were 3.8 and 3.6 bushels for Calhoun Red Cob and 1.3 bushels for the White Calhoun raricty. Similarly, the average decrease in acre yield for the miscellaneous varieties in 1926 was 1 bushel. These results are in complete agreement as to direction both among themselves and with those obtained in 1925. The variation in the size of the differences may be cousidered as probably due to diferences in the enviroment in the various experiments. Thus, by comparing the results obtained from Calhoun Red Cob in the two years, it would appear that the mosaic disease was responsible for a larger decrease in yield in 1926 than in 1925. Several conditions might have been responsible for such a difference, but no data are available
to indicate what they were. In any event, the largest decrease in acre yield was 3.8 bushels, or less than 10 per cent.

EFFECT OF THE MOBAIC DISEASE ON SUCKERING

Data on the effect of the mossic disease on the production of tillers or suckers in 1925 are given in Table 3. The season of 1925 was very favorable for the production of suckers. Practically all of the corm in the sugar belt suckered very profusely. The diseased plants in the experimental plot showed a slightly greater tandency to sucirer than the healthy plants. Considering the whole plot, the mosaic-diseased plants averaged 1.28 suckers per plant, whereas the healthy plants averaged 1.14 suckers per plant. The average difference per 10 -plant comparison was 1.33 ± 0.19. As this difference is seven times its probable error, the odds are high that the difference was not due to chance. The disease appears to have increased the number of suckers by about 10 per cent.

Data on the effect of the mosaic disease on suckering in 1926 are given in Table 3. The season of 1926 was unfarorable for the production of suckers. The corn in the sugar belt produced very few suckers. Because of the small numbers of suckers produced, the numbers were not recorded for plot 4. In plots 1 and 2 there were 0.036 and 0.009 sucker per plant on the mosaic-diseased plants, whereas the healthy plants averaged 0.016 and 0 sucker per plant. These differences are too small to be considered of any importance. However, the tendency was the same as in 1925, the mosaic-diseased plants having slightly more suckers than the healthy plants in each case.

Table 3.-Numbers and percentages of suckers on mosaic-diseased and on healthy plants of Calhoun Red Cob corn at Baton Rouge, La., in 1925 and 1926
Values in the last column, ineluding the probable errors, were computed directly from the differences in thel10-phant comparisons]

Plot	End of weck in which pingts flrst showed disease	Number of 10-plant comparisons	Total number of suekers on-		A verage number of suckers per plant on-		Mesn difference per 20-plant coll. parison
			Mosaicdiseascd plants	Healthy plants	Mossicdiseased plants	Fealthy plants	
1925, plot.	fipr, 20.....---	35	304	273	1.22	1. 17	0. 44 ± 0.05
	Apr. 27--.-.---	49	661	571	1.35	1. 17	$1.78 \pm .80$
	May ${ }^{4}$	45	546	481	1. 21	1.09	1. 22 主. 35
	(May 18---------	13 !	185	355 150	1.30 1.27	I. 13 1.15	$\stackrel{1 .}{1.15 \pm} \pm .82$
	Total or average.	163	2,078	1,860	1. 28	1. 14	1.33士.10
1926, plot I.	If May 17--.....-	8 !	2	1			
	May 24--....-	${ }^{6}$	4	1			
	May 31-	6 6.	2	0			
	June 7.	3 :	1.	2			
1920, plot 2	Tatai or nverage.	25	9	4	. 036	. 016	------
	May 26....---\|	3	$1:$	0			
	- June 1.	3	0.	0			
	Total or average-	11	$1 ;$	0	. 000	0	

EFFECT OF THE MOSAIC DISEASE ON THE NUMEER OF EARS

Counts were made of the total, the marketable, and the unmarketable ears produced on mosaic-diseased and on healthy plants. Ears were considered unmarketable if they were less than 4 inches long,

Fig, 1- Repremotative tars from 10 corn plate fist showfor symptoms of the mosate disease during the flrst wet of the experiments in pus (upger row) und from 10 comparable beathy phants (lower row)
if they were rotted, or if two-thirds of the ovules had failed to develop kernels. The data are given in Table 4.
In 1925 the mosaic-diseased plants produced 31 ears more than the healthy plants. On the other hand, 5.1 per cent more of the ears from healthy plants were in the marketable class. The small dif-

Fic. n-Reprosentatise cars from 10 com pants frst showing symptoms of the mosaic diseose during the third wew of the experiments in 5025 (upper row) und from 10 comparable healhy platets (lower iow)
ference in the total number of ears probably may be accounted for by the fact that the mosaic-diseased plants produced a larger number of suckers, some of which probably produced nubbins. The difference in the percentage of marketable ears probably is due in part to

$$
51809--27--3
$$

the same fact. The differeuces, however, are too small to be important: Representative ears from 10 plants which first showed symptoms of the mosaic disense during the first, third, and fifth weeks, respeciavely, together with ears from comparable healthy phants of Calhoun Red Cob com in 1925, are shown in Figures 1, 2 , and 3.
 fom mosric-disersed and from healliy com ;hants at Beton Rouge, La., in 1925 and 1923

In 1926 the mosaic-disensed and the healthy plants in plot 1 produced the same number of ears, whereas in plot 2 the healthy plants produced a few more. The healthy plants produced 3.6 per cent more marketable ears in plot I and 4.8 per cent more in plot 2 . Fars from 60 dants of Calhom Red Cob corn in plot 1 first showing symp-
toms of the mosaic disease daring the first week of the 1926 experiments and the ars liom the 60 comparable healthy plants are shown in Figure 4. A similar comparison for 30 plants in the same plot first showing symptoms during the third week is shown in Figure 5 .

The bealthy plants of the White Calhoun variety produced a few more cass, but the mosaic-diseased plants had 1.8 per cent more ears in the marketable chass. Ears lrom 40 plants of White Calhoun in plot 4 first showing symptoms of the mosaic disease during the first and third weeks, respectively, are shown in Figures 6 nnd 7 , with ears from comparable heathy plants in each case.

In the 1926 varietad plot the mosale-diseased plants produced more ens than the plants in 8 of the 12 varieties. Considering the total number ol ears produced by all the rarieties, the mosaic-diseased plants produced 33 more ears, than the heulthy plants. The healthy

 jhursis (low row
plants produced a larger percentage of martetable ears in 11 of the 12 varieties. Considering the varietal plot as a whole, the healthy plants produced $6 . S$ per cent more marketable ears than the diseased plants. The differences are rather small. In neary all of the varicties, however, the healthy plants produced a slightly larger percentage of ears in the marketable class. This, in connection with the average difference in favor of the healthy plants, makes it seem probable that the mosaic disease tended consistently but slightly to reduce the proportion of marketable ears.

EFFECT OF THE MOSAIC DISEASE ON THE FILLING OF THE EARS

As it had been stated that the mosaic disease tended to cause partial or complete sterility of the ears," particular attention was given to this point.

Fars having more than half an inch of the apieal end of the cob devoid of grain were classed as having barren fips. The numbers and percentages of ears with barren tips from healthy and disensed plants

[^2]

Fig. 4,-Ears Irom 60 pairs of plants of Calhoun Red Cob corn in plot 1: A, From healthy plants: B, from plants lirst showing symptoms of the mosaic disense daring the week ending May 15,1920

Fig. 5.-Ears from 50 pairs of plants of Calhoun Red Cob corn in plot I: A, From heaithy plants; B, from plants first showing symptoms of the mosaic disease during the week ending May 31, 1926
are given in Trable 5. The mosaic-diseased plents of Calhoun Red Cob produced 2.9 per cent fewer ears with barren tips in 1925, whereas in 1926 they produced 0.6 per cent and 1 per cent more ears with barren tips. Mosaic-diseased plants of the White Calhoun variety produced 1.9 per cent fewer ears with barren tips. In the other varieties, where only small numbers of ears of each variety were

Fic. 6.-Ears from 40 prairs of plants of 4 plonts first showing symptoms of tint

Calhoun corn in plot 4: A, From healthy plants; B, from zaie distuse during the week ending June 17, 1426
available, there was much fluctuation. Considering the total number of ears from all the varieties, the diseased plants produced 1.3 per cent more ears with barren tips.
In addition to determining the number of ears with barren tips, nll of the ears harvested were classified on the basis of degree of filling, without reference to the portion of the ear where the deficiency of kernels occurred. The class values used were less than one-fourth
of kernel deficiency, one-fourth to one-hnlf, one-half to three-fourths, and more than three-fourths of kernel deficiency. The distribution of the ears in these classes in 1925 is shown in Table 6. The bealthy plants produced 2.2 per cent more of the ears having less than onefourth of kernel deficiency than did the mosaic-diseased plants. It is evident both from the data and from the illustrations (figs. 1-7)

Fig. 7.-Eurs frotn 40 pairs of plants of White Cahnoun corn in plot A: A, From healthy funts; B, from plants fres showing symploms of the mosnic disease during the week ending Julf $1,102 \mathrm{i}$
that the effect of the mosaic disease on the filling of the ears was not great.

The distribution of the ears in the various filling classes in 1926 is shown in Table 6. The mosaic-diseased plants produced somewhat smaller percentages of cars in the class having less than one-fourth of kernel deficiency and somewhat larger percentages of ears in the
classes with larger percentages of kernel deficiency. The difierances, however, are small.

Table 5.-Numbers and percentages of ears with barren tips produced by mosaicdiseased and healhy plants of corn at Baton Rouge, La., in 1925 and 1926

Plot and variaty	End of week in which plants first showed distass	Number of ears with! barren tips		Percuntage of ears with barren tips		
		Mosaic- discased plants	Healthy plants	Mosaicdiseased plants	Healthy plants	
1925 plot: \quad (Apr, 20×2000						
	Apr. 20	207 400	200	54. 21	56.0	
Calhoun IRed Cob.	$\mathrm{Mar}^{\mathrm{Mpy}}{ }^{27}$	409	431	527 6.1	58.7	
	May 12.-	276	301	81.2	63.2	
	lany 18.-	116	117	67.4	60.0	
Total or average		1,417	1. 472	57.2	60.1	
1026, plot 1:						
	May 17-..........---	38	43	35.51	S1.0	
Calhoun Red Cob..................-	May 361........-........	32 35	36 34	40.01	41.6	
	June 7.	$\underline{29}$	19.	43.3	31.1	
Total or average		134	132	38.51	38.9	
1026, plot 2:						
Calhoun Red Cob.	May 26	${ }_{16} 1$	33	47.7	47.1	
	June 8..	21	19	45.3	48.7	
Total or arerage		H8	70	48.6	47.6	
1920, plot 4:						
White Calhown.	$\left\{\begin{array}{l}\text { June } 17 \\ \text { June } \\ \text { dit. }\end{array}\right.$	${ }_{93}^{42}$	48 94	54.6 52.0	55.3	
	July 1.	49	53	88.5	54.8	
Total or average.		184	195	51.51	53.4	
1928, varietal plot:						
		25	24	42.4	45.3	
		61	72	58.5	00.5	
		16	17	45.7	54.3	
Yollow Creole.		46	45	59.7	57.7	
		17	17	63.1	53.1	
White Creole-		$\stackrel{29}{18}$	27	64.4	61. 3	
Imperial white. Whatley Prolife \qquad		49	35	65.3	48.3	
Detan Prolific. Cocke Prolific ffrom Stone vila Pedigreed Beed Co.).		35	28	77.8	71.8	
		36	30	60.0	52.6	
Total or average		393	365	58.2	56. ${ }^{\text {P }}$	

Considering the data on barren tips and on degree of filling, together, it does not seem that the mosaic disease had any important effect upon fertilization or upon the subsequent development of the individual kernels as measured in these ways.

DISCUSSION

The data presented were obtained in two seasons, 1925 and 1926 ${ }^{\prime}$ the first having been very favorable for corn production and the second having been less favorable. All of the varieties used in the experiment are well adapted to southern conditions, and Calhoun Red Cob is grown extensively in the sugar belt of Louisiana. The abundant occurrence of the mosaic disease in the experimental plots
provided ample opportunity for study and for measuring accurately its effect on the development and yield of corn. Finally, although there was some variation in the results obtained, as a whole they were highly consistent. It is felt, therefore, that the results of these experiments are of value in showing the effects of the mosaic disease on corn under the conditions of the experiments which, in general, are not unlike those obtaining in the sugar belt of Louisiana.

Table 6.-Percentage distibuion of ears from mosaic-diseased and healihy corn plants into classes of stated degrees of leenel deficiency al Baton Rouge, La., in 1920 and 190.6

In these experiments the mosaic disease had no apparent effect upon the rate of growth or the total plant height. The mosaicdiseased plants did tend to sucker more and, possibly, to produce
more ears. These latter tendencies may be evidence of a telidency to proliferation which is a frequent concomitant of disturbance to normal development in cori. The data, however, are insufficient to more than suggest this.
The diseased plants produced lower yiclds of corn of slightly lower quality than did the healthy plants. In no case, however, were the differences large. Thus, the acre yields from the mosaicdiscased plants were less than those from the healthy plants by 1.6 $\pm 0.45,3.8 \pm 0.69,3.6 \pm 0.69,1.3 \pm 0.79$, and 1 bushels in the different experiments. These differences indicate a slight loss due to the mosaic disease. At the seme time there is nothing in the dato, to indicate that the mosaic disease is an important factor in materially reducing the yield of corn under conditions such as those described.

SUMMARY

The rate of development of the symptoms of the mosaic disease in experimental plantings of corn is noted. Data are reported on the relative yield, the numbers of suckers, and the numbers and quality of ears produced on mosaic-diseased and on comparable healthy plants.

The disease had no apparent effect on the rate of growth or the total height of the corn plants. The diseased plants tended to sucker slightly more and, possibly, to produce slightly more ears.

The yields from the diseased plants were lower in every extensivo comparison, among whicb the largest difference in acre yield was 3.8 ± 0.69 bushels, or less than 10 per cent. The excess yield from disensed plants of some of the varieties in the varietal comparison probably were due to fluctuations resulting from the few plants of each variety available for comparison.

A larger proportion of the ears from the healthy plants were in the marketable class, and the ears tended to be slightly beiter filled. The differences were not important, however, in either case.

On the basis of the data it was concluded that, under the conditions described and as far as the experiments have gone, the mosaic disease was slightly deleterious to the yield and quality of corn, but could not be considered one of the imporiant factors in reducing corn yields.

ORGANEZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE, AपKนस! 16. 1927

Secretary of dgricullare W. M. Jardine.
Assistant Secretary R. W. Dunlap.
Dircctor of Scientific Work A. F. Woove.
Dircter of Regidatory Work Halter G. Campeell.
Director of Extension C. W. Warburton.
Director of Personnel and Busincss Admain- istration W. W. Stockberaet.
Director of Swformation. Nelbon Antrim Chawfond.
Solititor R. W. Williams.
Weather Buretu
Bureat of Amimad Industry
Charles F. Marvin, Ghiff.
Burean of Dairy Industry. John R. Mohzer, Chief. C. W. Lamson, Chief.
Burean of Plant Industry Whlfam A. Taylor, Chief.
Forest Service H. B. Gueeley, Chicf.
Burena of Chemisory and Soils. C. A. Bnowne. Acting Chief.
Burcau of Entomology. L. O. Boward, Chie/.
Bureau of Biological s'urbey Paul G. Redington, Chief.
Burcau of Public Roods. Thomas H. MacDonald, Chief.
Bureau of Ayriculhural Economics. Lloyd S. Tenny, Chief.
Burean of Home Economics Loutse Stanley, Chief.
Federal Sorticultural Board. C. L. Marlatt ${ }^{\text {Chairman. }}$
Gruin Futares Adminisiration J. W. T. Duvel, Ghief.
Foot, Drag, and Insecticide Administration. Walter G. Campheld, Director of Regulatory Work, in Charge.
Ojfice of Experimend Stations E. W. Allen, Chief.
O.fice of Cooperatier Estension Work C. B. Smuth, Chicf.
Librery Clautbel R. Batenett, Libraian.
Burcun of Plont Industry - Offee of Cereal Crops and Diseases.William A. Taylor, Chief.

William A. Taylor, Chief. Carleton R. Ball, Senior Agrohomist, in Charge.
ADDITLONAL COPIES
of the ftrblicatien may be phocered fbom THE SLPERINTENDENT of voccesents goveknsent minting office
wasungton, d. c.

[^0]: 1 The writer wishes to express bis appreciation to C. W. Edperton, botanist ond piant pathoiogist of the Louisinan Agricultumal Experiment Stution, for his valusble suggestions daring the fogress of this study and for assistance in revisiug the manuscript.
 i"Grass masate" hes beon obseryed on corn oniy in close proximity to infected sumar cand. It is not known to be transmitted through the seed of eora. bad all new infections apparently must come from infocted growing plants, the originsi sout, θ of which is suyar cane. The disease in corn is trierefore a factor only on cane pinatations or nemr-by tekds. Corn is a tavored food plant for A phis maidis, the insect vector of mosalc, and hereis lies the economic sigaffance of mosate ta corn. The mossic disease is readity transmitted back to cane by the iasect whon it abandons corn in seareb of frosh food plants. The dastructiveness of mosaic in sugar cane has beon well establistred, tbe present depression in the Luisiana cano industr:- being attrihutahbe in a large mensure to mosaic. A few planters, recograizing the dauger of corn acting is 3 mossic reservoir, have taken the prectution of planting corn from one-balf mile to 1 mhe from cano fotds, or bave even considered eiminating it altogether. Tho thage of infury due to mosatc in different varieties of sugar cane varies from lithle or none to practicnily complete destruction.- E. W. Brandes, Senior Patholoyist in Charge, Office of Supar Plants, Bureau of Plant Industev, Uuited Stales Department of Agricalture.

[^1]: Sugar ilnmers Assoc. Expt. Sth, Bat. Ser. $3:+1-58$, litus. 1921 .

 26 f, illus. ID月,

[^2]:

