

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

$$
\begin{gathered}
62 \\
60.5 \\
0.53-13 \\
\# 616
\end{gathered}
$$

Conversion Factors and Weights and Measures

For Agricultural Commodities and Their Products
U.S. Department of Agriculture

Economics, Statistics, and Cooperatives Service Statistical Bulletin No. 616

crates

CONTENTS

Table Page
1- 7 Weights and Measures 2
8-10 Dairy Products 12
11-23 Meat and teat Products 16
24-27 Poultry 26
28-29 Eggs 30
30-32 Fish and Shellfish 32
33-41 Oilseeds and Their Products 34
42
Dry Edible Beans and Peas 42
43-44 Wheat and Wheat Products 43
45 Corn and Corn Products 46
46 Oyts and Oat Products 47
47
Barley and Barley Products 47
48
Rye and Rye Products 484950Buckwheat and Buckwheat Products48
Rice and Rice Products 49
Grain Sorghum and Grain Sorghum Products • 50
Sugar, Beet and Cane 50
Other Sugars, Sirups and Molasses 55
Cocoa and Cocoa Products 57
Fruits and Vegetables 53
Hops 30
Tree Nuts 80
Coffee and Tea Products 8:1
Yeast - 81
Tobacco 82
Naval Stores 83
Cotton, Cottonseed, and Cottonseed Products 85
Wool 89

CONVERSION FACTORS AND WEIGHTS AND MEASURES FOR AGRICULTURAL COMMODITIES AND THEIR PRODUCTS

The tables in this report were complled to provide a manual of unfform conversion factors for use in statistical, research, and service programs of the Department. A reasonably complete set of all-purpose factors is presented. However, for a particular comodity, the data may not be entirely adequate for all uses.

The data are intended to represent overall averages except where fndicated. However, In some tnstances the averages are only approximations. All conversion factors included are based on the most recent and reliable fnformation available and are intended to reflect current conditions and practices. Factors for many commodities change from year to year; therefore, caution should be exercised when using these data to compile or revise historical serfes.

The number of significant figures shown for many factors does not necessarily indicate the degree of precision. Some of the factors are in common use and carry more signtficant digits than might be justified when considering the accuracy of the data from which they were derived.

Data for the revistons in this report were compiled by Cleveland Y. Fley under the general supervision of Henry Badger. Instead of the task force nethod used in the last revision, commodity specialists in the Commodity Economics Division of the Economics, Statistics, and Cooperatives Service provided Leadership for revistons of the tables"in their area of interest. These include Larry Duewer and Allen Baker for Ifvestock and Ifvestock products; Alfred Burns, Charles Porter, and Jules Powell for fruits and vegetables; Charles Shaw and Floyd Lasley for dairy products; George Kromer for fats and cils products; Kenneth Blase for poultry and eggs; Frederick Gray for sugar, coffee, and tea; John Lawler for fibers; and Robert. Enochfan for dehydrated and frozen products. Other persons in the Departaent also sharing the responsibility for updating this report included Russell Hawes, W. Edmond Tyler, Larry Crabtree, and Donald Liden of the Agricultural Marketing Service; David Shenkenberger and Curtis Green In Food Safety and Quality Service; and Wilda Martinez of the Agricultural Research Service (now part of Science and Equcation Administration) who coordinated requests for data from scientists at ARS (SEA) regtonal research laboratories. L. W. Van Melr, National Ganners Association, provided data on canned fruits and vegetables.

A new table showing metric wet and dry volume conversion factors has been added. These data along with other metric information provide a basis for converting most weights and measures shown in this report to metric measures.

This report is a revision of Statistical Bulletin No. 362, Conversion Factors and Weights and Measures for Agricultural Commodities and Their Products, published by the Economic Research Service, USDA, In June 1965. Many of the revisions in this report reflect the changting structure of agricultural production and marketing patterns.

Weights and Measures

Table l-Wactors for converting domestic and metric weights and meaaures commonly used for agricultural commodities

48 -pound bushel of barley, buckwheat, apples

1 bushel	$=$.024	short ton	1 short ton	$=$	41.667
1 bushel	$=$.021772 metric ton	i metric ton	$=$	45.9296	bushels
1 bushel	$=$.021429 long ton long ton	$=$	46.667	bushels	

32-pound bushel of vats

1 bushel	$=$. 016	short ton	1 shore ton	=	62.5	ushels
1 bushel	=	. 01.4515	metric ton	1 metrif ton	$=$	68.8944	ls
1 bushel	$=$. 014286	long ton	1 long ton		70	bushels

38-pound bushel of oats

1 bushel	$=$. 019	short ton	1 short ton	$=$	52.63	s
1 bushel	=	.0:724	metric ton	1 metric ton	=	58.016	bushels
1 bushel	$=$. 0.6696	long ton	1 long ton		58.94	ushels

Table 2--Factors for converting domestic and metric dry and liquid measures 1/

I/ In the metric system of weights and measures, designations of multiples and subdivisions of any unit, may be derived by combining with the name of the unit the prefixes deka, hecto, and kilo, meaning, respectively, 10,100 , and 1,000 , and deci, centi, and milli, meaning, respectively, one-tenth, one-hundredth, and one-thousandth.

Table 3--Factors for converting ounces to pounds

	Ounces	:	Plus 0 ounces	Plus $1 / 4$ ounce	Plus $1 / 2$ ounce	FIus 3/4 ounce
		:				
		:				
0		:	NA	0.015625		
1		:	0.062500	0.015625 .078125	0.031250 .093750	0.046875
2		:	. 125000	. 140625	. 156250	. 171875
3		:	. 187500	. 203125	. 218750	. 234375
4		:	. 250000	. 265625	. 281250	. 296875
5		:	. 312500	. 328125	. 343750	. 359375
6		:	. 375000	. 390625	. 406250	. 421875
7		;	. 437500	. 453125	. 468750	. 484375
8		:	. 500000	. 515625	. 531250	. 546875
9		;	. 562560	. 578125	. 593750	. 609375
10		:	. 625000	. 640625	. 656250	. 671875
11		:	. 687500	. 703125	. 718750	. 734375
12		:	.750000	. 765625	. 781250	. 796875
13 14		:	. 812500	. 828125	. 843750	. 859375
14		:	. 875000	. 890625	. 906250	. 921875
15		:	. 937500	. 9531.25	. 968750	. 984375

Table 4--Conversion factors for test weight per Winchester bushel, test weight per imperial bushel, and kilograms per hectoliter I/

Itern	:	Factor
	:	
Pounds per Winchester bushel to--	;	
	;	
Pounds per fraperial bushel	:	1.032
Kilograms per hectoliter	:	1.287
	:	
Pounds per imperial bushel to--	:	
	:	
Pounds per Winchester bushel	:	. 969
Kilograms per hectoliter	:	1.247
	:	
Kilograms per hectoliter to--	:	
	:	
Pounds per Winchester brsinel	:	. 777
Pounds per imperial bushel	:	. 802
	:	

1/ Winchester bushel is the standard U.S. bushel (volume).

Table 5-Comparison of test weight per Winchester bushel, test weight per imperial bushel, and kilograms pet hectoliter
(25-to-65-pound basls Winchester bushel)

Table $6 \boldsymbol{-}$ Factors for obtaining retail weights from weights at specified market level.s

Table 6--Factors for obtaining retail weights from weights at specified market levels--Continued

Table 6-Factors for obtaining retail weights from weights at specified market levels--Continued

Table 7-Net content and approximate servings par container for vayfous canned foods $1 /$

Table 7-Net content and approximate aervings per container for various canped foods 1/-Continued

Table 7-Wiet content and approximate servings per container for various canned foods 1/--Continued

Product	$:$	Contalner size	$\begin{array}{lr} : & \text { Net weight } \\ : & \text { or volume } \end{array}$	Cups or pleces	$\begin{aligned} & \text { Sexvings } \\ & : \text { per } \\ & \text { : container } \end{aligned}$	Serving size	
Mant and poultry: 4/--Cont.							
Sanll : - - 1 l - 4 lb .							
Medium	: --		$6-8 \mathrm{lb}$.	--	3-4	$\begin{aligned} & 2 \text { slices } \\ & \text { lis } \mathrm{tn} .) \end{aligned}(4 \times 3 \times$	
Large	: -		$9-141 \mathrm{~b}$.	-_	pound		
	:						
Pouitry, boned, chicken andcurkey	-		5-61b.	-*	2	3 oz	
	: --		12 oz .	--	.	'soz.	
	:		$1 \mathrm{lb}$.14 oz ,	--	10	3 oz ,	
	: \sim		2 lb .3 oz .	--	12	3 oz .	
Saucage, pork, and frankfurtere	:						
	: --		$8 \text { oz. }$	11-12	3-4	3 sausages	
				8-9 large	4	2 gausages	
Stew, beef and lamb	-		116.	2 cups	2	3/4 cup	
	-		$1 \mathrm{lb}$.4 oz .	212 cups	3	3/4 cup	
	: --		1\% 1 b .	3 cups	4	3/4 cup	
Yienna masage	:		4 oz.	8-10	2		
	:		9 oz .	16-20	4	4 - 5 saurages	
	Fish and reafood: 4/						
	: --		12 Oz	1 cup	2	\% cup	
Cryb meat	:		512 - 7hay	3/4-1 cup	2-3	1/3-1/ cup	
Hinckerel	: -		1 lb .	2 cups	4	$3 / 2 \mathrm{cup}$	
Oyaters							
	: --		8 oz.	1 cup	2	3/2 cup	
Salwon	: --		7-3/4 oz.	1 cup	2	cup	
	: --		1 lb .	2 cups	4	I/ cup	
Sardines Sardines, pilchards	:						
	: --		3ヶ - 4 oz . 15 oz .	$\begin{aligned} & 6-10 \\ & 6-7 \text { large } \end{aligned}$	112	5-7 sardines	
				- 7 large		$1{ }^{2}$ sardines	
Shrimp $2 /$: $=$		4 4 - 612	25-35	3-4	10-12 meditum size	
	:					6-8 Jumbo size	
Tuna in oil	: --		6-7 oz.	1 cup			
	--		13 oz.	1-3/4 cups	4	$\begin{aligned} & \frac{1}{2} \text { cup } \\ & 1_{2}^{2} \text { cup } \end{aligned}$	
Infant foods: $4 /$Vegetables end fruits:							
Infant, strained and howogenized	--		4-3/4 oz.	1/2 cup	--	--	
	--		$6 \frac{1}{2}$ oz.	3/4 cup	-_	--	
Junior, chopped	-		8 oz .	7/8 cup	--	--	
Meate:							
Infant, strained	--		31208.	7 tablespoons	-- -	--	
Junior, chopped	--		3\% oz.	7 tablespoons	-- -	-	
Soups:							
InfantJunior	--		4-3/4 oz.		--		
	--		$8 \mathrm{oz}$	$\begin{aligned} & \text { 7 cup } \\ & 7 / 5 \mathrm{cup} \end{aligned}$	--	\square	
	-					.	

- - Not applicable.

1/ The net weight of vardous fooda in the same size can or glass jar will vary with the density of the food. For the soat part only mininum seighta are shown in the table. Cups or pieces and servings in the table are approximate, and sisea of eervings are given in rounded numbers to furnish a practical guide.

2/ Declared as drained weight. (The number of pleces per container varies as to size of the piece,)
3/ Sweerpotaties also come in 1 pound 2 ounce to 1 pound 7 ounce cans.
4/ Contents usually declared as net weight. Container size is variable, strained and hamogenized foods for infints, and chopped junior foods, come in small jars and jars suitable for the smaller servings used.

Source: National Cannerg Association.

Table 8--Whole milk equivalents and milk solids factors

Table 8-Whole tallk equivalents and wilk solids factors--Continued

Table 8--Whole milk equivalents and milk solids factors--Continued

1/ Bose applicable

Based on Federal Food and Drug Standards of Identity and U.S. Average Factory Production Data. Industry averages are from table 45 Federal Milk Order Market Statistics Eor 1975, Stat. Bull. 554, Agr. Mktg. Serv́., U.S. Dept. Agr.
$\frac{2 /}{3 /}$ Federal Food and Drug Standards of Identity.
3/ These factors are based upon total conversion of the fat or solids not fat and do not represent actual yields attainable. For computing whole milk equivalents from milk of composition other than that of the single test (3.7 fat and 8.62 solids-not fat) shown, use the following: (1) Fat in the product + fat in the milk = whole milk equivalent in terms of fat as in column 5 . Example-to compute the whole milk equivalent at 4.0 percent fat of 18 percent cream: $0.18+0.04=4.50$. (2) (1 - fat in the product) (1 fat in the milk) x nonfat solids in the milk monfat solids in the product. Example--for 18 percent cream: ($1-0.18$) 4 ($1-0.04$) provides the whole milk equivalent in terms of nonfat solids as in column 6. (3) To determine nonfat solids equivalents for mellorine type frozen desserts, use the factors for ice cream mixes of equivalent fat percentages.

4/ Compured from column 1 en basis of whole milk containing 3.7 percent fat.
5/ Computed from column 2 on basis of whole milk containing 8.62 percent solids-nonfat.
6/ Maximum total milk solids in fruit sherbet.

Table 9--Whole milk, skim foilk, butterailk, and whey equivalents

Commodity	:	Conversion tom-	.	Factors
			:	
Skim milk cheese		Flutd skim milk	:	16.0
Cottage, pot, and bakers* cheese		do.	:	7.14
Nonfat dry milk		do.	:	11. 3
Dry casein		do.	:	35.7
Condensed and evaporated skim milk, sweetened and unsweetened		do.	:	3.7 3.0
Concentrated skim milk (for animal Eeed)	:	do.	:	3.0 3.0
Dry buttermilk		Fluid buttermilk	:	11.0
Condensed or evaporated buttermilk		do.	:	13.0
Dry whey	:	Fluid whey	:	13.5
Dry lactose	:	do.	,	25.0
Butter		Fluid whole milk	:	22.8
Whole trilk cheege	:	do.	:	10.0
Evaporated milk	:	do.	:	2.14
	:		:	

Table 10--Dairy products: Net weight of standard units

-- $=$ Not applicable.
I/ To convert pounds per gailon to kilo per Liter, multiply dndicated figure by 0.4536 and divide by 3,785 (number of iftters in 1 gailon). 2/ Weights of other can sizes: evaporated milk; 6 ounces, 6.75 pounds. Weight per galion of ifquid ice cream mix and similar products at 68° can be obtained by use of the following formula:

$$
\text { Specific gravity }=\frac{100}{\frac{\% \text { Fat }}{0.93}+\frac{\% \text { Sugar }+\% \text { Nonfat milk solids }}{1.58}+\% \text { Water }}
$$

Specific gravity $\times 8.34=$ Weight of 1 gallon of product. 3 / To convert pounds to kilograms, multiply pounds by 0.4536 .

Conversion factors for meats and meat products are used to calculate the dressed weight equivalent of bone-in cuts, boneless meat, and of cooked, prepared, or canned meat items. The fundamental basis for meat conversion factors is the relation between the amount of usable meat in each cut or carcass and the amount of waste in bone, fat, tendons, ligaments, and inedible trimmings. Factors for converting boneless beef into dressed weight equivalent were developed from data on the yield of boneless meat from various grades of carcasses. The cutting was under commercial boning practices.

Dressed meat equivalent (carcass weight) for beef, veal, lamb and mutton, and pork is defined as follows:

Bief: Weight of the dressed carcass with kidney and suet in.
Vieal: Weight of dressed carcass with hide off and kidney and suet in.
Lamb and mutton: Weight of dressed carcass with kidney and suet in.
Pork: Weight. of the dressed carcass with head off and kidney and Leaf fat out.

Conversion factors for all formulated meat products are based upon the weight of boneless, and in the case of pork, skinless meat in each unit of finished product. Formulas for certain products, such as franks or weiners, may vary from the factors shown depending upon relative prlces and availability of different types of meat and edible offal, and processing methods used.

Table II--Cattie, calves, sheep and lambs, and hogs commercially slaughtered: Average live weight and dressing yields 1966-75 and 1976

1/ Cattle and calf weights for 1976 were affected by the large number of nonfed cattle marketed.

2/ Dressing yield for packer-style, pork carcass, federally inspected slaughter. To obtain shipper-style pork carcass, add 7 percent.

Table 12--Beef: Percentage yields of bone-in cuts and boneleas meat

-- = Not applicable.
$\frac{1 /}{2} /$ All cuts trimmed of fat exceeding that amount normally left on retail cuts ($1 / 4$ co $1 / 2$ inch).
2/ Based on cattle representing the full range of yield grades but with an average of roughly yield Grade 3.

Table 13--Beef: Boneless to bone-in conversion factors

Carcass and wholesale cuts	Factors for converting trimmed boneless meat to--			
	Untrimmed bone-in equivalents		Trimmed bone-in equivalents	
	Prime, Choice, and Good 1/	$\begin{array}{cc} : & \text { Canner } \\ : & \text { and Cutter } \\ : \end{array}$	$:$ Prime, $:$ Choice, and $:$ Good $1 /$	$\begin{array}{lc} : & \text { Canner } \\ : & \text { and Cutter } \end{array}$
Carcass, whole	1.43	1.36	1.43	1.36
Forequarter	1.39	1.39	1.31	1.38
Rib	1.72	1.70	1.60	1.69
Chuck, square cut	1.30	1.29	1.26	1.29
Plate	1.38	1.36	1.18	1.32
Brisket	1.34	1.41	1.14	1.35
Foreshank	1.65	1.87	1.65	1.86
Hindquarter	1.48	1.34	1.25	1.27
Round	1.30	1.27	1.20	1.25
Sirloin	1.34	1.30	1.18	1.24
Short loin	1.50	1.43	1.15	1.29.
Flank	1.94	1.34	1.07	1.08

1/ Baged on cattle representing the full range of yield grades but with an average of roughly yteld Grade 3.

Table 14--Veal and calf: Percentage yield of bone-in suts and boneless meat plus boneless to bone-in conversion factors

-- * Not applicable.

1/ All cuts trimed of fat exceeding that amount normally left on retain cuts ($\frac{1}{2}$ to $\frac{1}{2}$ inch).

Table 15-Freah pork: Percentage yields of bone-in cuts and boneless mear, plus boneless to bone-fn conversion factors 1/

Carcass and wholesale cuts	:	Approximate percentage of live weight	Yield of bonein trimned wholegale cuts		Yield of boneless meat from wholesale cuts		Factors for converting boneless meat to bone-in equivalents
	:	----------..--	-------- Perc		---------------		
	:						
Packer-dressed carcass	:	71.00	100.00		67.0		1.49
Boneless, skinless meat	:	47.57	67.00		100.0		1.00
	:						
Hams :	:						
Skinned, bone-in	:	16.96	23.89		61.5		1.63
Skinned, semi-boneless	:	13.06	18.40		77.0		1.30
Skinless, boneless	:	10.43	14.69		100.0		1.00
	:						
	:						
Shoulders:	:						
Pienfes:	:						
Skinned, bone-in	:	6.90	9.72		70.5		1.42
Skinless, boneless	:	4.86	6.85		100.0		1.00
Butts, skinless:	:						
Bone-1n (Boston)	:	5.15	7.25		70.0		1.43
Boneless	:	3.60	5.08		100.0		1.00
	:						
Loins:	:						
Bone-1n	:	14.16	19.94		30.0		3.33
Boneless	:	4.25	5.98		100.0		1.00
	-						
Bellies:	:						
Slab, skin on	:	12.91	18.18		93.0		1.08
Slab, skin off	:	12.01	16.91		100.0		1.00
	:						
Jowls (bscon squares)	:	1.10	1.55		--		--
Spareribs	:	2.76	3.89		--		-
	:						
Feet, front	:	0.60	0.85		\cdots		--
Tails	:	0.20	0.28		--		--
	:						
Neckbones	:	0.90	1.27		--		--
	:						
Trimmings:	:						
80-percent lean	:	0.71	1.00		--		
50-percent lean	:	0.96	1.35		--		--
Far, skin, etc.	:	6.20	8.73		--		--
Shrink and loss	:	1.49	2.10		--		--

-- = Not appIlcable.
1/ Developed in cooperation with Agr. Mkrg. Serv., U.S. Dept. Agr.

Table 16--Lamb: Percentage yields of bone-in cuts and boneless meat plus boneless to bone-in conversion factors $1 /$

1/ Based on Prime, Choice, and Good yield Grade B carcasses.
2/ USDA boning practice-ncuts trimmed to $\frac{1}{4}$ inch of fat.
3/ PIuck out--heart, lungs, trachea, and esophagus have been removed.

Table 17--Edible offal: Relationship between procurement and product weights

Product	$\begin{aligned} & \text { : Factors for converting to } \\ & \text { : equivalent weight of edible } \\ & \text { offal } \end{aligned}$
	:
Brains	$: 1$
Cheek meat	1
Head meat	1
Heart	1
Kidneys 2/	1
Liver	1
Stomach or tripe	: 1
Sweetbreads	$: \quad 1$
Ta11	: I
Tongue	: 1
	:

2/ Edible offal is defined as all edible parts from cattle, calves, hogs, and sheep that are not included in the carcass weight as carried in reported meat production by the U.S. Dept. Agr.

2/ Kidneys are usually left in beef, veal, lamb, and mutton carcasses, but they are classifled as edible offal.

Table 18--Choice beef: Retail cut yields as percent of carcass weight by yleld grades

Table 19--Beef, cured, corned, pickled, dried, or dehydrated: Relationship between procurement and carcass weights

Product	:	Factors for determining equivalent carcass weight
	:	
Boneless beef:	:	
Cured, corned, or pickled: $1 /$:	
	:	
Brisket or corned beef, unspecified	:	1.12
Plate or family beef	:	1.25
Dried or chipped beef, sliced or unsliced	:	1.94
	-	1.94
Dehydrated beef	:	4.12
	:	

1/ Based on 20 -percent gain in pickling brisket from fresh weight, and 10-percent gain in pickling plate.

Table 20 --Meat and meat food products, fresh or frozen: Factors for converting to equivalent carcsss weight I/

Product		Beef	: Pork	:	$\begin{aligned} & \text { other } \\ & \text { red } \\ & \text { meat } \end{aligned}$: Poultry		Vartety meats
Cured:								
Seef briskets		1.34						
Beef-other		1.36	--		--	--		--
Pork		-	1.16		--			
Other meats		-	1.16		1.52			
Smoked or dried or cooked:						--		
Hams-bone-in		\cdots	1.00					
Hams-bone-in, water added		--	1.91		--	--		--
Hams-semi-boneless		-	1.30		--			
Hams-semi-boncless, water added		--	1,18		--	-		
Hams-boneless		--	1.63		-_			
Hams-boneless, water added		--	1.48		--	--		
Hams-sectioned and formed		-	1.63		-			
Hams-sectioned and formed, water added	:	-	1.48		-	--		--
Hams-dry cured	:	~	1.25		--	-		-
Pork-regular		--	1.16		-			
Pork-water added	:	--	1.05		--	-		--
Bacon	:	--	1.03		--	--		
Beef, cooked	:	1.7	1.03		--			
Beef, dried		1.94	-		--			
Other smoked, dried or cooked meat $2 /$		-~	--			--		
Sausage: \sim		-	-		--	--		
Fresh beef	:	1.26	--		--	--		
Fresh pork		-	1,39		_	--		
Fresh other		. 54	. 69		--	--		0.07
Uncooked cured sausage	:	. 54	. 67		--	--		. 07
Dried	:	1.36	1.12		-	\cdots		--
Semi-dried	:	1.09	. 82		--	-_		--
Franks/weiners, regular retail	:	. 54	. 52		--	0.21		--
Franks/weiners, regular bulk		. 54	. 52		--	. 21		--
Franks/weiners, with extenders, retail	:	. 52	. 51		-	. 21		-
Franks/weiners, with extenders, bulk	:	. 52	. 51		--	. 21		--
Franks/weiners, with variety meat, retall	:	. 34	. 30		--	. 21		. 30
Franks/weiners, with variety meat, bulk		. 34	. 30		--	. 21		. 30
Franks/weiners, with extenders aud variety meats, retail		. 29	. ${ }^{+30}$		--	.21 .21		.30 .30
Franks, weiners with extenders and variety meats, bulk	:	. 29	. 30		--	. 21		. 30
Eologra-regular		. 54	. 52		-_	. 21		. 30
Bologna-with extenders		. 52	. 51		--	. 21		--
Bologna-with variety meats	:	. 34	. 30		--	. 21		30
Bologna-with variety meats and extenders	:	. 29	. 30		--	. 21		. 30
Liver sausige and branschweiger		. 27	. 30		--	--		. 50
Other		. 34	. 52		. 03	. 21		. 10
Fresh/froisen product:								
Steaks, chopg (chopped/formed)	:	2. 36	--		--	--		
Hamburgeriggound beef		1.35	--		--			
Othez-freth/frozen		1.35	-					
Convenience foods (frozen and unfrozen) :								
Pizza		. 12	. 04		--			
Pies		. 31	.03		--			
Dinners		. 18	. 15		--			
Entrees		. 34	. 37		\ldots	--		
Others		. 20	. 15		--			
Miscellaneous meat product:					--	--		
Cured meat loaves		. 54	. 77		--	--		
Nonspec if ic loaves		. 34	. 52		. 03	. 21		. 10
Meat paties		. 82	. 07		-	. 11		. 05
Other formulated products		. 50	. 22		. 03	. 19		. 09

[^0]I/ Based on product standards for processed items under Federal inspection and meat yield from carcasses provided by Agr. Mktg. Serv., U.S. Dept. Agr. 2/ Variable.

Table 2I--Canned meat and meat food products: Factors for converting to equivalent carcass weight I/

Canned meat products	:	Beef	Pork	$\begin{aligned} & \text { : Other } \\ & \text { : red } \\ & \text { : meats } \end{aligned}$	Poultry	$\begin{aligned} & : \\ & : \\ & : \end{aligned}$	Variety meats
	:						
Luncheon meat	:	0.41	0.77	--	--		0.10
Chile con carne		. 52	. 01	--	0.02		--
Meat stew	:	. 33	. 01	--	--		\rightarrow
Hash product		. 67	--	--	--		--
Pasta meat product		. 16	--	--	\cdots		--
Canned hams :							
Under 3 1bs.	.	--	1.51	--	--		--
3-6 Ibs.		--	1.51	--	--		--
Over 6 1bs.		--	1.51	--	-+		--
Pork shoulder, pienics, and loins		--	1.38	--	--		--
Viennas		. 33	. 75	0.02	. 21		--
Franks and weiners		. 54	. 52	--	. 21		--
Miscellaneous sausage products	:	. 34	. 60	--	. 21		.10
Deviled ham	:	--	1.55	--	--		-
Potted meat food products and spreads		. 04	. 15	--	. 04		. 80
Tamales		. 30	--	--	--		--
Sliced dried beef		1.94	--	--	--		--
Chopped beef hamburgers		1.33	--	--	--		--
Vinegar pickled products		. 27	1.12	--	--		-*
Byproducts, other than pickled		--	--	--	-"		. 98
Corned beef	:	1.69	--	--	--		. 07
Soup		. 13	--	--	--		--
All other:							
With 20 percent or mors meat	:	. 27	. 30	. 02	--		. 09
Less than 20 percent meat	:	. 05	. 06	. 01	--		. 005
	.						

-- = Not available.
1/ Based on product standards for processed items under Federal inspection provided by Animal and Plant Health Inspection Service and meat yields from carcasses provided by Agr. Mktg. Serv., U.S. Dept. Agr.

Table 22--Comercial meat and meat products imports: Factors for obtaining carcass weight equivalents

Product	:	Commodity number $1 /$:	Factors
	:		:	
Beef:	:		:	
Fresh or chilled	-	106.1020	:	1.00
Frozen	:	106.1040	:	1.00
Boneless	:	106.1060	:	1.36
Sausage canned	:	107.2000	:	1.26
Sausage not canned	:	107.2520	:	1.26
Corned beef canned	:	107.4820 \& 107.4840	:	1.79
Canned beef	:	107.5220\& 107.5240	:	1.90
Beef or veal, cured or pickled	:	107.4000 \& 107.4500	:	1.79
Beef or veal, prepared or	:	107.5500	:	1.36
preserved, except	:	107.6020	:	1.36
sausage	:	107.6040	:	1.94
	:		:	
Veal:	:		:	
Fresh, chilled, or frozen	:	106.1080	:	1.00
Pork:	:		:	
Fresh or chilled	:	106.4020	:	1.00
Frozen	:	106.4040	:	1.00
Fresh sausage	:	107.1000	;	1. 39
Canned sausage		107.1500	:	1.37
Hams and shoulders not cooked, canned, or boned		107.3020	:	1.00
Bacon not cooked		107.3040	:	1.03
Other prepared or preserved		107.3060	:	1.16
Canned hams and shoulders		$107.3515 \& 107.3525$:	1.51
Canned bacon		107.3540	:	1.03
Other canned		107.3560	:	1.39
Latnb, mutton, and goat: 2/			:	
Fresh, chilled, or frozen	-		:	
Lamb		106.3000	:	
Mutton		106.2020	:	1.52
Goat	,	106.2040	:	1.64
Prepared and processed		107.7520	:	1.52
Other saunages and mixtures		$107.2540 \& 107.7540$:	
Beef				. 54
Pork			:	. 77
Edible offals		106.8000 \& 106.8500	:	1.00
		107.7000, and 107.7560		1.00

1/ Comodity numbers are from import schedule A, U.S. Dept. Comm.
2/ Most of the mutton and goat is boneless meat.

Table 23--Comercial meat and meat product exports: Factors for obtaining carcass weight equivalents

Product	:	Commodity numbers 1/		Factors
	:			
Beef:	:			
Fresh or chilled:	;			
With bone	:	106.1025		1.00
Without bone	:	106.1060		1.43
Retail cuts	:	107.3820		1.37
Canned	:	107.4200		. 88
Other	:	107.4600		. 79
	:			
Veal:	:			
Fresh or chilled	:	106.1080		1.00
Retall cuts	:	107.3840		2.06
	:			
Pork:	:			
Freah or chllled	:			
Carcasmes	;	106.4020		1.00
* Hams and shoulders	:	106.15040		1.11
Other	:	106.4060		1.47
Retall cuts	:	107.3715		1.03
Canned	:	107.3725		1.46
Bacon	:	107.3740		1.03
Hams and shoulders	:	107.3750		1.30
Other	:	107.3770		1.16
	:			
Lamb and mutton:	:			
Fresh or chilled	;	106.2500		1.00
	:			
Goat:	:			
Fresh or chilled	:	106.5200		. 08
	:			
Sausage and stmilar products	:	107.0100 \&	107.0200	
Beef	:			. 41
Pork	:			. 66
Edible offal	:			. 05
	:			
	:	;		
Other meat and edible offal:	:			
Fresh or chtlled	:	107.6200		1.00
Canned and other	:	$107.6400 \&$	107.6600	
Beef	:			. 02
Pork	:			. 08
Edible offal	;			. 89
	:			
Edible offal:	:			
Beef:	:			
Tongues	:	106.8200		1.00
Livers	:	106.8400		1.00
Other	:	106.8600		1.00
Veal	:	106.8800		1.00
Sheep and lamb	:	106.9000		1.00
Pork:	:			
Livers	:	106.9200		1.00
Other	:	106.9400		1.00
Other	:	106.9600		1.00

1/ Comodity numbers are from export schedule B, U.S. Department of Comerce.

Poultry

Table 24--Poultry: Average Ifve weight and ready-to-cook yteld, 1973-75 I/

$\frac{1 /}{2}$ Based on total poultry slaughtered under Federal regulation.
2/ Yield of ready-to-cook weight, including neck and giblets, as a percentage of total live weight inspected.

Table 25 - Broiler parts: Weight in reiationship to carcass weight $1 /$

Part		Unit		Weight of ready-to-cook broiler carcass. In ounces 2/				
				26	$: 30$	34	38	42
			:					
Wings:								
Calculated average		Ounces		1.9	2.1	2.4	2.7	2.9
Range for 95% of parts Calculated percentage of carcasa weight		do.	:	1.6-2.1	1.9-2.4	2.1-2.7	2.4-2.9	2.7-3.2
						2.1-2.7	2.4-2.9	2.7-3.2
		Percent	:	6-8	$6-8$	6~8	6-8	6-8
			:					
Drumsticks:			:					
Calculated average		Ounces		2.1	2.5	2.8	3.1	3.5
Range for 95\% of parts		do.		1.8-2.5	2.1-2.8	2.4-3.2	2.8-3.5	3.1-3.8
Calculated percentage of carcass weight	:	Percent	:	7-10	7-9	7~9	7-9	7-9
Thighs:			:					
Calculated average		Ounces	:	2.8	3.2	3.6	4.1	4.5
Range for 95\% of parts		do.		2.2-3.3	2.7-3.7	3.1-4.2	3.5-4.6	4.0-5.1
Calculated percentage of carcass weight		Percent	:	9-13	9-12	9-12	9-12	9-12
Backs:			:					
Calculated average		Ounces	:	3.6	4.1	4.6	5.2	5.7
Range for 95\% of parts		do.		2.8-4.4	3.3-4.9	3.8-5.4	4.4-6.0	4.9-6.5
Calculated percentage of carcass weight		Percent	:	11-17	11-16	I1-16	12-16	12-16
			.					
Breasts:			:					
Calculated average		Ounces	-	8.4	9.7	10.9	I2.2	13.5
Range for 95\% of parts		do.		7.2-9.6	8.4-10.9	9.7-12.2	11.0-13.4	12.2-14.7
Calculated percentage of carcass welght		Percent		28-37	28-36	29-36	29-35	29-35
Total weight of all parts 3/		Ounces	:	25.6	29.4	33.1	37.2	41.0

1/ Table based on equations in table 3, page 28 of Marketing Research Report No. 604, Relations for Weight and Sizes of Broiler Parts to Carcass Weights, U.S. Dept. Agr., in cooperation with the University of Georgia.

2/ Ice-packed carcass, welghed after giblets and neck were removed and free water was allowed co drain from carcass for about I minute.

3/ Total of all parts adds to less than carcass weight due to loss from evaporation and weepage (dripping). Weight loss for all carcass in the above-mentioned study was 2.27 percent.

Table 26 --Broiler parts: Weights in relationship to evfscerated carcass weight

Cut	Share of carcass weight I/
	Percent
Breast and wing (forequarter)	25.1
Breast cuts:	
Split breast with back	17.2
Keel-cut breast	13.5
Keel portion	8.8
Wishbone-cut breast	14.8
Wishbone portion	7.1
Quartered breast:	
Anterior	10.6
Posterfor	7.3
Split breast with shoulder	15.3
Split breast with ribs	15.3
Split breast (GI)	13.5
Wing cuts:	
Wing	7.4
Wing with breast portion	8.2
Wing segments:	
Proximal (Efrst joint)	3.4
Distal (second joint)	2.8
Tips	1.9
Whole leg with back (hindquarters)	24.4
Thigh cuts:	
Thigh with back	16.6
Thigh with back portion	13.9
Thigh portion with back	11.6
Thigh with counecting fat and skin	10.9
Thigh	9.1
Thigh portion with back (from 3-piece leg)	8.9
Thigh-drumstick portion (from 3-piece leg)	9.5
Drumstick cuts:	
Drumstick	8.4
Drumstick with thigh portion	21.8
Drumstick portion (from 3-plece leg)	5.4
Back portions removed from--	
Thigh with back portion	2.8
Split breast with shoulder and thigh with connecting fat and skin	16.3
Split breast with ribs	5.3
Split breast with thigh	22.9

1/ Each percentage is the mean of 240 values.
Source: Hudspeth, J.P., Lyon, B.G., and Mercuri, A.J., Wetghts and Cooked Yields of Broiler Parts Related to Eviscerated Carcass Weights, ARS Rpt. S-46, U.S. Dept. Agr., Oct. 1974, p. 5.

Table 27--Turkey parts: Approximate weights and percentage of carcass 1/

Part		Cut from 7/8-pound fryer-roaster	$\begin{gathered} \text { Cut from } \\ : 13 / 14-\text { pound } \\ : \quad \text { hen } \end{gathered}$	$\begin{aligned} & \text { Cut from } \\ & 19 / 20-\text { pound } \\ & \text { tom } \end{aligned}$		Percentage of carcass
		-	Pounds			Percent
	:	2.63	5.75	7.75		40.0
Half breast, bone in	:	(1.81)	(2.88)	(3.88)		40.0
Three-joint wing (each)	:	. 47	. 66	1.00		10.0
Two-joint wing or onejoint wingettes (each)		(.24)	(.33)	(.50)		--
Thigh, bone in (each)	:	. 67	1.17	1.53		16.0
Drumatick, bone in (each)		. 59	. 78	1.17		12.0
Giblets, excluding neck		. 40	. 43	. 69		3.5
Tail	:	. 19	. 22	. 31		1.5
Soup pack, including back and neck	:	1.15	1.94	3.25		15.0
Cutting loss	:	--	--	--		2.0
Total	:	--	--	--		100.0

-- = Not applicable.
1/ Weights and jercentage vary depend 1 g on turkey size and conformation and method of cutting.

Source: Price Schroeder, "California Turkey Industry," paper, California Banker's Short Course, Modesto, Calif., Feb. 1976.

E88s
Table 28-Factors relating to shell eggs

Table 29-Estimated conversion factors for yields of liquid eggs and dried eggs and the moisture content of dried eggs, by types of product, 1977

Note: Data represent recent comencial experience as well as the effect of current sanitary regulations on yields of egg products.

1/ Based on: Whole eggs, 24.7 percent total egg solids; egg whites, 11 percent total egg solids; and yolks, 43 percent minimum total egg solids.
2/ Concentration factors used by U.S. Dept. Agr. for estimating the conversion of liquid to dried to check yields and volume reports.

3/ Values recommended for "Approximate Moisture Content of Dried Egg Product," Poultry Division, Agr. Mktg. Serv., U.S. Dept. Agr., 1etter dated Dec. 7, 1976.

Fish and Shelifish

Table $30-$ Fish and shellfish: Factors relating to specified weights $1 /$

Table 31--Shellfish: Net weight per gallon

	Product	$:$	Pounds per gallon
	$:$	$:$	8.75
Clams	$:$	8.75	
Oysters		8.75	
Scallops			

Table 32--Canned fish and shellfish: Net weight per standard case

Product	:	Pounds per case
	:	
Alewives	:	45
Anchovies	:	31.25
Mackerel	:	45
Salmon		48
Sardines:	:	
Maine	:	23.4
Pacific	:	45
Shad		45
Tuna and tuna-like fish:	:	
Solidd	:	21
Chunks	:	19.5
Flakes and grated	:	18
Crab meat, natural	:	19.5
Shrimp, wet pack 1/	:	6.75
Clam products: -	:	
Whole and minced 1/	:	15
Juices, chowders, broth, etc.	:	30
Oysters, natural 1/	:	7
All other	:	48

1/ Cut out or drained weights of can contents. All others are net can contents.

Table 33-0il-bearing materials: U.S. conversion factors relating
to yield of oil and meal per unit crushed $1 /$

Oil-bearing material	:	Unit		Factors for obtaining--					
	:		:	$\begin{gathered} \text { Crude oil } \\ \text { yield } \end{gathered}$		Loss in refining crude oil		$\begin{gathered} \text { Cake or meal } \\ \text { yield } \\ \hline \end{gathered}$	
	;			Pounds	Percent	Pounds	Percent	Pounds	Percent
Babassu kernels		Short ton		1,260	63.0	75.6	6.0	--	--
Castor beans $2 /$		do.		900	45.0	$3 /$	3/	1,080	54.0
Copre (coconut oil)		do.		1,280	64.0	84.9	6.6	704	35.0
Corn gern 4/		do.		1,000	50.0	80.0	8.0	1,000	50.0
Cottonseed		do.		320	16.0	23.0	7.2	910	45.4
Flaxseed (linseed) 5 / $6 /$		Bu. (56 1b.)		19.9	35.6	$7 /$	$7 /$	37.1	66.2
Mustard seed		Short ton		460	23.0	$3 /$	3/	--	--
Olives		do.		300	15.0	3/	3/	--	--
Paim (fresh fruit bunches)		do.		400	20.0	NA	NA	--	--
Palm Kernels		do.		940	47.0	63.0	6.7	1,020	51.0
Peanuts: 6/									
Farmers ${ }^{\text {' }}$ stock		do.		634	31.7	24.1	3.8	838	41.9
Shelled peanuts 8/		do.		843	42.2	32.0	3.8	1,114	55.9
Rapeseed		do.		700	35.0	NA	NA	1,200	60.0
Safflower seed		do.		720	36.0	3/	3/	1,200	60.0
Sesame seed		Bu. (56 1b.)		26.3	47.0	3/	3/	27.3	48.7
Soybeans 6/		Bu. (60 lb .)		10.7	17.9	. 41	3.8	47.3	78.8
Sunflower seed, oil type		Short ton		800	40.0	NA	NA	9/1,100	$\underline{9 / 55.0}$
Tung nuts (fruit basis) $10 /$		do.		318	15.9	3/	3/	- --	--

NA = Not available. -- = Not applicable.

1/ Based on 1970-74 crop year averages for soybeans, cottonseed, flaxseed, and peanuts. 2/ Castor oil also is reported as dehydrated. To convert crude to dehydrated, multiply by 0.88 ; to convert dehydrated to crude, multiply by 1.136. $3 /$ Not customarily reported as refined oil. $4 /$ Includes both wet and dry processing. The wet process accounts for about 85 percent of the total crush. $5 /$ Total outturn per bushel of flaxseed processed may exceed 55 pounds since some mills add flaxseed screenings to the meal. $6 /$ See separate tables on flaxseed, peants, and soybeans for additional factors. $7 /$ Customarfly, linseed oil is refined from raw (degumed) oil rather than crude. The loss in refining is about 2.5 percent, $8 /$ Straight run peanuts included shelled No. 1 and 2 grades and oil stock. Estimated oil content of peanuts exported averages about 43.5 percent. Some additions shells are added to residue to produce cake and meal. 9/ Includes about 36 percent meal and 19 percent hulls. $10 / 15$ percent moisture.

Table 34 --Vegetable ofls and products: Conversion factors relating to crude and refined oils and to pounds and gallons

011 and product	Factors for obtaining--				
	:	Refined oll from crude 011	Equivalent crude oil from refined oil	$\begin{aligned} & \text { Pounds } \\ & \text { from } \\ & \text { gallons } \end{aligned}$	Gallons from pounds
	:				
0i1:	:				
Babassu	:	0.94	1.06	7.5	0.133
Castor	:	1/	$1 /$	8.0	. 125
Coconut	:	. 93	1.08	7.5	. 133
Corn	:	. 92	1.09	7.7	. 130
Cottonseed	;	. 93	1.08	7.7	. 130
Fish (menhaden)	:	$1 /$	$1 /$	7.7	. 130
Grain screenings	:	$1 /$	$1 /$	7.7	. 130
Linseed	:	1/	$1 /$	7.7	. 130
Murumara	:	I/	1/	7.5	. 133
Mustardseed	:	1/	1/	7.7	. 130
Oiticica	:	1/	$1 /$	7.8	. 128
Olive	:	1/	I/	7.6	. 132
Ouricuri	:	$\underline{1} /$	$\underline{1} /$	7.5	. 133
Palm	:	-. 93	1.08	7.7	. 130
Palm kernel	:	. 93	1.08	7.5	. 133
Peanut	:	. 96	1.04	7.7	. 130
Perilla	:	$1 /$	$1 /$	7.7	. 130
Rapeseed	:	$\underline{1 /}$	$\underline{1 /}$	7.7	. 130
Safflower	:	I/	$1 /$	7.7	. 130
Sesame seed	:	I/	1/	7.7	. 130
Soybean	:	-96	1.04	7.7	. 130
Sunflower seed	:	$1 /$	$1 /$.	7.7	. 130
Tucum	:	I/	$\underline{1} 1$	7.5	. 133
Tung	;	$\underline{1} /$	$\underline{1}$	7.8	. 128
Product:	:				
Cooking and salad oils	:	--	--	7.4	. 135
French dressing	:	--	--	8.7	. 115
Mayonnaise	:	--	--	8.0	. 125
011 and vinegar dressing	:	--	--	8.4	. 11.9
Salad dressing	:	--	--	8.7	. 115
Sandwich spread	:	--	--	8.7	. 115

-- = Not available.
1/ Not customarily reported as refined oil.
Additional factors: A standard tank car usualiy contains about 60,000 pounds or 8,000 gallons of oil. A jumbo tank car usually contains about 150,000 pounds or 20,000 gallons of oil. A standard size oil-drum contains 55 gallons of oil.

Table 35--U.S. oilseeds: Average yield per harvested acre 1/

1/ Yields of oilseeds are 5-year averages, 1970-74. Yields of oil and cake or meal are based on the 5 -year average yields of oilseeds converted to oil and cake or meal equivalents on the basis of 5-year, 1970-74, crop year average percentage outturns, as follows:

Ofl outturn: Cottonseed, 16.0 percent; flaxseed (1inseed oil), 35.6 percent; peanuts, 31.7 percent; safflowers, 36.0 percent; soybeans, 17.9 percent; and sunflowers, 40.0 percent.

Cake or meal outturns: Cottonseed, 45.4 percent; 1 inseed, 66.2 percent; peanuts, 41.9 percent; safflowers, 60.0 percent; soybeans, 78.8 percent; and sunflowers, 55.0 percent.

[^1]Table $36-$ Fat and ofl products: Approximate serving size quantity to purchase 100 servings, and measures

Product	Serving size :	Quantity to purchase for 100 servings	$:$ $:$
Table fat, butter or margarine	1 teaspoon	1.04 pounds	1 pound - 2 cups
Salad dressing, mayonnaise or French	: 1 tablespoon	1.60 quarts	$1 \underset{\substack{\text { gallon } \\ \text { pounds }}}{ }=8$
Peanut butter	: 4 tablespoons	14.10 pounds	$1 \begin{aligned} & \text { pound }=13 / 4 \\ & \text { cups } \end{aligned}$
```Peanuts, roasted, shelled, and chopped```	: 4 tablespoons   : (1.6 ounces)   $:$	10.00 pounds	$\begin{aligned} & 1 \text { pound }=21 / 2 \\ & \text { cups } \end{aligned}$

Source: Food Buying Guide for Type A School Lunches, 1972, Food Nutr. Serv., U.S. Dept. Agr.

Table 37--Conversion factors for obtaining fat content of selected foods based on fat analysis


1/ The unroasted peanut contains from 45 to 50 percent fat. Approximately 2 percent fat is added during the roasting process. 2/ Based on milk marketing order data.
3/ Fat content varies based on State 'laws.
Source: Composition of Foods, Agr. Handb. 8, and based on data in Nutritive Value of American Foods, Agr. Hdbk. 456, Agr, Res. Serv., U.S. Dept. Agr.

Table $38-$ Fat content and major fatty acid composition of selected foods


[^2]Source: Fats in Food and Diet, AIB-361, U.S. Dept. Agr.

Table 39--Soybean products: Factors relating to yields of selected items

Product	Factors for obtaining--				
	$\begin{aligned} & \text { : Pounds of } \\ & : \text { product from } \\ & : \text { pound of } \\ & : \text { soybeans } \\ & \hline \end{aligned}$	: Equivalent   : pounds of   : soybeans   : from pound   : of product	Pounds of product from: bushel of soybeans	Equivalent bushels of soybeans from pound of product	Pounds of product from short ton of soybeans
	:				
Soybean oil, crude 1/	: 0.179	5.59	10.7	0.092	358
Soybean ofl, refined 1/	: 171	5.85	10.3	. 098	342
Soybean cake or meal, 44 percent protein 1/	$\begin{array}{ll}: & \\ : & \\ \\ & \end{array}$	1.27	473	021	
Soybean	:				1,576
Hulls 2/	: . 070	14.29	4.2	. 238	140
Flour, flakes or grits:	:				
Full fat	: . 833	1.20	50.0	. 020	1,666
Low fat	: . 592	1.69	35.5	. 028	1,184
Defatted, indus-	: 4				
	: $\quad .558$	1.79	33.5	. 030	1,116

1/ 1970-74 crop year average. 2/ Removed when 50 -percent protein meal produced.

Table 40--Flaxseed products: Factors relating to yields of selected items

Product	Factors for obtaining--				
	: Pounds of : product from : pound of   : flaxseed	: Equivalent : : pounds of : flaxseed : from pound : of product :	Pounds of product from: bushel of : flaxseed	Equivalent bushels of flaxseed from pound of product	: Pounds of   : product   : from short   : ton of   : flaxseed
	:				
Linseed ofl, crude 1/	0.356	2.81	19.9	0.0502	712
$\begin{aligned} & \text { Linseed oil, } \\ & \text { refined 2/ } \end{aligned}$	. 266	3.76	14.9	. 0671	532
Linseed cakeor meal 1/	:				
	. 662	1.51	37.1	. 0270	1,324
	:				

I/ 1970-74 crop year average.
2/ Customarily, linseed oil is refined from raw (degummed) oil, rather than crude. The loss in refining is about 2.5 percent.

Table 4l--Conversion factors and weights for obtaining peanuts and peanut products

Peanuts and peanut products	: Factors and weights :
	Factors
Peanuts, unshelled: $1 /$	:
Cleaned unshelled stock from farmers' stock 2/	1.00
Equivalent farmers' stock from cleaned unshelled	:
stock 2/	1.00
	:
Peanuts, shelled: $\qquad$	: 1.33
Equivalent farmers' stock from total shelled peanuts	1.33
Total shelled peanuts from farmers' stock	. 7519
Shelled oil-stock peanuts from farmers' stock (oil	: 195
stock pickouts and straight run ungraded peanuts)	. 195
Shelled edible peanuts from famers' stock 4/	. 556
Equivalent farmers' stock from shelled edible peanuts 4/	1.80
	: .
Peanut butter:	:
Peanut butter from farmers' stock peanuts	. 528
Equivalent farmers' stock peanuts from peanut butter	1.89
Peanut butter from shelled edible peanuts 5/	. 95
Equivalent shelled edible peanuts from peanut butter	1.05
Pounds of peanut butter from short tons of farmers' stock	: 1.056
Equivalent short tons of farmers' stock from pounds of peanut butter	. 00094
	:
	Pounds
Oil, oil cake, and meal: 1/	:
Yield per short ton of farmers' siock: 6/	: 634
Crude peanut oil -	634
Peanut cake or meal	838
	:
Estimated product outturn per short ton of shelled peanuts crushed:	,
Crude peanut oil	$: 843$
Peanut cake and meal 7/	$: \quad 1,114$
	:

[^3]Table 42--Factors relating to dry edible beans and peas and their products 1/

Products	:	Factors fo Dry beans and peas from product	$\begin{aligned} & \text { r obtaining } \\ & \text { : Products from dry } \\ & : \text { beans and peas } \end{aligned}$
	:		
Canned:	:		
Light and dark red kidney	:	0.262	3.81
Dry 1imas	:	. 258	3.87
Garbanzos	:	. 255	3.92
Pinto	:	. 257	3.89
Blackeye peas	:	. 267	3.74
Navy (pea)	:	. 287	3.49
Red beans	:	. 272	3.68
Black turtle soup	:	. 306	3.27
Great Northern (small white	:	. 258	3.88
Dried peas (whole)	:	. 250	4.00
	:		
Dehydrated:	:		
Green pea soup	:	. 611	1.64
	:		

1/ Data from four canners.

Table 43--Factors relating to whole grain and processed wheat

Cormodity	:	Factors	converting--
	$:$ $:$	$:$ Units of   $:$ wheat to   $:$ pounds of   $:$ commodity	$:$ Units of   $:$ commodity   $:$ to bushels    of wheat
Wheat, whole grain	:	:	
	Pound:	1.0	0.01667
	Bushel	60.0	1.0
	Short ton	: 2,000.0	33.33
	Metric ton	2,204.622	36.744
	Long tan	2,240.0	37.33
	:	: 730	
White flour	Pound	: $\quad .730$	. 0228
	:100-pound sack	: 73.00	2.283
	: Bushel	: 43.80	--
	Short ton	: 1,460.0	45.66
	: Metric ton	: 1,609.4	50.33
	: Long ton	: 1,635.2	51.14
	:	\#	
Semolina or farina $1 /$	: Pound	. 58	. 02887
	: 100-pound sack	: 58.00	2.874
	: Bushel	: $\quad 34.80$	--
	Short ton	: 1,160.0	57.47
	Metric ton	: 1,278.7	63.35
	Long ton	1,299.2	64.37
	:	:	
Whole wheat flour or cracked wheat	d	: 908	
	: Pound	: 908	. 01701
	:100-pound sack	98.0	1.700
	: Bushel	: 58.8	--
	Short ton	: 1,960.0	34.01
	: Metric ton	2,160.5	37.49
	: Long ton	2,195.2	38.09
	:	: 9	
Wheat meal or whole wheat meal	: Pound	: $\quad .990$	. 01684
	:100-pound sack	: 99.0	$1.684$
	: Bushel	: $\quad 59.4$	--
	; Short ton	: 1,980.0	33.67
	: Metric ton	: 2,182.6	37.12
	: Long ton	2,217.6	37.71

-- $=$ Not applicable.
1/ At a 73 -percent extraction rate, semolina and farina comprise approximately 58 percent and flour 15 percent.

Table 44-Factors relating to wheat and white flour content of specified products 1/


Table 44--Factors relating to wheat and white flour content of specified products $1 /-$ Continued

Product	: Factors for converting--$:$ Bushels of :Pounds of $:$ Pounds of $:$ Pounds of$:$ wheat to $:$ product $:$ wheat $:$ product to:pounds of :to bushels: to pounds :pounds of$:$ product $:$ of wheat $:$ of product: wheat			
Wheat cereals:	:			
Ready-to-serve:	:			
40 percent bran flakes	: 29	0.0345	0.49	2.04
Malted cereal, granules	53	. 0190	. 88	1.14
Malted wheat flakes	: 55	. 0183	. 91	1.10
Puffed wheat	$: 51$	. 0196	. 85	1.18
Shredded wheat I/	$: \quad 55$	. 0182	1/. 92	1.09
Sugar-coated wheat cereal	: 103	.0097	1.72	. 58
Premixed cereal 4/	: 240	. 0042	4.00	. 25
Precooked, infant-type mixed cereal	: 120	. 0083	2.00	. 50
Wheat flakes	65	. 0154	1.08	. 93
Uncooked and quick-cooking:	.01.54 . 93			
Bulgur	$: \quad 52$	. 0192	. 87	1.15
Rolled wheat	: 56	$.0180$	. 93	$1.08$
Whole wheat meal	$:$. $0.916{ }^{\text {a }}$			

-- = Not applicable.
I/ All factors are based on 60 pounds of wheat per bushel except for shredded wheat cereal which is based on 54 pounds per bushel.

2/ Baked and finished tweight.
3/ About 4-percent moisture loss below flour's normal moisture content.
4/ Premixed cereal is ready to eat.

Table $45-$ Factors relating to corn content of specified products I/


1/ A11 factors are based on 56 pounds of shelled corn per bushel. Product spectrum varies with corn milled and product mix sought. Factors presented are based on maximum yield of product. $2 /$ Five bushels of shelled corn $=1$ barrel; 10 bushels of ear corn = 1 barrel; 70 pounds of ear corn $\Rightarrow 1$ bushel of shelled corn. 3/ From 17-percent molsture corn. 4/ Based on continued reprocessing of uncrystallized dextrose liquors.

5/ Corn-soya cereal contains approximately 34 percent soya flour. 6/ Conversion factors cover all corn feeds combined. Data are not available to show separate components of corn feeds, though gluten feed is generally about $55-60$ percent of total corn feeds, gluten meal around 40 percent, and corn oll meal only about 2 percent.

Table 46 -Factors relating to oat content of specified products


I/ This bushel weight represents the bulk of the oats processed for human food.

## Barley and Barley Products

Table 47--Factors relating to barley and malt content of specified products

$--=$ Not applicable.

Table 48-Factors relating to rye content of specified products


Buckwheat and Buckwheat Products
Table 49.--Factors relating to buckwheat content of specified products


## Rice and Rice Products

Table 50--Factors relating to rice conteni of specified products 1 /


Note: Miscellaneous factors relating to rice:
I bushel rough rice equals 45 pounds
1 hundredweight rough rice equals 100 pounds or 2.22 bushels
1 barrel rough rice equals 162 pounds or 3.6 bushels

Grain Sorghum and Grain Sorghum Products
Table 51--Factors relating to grain sorghum content of specified products


1/ Starch calculated at 89.5 percent recovery.
2/ Assumes complete conversion of starch to dextrose.

## Sugar, Beet and Cane

Many products contain not only beet or cane sugar but also other sweeteners, such as conventional corn sirup, high fructose corn sirup, dextrose (corn sugar), honey, or molasses. The conversion factors refer to typical beet or cane sugar content. In view of substitutability, products may contain a smaller or larger proportion of beet or cane sugar than those indicated. Other sweeteners are particularly important in the manufacture of candy.

Table 52-Raw sugar content of specified sugar products


Table 53--Refined beet and cane sugar in confectionery products


Table 53--Refined beet and cane sugar in confectionery products--Continued

	$:$	Percentage of refined
sugar in product		

Table 54-Refined beet and cane augar content of apacified products

Product	: Unit	:	Pounds of refined augar per unit of product
	;	:	
	:	:	
	:	:	
Dalry products:	:	:	
Chocolate milk	: Pound	:	. $05-.07$
Condensed milk, sweetened	: do.	:	. 42
	: 4814 ounce cans	:	17.64
Condensed skim milk, sweetened	: Pound	:	. 40
Ice cream	: do.	:	. 15
	: Gailon (4.7 pounds)	!	. 70
	:	;	
Ice areatu mix:	:	:	
Paste	: Pound	:	, 36
Powder	: do.	:	. 40
Sherbet	: do.	:	. 28
Water ice	: do.	:	. 29
	:	:	
Dessert powders:	:	:	
Cuscuind or atarch pudding powder	: do.	:	. 61
Gelatin-base powders	: do.	:	. 85
	:	:	
Fountain sifups and soft drinks:	:	:	
Beverage powders, synthetic lemon or orange 1/		:	--
Butterscotch or marshmallow topping	: Pound	:	. 40
	: Gallon (11 pounds)	:	4.40
	: 6 No. 10 cans	:	19.80
Chocolate sirup for topping		:	. 26
	: Gailan (11 pounds)	:	2.86
	: 6 No. 10 cans	:	12.87
Chocolate airup for beverages	: Yound	;	. 38
	: Gallon (10.27 pounds)	:	3.90
	: 6 No. 10 cans	:	17.55
Cola, clear frait or other soft drink sirups	: Pound	:	. 55
	: Gallon (10.5 pounds)	:	5.80
Cola~type soft drinks, bottled	: Pound	:	. 10
	Gailon (8.65 pounds)	:	. 866
	: 247 ounce bottles	:	1.14
	: 2412 ounce bottles	:	1.95
Fruit flavored soft drinks	: Pound	:	. 12
	: Gallon (8.7 pounds)	:	1.05
	: 247 ounce bottles	:	1.37
	: 2412 ounce bottles	:	2.36
Gingerale, bottled	: Pound	:	. 084
	: Gallon (8.6 pounds)	:	. 722
	: 2412 ounce bottles	:	1.62
	:	:	
Fruit, frozen	: Pound	:	. 20
Fruit products, other--	:	:	
Apple butter	: do.	:	. 29
Jellies, Jams, preserves	: do.	:	. 55
Marmalade	do.	:	. 67
Mincement	: đo.	:	. 35
	:	:	
Mracellaneous:	:	:	
Misyonnaise	: do.	:	. 10
	: Gallon	:	. 81
Pickies, aweet	: Pbund	:	. 35
Salad dreasing	: do.	:	. 24
	: Gallon	:	2.11
	:	:	

-- - Not applicable.
I/ Synthetic beverage powders are sweetened with com sirup and dextrose.

Table 55--Sugar content of canned fruits

Canned product	:	$\begin{aligned} & \text { Natural } \\ & \text { fruit } \\ & \text { sugar } \end{aligned}$	Added refined cane and beet sugar $1 /$	
			Weight in 24 No. $2-1 / 2$ cans	: Percent
	:	Percent	Pounds	Percent
	:	14.4	2.97	6.6
Cherries (sweet)	:	13.9	2.75	6.1
	:	19.0	. 90	2.0
Figs		19.0		
Fruit cocktall	:	11.0	3.15	7.0
Fruit for salad	:	9.9	3.52	8.1
Peaches	:	11.8	3.13	7.2
Pears	:	11.6	2.78	6.4
	:			
Plums		14.8	2.79	6.2

1/ Based on the finished canned product packed in heavy syrup.

Table $56-$ Net weights, sugar solids content, and total solids content per unit of specified products at $20^{\circ}$ Celsius

Product	Unit 1/	```Net weight per unit```	$\begin{array}{lc} : \text { Total sugar } \\ : \text { solids } \\ : \text { content } 2 / \\ \hline \end{array}$	Total solid content
Corn sfrup, regular $42^{\circ}$ Bame:		:		
		:	Pounds	
		$: ~$		
	Pound	$: 1.00$	0.78	0.783
	No. 10 can	: 8.88	6.92	6.95
	Galion	: 11.68	9.11	9.15
		:		
Corn sugar or dextrose (hydrate)		:		
	Pound	1.00	. 92	.92
		:		
Honey	Pound	1.00	. 78	. 83
	Gallon	11.84	9.24	9.83
		: 11.8		
Maple sirup	Pound	1.00	. 64	. 66
	Ga11on	11.03	7.06	7.28
		:		
Maple sirup, imitation: Thin type		$: \longrightarrow$		
	Pound	1.00	. 66	. 66
	GaIlon	11.03	$7.28$	$7.28$
		: 1.00		
Thick type	Pound	1.00	. 73	. 73
	Gallon	11.39	8.31	8.31
		:		
Maple sugar	Pound	1.00	. 87	.90
		:		
```Molasses, edible, first centrifugal: 3/ U.S. Grade A```		:		
		:		
	Pound	1.00	. 635	. 79
	No. 10 can	8.91	5.66	7.04
	Gallon	11.72	7.44	9.26
		:		
U.S. Grade B	Pound	1.00	. 615	. 79
	No. 10 can	8.91	5.48	7.04
	Gallon	11.72	7.21	9.26
		:		
U.S. Grade C	Pound	1.00	. 58	. 79
	No. 10 can	8.91	5.17	7.04
	Gallon	31.72	6.80	9.26
		,		
Molasses, inedible blackstrap 4/ 5/	Pound	$: \quad 1.00$. 795
	Galion	11.74	5.87	9.33
	Tank car	: 93,920	46,960	74,666
		:		
$\begin{aligned} & \text { Refiner's sirup: } \underline{6} \\ & \text { U.S. Grade A } \end{aligned}$		*		
	Pound	$=1.00$. 6624	. 72
	Gailon	$: 11.34$	7.51	8.16
		:		
.U.S. Grade B \quad :	Pound	: 1.00	. 6192	. 72
	Gallon	: 11.34	7.02	8.16
See footnotes at end of table		:		ContInued--

Table $56-$ Net weights, sugar solids content, and total solids content per unit of specified products at 20° Celsius--Continued

Product	$:$ Unit $1 /$		Net weight per unit	$\begin{aligned} & : \\ & : \\ & : \end{aligned}$	$\begin{gathered} \text { Total sugar } \\ \text { solids } \\ \text { content } 2 / \end{gathered}$	Total solid content
	:					
	:	-			Pounds	
Refiner's sirup: 6/--Cont.	:	:				
U.S. Grade C	: Pound		1.00		0.5928	0.76
	: Gallon		11.55		6.85	8.78
	:					
U.S. Grade D	: Pound		1.00		. 532	. 76
	: Gallon		11.55		6.14	8.78
	:					
Sugar can sirup:	:					
U.S. Grade B, unsulfured	: Pound		1.00		. 68	. 74
	: No. 10 can		8.70		5.92	6.44
	: Gallon		11.45		7.79	8.47
	:					
U.S. Grade B, sulfured	: Pound		1.00		. 65	. 74
	: No. 10 can	:	8.70		5.66	6.44
	: Gallon	:	11.45		7.44	8.47
	:					
Sorgo sirup	: Pound	:	1.00		. 68	. 76
	: No. 10 can	:	8.78		5.97	6.67
	: Gallon	:	11.55		7.85	8.78
	:	.				

1/ The No. 10 can is estimated to contain 0.76 gallon, based on internal volume of $18 \overrightarrow{9} .7$ cubic inches and 93 percent fill when cold.

2/ Total sugar solids refers to all sugars, not only sucrose. The sugar content of a11 products except corn sirup and honey consists of one or more of the following sugars: dextrose, levulose (monosaccharides), and sucrose (a disaccharide). Corr. sirup, regular, 42° Baume contains 34 percent of mono, di, tri saccharides, which types of sugars are generally assoctated with sweetness. These types include dextrose and maltose (a disaccharide). In addition, corn sirup contains 44 percent higher sugars (polymers of dextrose) which have little or no sweetness. The sugar content of honey averages 38 percent levulose, 31 percent dextrose, 7 percent maltose, 1.5 percent sucrose, and 1.5 percent higher sugars.

3/ U.S. Grade A is based on a minimum total sugar content of 63.5 percent and mintmum density of 79° Brix.
U.S. Grade B is based on a minimum total sugar content of 61.5 percent and minimum density of $79^{\circ} \mathrm{Brix}$.
U.S. Grade C is based on a minimum total sugar content of 58.0 percent and mintmum denstty of $79^{\circ} \mathrm{Brix}$.

4/ Based on ayerage total sugar content of 50 percent and minimum denaity of 79.5° Brix.

5/ One gallon of ethanol made from 2.4 gallons of inedible blackstrap molasses.
$\overline{6} /$ U.S. Grade A is based on a Brix solids content of not less than 72 percent and a ratio of total sugars to Brix solids of not less than 92 percent.
U.S. Grade B is based on a Brix solids content of not less than 72 percent and a rat io of total sugars to Brix solids of not less than 86 percent.
U.S. Grade C is based on a Brix solids content of not less than 76 percent and a ratio of total sugars to Brix solids of not less than 78 percent.
U.S. Grade D is based on a Brix solids content of not less than 76 percent and a ratio of total sugars to $B r i x$ solids of not less than 70 percent.

In processing, cocoa beans are roasted and hulied with a resultant loss in weight of 20 percent. The 60 percent remaining is chocolate liquor, sometimes called ground or bitter chocolate. About 53 percent of the liquor ia composed of cocoa butter or fat and 47 percent is composed of a nonfat powder residual. Since it is impossible to completely separate the butter from the nonfat powder residual, the manufacturer will leave a minimum of fat in the powder--usually about 12 percent, but if breakfast cocoa is desired, about 22 percent is left.

Table 57--Factors relating to cocoa bean content of specified products

See footnotes at end of table.
Continued~-

Table 57--Factors relating to cocoa bean content or specified products--Continued

Fruits and Vegetables

Table 58-Fruit, vegetable, and juice containers: Dimensions, capacities, and conversion factors

1/ The first figures represent the diameter of the container and the second figures the height. The first digit in each figure represents inches and the second two digits sixteenths of an inch; i.e., 307 is 3-7/16 inches

Source: National Canners Association.

Table 59--Canned fruits and vegetables: Case conversion factors by container designation

Container designation	Containers per case		Factor to multiply by to convert to--		
			24/303's	24/2's	24/2-1/2' 8
	:	Number			
	:				
62	:	48	0.72	0.59	0.41
82 short	:	72	1.41	1.16	. 80
82 tall	-	24	. 52	. 42	. 29
No. 1 flat	-	48	1.05	. 87	. 60
No. 1 picnic	:	48	1.30	1.06	. 73
No. 211 cylinder	:	24	. 80	. 66	. 46
No. 2 vac. (12 ounce vac.)	:	24	. 87	. 72	. 49
No. 300	-	24	. 90	. 74	. 51
No, 1 tall	:	24	. 99	. 81	. 56
No. 303	:	24	1.00	. 82	. 57
No. 300 cylinder	:	24	1.15	. 94	. 65
No. 2	:	24	1.22	1.00	. 69
No. 3 vacuum	:	24	1.42	1.16	. 80
No. 2 1/2	:	24	- 1.77	1.45	1.00
292	:	12	. 96	. 79	. 55
32 Z (quart)	:	12	1.05	. 86	. 60
No. 3 cylinder	:	12	1.53	1.26	. 87
No. 5 squat	:	6	1.01	. 83	. 57
No. 10	:	6	1.62	1.33	. 92

Source: Natfonal Canners Association.

Table 60--Shipping containers for fresh fruits and vegetables

[^4]Table 60--Shipping containers for fresh fruits and vegetables--Continued

Table 60-Shipping containers for fresh fruits and vegetableg--Continued

Commodity	$\begin{array}{ll}: \\ : & \text { Shipping container } \\ \\ \\ \end{array}$	Approximate net weight 1/	
Fresh fruits--Continued	$\frac{\text { Pounds }}{\text { (range) }}$		
Tangelos:	:		
Florida	: $4 / 5$ bushel carton	40	45
California	: 1/2-bushel carton	25	30
	:		
Tangerines:	:		
Florida	: 4/5-bushel carton	47	50
California	: 1/2-bushel carton	25	30
Fresh vegetables: Anise	\vdots :		
	: 15-1/2-inch wirebound crate : Carton and crate packed, 1-1/2 : to $2-1 / 2$ dozen : Crate	40 25	50
		60	70
Artichokes	Carton or box by count or : loose pack		
		20	25
Asparagus	: Pyramid crate	30	36
	: 1/2-pyramid crate or carton : Carton of $161-1 / 2$ pound packages	15	17
		24	25
Beans, snap and 11ma	: Bushel crate, hamper, or basket	28	32
		28	32
Beets	: $1-2 / 5$-bushel crate, 24 s: $4 / 5$-bushel crate, 12 s	36	40
		15	20
Topped	: Sack, as marked ${ }^{\text {a }}$	25	50
Broccoli	: 14 to 18 bunches, carton	20	24
Brussels oprouts	: Carton	$\begin{aligned} & 25 \\ & 7-1 / 2 \end{aligned}$	
	12 10-ounce cups, flat or carton		8
Cabbage Savoy	: Sack, crate, or carton	50	55
		37	
	: Sack, crate, or carton		
Carrots:			
Bunched Topped	: Carton, 2-dozen bunches	$23 \quad 27$	
	: 48 1-pound bags or 242 -pound : bags in master container		
	: bags in master container : Mesh bag, loose, as marked	48	55
Mini	: 20 12-ounce cello	15	17
Cauliflower	: Flat or 2-1ayer carton of 9 to : 16 trimmed heads		
		18	24
	Long Island type crate	45	55

[^5]Table 60--Shipping containers for fresh fruits and vegetables-Continued

[^6]Table 60-Shipping containers for fresh fruits, and vegetables--Continued

Table 60--Shipping containers for fresh fruits and vegetables-Continued

Table 60--Shipping containers for fresh fruits and vegetables--Continued

Table 6l--Gmared fruits and fulces: Net wefght per case 1/

-- = Not availsble.
1/ Weights are derived from Net Contents Statements for Canned Food Labels - 1977. National Canners Association.

Table 62--Fruit juices and concentrates: Factors relating to farm and processed weights 1/

Table 63--Canned fruits: Factors relating to farm and processed weights

Note: Relationships between farm and processed weights for most conmodties vary widely from season to season and between iocalities. Factors shown in chis table represent average relationships for all producing areas.
I/ Basic figure is $24 / 2^{\prime}$ s for citrus; $24 / 303$'s for applesauce and berries; 6/10's for apple slices and red tart cherries: $24 / 300$'s for cranberries; and $24 / 21 / 2$'s for other products. Case conversion factors based on table 61.
$\frac{2}{3} /$ Basis 24 cases of No. $300^{\prime} \mathrm{s}$.
$3 /$ Drained weight.

Table 64--Canned vegetables: Eactors relating to farm and processed weights

1/ Basic figure is yieid of $24 / 303^{\prime} s$ per ton. One case $24 / 303^{\prime}$ s is equivalent to 0.57 cases $24 / 21 / 2{ }^{\prime} s$ and 0.62 cases $6 / 10^{\prime}$ s. 2/ Shelled basis.
3/ 33 percent solids.
4/ 11 percent solids.

Table 65-Dehydrated and dried fruits: Relationship between
farm and processed weights

NA = Not available.
1/ Includes only farm sales of dates for human consumption after farm cullage. Average farm sales of cull dates directly into nonfood channels estimated at 14 percent of U.S. production.

2/ To convert canned dried prunes to dried prunes, multiply by 0.691085.
3/ Includes unseeded muscats.

Table 66--Fruits and vegetables: Relationship of freeze-dried product to frozen weight i/f

Frozen food		Moisture enntent	Weight of freezedried products as percentage of frozen counterpart		```Factors to convert freeze-drfed weight to frozen weight```
		Percent	Percent		
Apples, uncooked, sliced,					
sweetened		73.3	27.2		3.7
Apricots, uncooked		85.4	14.9		6.7
Blueberries, uncooked,					
unsweetened		85.0	15.3		6.5
Broccoli, cooked or uncooked		90.6	9.6		10.4
Brussels sprouts, cooked or uncooked		89.3	10.9		9.2
Cauliflower, cooked or uncooked		92.9	7.2		13.9
Green peas, cooked		81.7	18.7		5.4
Green peppers, cooked		94.7	5.4		18.5
Mushrooms, uncooked, whole, pleces or sliced		90.4	9.8		10.2
Pears, uncooked pieces or slices		82.7	17.6		5.7
Pineapple, uncooked slices or chucks, sweetened		77.1	23.4		4.3
Plutns, Itallan, uncooked slices or pieces		78.7	21.7		4.6
Raspberries, red, uncooked		74.3	26.2		3.8
Snap beans, cooked	:	91.6	8.6		11.6
Strawberries, whole, uncooked	-	75.5	24.8		4.0

Table 67--Dehydrofrozen fruits and vegetables: Relationship between moisture content of product and weight reduction

Percentage original mofsture content	:	Percentage moisture content in product at percentage weight reduction of--						
	:	50	-	60	\div	70.	,	80
	:	Percent						
95	:	90		87.5		83.3		75
90	:	80		75.0		66.7		50
85	:	70		62.5		50.0		25
80	:	60		50.0		33.3		0
75	:	50		37.5		16.7		--
70	:	40		25.0		0		--
65	:	30		12.5		--		--
60	:	20		0		--		--
55	:	10		--		--		--
50	:	0		--		--		--
	:							

-.. $=$ Not applicable.

Table 68--Dehydrofrozen fruits and vegetables: Relationship between prepared matertal and product.

Commodity	:	Pounds of prepared material to produce pound dehydrofrozen product $1 /$
	:	Pounds
Apples	:	2
Carrots	:	2
Cherries	:	2-2.5
Green peas	:	2
Pimentos	:	3
Potatoes:	:	-
Plece form	:	2
Mashed	:	4

1/ After peeling, triming, and cutting. Preparation losses shoild be the some as for freezing.

Table 69—-Fruits, dehydrated (low moisture): Relationship between farm and processed weights

Table 70--Vegetables, dehydrated: Relationship between farm and processed weights and weight of product per 5 -gallon container

Continued-

[^7]Table 70 --Vegetables, dehydrated: Relationship between farm and processed weights and weight of product per 5 -gallon container--Continued

- = Not applicable.

1/ Includes fines and defects removed during final inspection of dried product and other process losses.
$\underline{\underline{2} / \text { Successful dehydration of many of these vegetables depends upon the ability to divert undesirable sizes and/or }}$ grades to other kinds of processing. If such outlets are not avallable, shrinkage ratios will be greater than shown.

Table 71--Frozen fruits and vegetables: Estimated average relation between farm and processed weights

Commodity	:	Percentage recovery	Factors for conveFarm weight from frozen weight $1 /$	Frozen weight from farm weight $1 /$	Approximate fruit-tosugar ratio 2/
	:	Percent			
	:				
Frozen fruits:	:				
Apples	:	60	1.67	0.60	0 or 7 to 1
Apricots	:	78	1.10	. 91	6 or 8 to 1
Berries:	:				
Blackberries	:	95	1.05	. 95	0
Blueberries	:	97	1.03	. 97	0
Boysenberries	:	88	1.14	. 88	0
Gooseberries	:	97	1.03	. 97	0
Loganberries	:	88	1.14	. 88	0
Raspberries	:	95	1.05	. 95	0
Strawberries	:	93	. 89	1.12	5 or 4 to 1
Cherries, sour	:	75	1.11	. 90	5 to 1
Cherries, sweet	:	85	1.18	. 85	0
Grapes	:	85	1.18	. 85	0
Peaches	:	67	1.25	. 80	5 to 1
Pineapples	:	50	1.60	. 625	4 to 1
Prunes	:	85	1.18	. 85	0
Frozen vegetables:	:				
Asparagus	:	52	1.92	. 52	$2 /$
Lima beans 3/	:	95	1.05	. 95	2/
Snap beans	:	85	1.18	. 85	2/
Broccoli	:	75	1.33	. 75	$\underline{2 /}$
Brussels sprouts	:	75	1.33	. 75	$\frac{2}{2} /$
Cauliflower	:	70	1.43	. 70	$\underline{2} 1$
Corr, cut	:	27	3.70	. 27	$\underline{2} /$
Carrots	:	55	1.82	. 55	2/
Okra	:	85	1.18	. 85	$\underline{2} /$
Peas, green 3/	:	92	1.09	. 92	2/
Peas, southern	:	50	2.00	. 50	$\underline{2 /}$
Potatoes, white	:	40	2.50	. 40	$2 /$
Peppers, sweet	:	70	1.43	. 70	2/
Spinach	:	70	1.43	. 70	2/
Other greens	:	75	1.33	. 75	$\frac{2}{2 /}$
Squash	:	55	1.82	. 55	$\underline{2} /$
Sweetpotatoes	:	50	2.00	. 50	2/

1/ Frozen weight is weight of frozen fruit plus sugar content. Where more than one fruit-to-gugar ratio is shown, the first is used in this computation.

2/ Fruft-to-sugar ratio does not apply to vegetables.
3/ Shelled.

Table 72--Fruit and vegetable fuice powders: Factors relating to farm and processed weights

Ifems	:	Approximate percentage solids content of juice	Yield of juice as a percentage of raw material \qquad	Factors for Processed weight from farm weight	```converting to-- : Equivalent farm weight from : processed wetght```
Apple	:	12	75	0.092	8
	:				
Citrus:	:				
Grapefruit	:	11	49	. 055	18
Lemon	:	9	40	. 037	27
Orange	;	13	55	. 072	14
Grape	:	17	75	. 130	8
	:				
Pineapple 1/	:	15	58	. 089	11
	:	32	74	. 250	4
Prune					
Tomato	:	6.4	70	. 045	24

I/ Assuming juice is only product. In practice, however, juice is made only from edible grade peels, cores, trimmings, and sortouts.

Table 73--Potatoes: Estimated conversion factors for selected products

Table 74--Hop content of beer

Size of container	$:$	Factor for converting to hop content (cured weight)
	$:$	Pounds
Barrel (31 gallons)	\vdots	0.2

Tree Nuts

Table 75--Tree nuts: Relationship between shelled and in-shell, and between farm and retail weights

NA $=$ Not avallable.
1/ Orchard-run weight before culling. Both orchard-run and retail weight are inshell basis.

2/ Average for domestic crop in recent years. The following illustrate the variation among various varleties: Nonpareli, Merced, and Thompson 0.60; Mission 0.40; Peerless 0.35. Peerless is frequently marketed in-sheli.

3/ Average for portion of crop shelled commercially. Equivalent shelled-in-shell ratio for graded walnuts sold in-shell is 0.45 , and average for entire U.S. walnut crop is 0.40.

Coffee and Tea Products

Table 76--Factors for obtaining equivalents of green coffee beans and leaf tea from specified products

Product	: Description :	Factors
	:	
Coffee:	:	
Green, bag 1/	Standard bag of 60 kilograms , number of pounds	132.276
	;	
Parchment	The green coffee bean contained in the parchment skin	. 800
	:	
Roasted	Green coffee roasted to any degree : and includes ground coffee	1.190
	:	
Pure instant soluble	The water-soluble solids derived from roasted coffee	2.500
	;	
Decaffeinated	: Green roasted or soluble coffee from : which caffein has been extracted:	
	: Green	1.000
	: Roasted	1.190
	: Instant soluble	2.500
	:	
Tea, pure instant soluble	: 2.5 pounds of dry leaf tea yields 1 pound of soluble tea	2.500

1/ All coffee in the naked bean form before roasting.

Yeast

Table 77--Relationship between yeast solids of specified types of yeast and yeast products

Table 78-Tobacco: Factors for adjusting stocks reporfad by dealers and manufacturers to a faxm-sales-weight equivalent

1/ Types 11-37 are reported on the brete of packed weight.
2/ Farm-sales-weight equivalent based on unstemad sweated weight factor.
3/ The instructions for reporting unstemmed cigar-.leaf of the domestic types require that dealers and manufacturers indicate the weight basis on which the tobacco is reported, namely, farm-saleswweight, marked weight, or sweated weight. The stocks are converted to the farm-sales-weight equivalent on the basis of average factors reflecting the percentage reported each quarter in each of these categories,

Naval Stores
Table 79--Naval stoxes: Neights and measures

Item	:	Unit	:	Amount
	-		:	
Crude pine gum:	:		:	
Gum naval stores (crops) :	:		:	
Faces 1/	:	Number	:	10,000
Barrels, standard	:	do.	;	215
Net weight (each)	:	Pounds	:	435
Yleld (each) :	:		:	
Gum turpentine)	:	Gallons	:	9.8
Rosin	:	Pounds	:	299
	:		:	
Rosin:	:		:	
Gum:	:		:	
Drum:	:		:	
Net weight	:	Pounds	;	2/517
Gross weight	:	do.	:	534
Volume	:	Cubic feet	:	8.27
Shipping space	:	do.	;	9.4
Bag, net weight	:	Pounds	:	100
Other types:	:		:	
Drum:	:		:	
Net weight	:	do.	:	500-520
Average	:	do.	:	515
Volume	;	Cubic feet	:	8.27
Shipping space	:	do.	:	9.4
Bag, net weight	:	Pounds	:	100
	.		:	
Turpentine:	:		:	
Drum:	:		:	
Net weight	:	do.	;	396
Gross weight.	:	do.	:	450
Liquid measure at 70% Fahrenheit	:	Gallons	:	55
Barrel, 11 quid measure at 70°	:		:	
Fahrenheit	:	do.	:	50
Gailon, measure at 70° Fahrenheit	:	Pound	:	7.2
Tank car, average	:	Gallons	:	6,000-8,000
Tank truck, average	:	do.	:	4,000

1/ Usualiy one "face" per tree in the United States.
2/f Statistical data published by USDA are in terms of 520 -pound drums.

Table 80--Technical data on spirits of turpentine by type

Item		Unit		Gum spirits		Steam $:$ distilled : wood	Sulfate wood		
			:				Refined	:	Crude
Specific gravity at $15.5{ }^{\circ} / 15.5^{\circ}$ Celsius:									
		Lbs/in. 2							
Typical for fresh turpentine		do.	:	0.868		0.862	0.867		--
Specification range, U.S. standard		do.	:	.860-. 875		.860-. 875	.860-.875		--
Specific gravity change per degree Fahrenheit		do.	:	. 00045		. 000045	. 00045		-
Specific gravity change per degree Celsius		do.		. 09082		. 00082	. 00082		--
Average weight per U.S. standard gallon at700 Fahrenheit									
		1bs.		7.2		7.14	7.2		--
Coefficient of expansion:									
Per degree Fahrenheit		coef.		. 000525		. 000525	. 000525		--
Per degree Celsius		do.		. 000945		. 000945	.000945		--
Refractive index at 20° Celsius:			:						
		Index	:	1.470		1.466	1.468		--
Specification range (U.S. standard)		do.	:	1.465-1.478		1.465-1.478	$1.465-1.478$		--
Refractive index change per degree Celsius		do.	:	. 00045		.00045	. 00045		-
Distillation range, U.S. standard:									
Initial distillation temperature		${ }^{\circ} \mathrm{C}$:	150-160		150-160	150-16		--
Distilling below $170^{\circ} \mathrm{Celsius}$, minimum		Pct.	:	90		90	90		--
Flash point range:									
Fag closed cup		Of	-	90-95		90-95	90-95		--
Cleveland open cup		do.	:	100-110		100-110	100-110		--
Aniline point, typical range	:	${ }^{\circ} \mathrm{C}$		14-25		18-25	14-25		
Composition of American turpentines:Alpha-pineneBeta-pinene	:	Pct.							
	;	do.		60-65		75-80	60-65		50-65
	:	do.		25-35		2	25-30		20-30
Dipentene and other monocyclic terpenes	:	do.	:	5-8		15-20	5-7		16-18
Camphene	:	do	:			4-8	0-2		0-2
Total									
	:		:	100		100	100		100
	:		:						

[^8]
Cotton, Cottonseed, and Cottonseed Products

Computation and use of factors
Basis of computation. Factors have been computed on the basis of the 5-crop seasons from 1971/72 thraugh 1975/76 and represent ratios of the 5 -season averages. The 5-season average was used to bring the factors more nearly into conformity with current experience.

Use of factors. Users of these factors are cautioned with respect to the following limitations: The factors are not "official," even though they are based upon latest avallable official figures. Nor are they permanentiy fixed at the stated values because later finformation and shifts in relationships may necessitate revisions. Since basic data underlying certain series have differing variabilities, it should be kept clearly in mind that application of the factors will not necessarily result in the most satisfactory figure for use in current work if other evidence suggests that base period relationships are not continuing. Factors should be applied to U.S. totals only and not to State or area totals. These factors apply to fulluseason totals only.

Definitions

Seed cotton	- Cotton as harvested but before ginning. It is the raw product which has been harvested and contains the lint, seed, and foreign matter.
Ricked seed cotton	One of two forms used to store seed cotton in the field before ginning. It is a free standing stack of seed cotton which has been mechanfcally compacted (to about 7 to 8 pounds per cubic foot) after harvesting into a form of varying length, 20 to 200 feet, 4 to 5 feet high, and about 7 feet wide. Because it sits on the ground, the rick is not often used in areas of frequent rafnfall.
Module seed cotton	One of two forms used to store seed cotton in the field before ginning. Modules may be 24 to 32 feet long and about 7 feet wide. Stripped cotton is mechanically compacted 9 to 12 pounds per cubic foot to a height of 9 to 10 feet. Picked cotton is compacted to 10 to 13 pounds per cubic foot to a height of 7 to 8 feet.
Lint	Cotton which has been separated from the seed by the ginning process.
Bale	A package of compressed cotton lint as it comes from the gin. Including the bagging and ties, it weighs about 500 pounds and its dimensions vary depending upon the degree of compression that may range from 12 to 32 pounds per cubic foot. A bale is the form of package by which cotton moves in domestic and foreign commerce. However, cotton is bought and sold on a net weight (pound or kilogram) basis.
Running bale	Any bale of varying lint weight as it comes from the gin.
$\begin{aligned} & \text { 480-pound net welg } \\ & \text { bale } \end{aligned}$	An average bale weight used to maintain statistical comparability. It has superseded the formerly used term, 500 -pound gross weight bale.

Universal density bale	-- A bale pressed in a gin or repressed in a compress one time to a density of at least 28 pounds per cubic foot.
Tare	-- Weight of the ties (or bands) and bagging materials which contain the bale. The weight of these packaging materiais varies and is excluded from the reported or sale weight of the lint. The bands can be steel straps or wire. The bagging material can be jute, woven polypropylene fiber, or polyethylene plastic film, or cotton (woven or warp knit) depending on the type of bale packaged.
Oflseed	-- The cottonseed which is crushed for the ofl and meal.
Planting seed	-- The cottonseed that is planted. Seed not planted is crushed in oil mills for the oil, meal, linters, hulls, etc.
Motes	- Itmature cottonseeds with fibex attached.
Linters	\rightarrow Short fibers which remain attached to the cottonseed after ginning. They are separated from the seed and used in cushioning products, as stuffing, or as a source of cellulose for a variety of chemical products.

Table 81~-Cotton bale size by various agencies in compiling statistical data

Table 82-Factors for converting cotton acreages, cotton, and cotton products to various equivalents I/

From	$:$ To obtain	: MuItiply by
Acreage:	:	:
Planted	: Acreage harvested	0.932
	: Cottonseed produced, tons	. 358
	: Cottonseed crushed, tons	. 338
	: Cotton produced, 480-pound bales	. 919
	: Cotton produced, pounds	. 441
	: Linters, pounds	60.700
	: Linters, tons	. 030
Harvested	: Acreage planted	1.073
	: Cottonseed produced, tons	. 384
	: Cottonseed crushed, tons	. 362
	: Cotton produced, 480-pound bales	. 986
	: Cotton produced, pounds	. 473
	: Linters, pounds	65.200
	: Linters, tons	: . 033
Cottonseed produced: Tons	:	:
	: Cottonseed crushed, tons	. 944
	: Linters, tons	. 085
Pounds	: Seed cotton, pounds	1.616
Cottonseed crushed, tons	Linters, tons	. 090
	: Cottonseed crude oil produced, tons	. 161
	: Cottonseed meal produced, tons	. 451
Cotton produced: 480-pound bales	: Cottonseed produced, tons	. 389
	: Cottonseed crushed, tons	. 367
	: Cottonseed crude oil produced, tons	. 059
	: Cottonseed meal produced, tons	. 166
	: Linters, tons	. 033
Pounds	: Cottonseed produced, pounds	3.622
	: Cottonseed crustied, pounds	1.531.
	: Cottonseed crude oil produced, pounds	. 246
	: Cottonseed meal produced, pounds	. 691
	: Linters, pounds	: 138
	: Seed cotton, pounds	: 2/ 2.622
Cotton:	:	:
480-pound bale	Running bales	. 961
Running bales	: 480-pound bales	1.040
Seed cotton, pounds	: Cotton produced, pounds	$2 / .381$
	: Cottonseed produced, pounds	: $\quad 2 / .619$

1/ All figures based on the 5-year average, 1971/72-1975/76. 2/ Cotton procuction plus cottonseed production. Cottonseed for planting: The 1971/72-1975/76 5-year average quantity of cottonseed used for planting 1 acre of cotton was 27.4 pounds per acre. One pound per acre equals 1.12085 kilograms per hectare. One kilogram per hectare equals 0.89218 pound per acre.

Table 83--Factors relating to cottonseed products $1 /$

Product	:	Factors for converting cottonseed products to	
	:	Tons per ton	Pounds per ton
	:		
Crude oil	:	0.161	322
Cake and meal	:	. 451	902
Hulls	:	. 251	502
Linters	:	. 090	181
Waste	:	. 047	93
	:		

I/ All figures are based on the 5-year average, 1971/72-1975/76.

Table 84--Space displacement of cotton and cotton products 1 /

Product	:	Cusic feet per short ton	: Pounds per : cubic foot
	:		
Seed cotton:	:		
Untramped	:	400	5
Ricked	:	286-333	6-7
Module	:		
Stripped	:	167-222	9-12
Picked	:	154-200	10-13
Cottonseed:	:		
Dry, delinted	:	57	35
Dry, not delinted	:	80-111	18-25
Hu11s	:	167	12
011	:	35-36	56-57
Cake, crushsd or lumpy Meal, extracted	:	44- 50	40-45
Meal, extracted	:	50-57	35-40

$1 /$ Industry sources.

Table 85--Scoured yield of greasy shorn and pulled domestic wools

Grades	Domestic $:$ production of $:$ greasy wool 1/		Scoured yield 1/	
			Shorn	Pulled
	:		Percent	
Fine; 64's and finer	:	29.0	46.0	67.0
1/2 blood; $60 . \mathrm{s}$ and $62^{\prime} \mathrm{s}$:	14.7	47.0	72.0
3/8 blood; 56's and 58's	:	26.4	56.0	79.0
1/4 blood; 50 's and 54's	:	24.6	59.0	81.0
Low 1/4 blood; $46^{\prime \prime} \mathrm{s}$ and 48's	:	4.6	61.0	82.0
$\text { Common and braid; } 36^{\prime} \mathrm{s}, 40^{\circ} \mathrm{s}$ $\text { and } 44^{\prime} \mathrm{s}$:	. 7	64.0	84.0
Weighted average, all grades	:	1.00 .0	52.8	72.9

1/ Based on Current Industrial Report: MA-22M, "Stocks of Wood and Related Fibers," Bur. of the Census, U.S. Dept. Comm., 1971-76 reports. Percent of production by grade was based on the stocks reports and wool supply and use data for 1971-75.

$:$
(C) UPDATA 1981

[^0]: -- * Not applicabie.

[^1]: 2/ Bushel wefght: Flaxseed, 56 pounds; and soybeans, 60 pounds. 3/ Usually reported in short tons.

[^2]: I/ Total is not expected to equal "Total fat."
 2/ Includes fatty acids with chains from 8 through 18 carbon atous.
 3/ Suitable as salad oil.
 4/ From Fatty Acids in Food Fats, Home Econ. Res. Rpt. 7, Agr. Res. Serv., U.S. Dept. Agx., 1959.

 5/ Mean values of selected samples and may vary with brand name and date of manufacture.

 6/ Includes small amounts of mono-unsaturated and di-unsaturated fatty acids that are not oleic of ifnoleic.

 * 7/ Linoleic acid includes higher polyunsaturated fatty acids.

[^3]: 1/ Based on 1970-74 crop averages.
 $\underline{2} /$ Beginning 1966 crop year, farmers' stock peanuts are reported in terms of net weight so no adjustments are necessary.

 3/ Excludes roasting stock.
 $\overline{4} /$ Excludes shelled oil stock peanuts.
 5/ Including additives.
 6/ Yields from farmers' stock are provided for statistical convenience. In actual practice, only the shelled peanuts are crushed for oil. Some of the shells are then added to the residue to produce the cake and meal.

 7/ Some additional shells are added to the residue to produce cake and meal.

[^4]: See footnote at end of table.

[^5]: See footnote at end of table.

[^6]: See footnote at end of table.

[^7]: See footnotes at end of table.

[^8]: _- = Not available.

