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A Note on Fixing Misbehaving
Mathematical Programs: Post-Optimality
Procedures and GAMS=Related Software

Bruce A. McCarl

ABSTRACT

Mathematical programming formulations can yield faulty answers. Models can be un-
bounded, infeasible, or optimal with unrealistic answers. This article presents techniques
for theory-based discovery of the cause of faulty models. The approaches are demonstrated
in the context of linear programming. They have been computerized and interfaced using
the General Algebraic Modeling System (GAMS), and are distributed free of charge
through new GAMS versions and an online web page.

Key Words: debugging, GAMS software, mathematicalprogramming.

Mathematical programming is a frequently
used tool in agricultural economics analysis.
During the past 40 years, many papers and
books have discussed applications, solution
methods, and model formulation techniques.
However, few studies have examined model
verification and repair.

Some authors have addressed the topic
while dealing with other issues. For example,
McCarl and Apland (p. 162), in their article
on validation, caution that “inconsistent data,
bad coefficient placement, incomplete struc-
ture, and/or an incorrect objective function”
can cause improper model results. However,
they do not provide guidance as to problem
detection. In an associated paper, McCarl
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(1984, p. 161) states, “If the model has failed

[validation], discover why. . . . Repair the
model and [solve it again].” Pannell (p. 222)

argues, “It can be extremely difficult and time
consuming to obey . . . mcCarl’s] simple in-
structions. ” However, Pannell, while stating
that verification has been given “cursor y treat-
ment” (pp. 20–22), lists the following ap-
proaches without providing implementation
details (pp. 238–40): “(a) search for bugs in
the matrix, (b) add constraints to force activ-
ities to correspond to expected levels, (c) vary
right-hand sides, (d) drop out matrix compo-
nents, (e) do a wide-ranging sensitivity anal-

ysis, and (J) use McCarl and Apland’s feasi-
bility test. ”

The purpose of this study is to expand upon
the works of McCarl and Apland, and Pannell,
as well as a number of others (Greenberg
1993, 1994; Chinneck; Andersen and Ander-
sen) by providing systematic, computerized
approaches for the detection of model flaws.

The procedures here are available in com-
puterized form linked to the General Algebraic



404 Journal of Agricultural and Applied Economics, December 1998

Modeling System (GAMS). GAMS (Brooke,
Kendrick, and Meeraus) is the most widely
used method for implementing mathematical
programs by agricultural economists. The
package is called GAMSCHK, and is available
online through the web page shown in the
reference section (McCarl 1997). The
GAMSCHK software has both pre- and post-
solution processors to aid in discovering mod-
el problems. This article covers only post-so-
lution checking. 1

Background

Many modelers finish their model and submit
it to a solver only to find that the model is
infeasible, unbounded, or, worse yet, optimal
with an unrealistic solution. Generally, such
problems are caused by the litany of difficul-
ties noted in McCarl and Apland, or Pannell
(p. 228), including models with:

(a)

(b)

(c)

incorrect coefficients due to typing, sign,
units of measurement, calculation flaws,
omissions, or improper placement;
improper constraints in terms of inequality
forms, coefficient/constraint omissions,
unneeded redundancies, flawed coefficient
calculations, or inclusion of binding but
irrelevant constraints;
improper variables with irrelevant vari-
ables included, relevant variables exclud-
ed, or improper associated coefficient
signs, placements, or magnitudes; and

(d) a structure that causes solvers to fail.

This article discusses methods for discov-
ery of the above cases excepting solver failure.
The presentation will concentrate on using
knowledge of the problem, mathematical pro-
gramming theory, and solution information to
systematically discover difficulties.

Problematic Model Substructures—The

Cause of Difficulties

Flawed model structural characteristics cause
flawed solutions. Greenberg (1993, 1994,

1Note the material provided here also is presented
in chapter 17 (written by this author) in the draft text-
book by McCarl and Spreen.

1996) defined the concept of forcing substruc-
tures, wherein a subset of constraints and as-
sociated variables forces a set of variables to
equal particular values. Chinneck developed a
related concept defining an irreducible infea-
sible set as a set of constraints that, when any
one constraint is removed, changes a model
from being infeasible to being feasible. A
broader term, “problematic substructure”
(PS), is used here to refer to a portion of a
formulation where the associated variables,
constraints, and coefficients cause an improper
solution.

Linear Programming Theory

In this examination, it is useful to employ sev-
eral linear programming theoretical results.
These are presented following the notations in
Hadley, or in Bazarra, Jarvis, and Sherali.
Consider a linear programming problem with
slack variables (S1) added:

(1) Max ~ C,XJ + ~ O X S,
J

s.t.: ~ aqX, + S, = b, Vi,
1

X,, S,20 Vi, j.

At optimality, given identification of a ba-
sis matrix (B) and the associated basic ele-
ments from the objective function (C~), an
expression for the shadow prices associated
with the ith equation is:

(2) Ui = (CBB-l),,

while an expression for the reduced cost of the
jth variable is:

Note that for basic variables, equation (3)
equals zero and that equation (2) arises from
the solution of that system. Also note that any
feasible solution must satisfy the original set
of constraints, and thus:

(4) ~ a,,X, – b, = –S, V i,
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while the optimal values of the basic variables
are given by:

(5) X. = B-’b.

Finally, following the development by
McCarl and Spreen (chapter 3) and differen-
tiating (5), we get an expression for the mar-
ginal effect of the right-hand-side changes:

(6) ~ = B-’.

Equations (2)–(6) are used in explaining the
procedures below.

Adopting an Example

The discussion of how to fix misbehaving
models is best facilitated by having one. The
example in table 1 will provide the base for
later illustrations. This example has two farms,
each of which can feed cattle and grow crops.
The feeding requirements, livestock costs, and
final sale weights, costs, crop yields, and sale
prices differ by farm. Crops can be transported
between farms. Land can be rented on each
farm. The variable denoted PROFZT is maxi-

mized.z

Unbounded Models

The solution report on an unbounded linear
program is often lacking information. More
information can be gained by artificially
bounding the problem, then using solution in-
formation to find the PS. Specifically, follow-
ing the suggestion in both McCarl and Apland,
and in Brooke, Kendrick, and Meeraus, large
upper bounds will be assigned to bound the
model. Then the solution will be investigated
to find the unboundedness cause. In particular,
large bounds are assigned to all variables that
have desirable objective function values which
are not already bounded. Given a problem
with the structure in (1), then adding the con-
straints:

2A GAMS formulation appears online in an ex-
panded version of this article at http://agrinet. tamu.edu/
mccarl.

(7) X,<M V j where c, >0,

and where M is a very large number bounding
the problem. The model is then solved and the
solution examined for variables which equal
the large bound. However, those variables only
compose a portion of the PS. For example,
suppose a large bound is active in the kth row.
Also suppose that the right-hand side [the M-

value in equation (7)] equals the right-hand
side that would generate the expected solution
variable values (X8) plus 101O.Then, via (5),
the optimal value of the basic variables is:

1’
(8) X~ = B-’b = y,, . . . ykk . . . -ykn,

Id
X bk + 1010 = x; + loloyk,

b.

where y,~ is the ikth element of B-’, and -y~is
the vector from the kth column of B-’. Thus,
the solution is composed of numbers of the
magnitude expected plus y~ coefficients times
the large term in the bound. Via equation (6),
the yi~ give the expected change in the ith ba-
sic variable when the kth right-hand side is
changed by one unit. Consequently, the ~~vec-
tor indicates how the alteration of the large
bound affects each basic variable. Thus, since
y~ is multiplied by 1010, then in the computa-
tion of the optimal solution, variables with
large solution values are those which are as-
sociated with the original unboundedness and
form the PS.

This is best illustrated by example. The ta-
ble 1 example is made unbounded by dropping
the constraints on maximum rented land and
entering the cattle price on Farm 1 in cents per
pound, making a units error (which raises the
cattle objective function to $76,415). That
model is unbounded, so bounds of 106 are in-
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Table 2. Optimal Shadow Prices for the Three Example Models

Corn Crop Hay Crop Min. Cattle Max. Rented
on Hand on Hand Land Sold Land

Example Farm Farm Farm Farm Farm Farm Farm Farm Farm Farm

Model 12 1 2 1 2 1 2 1 2

Unbounded 2.69 2.58 58.18 59.43 100 90.28 0 –35.21
Infeasible 2.77 2.58 65.46 61.46 1E+6 100 –1E+6 –944.49 99,903 0
Unrealistic 2.40 2.29 55.00 51.00 96.49 16,160 0 0 0 16,060

eluded on the revenue-producing cattle pro-
duction and crop sale variables.3

The resultant solution appears in tables 2
and 3. The feed cattle alternative on Farm 1
is at its large upper bound (table 3); but also
notice (a) the large crop acreage on Farm 1,
and (b) the large land rental on Farm 1. The
PS involves cattle feeding, crop growing, and
land rental-all on Farm 1. A modeler then
would examine only those variables and any
rows where more than one of them appears,
and subsequently would identify the unfound-
edness cause—namely, the huge objective
function coefficients for fed cattle which arise
either because of the cattle sale price, improp-
er units for cattle sale weight (if the sale
weight were in cwt, the problem would dis-
appear), and/or the lack of upper bounds on
renting land.

This is indicative of the general approach
to finding difficulties in unbounded models of
the type in (1). The approach is as follows:

Step 1.

Step 2.
Step 3.

Step 4.

Given an unbounded model, add large
upper bounds to all profitable vari-
ables. (In a maximization problem,
this would be all variables with a pos-
itive objective function value.)
Solve the model.
Determine if any of the added large
upper bounds are binding. If not, ter-
minate the unboundedness finding
procedure. If so, proceed to step 4.
Select variables and slacks whose so-
lution values in absolute value are

3Tableaus and GAMS formulations for this and the
other trial models can be found online in an expanded
version of this article at the web page site given in
footnote 2.

greater than or equal to a tolerance
which is set to be substantially greater
than the expected order of magnitude
of the solution variables. Examine
that set of variables and equations as
well as any interrelating constraints to
find the cause of the unfoundedness.

Step 5. Fix the model and reexecute the pro-
cedure.

Several notes are in order concerning this
procedure. First, the bounds must be large
enough so that they will cause the solution to
have unrealistically large values for some vari-
ables. This may take experimentation either by
increasing the bound value or by resealing
other model components. Second, a variant of
this procedure can be utilized in GAMS where
the modeler bounds only the objective func-
tion variable (the PROFZT variable in the ex-
ample). However, such a procedure will iden-
tify only one case of the unboundedness at a
time. When multiple bounds are added, mul-
tiple unbounded cases can be found in one
pass. Third, GAMSCHK facilitates this pro-
cedure, and when run in “NONOPT” mode,
it automatically identifies all variables which:
(a) need to be bounded to preclude an un-
bounded solution, (b) are marked as unbound-
ed when an unbounded solution is present, and
(c) have optimal solution levels exceeding a
“large value.” In turn, the user can employ
GAMSCHK to extract the potential PS equa-
tions and variables. Fourth, as illustrated
above, the problematic structure can involve
multiple interrelated model elements. Experi-
ence shows that in problems with thousands
of variables and equations, one may find 5–6
variables and constraints in the PS. Reduction



408 Journal of Agricultural and Applied Economics, December 1998

Table 3. Optimal Variable Solution Levels and Reduced Costs for Example Models

Infeasible Unbounded Unrealistic
Example Example Example

Reduced Reduced Reduced
Variable Level cost Level cost Level cost

Objective
Feed Cattle Farm 1
Feed Cattle Farm 2
Corn Farm 1 to Farm 2
Hay Farm 1 to Farm 2
Corn Farm 2 to Farm 1
Hay Farm 2 to Farm 1
Grow Corn Farm 1
Grow Hay Farm 1
Grow Corn Farm 2
Grow Hay Farm 2
Sell Corn Farm 1
Sell Hay Farm 1
Sell Corn Farm 2
Sell Hay Farm 2
Rent Land Farm 1
Rent Land Farm 2
Art Cattle Sales Farm 1
Art Cattle Sales Farm 2

–2E+7
30
50

0
0

1,170
22.5

0
0

24
12
0
0
0
0

200
437

20
0

0
0
0

–0.22
–8

o
0

–1E+5
–1E+5

o
0

–0.37
– 10.5

–0.61
–11.5

o
0
0

1E+6

7E+1O
1E+6

50
0
0

6,689
0

3E+5
1E+5

67
8
0
0
0
0

9E+5
o

0
0
0

–0.22
–2.75

o
–5.25

o
0
0
0

1E+6
1E+6
1E+6
1E+6

o
–9.72

1.3E+7
157

0
0
0

5.7E+6
o
0

21
800

0
5.7E+6

o
0
0
0

700

0
0

–8,055

–0.22

–8

o
0

–34
o
0

–16,100
o

–2.54
–0.24
–3.54
–3.51

o

to a small PS makes identifying the PS cause
relatively simple. Fifth, PSS can be complex.
In the example, the unboundedness could have
been caused by improper cattle sale weights,
cattle prices, or land rental limits. Unfound-
edness does not necessarily occur because of
the variable which the solvers report as un-
bounded or which hit the large upper bound,
but rather may occur because of interrelation-
ships with other variables. Finally, the burden
involved in adding bounds when using GAMS
is not high, because one can add bounds to all
variables in a variable block with a single
command.

Infeasible Models

Unfeasibility causing PS can be found using the
traditional Big “M” artificial variable ap-
proach (Hadley; Bazarra, Jarvis, and Sherali)
with the added step of shadow price exami-
nation to find the full PS. The model is aug-
mented with artificial variables added to any
constraint that is not satisfied when the origi-
nal problem decision variables equal zero.

This includes all constraints which require a
sum of the decision variables to be: (a) greater
than or equal to a positive right-hand side, (b)
less than or equal to a negative right-hand
side, and (c) equal to a nonzero quantity. The
artificial variables also have a large penalty
cost in the objective function, which makes
them highly undesirable in the optimal solu-
tion.

When the original problem is infeasible,
then one or more artificial will be nonzero.
Basic, nonzero artificial distort the shadow
price and reduced-cost solution. Shadow pric-
es are given by C~B - 1. When some elements
in CB are large values associated with artifi-
cial, then some shadow prices and reduced
costs will be large.4 The constraints and non-
negativity conditions/bounds associated with
these large values are the infeasibility causing
Ps.

Again, this is best illustrated through ex-

4The distortioncan be derivedmathematicallyus-
ing an approachwhich is dual to the development in
equation (8) above.
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ample. Models are infeasible because con-
straints are mutually inconsistent. The exam-
ple is rendered infeasible by increasing the
land requirement for cattle up to 10. Artificial
variables also are defined for the cattle minim-
um sales requirements.

The solution shows large shadow prices for
Farm 1 land, maximum rented land, and min-
imum cattle sales (table 2), as well as large
crop-growing reduced costs (table 3). The PS
involves this set of constraints and nonnega-
tivity conditions. Namely, the cattle sales con-
straint on Farm 1 cannot be satisfied with 10
units of land used per head given the avail-
ability of owned and rented land along with
the nonnegativitiy restrictions on the crop
variables. Repair of this problem could entail:
(a) reduction of the cattle land use require-
ment, (b) increase in the land available, and
(c) respecification of the model to include pas-
ture land and a shift in the cattle land require-
ment to that resource. This is again illustrative
of the general nature of PSS. In particular, the
cause is not always the constraint in which the
artificial variable is active (i.e., not the mini-
mum cattle sales from Farm 1); rather, the
cause usually involves the interaction of sev-
eral constraints.

A general approach for finding infeasibility
causing PS is as follows:

Step 1.

Step 2.
Step 3.

Step 4.

Take an infeasible model and enter ar-
tificial variables in all equations that
are not feasible when the variables are
set to zero. Add Big “M”S for the ar-
tificial variables in the objective func-
tion. Artificial variables could also be
needed for positive lower bounds and
negative upper bounds.

Solve the model.
Determine if any of the artificial vari-
ables are in the basis. If not, termi-
nate. If so, proceed to step 4.
Find all equations as well as variable
upper and lower bounds with shadow
prices that are large in absolute value.
These are the PS. Examine them and
the variables therein to find data er-
rors.

Step 5. Fix any errors that are found, and re-
peat the process if needed.

Several comments are in order concerning
the above procedure. First, the Big “M” pen-
alties must be large enough to distort the shad-
ow prices, and this may take several itera-
tions—either increasing the M-value or
resealing other model components. Second, if
infeasibility causing constraints are redundant,
this procedure may not discover the entire PS
in one pass. Third, in the above example, a
portion of the PS involved the lower bounds
on the crop-growing variables. The model
would like to drive those variables negative,
which would make them a source of labor. A
PS may include upper and lower (including
nonnegativity) bounds, indicating that reduc-
tion of the lower bound or increase of the up-
per bound would help alleviate the unfeasibil-
ity. The modeler occasionally has to take the
discovery of these items with a “grain of
salt.” Fourth, the above procedures can be
used easily, but are not needed if one is using
a solver that has Chinneck’s 11S capability. In
particular, the GAMS CPLEX version has 11S
capabilities. Fifth, GAMSCHK will both iden-
tify constraints where artificial variables are
needed, as well as equations and variables
with shadow prices and reduced costs greater
in absolute value than a tolerance. Sixth, ul-
timately, the resolution of any infeasibility
will require manual examination of the con-
straints to find the PS cause. Use of the above
procedure allows one to restrict attention to a
small model subset. Seventh, addition of the
artificial is more complicated than the bounds
above, but still can be accomplished in a rel-
atively few statements using the algebraic ca-
pabilities of GAMS.

While the Big “M” method is covered in
many texts and papers, those authors do not
discuss how to find the infeasibility causing
constraints. Greenberg (1994) suggests the use
of Phase I shadow prices from the linear pro-
gramming solver to diagnose infeasibility, and
it turns out that the artificial variable distortion
will occur in the rows with Phase I shadow
prices. Finally, note that this approach is the
dual to the large bounds approach; i.e., placing
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Table 4. Farm 2 Cattle Feeding Budget for Unrealistic Optimal Case

Equation a,, u, aj,u,

Profit Accounting – 153.20 1.00 –153.20
Corn Crop on Hand 38.48 2.29 88.04
Hay Crop on Hand 0.74 53.54 39.62
Land 0.50 16,160.40 8,080.20
Minimum Cattle 1.00 0.00 0.00
True Reduced Cost 8,054.66

artificial in the primal is equivalent to putting
large bounds on the dual or the converse.

Models with Unrealistic Solutions

Unfortunately, unbounded and infeasible cases
are typically the easy cases of model diagno-
sis. One receives obvious notification from the
solver that there is something wrong, and usu-
ally can find the PS after adding artificial or
bounds. More difficult cases arise when the
modeler gets an “optimal solution,” but dis-
covers that the solution substance is unrealis-
tic. This often necessitates a rather involved
model investigation, and always requires ex-
pectations about the appropriate levels of vari-
ables and shadow prices.

An unrealistic optimal solution can emerge
through unrealistic allocation or valuation in-
formation. A model that contains unrealistic
allocation information has faulty levels for
some variables and/or slacks. A model with
unrealistic valuation information contains
faulty reduced costs and/or shadow prices.

Modelers can find unrealistic solution caus-
ing PS through examination of either: (a) val-
uation information using what is termed “bud-
geting” here, or (b) allocation information
using a process denoted “row summing” here.

Finding Causes of Unrealistic Solutions

Through Budgeting

If the solution contains improper valuation in-
formation, then the shadow prices or reduced
costs are wrong. Shadow prices are deter-
mined by the solution of the reduced-cost
equations [see equation (3)] for the basic vari-
ables. Thus, the causes of faulty valuation in-
formation can be discovered by examining the

reduced-cost calculations. For the jth variable,
this is done by creating an expanded version
of the reduced-cost calculations. Such an ex-
pansion has a row for each equation in which
the jth variable has a nonzero a,,, and includes
the a,j, the shadow price for the equation (u,),

and their product. In turn, the products are
added, yielding a reproduction of the reduced
cost. An example is shown in table 4.

A model with an unrealistic optimal solu-
tion is illustrated by modifying the corn yield
for Farm 2 so it is in pounds rather than bush-
els, and zeroing the minimum cattle sale re-
quirement. Model solution yields the infor-
mation that appears in tables 2 and 3. A
symptom of the model problems is found in
the $8,055 reduced cost of producing Farm 2
cattle. Normal returns likely would fall in the
range from $150 to $200 per head. The ques-
tion, then, is: Why does it cost so much to
grow the cattle? Table 4 provides a budget for
that variable.

The first five rows of table 4 contain the
coefficients associated with the variable as it
falls in the constraints and objective function.
This cattle variable produces objective func-
tion income of $153.20 per unit, uses 38.48
units of corn, 0.74 units of hay, 0.5 units of
land, and produces 1 unit of cattle to be sold.
The shadow prices and product columns show
the net revenue of $153.20 is counterbalanced
by use of 38.48 units of corn worth $2.29/
bushel amounting to $88.04 worth of corn,
hay worth $39.62, and 0.5 acres of land worth

$16,160/acre or $8,080 in total. Summing the
reduced cost of raising cattle yields $8,054.
The land value is problematic, since land con-
tributes most of the $8,054 opportunisty cost
and is valued at $16,160. Thus, the land shad-
ow price merits further examination.
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Table 5. Farm 2 Corn Production Budget for Unrealistic Optimal Case

Equation al] u, auul

Profit Accounting 240.00 1.00 240.00
Corn Crop on Hand –7,162.00 2.29 – 16,400,00
Land (Farm 1) 1.00 96.49 16,160,00
True Reduced Cost 0.00

Shadow price values are derived from the
parameters of the basic variables. Land is so
valuable because of a basic variable that uses
land. In this model, the basic variable using
Farm 2 land is corn production, which is bud-
geted in table 5.

From table 5, corn exhibits a cost of $240,
a yield, and use of land. The $16,400 oppor-
tunity cost of land is shown to be mainly
counterbalanced by an unrealistic 7,162 bushel
yield which is valued at $2.29. Thus, the land
distortion and the original reduced-cost symp-
tom occurs because of the excessively high
corn yield. A modeler then would correct that
problem, solve the model again, and repeat the
procedure if other solution irregularities were
found.

The general budgeting approach entails the
following steps:

Step 1.

Step 2,

Step 3,

Step 4.

Examine the shadow price and reduced-
cost solutions to determine if any ele-
ments are unrealistic.
If an unrealistic reduced cost has been
found, then budget that variable and
examine to see if there is a data error
or an excessively high shadow price.
If a data error is found in the model,
correct that problem, resolve the mod-
el, and go to step 1. Otherwise, pro-
ceed to step 3.
Given that an unrealistic shadow price
has been found, budget the basic vari-
ables that have nonzero coefficients in
the associated equation. Examine
those budgets to find either additional
unrealistic shadow prices or a data er-
ror which is causing the unrealistic
shadow price.
If another unrealistically high shadow
price is found, then go to step 3 and
budget another basic variable which

uses that resource, and iterate through
until a data error is found.

Step 5. When a data error is found, correct
the model, resolve, and go to step 1.

Part of this procedure may involve making
sure the appropriate constraints are binding for
a variable. In particular, if a constraint that is
felt to be binding is not binding, or if an au is
missing, the modeler may need to either: (a)

investigate the constraint through row sum-

ming as discussed below, (b) add a missing

constraint, or (c) add missing coefficients,

The above procedure necessitates several

comments. First, budgeting always requires

knowledge of the problem as well as expec-

tations about the proper values of shadow pric-

es and coefficients. One must understand the

model to debug it. Second, the PS is identified

by finding unrealistic shadow prices and then

tracing through the model to find coefficient

errors, missing coefficients, constraints that

should be binding, and other errors. The over-

all PS comprises each of the variables bud-

geted, coupled with each equation associated

with an improper shadow price. Third, the

budgeting procedure has been implemented in

the GAMSCHK software. Using that software,

the modeler can request that selected variables

be budgeted or that all variables which fall

into particular equations be budgeted. Atten-

tion also can be restricted to binding equations

and basic variables. Fourth, note the analogy

between this procedure and traditional finan-

cial budgeting. When doing financial budget-

ing, one ordinarily takes per unit resource us-

ages, multiplies them by prices, and then

accumulates to arrive at a bottom line. The

procedure here is exactly analogous, with the

prices used being the shadow prices derived

by the solver.
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Table 6. Row Sum of the Objective Function for Unrealistic Optimal Case

Variable a,, xi a,,X,

Profit
Feed Cattle (Farm 1)
Corn Move Crops (Farm 1, Farm 2)
Hay Grow Crops (Farm 1)
Corn Grow Crops (Farm 2)
Corn Sell Crops (Farm 1)
Land Rent (Farm 2)
RHS Coefficient

1.00 12,867,960.00 12,867,960.00
-185.00 157.14 –29,071.00

0.11 5,734,400.00 642,250.00
220.00 21.43 4,714.00
240.00 800.00 192,000.00
–2.40 5,728,272.00 –13,747,853.00

100.00 700.00 70,000.00
0.00

Note; Variables wh]ch are zero are suppressed.

Finding Causes of Unrealistic Solutions

Through Row Summing

The dual approach to budgeting is to look at

primal allocation. When looking at primal al-

location, the modeler searches for unrealisti-

cally high or low variable solution values.

Variable values arise through the solution of

binding constraints as in equation (4). Thus,

to discover why variables have unrealistic val-

ues, one looks at the activity in the constraints.

Row summing involves systematic reconstruc-

tion of constraint activity. The basic table for

row summing the ith equation will have a row

for each variable that falls into the ith equa-

tion, the a,j, the optimal variable value (Xj),

and the product (aOXj). In turn, the products

are summed, the right-hand side recorded, and
the slack computed. The symptom that causes
the use of row summing is an unrealistically
high value of a decision variable and/or slack.

To illustrate row summing, we reuse the
example from the previous section on budget-
ing. As shown in table 6, suppose net profits
of $12,867,960 are judged excessive, and a
row sum of the objective function is employed
to see how they arise. The objective function

row sum shows the profits come largely from
a $13,747,853 Farm 1 com sale. In turn, a row
sum is performed on the Farm 1 com balance
(table 7). The procedure determines that the
5,728,272 bushels sold on Farm 1 arise largely
from corn transported from Farm 2. Table 8
shows a row sum for the com balance on Farm
2, and reveals that so much com can be
shipped because of the excessive yield of com
on Farm 2. Thus, the underlying PS involves
the sales and the two balance equations.

In general, row summing is employed via
the following steps:

Step 1.

Step 2.

Step 3.

Step 4.

Find a variable or a slack with an unrea-
sonable solution level. If there are
none, stop.

Choose an equation that

reveal some information

variable has coefficients.

Row sum that equation

is likely to
where that

to discover
other variables with unrealistically
high solution values and/or coefficient
errors. If errors are discovered, fix the
problem, resolve the model, and go to
step 1. Otherwise, proceed to step 4.
If other variables with unreasonable

Table 7. Row Sum of Farm 1 Corn Balance for Unrealistic Optimal Case

Variable a,, x, aqX,

Feed Cattle (Farm 1) 39.00 157.14 6,128.00
Move Crops (Farm 1, Farm 2) 1.00 0.00 0.00
Move Crops (Farm 2, Farm 1) –1.00 5,734,400.00 5,734,400.00
Grow Crops (Farm 1) –130.00 0.00 0.00
Sell Crops (Farm 1) 1.00 5,728,272.00 5,728,272.00
RHS Coefficient 0.00
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Table 8. Row Sum of Farm 2 Corn Balance for Unrealistic Optimal Case

Variable % x, a,,X,

Feed Cattle (Farm 2) 38.48 0.00 0.00
Move Crops (Farm 2, Farm 1) – 1.00 5,734,400.00 5,734,400.00
Move Crops (Farm 1, Farm 2) 1.00 0.00 0.00
Grow Crops (Farm 2) –7,168.00 800.00 5,734,400.00
Sell Crops (Farm 2) 1.00 0.00 0.00
RHS Coefficient 0.00

solution values are discovered, select
equations for row summing that con-
tain those variables and go back to
step 2.

The row summing procedure allows sys-
tematic exploration of the allocation informa-
tion to see how values of some variables are
balanced off against values of other variables.
It also can be used to find incidence of ex-
cessive resource use in the model.

Several comments can be made pertaining
to this procedure. First, the modeler can use
budgeting and row summing independently or
collectively to discover PS. Second,
GAMSCHK will automatically construct row
sums on any named equation or any equations
wherein a named variable has coefficients.
GAMSCHK can be limited to binding equa-
tions and basic variables. Third, one must have
expectations about appropriate solution values
to identify problems. Fourth, row summing
may be coupled with expectations about prop-
er structure to find missing coefficients and/or
variables, as well as misspecified coefficients.

Concluding Comments

The procedures presented here give theoreti-
cally based ways to find problematic substruc-
tures that result in unfoundedness, unfeasibil-
ity, or unrealistic optimal solutions in
mathematical programming models. The un-
foundedness and infeasibility procedures rely
on model augmentation, coupled with analysis
of the shadow price or allocation information.
The unrealistic optimal solution procedures
provide systematic ways of examining models
to identify the source of problems. They also

may be used in either the unbounded or infea-
sible cases.

The procedures may be utilized on nonlin-
ear, mixed integer, or linear programming
models. In the case of nonlinear models, one
needs to solve the model and then employ the
procedures, as opposed to employing the pro-
cedures on the initial formulation. This is rec-
ommended since codes such as GAMS em-
ploy a Jacobian-based representation using a
local Taylor-series expansion around the cur-
rent point. Once the model is solved, the Tay-
lor-series expansion is based on the current so-
lution and is more accurate than it is before
solution. GAMSCHK marks nonlinear coeffi-
cients to inform users that local values are
present.

In mixed integer cases, the procedures can
be used in a straightforward manner. However,
one must realize that the shadow prices could
be distorted because of the noncontinuous na-
ture of the feasible solution space and the so-
lution algorithm, wherein constraints often are
artificially imposed to generate an integer so-
lution.

The procedures discussed above all are im-
plemented in the GAMSCHK software that is
distributed free of charge through the web
page shown in the reference section (McCarl
1997). The procedures discussed in this article
involve only post-optimality evaluations of
potential structural problems; however,
GAMSCHK also contains pre-optimality eval-
uation procedures.
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