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Feedforward Neural Network Estimation
of a Crop Yield Response Function

Wayne H. Joerding, Ying Li, and Douglas L. Young*

Abstract

Feedforward networks have powerful approximation capabilities without the “explosion

of parameters” problem faced by Fourier and polynomial expansions. This paper first introduces
feedforward networks and describes their approximation capabilities, then we address several
practical issues faced by applications of feedforward networks. First, we demonstrate networks can
provide a reasonable estimate of a Bermudagrass hay fertilizer response function with the relatively
sparse data often available from experiments. Second, we demonstrate that the estimated network
with a practical number of hidden units provides reasonable flexibility. Third, we show how one

can constrain feedforward networks to satisfy a priori Information without losing their flexible
functional form characteristic.

Key Words: neural networks, biological process models, feedforward networks, production
function

Introduction

Mitscherlich is credited as the first to

suggest a nonlinear algebraic relationship between

fertilizer and crop yield in 1909 (Mitscherlich,

Heady and Dillon). A decade later, Spillman
independently proposed and estimated a similar
exponential fertilizer-yield response equation. These
early single-input production functions helped
provide a functional expression for the “law of
diminishing marginal productivity.” They also
helped launch a revolution in agricultural production
economics and farm management which wedded
deductive macroeconomic theory with empirical
statistical analysis. Subsequent generations of
production economists have made impressive

advances in improving the flexibility of agricultural
production functions and in statistical techniques for

estimating these equations (Heady and Dillon,
Beattie and Taylor, Chambers).

Explicit functional forms estimated
statistical] y have several advantages for describing
biological responses. They are usually simple to

estimate using readily available software, The
resulting equations are relatively easy to

communicate to users. Desired theoretical

properties often can be incorporated in the equations
and tested statistically. Useful measures such as
elasticities of production, elasticities of substitution,
and marginal and average productivity equations are
usually directly derivable.

The greatest disadvantage of explicit
functional forms used for biological response has
been their inflexibility. The functional forms
themselves may impose specification error, thereby

precluding the data from expressing itself. For

example, the popular Cobb-Douglas functional form
imposes zero production at zero input(s), unbounded

output, constant unitary elasticity of substitution

*Authors are respectively: associate professor, Department of Economics, Washington State University, Pullman, WA;

economist, Fannie Mae, Washington DC; and professor, Department of Agricultural Economics, Washington State
University, Pullman, WA. This work has received partial support from NSF grant SES-9022773 and Torque Systems,
Inc., and the Washington State University College of Agriculture Research Center.

J. Agr. and Applied Econ. 26 (I), July, 1994: 252-263
Copyright 1993 Southern Agricultural Economics Association



J, Agr. and Applied Econ., July, 1994 253

between inputs, and constant input elasticities. All

these restrictions are unrealistic or at least

unnecessary in describing crop response to
commercial fertilizers, for example, To overcome

these difficulties, production economists have made
steady progress in identi~ing explicit functional
forms which impose fewer theoretically unrealistic

restrictions. For example, a simple quadratic
response function eliminates all the inflexibilities
cited above for the Cobb-Douglas form, but
introduces others. Over the last two decades,
economists have increasingly used “flexible”

fictional forms such as second-order Taylor series
approximation or the even more flexible Fourier

form to express general nonlinear relationships.

Even more recently, feedforward neural networks
have joined the collection of nonparametric
regression estimators with desirable approximation
characteristics, but these as yet have been rarely
used to model production processes.

Recent advances in computer technology
and in the modeling of biological systems, have
resulted in rapid growth in the use of process
simulation models to generate data on plant and

animal responses to environmental and management
inputs (Musser and Tew; Stockle; Dillon, Mjelde

and McCarl). These process simulation models are
often comprised of dozens of equations and
subroutines which describe and link the fundamental
chemical and physical subsystems which generate
growth. The biochemical basis of these systems
increases the likelihood that fundamental
discontinuities in the input-output relationships will
be revealed, Approaches which can efficiently
describe input-output relationships with potential

discontinuities and multiple outputs and inputs are

needed to summarize the voluminous results of

process simulation models,

Neural network computer models provide
a potentially promising method for summarizing
input-output results from biophysical simulators,

Neural networks can also use data generated by
traditional field experiments to describe biological
input-output response functions. Agricultural
scientists have successfully used neural networks to
describe diverse relationships including that between

weather and soil moisture, and sensory judgment
and fruit coloration (Kunkel, Thai and Skewfelt).

Some pioneering agricultural economics applications
of neural networks include prediction of

end-of-season com yield from early season weather
measurements, and prediction of planted acreage of

com and wheat from lagged prices and other
variables (Uhrig, Engel, and Baker; Uhrig and
Botkin).The objectives of this paper will be to
describe the relatively new feedforward neural
network approach for estimating flexible
input-output relationships; to illustrate and evaluate
the network approach in estimating a crop yield
response function to fertilizer based on experimental
data; to compare the network results to those of a
traditional statistical approach; and finally, to assess
the potential for networks in estimating biological
response relationships using data from both

experimental and process simulation sources.
Specifically, a feedforward neural network and an

OLS regression are used to describe the relationship
of Alabama Bermudagrass hay to nitrogen and
potash fertilizer. This two-input single product
example facilitates graphical comparisons of the
network and OLS results for a familiar agricultural
response problem. Finally, the paper uses a new
estimation algorithm for feed forward neural

networks that avoids the local minima problem
faced by traditional optimization algorithms and

allows imposition of a priori information.

Overview of Neural Networks

Wasserman provides an introduction to
neural networks. For a more specialized treatment
see McClelland and Rumelhart. As the name

suggests, neural networks model certain aspects of
neural activity by linking together many simple
units, called neurons, into a complicated network of
interconnections. This network can then perform

calculations or store information as determined by
the network connections.

This study uses a class of neural network
models called feedforward networks, which organize
a network into an input layer, one or more hidden
layers, and an output layer, each layer containing
one or more units. Each layer feeds forward to the
next layer, no feedback of signals allowed.

Each layer of the network has an input
vector denoted by z and an output vector denoted by

a. Let, Zj = (z,,, ...J,J represent a k, x 1 vector Of

inputs to the ith layer and a, = (a,,,...,aj~) a k, x I

vector of outputs for the ith layer. Ther outputs of
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one layer define the inputs to the next layer by a
linear function z~ = Wk., a~.,, where W, denotes a

k,+, x k, matrix of parameters or weights. Observe

that all the outputs of the preceding layer potentially
influence each of the inputs of the next layer. By
convention, the output to layer zero (the input layer)

equals the input of layer zero, i.e. aO= ZO. Each
unit in a hidden layer takes its input and performs
a nonlinear transformation, represented by .j(.) and
called an activation function, to produce the output

of the unit. That is, a,,~=flzl,J for k = 1,.... k,, The
final output of the network occurs at the output

layer, say layer L. The output layer may or may
not have an activation function, we choose no

activation, so letting y represent the output, y = z~
= W~.la~.l.

A sequence of vector operations
convenient] y expresses this structure. Let F~,()
represent an array of activation fimctions, i.e. F~,(z,)

R Mz,,I),..., j(zi,k)]T. Also, let x = (Xl,.,,, Xk)~
represent a vector of network inputs to a
feed forward network, Then,

z“ . x
aO = z~
z, = WOaO
al = Fi,(zl)

(1)

ZL. ) = WL.laL.l

% I = Fk,.,(zL.1)
Y = WL.IaL.l

For a single hidden layer network with a

scaler output (i.e. L = 2 and k2 = I) the above
sequence reduces to a much simpler model, Let
~(x) denote a feedforward network, Then

V(X) = W, F(WOX) (2)

simplifies to

where Wo, represents row i of matrix W. and WC,,
the ij element of matrix W1.

Our interest in feedforward networks arises
from their powerful approximation characteristics
(Carroll and Dickinson; Cybenko; Homik,
Stinchcombe and White (1989); Ito). Most useful
for our purposes, Hornik, Stinchcombe and White

(1 990) have shown that for a suitable choice forj(.)
a single hidden layer feedforward network can
approximate any piecewise differentiable function
and its derivatives on open bounded subsets of IRk
to any desired degree of accuracy. This study uses
the widely applied logistic finction j(v) = l/( I +

exp(-v)) which satisfies the required conditions on

X“).

Single hidden layer feedforward networks
belong to a class of semi-nonparametric series
estimators that have approximation abilities similar
to that described for feedforward networks.
Andrews describes series estimators by y = ~~~1

9igi(x), where g,:Rk + R belong to some pre-
specified family of functions. The family of
functions {gl( .)} traditionally consists of polynomial

spline or trigonometric functions. However, there
exists many other families of functions that enable
series estimators to have good approximation
characterist its. The work cited in the previous
paragraph simply adds a family of sigmoid
tlmctions to the list of function families with good
approximation abilities by setting gi(x) = j(wo, x).

The well-known Fourier Flexible Form

(FFF), (Gallant, 1982) based on the trigonometric
family, has the same powerfhl ability as
feed forward networks to approximate piecewise

continuous functions and their derivatives.
Interestingly, one can express the Fourier form as a
special case of the feedforward network with sine
and cosine activation functions, but such a network
does not satisfy the conditions required by Homik,

et al (1990), because sine and cosine functions do
not satisfy the t-finite condition. Thus, the
approximation ability of feedforward networks
depends on a fundamentally different mechanism
from the mechanism supporting the same ability in
the Fourier form.

There exists an important difference

between feed forward networks and other traditional
series estimators since each of the g,(O) functions of
a network, i.e. the activation functions, contain
estimable parameters, i.e. g,(x) = j(wo, x), while
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polynomial and trigonometric families use

predetermined g,(x) functions, e.g. g,(x) = sin(ix).
This enables networks to avoid the “explosion of

parameters” problem associated with polynomial and

trigonometric families while obtaining a better rate
of approximation than series estimators based on
polynomial and trigonometric families. Specifically,
letting d represent the dimension of an input vector
and n represent the number of terms in the series

expansion, (i.e., for the networks described above n

= k, and d = kO), the number of parameters in a

polynomial series approximation or the FFF increase

at order nd while the parameters of a feedforward
network increase at order rrd. Despite the more

slowly growing number of parameters, Barron
shows that feedforward networks can achieve an
integrated squared approximation error of order
0( I/n) while other series estimators can only
achieve an approximation error of order 0(( l/n)2’~,
for functions satisfying the same smoothness

property, Thus, only for problems with a scaler

input can polynomial and Fourier methods

outperform networks, and networks dominate for
problems with more than two inputs.

Networks face some disadvantages
compared to traditional series estimators. First, the
statistical properties of networks remain
undeveloped. The work of Gallant (198 1) and of
Andrews does not apply directly because the g,(.)

finctions of networks contain estimable parameters.
Second, feedforward network models are nonlinear
in the parameters, so commonly used estimation

algorithms may not find the globally optimal set of
connection weights. This problem can be solved

with considerable computational resources, thus we

expect this handicap to decline over time.

Some criticize networks for being black

boxes with which the researcher cannot determine
the mechanism by which independent variables
affect the dependent variable. This criticism has

been overstated since networks can address many of
the same questions for which other flexible

functional forms have been used. For example, one
can easily obtain estimates of elasticities and

marginal products from a network in the same
manner that these values are computed from other
forms. Moreover, by developing methods to impose

a priori constraints on networks, as shown in the
example below, one can develop tests of economic
hypotheses.

The neural network literature often refers to

estimation as training, but by either name uses a

least squares criterion to find optimal values of W

= (w,, w,) in a parameter space W. The most

common algorithm uses a steepest descent method,

called back-propagation, to minimize the SSE

(sum-of-squared errors). Unfortunately,

back-propagation, or other gradient methods such as
those available in SAS, can easily stick at local

minima to the SSE surface and show sensitivity to
starting values. The alternative we adopt uses a

random search algorithm, called Simulated

Annealing, to search W for a globally minimizing

set of parameters. Unfortunately, this approach
requires considerable computation and has no

general purpose implementations available, thus we
have written our own algorithm.

The actual algorithm uses a hybrid linear

least squares and simulated annealing method,
(Joerding and Li; Li, Joerding, and Genz). Briefly,
this hybrid algorithm takes a random step in the

parameter space for WO,computes outputs for the
hidden layer units, then uses a QR decomposition
and back-substitution to compute the value of Wi
that minimizes the SSE. (See Golub and Van Loan
for a discussion of the QR decomposition. We use

the QR decomposition instead of the faster Gaussian
elimination method because of its superior

numerical stability.) The algorithm proceeds by
comparing the resulting new SSE to the old SSE

generated by the previous WO. If the old SSE
exceeds the new SSE, then update the WOweights to
the new WO,otherwise, keep the old WOand make a

new guess, If the new SSE exceeds the old SSE,

then keep the “inferior” new WOwith a probability

determined by an exponential distribution. The
probability of accepting a “bad” step declines to
zero as the algorithm proceeds. With unlimited
iterations this approach always finds the global

minimum to the SSE flmction (Aarts and Korst). In
practice, we limit the number of iterations meaning
that the algorithm may stop at a local minimum
inferior to the global minimum. However,

simulated annealing has worked well in a variety of

non-convex optimization problems (Aarts and
Korst).
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Data

The data utilized in this study for

estimating a traditional statistical response function
and neural network relationship are drawn from a

Bermudagrass hay fertilizer response study

(Engibous and Young). The data were collected in
a five year study over 1972-76 at the Brewton
experimental field at Auburn University in Alabama.
Annual harvest of Coastal Bermudagrass hay is
measured in pounds of oven-dried forage. Soil tests
revealed that soil phosphorus was high and

precluded the need for supplemental phosphate
fertilization. Plots received combinations of
nitrogen (N) and potash (KJO) fertilizer varying
between O and 600 pounds per acre of nitrogen, and

O and 500 pounds per acre of potash. The training

data contain twenty configurations of nitrogen and

potash, distributed as shown in figure I over five
years for a total of 100 observations. The response
data were available only as averages over equal
numbers of spatial replications for each treatment
within years. Since the inputs were identical within
each averaged group and the number of replications
for each input combination were equal, averaging

the responses involves no efficiency loss (Theil).

Results

We estimated a network with five hidden
units and no constraints, since we wanted the
network to approximate a general yield relationship.
This five unit model produced a sum of squared

errors equal to 255,580,000 and an R2 equal to .89.
Figure 2 displays the estimated network production

yield surface and contour map. Biological processes
such as these can exhibit negative marginal returns
to fertilizer input, which in our case shows up most

clearly with nitrogen, especially with little or no

potash application. We can see this more clearly in
figure 3 which shows sections of the production
yield surface and marginal product surface at the
400 poundslacre of nitrogen and 250 poundslacre of
potash input. Notice that the network estimates
negative yields at 600 pounds of nitrogen and zero
of potash which is still within the range of the data.
Of course, no actual biological process can generate
negative pounds of Bermudagrass, which shows
how a network, or any unconstrained functional
form, can violate a priori information.

For comparison we estimated a quadratic

approximation to the biological response function by
ordinary least squares regression. The Student

t-rat io is presented in parenthesis:

Yield = 1820.3 - 0.079*N2 - 0.055 *(KZO)2
(2.9) (-8.7) (-3.9)

+ 0.061 *N*K20 + 54.79*N + 17.33 *KT0

(3.4)

The

(12.4) (3.6) - ‘

R2 = .866,
SSE = 291,183,662 (4)

quadratic approximation is plotted in
figure 4. Notice that the quadratic representation

does not violate the negativity restriction at N = 600

and KZO = O, as with the network representation.
However, the symmetry of a quadratic
representation means that for some input
combinations the quadratic representation will
predict negative output. Evaluating equation (4), we
determine that the quadratic representation will
predict negative output for N greater than 733.27
when no potash is applied.

Typically, one doesn’t impose a positivity

constraint on a quadratic representation because of

the obvious bias introduced. For example, only a

convex quadratic function (open side up bowl) has
positive output over the entire positive orthant,
hardly a realistic representation for a biological
response function. A network representation doesn ‘t
face this problem because of its flexibility, That is,
one can constrain the network to predict only
positive values without biasing the estimated output
surface over the range of the data set as long as the
true response functions satisfies piecewise
continuity. Indeed, including the u priori

information that biological response functions must

produce positive values should improve the
estimation efficiency.

We re-estimated the network, using
techniques described in Joerding, Li, Hu, and
Meador; and Joerding and Meador, imposing a

positivity constraint at the point N = 600 and KjO

= O, which lies at the boundary of the data domain,
with results displayed in figure 5. The basic shape

of the relationship remains unchanged except for
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Figure 1. Experimental Combinations of Potash (K@) and Nitrogen (N) in Pounds/Acre Applied in
Bermudagrass Hay Experiment over Five Years
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Figure 3. Estimated Unconstrained Network Yield and Marginal Product Curves (Yield, Marginal Product

(A4P), Nitrogen (N), and Potash (K20) in Pounds/Acre)
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Figure 5. Constrained Network
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smoothing the non-convexity in the isoquants over
the top left portion of figure 5b, Of course the
quadratic form used for the isoquant surface in
figure 4b imposes symmetric oval isoquants.

Both the constrained and unconstrained

network estimates show concave isoquants on the
fringe of the sample domain. This concavity may
result from extrapolating into regions outside the
sample domain, but they may reflect the actual
response function. Concave isoquants have been
found in other biological processes; Brokken
presents a livestock feeding example. They also
raise the possibility of cost minimization at corner
solutions. Comer solutions appear feasible at

certain points (figure 5b). The agronomic feasibility

of such fertilization patterns on Berrnudagrass hay
in the local soils merits further investigation. Single
nutrient fertilization, as suggested by comer
solutions on concave isoquants, is fairly common
for some crops and regions. Of course, single
nutrient fertilization could also be profit maximizing
with convex isoquants having weak curvature.

Conclusions

Previous theoretical work, described earlier,

has shown feedforward networks to have powerful
approximation capabilities similar to the Fourier
flexible form but without the “explosion of

parameters” problem faced by Fourier and

I

polynomial expansions. Nevertheless,

practical questions need answers

several
before

recommending feedforward networks for empirical

anal ysis. Our study has sought to address some of
these questions.

First, can networks provide reasonable
results with the relatively sparse data available from
experiments? Our data set had only 100
observations yet produced fairly reasonable results

compared to a simple quadratic reference model, [n
some ways the two models barely differed. For
example, holding potash at 250 pounds/acre, the
network estimated maximum hay output at about
465 poundslacre of nitrogen while the quadratic

approximation estimated maximum output at about
445 poundslacre of nitrogen.

Second, can networks with a practical
number of hidden units provide the necessary
flexibility to “let the data speak”? Our estimated
network contained only five hidden units yet found

possible evidence of non-convex isoquants in two
regions of the input space. Non-convex isoquants

are consistent with observed single-nutrient
fertilization and suggests a possibly fruitful area for
more experimentation with a broader range of

nitrogen and potash combinations.

Third, can one constrain feed forward
networks to satisfy a priori} information without
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losing the flexible functional form characteristic?
Our unconstrained network violated positivity for
hay yield, so we developed an algorithm to impose
the positivity condition. The resulting network
retained enough flexibility to capture the

non-convex isoquants found in the unconstrained
model without a~parently biasing the results

elsewhere.

We answered the above questions in the
affirmative, but feedforward networks also have
disadvantages. First, estimating feedforward
networks in such a way as to avoid local minima
requires considerable computational resources. Our
unconstrained results required almost 24 hours for

a solution on a special purpose parallel processing
computer capable of up to 60 million floating point

operations per second. (The comparable figure for
an IBM-type 486 machine is probably around 2
million.) Advances in computer technology should

reduce this problem in the future. Second, while
off-the-shelf programs for estimating feedforward
networks exist, these programs use back-
propagation, a method that can stick at local minima
to the sum of squared errors. Moreover, these back-
propagation programs do not allow imposition of a
priori information, like positivity, Thus, we found
it necessary to write our own program that
implements a global minimization routine and

provides a way to impose a priori constraints. This
programming effort has been non-trivial, resulting in

over 8,000 lines of C code. Third, and most
important, networks share with other flexible forms,
like the Fourier flexible form, a difficulty in
displaying results. A network doesn’t have a
particular parameter to measure an input’s marginal
product. Instead, we have needed to rely on figures
and descriptive statistics, Users of these flexible
forms need to develop better methods to

communicate their results, Fourth, as with the other

flexible functional forms, users face the difficult

problem of deciding on the optimal number of

hidden units. Too few and the network fails to
extract all the information from the data, too many
and the network overtlts the data. As yet, no

widely accepted or practical solution to this problem
has been found.

We were reasonably successful in

estimating a crop yield response relationship using
feedforward networks and only 100 experimental
observations. WhiIe this two-input single output

example was useful for illustrating the relatively
new neural network procedure, it is unlikely that
networks will replace regression analysis for routine
estimation of small dimensional production
functions. There are good reasons, however, why
networks might be useful in the fiture for

estimating complex multiple input-multiple output
relationships from experimental or process
simulation results. There is growing interest in

simulating multiple production and environmental

outputs such as multiple crop yields, wildlife
populations, soil erosion, and nitrogen leaching from
multiple management inputs. Neural networks are
well adapted for summarizing such complex
processes, However, our ongoing work in this area
indicates that the computer programming and
processing requirements are considerably more
formidable for multiple input-multiple output
applications.

Networks are also well adapted for

describing innate discontinuities in biological
phenomena modeled in process simulations. For

example, plants or animals may die or cease
growing when certain inputs (or toxins) reach
threshold levels. The ability of networks to

approximate such relationships derives from their
denseness in spaces of piecewise differentiable
functions.

Finally, successful estimation of complex
input-output relationships using neural networks

may require very large quantities of data. The

marginal cost of generating additional observations

from a stochastic process simulation model is very

low once the model is built and validated, providing
an inexpensive source for data to estimate
feed forward networks.
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Endnote

‘Estimated values for WOand WI equal

1
7.845E -03, -

7.262E -03, -

~, = 7.084E -03, -

.093E -02, - 1.538E +00

.349E -02, -4.562E -01

.660E -02, 9.312E -01

!4.577E -03, -I.103E -02, 1.735E +00

I .068E -05 3.284E -03 1.312E +00

WI = (- 1.227E +05, 1.4940E +05, -3.997E +04,

3.345E +4, 3.022E +05, -2.718E +05)

(5)

(6)


