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An Applied Procedure for Estimating and
Simulating Multivariate Empirical (MVE)
Probability Distributions In Farm-Level
Risk Assessment and Policy Analysis

James W. Richardson, Steven L. Klose, and Allan W. Gray

Simulation as an analytical tool continues to
gain popularity in industry, government, and
academics. For agricultural economists, the
popularity is driven by an increased interest in
risk management tools and decision aids on
the part of farmers, agribusinesses, and policy
makers. Much of the recent interest in risk
analysis in agriculture comes from changes in
the farm program that ushered in an era of
increased uncertainty. With increased planting
flexibility and an abundance of insurance and
marketing alternatives farmers face the daunt-
ing task of sorting out many options in man-
aging the increased risk they face. Like farm-
ers, decision makers throughout the food and
fiber industry are seeking ways to understand
and manage the increasingly uncertain envi-
ronment in which they operate. The unique
abilities of simulation as a tool in evaluating
and presenting risky alternatives together with
an expected increase in commodity price risk,
as projected by Ray, et al., will likely accel-
erate the interest in simulation for years to
come.

Increased interest in risk management tools
for assessing alternative farm management
strategies led to the creation of the Texas Risk
Management Education Program (TRMEP) by
the Texas Agricultural Extension Service. The
risk management specialists with TRMEP help

James W. Richardson is professor and Steven L. Klose
is extension specialist at Texas A&M University. Allan
W. Gray is assistant professor at Purdue University.

farmers evaluate long-term strategic manage-
ment alternatives by using a client's personal
farm data and the farm-level simulation mod-
el, Farm Assistance (Klose and Outlaw). The
use of farm-level simulation techniques has
been essential to the application of the model
and the success of the program. Producer in-
terest in the program and demand for the ser-
vice is growing at an increasing rate as the
program enters its third year.

Agribusiness professionals are demanding
more emphasis on risk-management tools in
their advanced education programs at Purdue.
Programs such as the Strategic Agri-Market-
ing program are incorporating risk analysis
into the curriculum for analyzing cases dealing
with various aspects of marketing. The use of
risk analysis gives managers a better feel for
the impacts of alternative marketing strategies
and illustrates the inherent uncertainties sur-
rounding an intensely competitive environ-
ment. Evaluations from participants in the
five-day program have been very positive to-
wards the use of simulation in teaching the
concepts of strategic marketing.

Interest in farm-level policy analyses by
the House and Senate Agricultural Commit-
tees continues to increase as evidenced by the
growing number of farm-level policy analyses
conducted by the Agricultural and Food Policy
Center (AFPC). Policy makers use AFPC's
farm-level simulation results to evaluate the
merits of various legislative alternatives. At
the request of the Agricultural Committees,
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AFPC is presently analyzing several safety net
policy options for agriculture.

The widespread availability of microcom-
puters and the increasing computational power
of spreadsheets has permitted applied re-
searchers to develop simulation models using
spreadsheets rather than specialized simulation
languages. Gray (1998), Richardson and Nix-
on (1999a and 1999b), and Richardson (1999)
have demonstrated that Microsoft Excel is ca-
pable of simulating very complex farm level
and agribusiness decision models. With the aid
of spreadsheet add-ins such as @Risk and
Crystal Ball, analysts can develop a simulation
model, generate random numbers, and statis-
tically analyze the results without having to
learn a specialized programming language.
These advances will undoubtedly promote the
adoption and use of simulation in risk analysis
for academics and professionals.

The current nature of the agricultural in-
dustry and the increased interest in simulation
call for a review of the techniques available
for simulating firm-level models. The basic
equations and identities required to simulate a
farm or agribusiness are outlined elsewhere
(Richardson and Nixon (1986), and Gray
(1998)) so this paper will focus on simulating
stochastic variables in firm-level models. Spe-
cifically, the purpose of the paper is to de-
scribe and demonstrate the procedures devel-
oped by researchers in the AFPC to simulate
stochastic prices and yields in large-scale firm-
level simulation models used in policy and
strategic planning analyses. The procedure is
a semi-parametric Monte Carlo simulation
technique, which incorporates intra- and inter-
temporal correlation and allows the researcher
to control the heteroscedasticity of the random
variables over time.

Review of Literature

Numerous books are available on the topic of
simulation; however, most are not written for
agricultural economists and they do not relate
to problems faced by agriculture firm-level
simulation modelers (e.g., Law and Kelton,
Savage, and Winston). Techniques presented
in the majority of the simulation books can be

applied to many of the business aspects of a
farm, ranch, or agribusiness, but they gener-
ally ignore the unique aspects of agricultural
firms. Some of the special problems facing
firm-level simulation modelers are:

* non-normally distributed random yields and
prices,

* intra-temporal correlation of production
across enterprises and fields,

* intra- and inter-temporal correlation of out-
put prices,

* heteroscedasticity of random variables over
time due to policy changes,

* numerous enterprises that are affected by
weather and carried out over a lengthy grow-
ing season,

* government policies that affect the shape of
the price distributions, and

* strategic risks associated with technology
adoption, competitor responses, and contract
negotiations.

The focus of this paper is on describing and
demonstrating an applied simulation approach
for dealing with the first four problems in the
list. A portion of the literature in the area of
farm-level simulation is reviewed before de-
scribing the procedure for generating appro-
priately correlated random numbers in firm
simulation models. The relevant phrase is "ap-
propriately correlated" and it means that what-
ever procedure is used to simulate random var-
iables must ensure that the historical
relationship between all variables is main-
tained in the simulated variables. This concept
can be extended to include coefficient of var-
iation stationarity which means that the rela-
tive variability for the random variables must
not be changed by the simulation process.

Agrawal and Heady (1972) provided a cur-
sory treatment of simulation in their opera-
tions research book but no details were pro-
vided on how to construct a firm-level
simulation model. Anderson, Dillan and Har-
daker (1977) suggested simulation as a tool for
analyzing risky decisions but provided no de-
tail for addressing the unique modeling prob-
lems listed above. Richardson and Nixon
(1986) described the types of equations and
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identities used to construct the Farm Level In-
come and Policy Simulation Model (FLIP-
SIM), but provided a minimum amount of de-
tail on how the random variables were
simulated. More recently Hardaker, Huirne,
and Anderson (1997) have suggested that sim-
ulation can be used as a possible tool for help-
ing farmers cope with risk, but they did not
provide details on how to build a farm-level
simulation model or how to simulate the ran-
dom variables facing farmers.

Eidman (1971) edited a bulletin on farm-
level simulation that included a description of
the Hutton and Hinman simulation model and
various random number generation schemes.
Eidman's bulletin became the basic reference
material for farm level modelers during the
70s. The General Farm Simulation Model de-
veloped by Hutton and Hinman (1971) ad-
dressed many of the problems faced by farm
level simulators today but did not address the
problems of correlating random yields and
prices and dealing with heteroscedasticity.
Law and Kelton demonstrate that ignoring the
correlation of random variables biases the var-
iance for output variables as follows: a model
overestimates variance if a negative correla-
tion between enterprises is ignored, and vise
versa.

Clements, Mapp, and Eidman (1971) pro-
posed using correlated random yields and pric-
es for firm-level simulation models. However,
the procedure described by Clements, Mapp,
and Eidman for correlating two or more ran-
dom variables only works if the variables are
normally distributed, not the case for yields
and prices for most agricultural firms. Rich-
ardson and Condra (1978 and 1981) reported
a procedure for simulating intra-temporally
correlated random prices and yields that are
not normally distributed. Working indepen-
dently, King (1979) reported a similar proce-
dure for correlating multivariate non-normal
distributions. King's procedure was included
in an insurance evaluation program by King,
Black, Benson and Pavkov (1988).' Taylor

1Fackler (1991) reported that the procedure de-
scribed by King was similar to Li and Hammand's pro-
cedure reported in 1975.

(1990) presented his own procedure for sim-
ulating correlated random variables that are
not normally distributed.

A procedure for simulating inter-temporal-
ly correlated random variables was described
by Van Tassel, Richardson, and Conner and
demonstrated for simulating monthly meteo-
rological data from non-normal distributions.
Their procedure relied on mathematical ma-
nipulation of the random deviates to correlate
variables from one year to the next and there-
fore was difficult to expand beyond two or
three years for problems involving a large
number of random variables.

Simulating Multivariate Non-Normally
Distributed Random Variables

Assume we are faced with the analysis of a
farm that has four enterprises: corn, soybean,
wheat, and sorghum. This means the model
will have to simulate eight variables: four
yields and four prices. The farm in question
only has ten years of yield history (Table 1).
Therefore, we have an eight-variable proba-
bility distribution that must be parameterized
with only ten observations. To make the prob-
lem realistic, assume the model is to be sim-
ulated for three years, thus requiring the pa-
rameters for a multivariate distribution with 24
random variables.

With the limitation of only having ten ob-
servations the use of standardized probability
distributions can be ruled out because there are
too few observations to prove the data fit a
particular distribution. The distribution we
recommend in this situation is the empirical
distribution defined by the ten available ob-
servations.2 Assuming the data are distributed
empirically avoids enforcing a specific distri-
bution on the variables and does not limit the
ability of the model to deal with correlation
and heteroscedasticity.

2 Law and Kelton provide an overview of the F(x)
function for an empirical distribution and the inverse
transform method of simulating from the F(x) for an
empirical distribution.

301



Journal of Agricultural and Applied Economics, August 2000

Table 1. Historical Yields and Prices for a Representative Farm

Yields National Prices

Years Corn Soybean Wheat Sorghum Corn Soybean Wheat Sorghum

bu. bu. bu. cwt. $/bu. $/bu. $/bu. $/cwt.
1 100 29.0 48.0 45.0 2.540 7.42 3.72 2.27
2 155 38.0 46.0 61.0 2.360 5.69 3.72 2.10
3 165 40.0 48.0 55.0 2.280 5.74 2.61 2.12
4 112 33.0 54.0 75.0 2.370 5.58 3.00 2.25
5 80 28.0 65.0 5.0 2.070 5.56 3.24 1.89
6 109 40.0 52.0 37.0 2.500 6.40 3.26 2.31
7 145 45.0 50.0 25.0 2.260 5.45 3.45 2.13
8 90 26.0 48.0 12.0 3.050 6.76 4.37 2.91
9 117 47.0 72.0 60.0 2.710 7.35 4.30 2.24

10 114 46.0 50.0 59.0 2.600 6.50 3.45 2.34

Summary Statistics
Mean 118.700 37.200 53.300 43.400 2.474 6.245 3.512 2.256
Std Dev 26.435 7.386 8.050 21.919 0.261 0.712 0.516 0.251
Coef Var 0.223 0.199 0.151 0.505 0.105 0.114 0.147 0.111
Minimum 80.000 26.000 46.000 5.000 2.070 5.450 2.610 1.890
Maximum 165.000 47.000 72.000 75.000 3.050 7.420 4.370 2.910

Parameter Estimation for a MVE Probability
Distribution

The first step in estimating the parameters for
a multivariate empirical (MVE) distribution is
to separate the random and non-random com-
ponents for each of the stochastic variables.
There are two ways to remove the random
component of a stochastic variable: (a) use re-
gression (or time series) analysis to identify
the systematic variability, or (b) use the mean
when there is no systematic variability. Yield
is often a function of trend so an ordinary least
squares (OLS) regression on trend may iden-
tify the deterministic component of a random
yield variable. When an OLS regression fails
to indicate a statistically significant non-ran-
dom component, then use the simple mean (X)
of the data as defined in equations 1.1 or 1.2
and shown in column 3 of Table 2.3

3 Stochastic prices in a farm-level model present a
unique problem. The farm receives local prices that are
a function of national prices and a wedge or basis. Due
to the effect of farm policy on prices, the model must
simulate the national prices and then use the wedge to
convert stochastic national prices to stochastic local
prices. This is particularly important when simulating
the effects of policy changes on farms in different re-

(1) Non-Random Component of the Historical
Values

(1.1) Xit = a + b-Trendt + -cZt

or

(1.2) Xit = Xi for each random variable Xi and

each year t.

The second step for estimating parameters
for a MVE distribution is to calculate the ran-
dom component of each stochastic variable.
The random component is simply the residual
(e) from the predicted or non-random com-
ponent of the variable (Column 4 of Table 2).
It is this random component of the variable
that will be simulated, not the whole variable.

(2) Random Component

(2.1) eit = Xit - it for each random variable

Xi and each year t.

The third step is to convert the residuals in
equation 2.1 (eit) to relative deviates about
their respective deterministic components. Di-
viding the eit values by their corresponding

gions because all of the farms must be impacted by
the same prices.
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Table 2. Steps for Estimating the Parameters for an Empirical Distribution

Random Van- Deterministic Stochastic Relative Probability of
Observa- able Component Components Variability Sorted Deviates Occurrence

ti o n Xit Xt et Dit Sit P(Sit)

Pmin -0.1370 0.00
1 48.0 53.3 -5.30 -0.0994 -0.1370 0.05
2 46.0 53.3 -7.30 -0.1369 -0.0994 0.15
3 48.0 53.3 -5.30 -0.0994 -0.0994 0.25
4 54.0 53.3 0.70 0.0131 -0.0994 0.35
5 65.0 53.3 11.70 0.2195 -0.0619 0.45
6 52.0 53.3 -1.30 -0.0243 -0.0619 0.55
7 50.0 53.3 -3.30 -0.0619 -0.0244 0.65
8 48.0 53.3 -5.30 -0.0994 0.0131 0.75
9 72.0 53.3 18.70 0.3508 0.2195 0.85

10 50.0 53.3 -3.30 -0.0619 0.3508 0.95
Pmax 0.3508 1.00

predicted values in the same period results in
fractions that express the relative variability of
each observation as a fraction of the predicted
values (Column 5 in Table 2).

(3) Relative Variability of Each Observation
(Deviates)

(3.1) Di = ejt/Xit for each of the 10 years t and
for each random variable Xi.

The fourth step is to sort the relative de-
viates in equation 3.1 and to create pseudo-
minimums and pseudo-maximums for each
random variable. The relative deviates, Dit, are
simply sorted from the minimum deviate to
the maximum to define the points on the em-
pirical distribution for each random variable
Xi (Column 6 in Table 2). In a standard em-
pirical distribution the probability of simulat-
ing the minimum or maximum of the data is
equal to zero (Law and Kelton). In reality
these points were each observed in history
with a 10-percent probability, for a variable
with ten years of data. The problem can be
corrected by adding two pseudo observations.
Pseudo-minimum and pseudo-maximum val-
ues are calculated and added to the data re-
sulting in a 12-point empirical probability dis-
tribution. The pseudo-minimum and maximums
are defined to be very close to the observed
minimum and maximum and cause the simu-
lated distribution to return the extreme values

with approximately the same
were observed in the past.

frequency they

(4) Sorted Deviates and Pmin and Pmax

(4.1) Sit = Sorted[Dt from min to max]

for all years t and each random
variable Xi

(4.2) Pmini = Minimum Sit 1.000001

(4.3) Pmaxi = Maximum Sit. 1.000001

The fifth step is to assign probabilities to
each of the sorted deviates in equations 4.1-
4.3. The probabilities for the end points (Pmin
and Pmax) are defined to be 0.0 and 1.0 to
ensure that the process conforms to the re-
quirements for a probability distribution (Col-
umn 7 in Table 2). Each of the ten observed
deviates had an equal chance of being ob-
served (1/T) in history so in the simulation
process that assumption must be maintained. 4

The intervals created by the addition of the
Pmin and Pmax deviates are assigned one half
of the probability assigned to the other inter-
vals. Based on this empirical formulation, out-
comes approximating the minimum are real-

4 However, the flexibility of this procedure allows
for assigning any probability between 0 and 1 to the
sorted deviates. Thus, elicitation processes can be in-
corporated to reflect management's/experts' opinions
about the distributions for each variable.
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ized about 10 percent of the time, and the
same for the maximum. Equation 5 illustrates
the assigning of probabilities for each of the
deviates.

(5) Probabilities of Occurrence for the Deviates

(5.1) P(Pmin) = 0.0

P(Sl) = (1/T).0.5

P(Si2) = (I/T) + P(Si1)

P(Si3) = (1/T) + P(Si2)

(5.11) P(Silo) = (1/T) + P(Si9 )

(5.12) P(Pmax) = 1.0

The sixth step for estimating the parame-
ters for a MVE distribution is to calculate the
M x M intra-temporal correlation matrix for
the M random variables (Table 3).5 The intra-
temporal correlation matrix is calculated using
the unsorted, random components (eit) from
equation 2.1 and is demonstrated for a 2 X 2.

(6) Intra-Temporal Correlation Matrix for Xi
to Xj

P(it,&it) Peit,jt

0 P(ejt.et)

The seventh step is to calculate the inter-
temporal correlation coefficients for the ran-
dom variables. The inter-temporal correlation
coefficients are calculated using the unsorted
residuals (eit) from equation 2.1 lagged one
year, or the correlation of eit to eit- (Table 3).
The inter-temporal correlation coefficients are
used to create a separate matrix for each ran-
dom variable. The inter-temporal correlation
matrices are 3 x 3 for a three-year simulation
problem. A zero in the upper-right-most cell
of the inter-temporal matrix assumes no sec-
ond-order autocorrelation of the variables, a
reasonable assumption given only ten obser-
vations.

5When using the data to estimate the correlation
coefficients, Fackler (1991, p. 1093) agrees that one
should estimate the rank correlation coefficient directly
and then calculate the appropriate random values.

(7) Inter-Temporal Correlation Matrix for
Variable Xit's Correlation to Xit-,

1 P(e ite it_) 0

Pi(t,t- 1) 1 P (etejt-1

The seventh step completes the parameter
estimation for a MVE distribution. The param-
eters used for simulation are summarized in
equation 8.

(8) [Xik, Sit, Pmini, Pmax,, P(Sit), Pij(MxM) and

Pi(t,t- )(KxK)] for random variables Xi,

i = 1,2,3, ... M,

historical years t = 1, 2, 3, ... T,

and simulated years k = 1, 2, 3, ... , K.

The completed MVE probability distribution
can be simulated in Excel using @Risk or in
any other computer language that generates in-
dependent standard normal deviates (i.e., val-
ues drawn independently from a normal dis-
tribution with a mean of 0.0 and a standard
deviation of 1.0). The steps to simulate the
MVE are provided next to demonstrate how
the parameters are used to simulate a MVE
probability distribution.

Prior to simulation, the square root of the
intra-temporal (pij) correlation matrix and each
of the inter-temporal (Pit-l) correlation matri-
ces must be calculated. The square root pro-
cedure for factoring a covariance matrix, de-
scribed by Clements, Mapp and Eidman, is
used to factor the correlation matrices (one in-
tra-temporal and one inter-temporal) and is
named MSQRT.6

(9) Factored Correlation Matrices

(9.1) Rij(MXM) = MSQRT(Pij(MxM))

(9.2) Ri(tt- 1)(KxK) = MSQRT(Pi(t.t_)(KxK))

6 An Excel program to factor a correlation matrix
by the square root method is available from the au-
thors.

(5.2)

(5.3)

(5.4)

306



Richardson, Klose, and Gray: Procedure for Estimating MVE Probability Distributions

Simulation of a MVE Probability
Distribution

The first step for simulating a MVE distribu-
tion is to generate a sample of independent
standard normal deviates (ISND). The number
of ISNDs generated must equal the number of
random variables; in the case of this example
24 ISNDs are needed for eight variables and
three years. The best solution to the problem
of generating ISNDs is to use @Risk to gen-
erate the ISNDs and to select the Latin Hy-
percube option. By using @Risk to generate
the ISNDs, one can take advantage of @Risk's
ability to manage the iterations and calculate
statistics for the model's output variables,
while controlling the process to simulate sto-
chastic variables. During the simulation pro-
cess @Risk fills the ISND vector each itera-
tion with a new sample of random standard
normal deviates and Excel calculates the equa-
tions for correlating the deviates. 7

(10) Vector of ISNDs

ISNDi(24 x ) = Risknormal(O, 1)

generate 24 ISNDs by
repeating the @Risk
formula in 24 cells.

The second step for simulating a MVE dis-
tribution is to correlate the ISNDs within each
year of the simulation period (k = 1, 2, ....
K) by multiplying the factored correlation ma-
trix (Rij) and eight of the values in the ISND
vector. The matrix multiplication is repeated
once for each year (k) to be simulated, using
the same Rij matrix each time but a different
set of eight ISNDs. The resulting eight values
in each of three vectors are intra-temporally
correlated standard normal deviates (CSNDs)
(see Richardson and Condra (1978)). For large
samples (number of iterations) the correlated
standard normal deviates in equation 11 ex-
hibit similar intra-temporal correlation to that

7 While @Risk includes a correlation function, the
rank-order correlation procedure used by @Risk pre-
sents several difficulties when incorporating inter-tem-
poral correlation and large intra-temporal correlation
matrices.

observed in the pij correlation matrix in equa-
tion 8.

(11) Correlated Standard Normal Deviates for
Simulated Years 1-3

(11.1) CSNDk 1 = R(8 , ISNDi(8 )

for the first eight ISND
values,

(11.2) CSNDk2 1 = R(8x) ISNDi(1)

for the second eight
ISND values,

(11.3) CSNDa 1 ) = R ISND
CSN (8 x 1) = Rij(8x8) ISNDi(8x1)

for the last eight ISND
values.

The third step in simulation is to capture
the inter-temporal correlation of the random
variables. The values in the three 8 x 1 vec-
tors of CSNDs (equation 11) are used in a sec-
ond matrix multiplication to add the inter-tem-
poral correlation to each random variable.
Equation 12 is repeated for each of the eight
variables and does not significantly diminish
the intra-temporal relationship established in
equation 11.8 A single-step approach to cor-
relating random variables that combines equa-
tions 11 and 12 into one 24 X 24 correlation
matrix would be superior. However, the prob-
lem with a single-step approach is that even
for small models the (MT X MT) correlation
matrix can be impossible to factor. The two-
step correlation process in equations 11 and
12 overcomes that problem and allows for a
large number of random variables to be ap-
propriately correlated in a multi-year simula-
tion model. 9

8 The two-step approach is an improvement over
Van Tassel, Richardson, and Conner's mathematical
manipulation of deviates one year at a time, because it
permits a large number of variables to be correlated
over 10 or more years.

9 The ACSNDs can be used to simulate multivari-
ate normal (MVN) random variables by applying the
adjusted correlated deviates as follows: Xik = Xik +

i- ACSNDik for each random variable Xi and where
&i is the standard deviation for Xi. This procedure for
simulating MVN distributions incorporates both inter-
and intra-temporal correlation for large scale models
with numerous variables and years in the planning ho-
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(12) Adjusted Correlated Standard Normal
Deviates for Variable Xi in Simulated
Years 1-3

ACSND=3' CSNDk=3

(12.1) ACSNDk=2 = Rit-(3x3) CSNDk=2

ACSNDk=' CSNDk=

for each of the i
random variables.

The fourth step in simulating a MVE dis-
tribution is to transform the ACSNDs from
equation 12 to uniform deviates. This step is
accomplished using Excel's command =
normsdist(CSNDi) for each of the 24 values.
Most simulation languages contain a similar
error function which can be used to integrate
the standard normal distribution from minus
infinity to the ACSNDi. Because the input for
the error function (ACSND) is appropriately
correlated, the output is a vector of correlated
deviates distributed uniform zero-one.

(13) Correlated Uniform Deviates

CUDi(24 1) 
=

normsdist(ACSNDi(2 4 ,1)

The fifth step in simulation is to use the
CUDs to simulate random deviates for the
empirical distribution of each variable Xi. Us-
ing the CUD, along with the respective vari-
able's Si and P(S,) one simply interpolates
among the Si values to calculate a random de-
viate for variable Xi. In Excel the interpolation
can be accomplished using a table lookup
function for each random variable Xi, thus cal-
culating 24 fractional deviates. 10 The interpo-
lation process does not affect the correlation
implicit in the CUDi's so the resulting random
deviates are appropriately correlated fractional
deviates (or CFD).

rizon. If the model being simulated contains both nor-
mal and non-normal distributions, the normal distri-
butions use the above equation and the ACSNDs while
the non-normal distributions use equation 15. In this
manner the procedure outlined here is capable of ap-
propriately (intra- and inter-temporally) correlating any
distribution and any combination of distributions.

10 Addin software for Excel to simplify the inter-
polation step is available from the authors.

(14) Interpolation of an Empirical Distribution
for Variable Xi Using the CUD,

CFDik =

Pmin

S,

S2

S3

S4

S5

S6

S7

S8

S9

S10

Pmax

0.0

P(S1)

P(S2)

P(S3)

P(S4)

P(Ss)

P(S6)

P(S7)

P(S8)

P(S 9 )

P(S,o)
1.0

<- CUDik.

The sixth step in simulating a MVE distri-
bution is to apply the correlated fractional de-
viates to their respective projected means and
make any needed adjustment for heteroscedas-
ticity. Projected mean yields for years 1-3 can
be the historical means or the projected values
from the OLS regressions in equation (1). Pro-
jected mean prices for years 1-3 can be from
the OLS results in equation (1) or from pro-
jections by FAPRI or any other macro model
that projects national prices. The CFDi values
are fractions of the mean so as the mean
changes, the MVE distribution keeps the rel-
ative variability or coefficient of variation con-
stant.'1 An expansion factor (Eik) is included
in equation 15 to allow for managing of the
coefficient of variation over time. If the vari-
able is assumed to have the same relative var-
iability over time the Eik factors are 1.0 for all
years t; however if the relative risk is assumed
to increase 10 percent per year the Elk factors
are 1.1, 1.2, and 1.3, respectively, for the first
three years.

(15) Simulate Random Values in Year k for
Variable Xi

Xik = X'ik'(1 + CFDik Eik)

An explanation of coefficient of variation sta-
tionarity for the empirical distribution is provided by
Richardson (1999, pp. 104-111). The use of heteros-
cedasticity adjustments to simulate random variables is
explained in the same paper (pp. 140-144).
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Table 4. Results of Simulating Yields and Prices for Three Years

Yields National Prices

Soy- Sor-
Corn bean Wheat ghum Corn Soybean Wheat Sorghum

Year 1
Mean 118.61 37.17 53.29 43.29 1.96 4.52 2.91 3.23
Std Deviation 25.93 7.29 7.83 21.65 0.20 0.51 0.42 0.34
Coef Var. 0.22 0.20 0.15 0.50 0.10 0.11 0.14 0.11
Minimum 80.00 26.00 46.00 5.00 1.64 3.94 2.16 2.71
Maximum 165.00 47.00 72.00 75.00 2.42 5.37 3.62 4.17

Year 2
Mean 121.02 37.99 54.30 44.31 2.00 4.71 2.99 3.37
Std Deviation 26.38 7.46 7.96 22.03 0.21 0.53 0.43 0.36
Coef Var. 0.22 0.20 0.15 0.50 0.10 0.11 0.14 0.11
Minimum 81.60 26.52 46.92 5.10 1.67 4.11 2.22 2.83
Maximum 168.30 47.94 73.44 76.50 2.47 5.60 3.72 4.35

Year 3
Mean 123.55 38.74 55.41 45.14 2.06 4.86 3.09 3.48
Std Deviation 27.20 7.55 8.12 22.60 0.30 0.76 0.62 0.51
Coef Var. 0.22 0.19 0.15 0.50 0.14 0.16 0.20 0.15
Minimum 83.23 27.05 47.86 5.20 1.59 4.00 1.98 2.69
Maximum 171.67 48.90 74.91 78.03 2.73 6.15 4.15 4.90

Excel repeats the process described in sim-
ulation steps 1-5 automatically as @Risk sim-
ulates each iteration. The resulting random
values can be used in the firm-level simulation
model to simulate receipts and other variables
of interest. The process described here to es-
timate the parameters and simulate a MVE
probability distribution is easily expanded to
accommodate models with a large number of
random variables. It should be noted that as
the correlation matrix gets larger it often be-
comes difficult to factor.

Random variables generated from the
MVE distribution described here have the fol-
lowing properties:

* The variables are intra-temporally correlated
the same as the historical period.

* The variables are inter-temporally correlated
the same as the historical period.

* The variables have the same means, mini-
mums, and maximums as their parent distri-
butions, if the Xik values in equation (15)
equal their respective historical means and
the Eiks equal one. If the Xik in equation 15

is not equal to the historical mean the ran-
dom variable's average will equal the Xik
and the minimum will be less than the mean
by the same percentage as observed in the
historical data.

* The random variables are coefficient of var-
iation (CV) stationary over time if the ex-
pansion factors (Eik) are equal to 1.0 for all

years.
* When the expansion factors (Eik) are not

equal to 1.0 the coefficient of variation in
any year t equals the historical coefficient of
variation (CV0) times the expansion factor,
or CVt = CV Eik.

* The standard deviations for the output vari-
ables are less likely to be overstated or un-
derstated due to ignoring the correlation
among enterprises and across years.

* The distributions for the random variables
are similar to their parent distributions in
terms of shape.

Once the parameters for the MVE are es-
timated, the distribution can be used to simu-
late a variety of assumptions about the pre-
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Table 5. Correlation Matrix Calculated from Simulation Results for Yields and Prices Over
Three Years

Yields for Year 3 Prices for Year 3 Yields for Year 2

Sor- Sor- Sor-
Corn Soybean Wheat ghum Corn Soybean Wheat ghum Corn Soybean Wheat ghum

1.000 0.519 -0.318 0.440 -0.279 -0.342 -0.297 -0.273 0.045 0.026 -0.011 0.019
1.000 0.133 0.403 -0.064 -0.007 -0.058 -0.224 -0.088 -0.166 -0.024 -0.077

1.000 -0.080 -0.061 0.152 0.158 -0.226 0.060 -0.002 -0.087 0.013
1.000 -0.004 0.068 -0.170 -0.130 -0.005 0.000 0.010 -0.002

1.000 0.683 0.684 0.827 -0.054 -0.016 -0.020 -0.010
1.000 0.576 0.409 -0.054 -0.003 0.007 0.003

1.000 0.416 -0.151 -0.019 0.088 -0.093
1.000 0.038 0.026 0.028 0.017

1.000 0.517 -0.306 0.443
1.000 0.139 0.415

1.000 -0.053
1.000

dicted means without changing the relative
variability for the variables. This feature is
particularly useful for analyzing technological
changes that assume changes in the mean
yields. An added feature is that the MVE pro-
cedure allows one to experiment with alter-
native levels of relative variability in the fu-
ture, due to policy changes and or new
varieties which may have more or less risk.

The steps for parameter estimation and
simulation of MVE distributions are robust
and perform efficiently for large-scale agri-
cultural economics simulation models. In ad-
dition, the procedure is easily adapted to a va-
riety of programming languages and/or
software. The MVE procedure is used by
FLIPSIM, Farm Assistance, POLYSYS's
crops model, and FAPRI's crops model (Rich-
ardson and Nixon 1985; Klose and Outlaw;
Ray, et al.; and Adams). Gray (1998) was the

first to apply the MVE procedure to a large-
scale agribusiness simulation model in Excel.
Richardson (1999, pp. 184-245) demonstrates
the use of the MVE procedure in several ag-
ricultural economics oriented simulation mod-
els that are programmed in Excel.

Numerical Application of the MVE
Distribution

A simple farm-level simulation example is
presented in this section. Ten years of actual
yields for a farm growing corn, soybeans, sor-
ghum, and wheat are combined with ten years
of national prices to develop an MVE yield
and price distribution for a farm (Tables 1-3).
The farm is simulated for three years using
stochastic yields and prices to estimate the dis-
tribution of total crop receipts for the farm,
assuming 100 acres planted to each crop.
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Table 5. Extended

Prices for Year 2 Yields for Year 1 Prices for Year 1

Sor- Sor- Sor-
Corn Soybean Wheat ghum Corn Soybean Wheat ghum Corn Soybean Wheat ghum

-0.012 -0.015 -0.018 -0.011 0.003 -0.002 -0.009 0.005 0.008 -0.001 -0.008 0.013
0.002 -0.014 -0.002 0.027 0.001 -0.004 -0.017 0.008 0.009 0.005 -0.007 0.013

-0.010 -0.042 -0.031 0.008 -0.003 0.004 -0.008 0.013 0.006 0.009 0.004 0.004
0.003 -0.004 0.003 0.001 -0.008 -0.021 -0.007 -0.013 0.002 -0.004 -0.007 0.012
0.158 0.112 0.101 0.148 0.018 -0.007 -0.007 -0.001 -0.012 -0.013 -0.022 -0.010
0.102 0.120 0.073 0.080 0.010 -0.003 -0.007 0.015 -0.006 -0.007 -0.015 -0.007
0.325 0.277 0.396 0.239 -0.002 -0.003 0.001 0.010 -0.008 -0.004 -0.013 -0.008

-0.118 -0.050 -0.067 -0.119 0.016 -0.006 0.000 -0.009 -0.005 -0.011 -0.008 -0.003
-0.298 -0.352 -0.308 -0.285 0.057 0.031 -0.030 0.025 -0.003 -0.013 -0.008 -0.005
-0.071 -0.002 -0.055 -0.224 -0.091 -0.155 -0.032 -0.059 0.025 0.020 0.017 0.050
-0.054 0.165 0.164 -0.233 0.033 -0.009 -0.077 0.018 0.009 -0.009 -0.026 0.031
-0.014 0.060 -0.194 -0.133 0.015 0.017 -0.016 0.013 0.001 0.003 -0.007 -0.007

1.000 0.677 0.681 0.831 -0.037 -0.005 -0.019 0.010 0.138 0.092 0.081 0.125
1.000 0.574 0.403 -0.042 -0.001 0.015 0.024 0.090 0.118 0.067 0.062

1.000 0.415 -0.143 -0.029 0.079 -0.068 0.308 0.259 0.395 0.226
1.000 0.046 0.039 0.040 0.013 -0.141 -0.082 -0.100 -0.141

1.000 0.537 -0.304 0.440 -0.279 -0.346 -0.332 -0.275
1.000 0.139 0.419 -0.075 -0.014 -0.076 -0.223

1.000 -0.066 -0.089 0.140 0.185 -0.252
1.000 0.009 0.066 -0.202 -0.115

1.000 0.682 0.715 0.880
1.000 0.606 0.435

1.000 0.513
1.000

The MVE distribution is simulated for
three years using historical mean yields and
projected national prices for 2000-2002 from
the FAPRI November 1999 baseline. For the
simulation, it was assumed that the relative
variability of yields would be the same in the
future as it has been in the past. However, the
relative variability of crop prices is assumed
to be 40 percent greater in the last year of the
historical period. The results of the simulation
are summarized in Tables 4 and 5.

A comparison of the simulated and histor-
ical distribution statistics can validate the
MVE procedure. The simulated means for
each crop's yield in year 1 compare very fa-
vorably to the historical means as do the other
statistics. The simulated mean national prices
are very close to the mean forecasts provided
by FAPRI. By separating the non-random
component from the random component, the

MVE has the flexibility to impose the histor-
ical variability on any assumed mean. The
simulated mean yields in years 2 and 3 reflect
the 2-percent per year increase in the assumed
mean yields.

The simulated coefficient of variation (CV)
is the same as the historical CV for all yields
and the first two years of all prices, where the
expansion factors were 1.0. Using the per-
centage deviations as parameter estimates in
the MVE forces the CV stationary process,
even when the mean changes from year to
year. The standard deviation for corn yield in-
creases from 25.93 to 26.83 as the simulated
mean rises from 118.61 to 121.02, in year 1
and 2, respectively, thus maintaining a 0.22
CV (Table 4). A process that uses a constant
standard deviation would generate a declining
CV. The price distributions show the CV sta-
tionary process between year 1 and 2. How-

311



Journal of Agricultural and Applied Economics, August 2000

ever, in year 3 the CV increases by 40 percent,
reflecting the assumed expansion factors of 1.4
(Table 3). Again, the flexibility of this proce-
dure allows one to control the stochastic pro-
cess in many dimensions.

The results in Table 4 indicate that the sto-
chastic procedure does a good job of simulat-
ing the given means and historical relative var-
iability, and provides flexibility in controlling
the relative variability over time. However, a
significant contribution of this research centers
around the multivariate process. Table 5 re-
ports the simulated 24 X 24 correlation matrix
for the random variables. The intra-temporal
correlation coefficients, in the triangular areas
below the outlined blocks, can be compared
directly to the intra-temporal correlation ma-
trix in Table 3. The bold numbers along the
diagonal of each outlined box are the simulat-
ed first-order inter-temporal correlation coef-
ficients that can be compared to the input in-
ter-temporal correlation coefficients shown in
Table 3.

A difficult part of simulating multivariate
distributions is accurate generation of the his-
torical correlation. When comparing the sim-
ulated intra-temporal correlation to the histor-
ical correlation signs, all elements of the
matrix are correct except one (the correlation
between corn price and soybean price in the
first year is 0.009 when it should be -0.006;
however, both values are about equal to zero).
A closer examination reveals that the order of
magnitude for each element of the simulated
correlation matrix is similar to historical ob-
servations. For instance, the simulated corre-
lation between sorghum price and soybean
price of 0.880, 0.831, and 0.827 in years 1, 2,
and 3, respectively, is similar in magnitude to
the 0.9252 historical correlation coefficient.
The same can be said for the simulated cor-
relation between corn and soybean yields of
0.537, 0.517, and 0.519 compared to the his-
torical correlation of 0.5826. In fact, while
none of the simulated coefficients matches the
historical coefficients exactly, the order of
magnitude for all is reasonable.

The procedure used for incorporating inter-
temporal correlation also generates acceptable
simulated correlation coefficients. With the ex-

ception of the inter-temporal correlation be-
tween sorghum yield in years 2 and 3 of
-0.002, the signs for all of the first-order
auto-correlation coefficients are correct (Table
5). Comparing the simulated coefficients to the
input matrix (Table 3) reveals that the order of
magnitude for all of the first-order inter-tem-
poral coefficients is acceptable. For example,
the simulated first-order inter-temporal corre-
lation coefficient for wheat price was 0.395
and 0.396 between years 1 and 2 and 2 and 3,
respectively, which is similar to the input of
0.4231. The inter-temporal coefficients across
commodities and higher-than-first-order intra
temporal coefficients are spurious and approx-
imately zero in most cases.

The most encouraging result is that this
procedure can incorporate a complete corre-
lation matrix into the multivariate simulation
for a non-normal distribution with limited his-
torical data. With limited data it is often im-
possible to estimate a non-singular 24 x 24-
input correlation matrix that can be factored.
For this reason, among others, using the cor-
relation capabilities of @RISK may not work.
However, the two-stage procedure described
here avoids the singular matrix problem, in-
corporates first-order inter-temporal correla-
tion, and produces acceptable intra- and inter-
temporal correlation for all of the random
variables.

To illustrate the importance of capturing
the intra- and inter-temporal correlation ef-
fects, a simulation of the joint distribution of
revenue for the example was conducted. As-
suming the farm plants 100 acres each of corn,
soybeans, wheat, and sorghum, the joint dis-
tribution of price times yield was simulated
10,000 iterations. 12 This simulation was re-
peated for four scenarios with the assumptions
of no correlation, only intra-temporal correla-
tion, only inter-temporal correlation, and com-
plete correlation.

Statistics summarizing the present value of

12 Effects of the loan deficiency payments were ig-
nored in this analysis to illustrate the impact of mul-
tivariate simulation on the ability to more accurately
characterize the joint distribution of total revenue be-
fore any risk-management intervention.

312



Richardson, Klose, and Gray: Procedure for Estimating MVE Probability Distributions

Table 6. Sum of Present Value of Total Revenue Assuming Alternative Levels of Correlation
Among the Random Variables

No Only Inter-Temporal Only Intra-Temporal Total
Correlation Correlation Correlation Correlation

Mean 199.41 199.43 198.74 198.72
Minimum 135.56 134.88 126.69 126.65
Maximum 264.33 263.01 279.06 274.61
Coefficient of Variation (%) 8.83 8.98 11.01 11.10

the total revenue over the three-year simula-
tion period are summarized in Table 6. The
mean for present value of total revenue is only
slightly different as one goes from no corre-
lation to total correlation. However, the mini-
mum and maximums for the total revenue
distributions increase as more and more cor-
relation is added to the simulation. The results
in Table 6 indicate that incorporating full cor-
relation, in this case, increases the variability
of the joint distribution for total revenue sub-
stantially. This result has serious implications
for policy analysis. As U.S. farm policy mak-
ers continue to search for risk-reducing policy
tools, it is important that the nature of the joint
distribution for total revenue be accurately
characterized. Incorporating intra- and inter-
temporal correlation into a multivariate simu-
lation process can improve the characteriza-
tion of this joint distribution and more
accurately quantify the impact of alternative
risk-management policies.

Summary

Demand for simulation as an analytical tool
has been increasing rapidly in recent years.
Farmers, agribusiness managers, and policy
makers are increasingly interested in risk-man-
agement tools and policies. The widespread
availability of microcomputers and the in-
creasing computational power of spreadsheets
has allowed applied researchers to develop
simulation models using spreadsheets to meet
the increasing demand. The current volatility
in the agricultural industry will undoubtedly
continue to increase the demand for simulation
in the future. The purpose of this paper was
to describe and demonstrate an applied pro-
cedure to simulate stochastic prices and yields

in large-scale firm-level simulation models
used in policy and strategic planning analysis.

Assuming the analysis is faced with an ap-
plied simulation problem including limited
data on historical prices and yields, the paper
describes a simple process for estimating the
parameters for a multivariate empirical distri-
bution. The paper then goes on to demonstrate
the process for simulating a multivariate em-
pirical distribution with eight random vari-
ables simulated across three years. The im-
portant contributions of the method include
the use of non-normal distributions and an in-
tra-temporal (across commodity) and inter-
temporal (across time) correlation matrix to
generate correlated stochastic error terms that
can be applied to any forecasted mean. The
procedure overcomes the problem of a singu-
lar correlation matrix that is often encountered
when building a multi-year simulation model
with a large number of random variables and
limited historical data.

An application of the method was con-
ducted using 10 years of actual farm-level his-
torical data for corn, soybeans, wheat, and sor-
ghum. The simulation model was run for
10,000 iterations and the simulated statistics
and correlation matrix were compared to the
historical input values. Analysis of the simu-
lated statistics showed that the stochastic pro-
cedure does a good job of simulating the given
means and historical relative variability, and
provides flexibility for controlling the stochas-
tic process. Further evaluation of the simulated
correlation matrix indicated that the expected
signs on the correlation were attained and the
order of magnitude for both the intra- and in-
ter-temporal coefficients were consistent.

Finally, an illustration of the impact of in-
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cluding multivariate stochastic processes was
conducted using the joint distribution of rev-
enues for an example farm. By including both
intra- and inter-temporal correlation coeffi-
cients, the spread of the joint PDF increased
dramatically. This result suggests that includ-
ing correlation in stochastic simulation models
that deal with analysis of risk-management al-
ternatives is critical. The process described in
this paper allows applied researchers to ad-
dress risk-management analysis using simula-
tion when historical data is limited and not
normally distributed.
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