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Developing Flexible Economic
Thresholds for Pest Management
Using Dynamic Programming

Jayson K. Harper, James W. Mjelde, M. Edward Rister,
Michael O. Way, and Bastiaan M. Drees*

Abstract

The rice stink bug is a major pest of rice in Texas, causing quality related damage. The
previous thresholds used for assisting in rice stink bug spray decisions lacked flexibility in economic
and production decision variables and neglected the dynamics of the pest population. Using
stochastic dynamic programming, flexible economic thresholds for the rice stink bug were
generated. The new thresholds offer several advantages over the old, static thresholds, including
increased net returns, incorporation of pest dynamics, user flexibility, ease of implementation, and
a systematic process for updating.
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The need for flexibility in management
strategies for dynamic agricultural processes has
been emphasized in many studies (Antle 1983 a,b;
Mjelde, Dixon, and Sonka). One area in which this
need has long been acknowledged is pest
management (Stone and Pedigo). The development
of economic threshold concepts and of integrated
pest management techniques are direct results of the
search for more systematic approaches to pest
control (Stern et al.; Frisbie and Adkisson).

Headley’s work marked the beginning of
the integration of economic concepts with
entomological research regarding pest damage, He
redefined the concept of economic thresholds to be
the pest population density that produces marginal
damage equal to the marginal cost of preventing
that damage. Work by Hall and Norgaard;
Chatterjee; and Hueth and Regev further refined the
concept of economic thresholds, Early economic

thresholds were developed using benefit-cost
analysis, expertise, and/or educated guesses. Pest
management specialists encouraged the use of pest
scouting techniques and these predetermined
threshold values for making pesticide application
decisions. The easy-to-use nature of these early
thresholds encouraged their use because they
provided producers with better information on
which to base pest management decisions than had
previously been available, However, entomologists
and economists alike lacked confidence in these
early thresholds because of their inflexible nature.
In general, these thresholds disregarded the dynamic
nature of insect populations, product markets, and
insecticide costs and efficacy.

Research in the late 1970s and early 1980s
sought to include the dynamic aspects of pest
management into economic thresholds development
(for examples in insect management, see Hall and
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MoffitC Talpaz and Frisbie; for nematodes, see
Moffitt, Hall, and Osteen; Zacharias, Liebman, and
Noel; and for weeds, see Marra and Carlson; Marra,
Gould, and Porter). Although these studies
incorporated additional facets of pest management
into economic thresholds, few fully accounted for
the dynamic and stochastic aspects of the problem,
These elements are necessary in developing a
framework which will provide flexible economic
thresholds for use by agricultural producers and
crop consultants.

The objective of this study is to develop a
framework for flexible economic thresholds
implementable at the field level, The thresholds
need to account for changing economic and
production conditions, and the dynamic and
stochastic nature of pest populations. To
accomplish this objective, economic thresholds for
management of the rice stink bug, Oebalus pugnax

(Fabricius), in Texas rice production are developed
using stochastic dynamic programming.

Rice Stink Bug Damage and Management

The rice stink bug (RSB), a major pest of
ripening rice in the U.S., causes substantial
economic losses because of decreased rice quality.
Based on data from 1981-1984, it was estimated
that RSB damage costs Texas rice producers
between $5.91 and $29,34/A annually (Brorsen,
Grant, and Rister). RSB damage occurs for an
approximately four-week period during later-stage
rice development, This period extends from
heading to harvest (Swanson and Newsom). Adult
RSB migrate into rice fields from earlier season
hosts such as grain sorghum and grass, RSB are
not a multiple generation type of pest in rice, so
field infestation is a function of migration and level
of management. RSB damage is attributed to the
extraction of fluids from the developing rice kernel
and the introduction of micro-organisms which
cause a condition called “pecky” rice. This quality
reduction manifests itself in two ways, First,
kernels which are structurally weakened by RSB
feeding activities may break during milling,
lowering the percentage of whole grains (head
yield). Second, probed kernels that do not break
during the milling process develop discolorations
(peck damage), leading to a reduction in the quality
grade assigned. Several recent studies have

quantified the price discounts associated with RSB
related quality damage (Grant, Rister, and Brorsen;
Fryar et al.; Traylor, Denisen, and Conger).

Controlled cage experiments conducted in
the 1960s and expert opinion formed the basis for
development of early static treatment thresholds for
RSB management. These thresholds were
developed irrespective of rice value, treatment cost,
and other variables of production. The Texas
Agricultural Extension Service, at the suggestion of
experiment station researchers, established the
following thresholds in 1981: 5 RSB (adult and
nymphs) collected per 10 sweeps of a sweep net for
the first two weeks after 75 percent panicle
emergence and 10 RSB thereafter (McIlveen,
Bowling, and Drees). Changing economic and
production environments, however, necessitated the
development of dynamic flexible thresholds better
suited to the complex rice production environment
of the 1990s.

Study Area and Data

This analysis is based on field data

collected at two Texas Agricultural Experiment
Station research sites in the Texas Rice Belt (upper
Texas Gulf Coast area): Beaumont on the eastern
side and Eagle Lake on the western side. Data
collected from large plot studies from 1984 to 1987
were used to develop RSB damage functions
(Harper, et al.). In turn, these functions were used
in the development of the flexible economic
thresholds for RSB management.

RSB Dynamic Programming Model

A single acre, intraseasonal dynamic
programming (DP) model is developed for RSB
management (see Burt or Kennedy for a general
discussion of the use of DP models). Within the
model, five stages that represent identifiable
reference points for pest sampling are defined
(figure 1). These stages correspond to the following
maturation stages of the rice plant: heading (stage
5), milk (stage 4), soft dough (stage 3), hard dough
(stage 2), and maturity (stage 1). Overall, the five
stages comprise the approximately four week period
during which RSB migrations and damage occur.
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For stages 5 to 3, corresponding to
heading, milk, and soft dough, two decisions are
possible: spray (S) to control the RSB or do not
spray (NS). Only one insecticide spray using EPA
registered insecticides at labeled rates can be made
in each stage. This reflects the typical lag of one
week between scouting, spraying, and the next
scouting period. The spray decision affects the
number of adult RSB present in subsequent stages.
At hard dough, only the NS decision is possible,
because of EPA regulations concerning permissible
levels of insecticide residues on food grains (U.S.
Environmental Protection Agency). The hard dough
stage was included to account for differences in the
quantity and types of damage during the entire
period when rice is vulnerable to RSB. Finally, the
decision at maturity is to harvest or not to harvest
the field.

State Variables and Transition Equations

Specification of the dynamic programming
(DP) model for RSB management requires six state
variables, Five of the state variables represent the
number of adult RSB observed at the beginning of
the various stages (Al through A5 in figure 1). The
sixth state variable functions as a possible constraint
on the total number of insecticide applications. The
model uses the number of RSB observed at each
stage, instead of using an accumulated damage state
variable (Burt and Stauber). An accumulated

Developing F[exlhle Economic Thresholds for Pest Management

damage function state variable would decrease the
dimensionality of the RSB model from six to two
state variables. Methods that decrease
dimensionality have been discussed extensively in
the literature (Burt), but in this model decreasing the
dimensionality would lead to increased difficulty in
applying the thresholds at the field level. In order
to use a DP model employing an accumulated
damage function state variable, producers would be
required to keep track of accumulated damage
(which would have to be calculated) rather than
RSB numbers (which are observed directly by virtue
of the sampling process).

As illustrated in figure 1, the number of
state variables relevant to the RSB decision process
varies by stage. The state variable for adult RSB at
heading (A5), for example, was used only to
describe the state of the system at heading. Because
the damage relationships utilized do not include
RSB numbers at heading, this state variable does
not help in describing the system in later stages,
The number of adult RSB and the spray decision at
heading, however, affects the state of the system by
influencing the number of adult RSB present in later
stages. The remaining four RSB state variables (Al

- A4) were used in conjunction with estimated
relationships to assess the damage associated with a
given level of infestation. The use of RSB levels to
determine damage is further discussed in the
Damage and Yield Relationships section.

Figure 1. Schematic of the Rice Stink Bug Dynamic Programming Model
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where:

A is the numix?r of adult rfce stink bugs present in stage n,
n

R is the return based on the decision made in stage n, and
n

S, NS, H, andNH represent the spray, donl spray, harvest, arid don’t harvest decision alternatives
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Transitions for the RSB state variables are
both deterministic and stochastic depending on the
stage. At the milk stage, for example, the relevant
state variable is A4, the number of adult RSB
observed at the beginning of this stage. The spray
decision depends on A4, as well as expected future
RSB numbers, the value of the rice crop, and the
cost of control. The transition for observed RSB at
milk (A4) from the milk to soft dough is
deterministic, because the producer cannot affect
RSB numbers already observed, At the milk stage,
however, the transition for the number of RSB at
soft dough (A3) is stochastic, depending on the
decision to spray or not to spray and the number of
RSB present at the milk stage. Similar
deterministic and stochastic relationships exist
between the other RSB state variables.

Each RSB state variable takes on 16
possible values, ranging from zero to 15 RSB in
increments of one adult insect. Values represent the
average number of adult RSB observed when using
a 15-inch diameter sweep net in the recommended
sampling method (Texas Agricultural Extension
Service).

Estimated state variable transition equations
for the stages when the RSB are stochastic are
(Harper):

Al = 2,0870 + 0.8070 A2 + el

(3.01) (6.70) (1)

z = .35 F = 44.9,

Az = 2,1014 + 0.5343 A3 + e2

(4.16) (5.47) (2)

R7 = .24 F = 29.9,

A3 = 2.4157 + 0.2048 A4 + C3

(5.65) (4.18) (3)

r = .14 F = 17.5, and

Ad = 3.9579 + 0.9885 A5 + e4

(2.40) (2,48) (4)

R7 = .10 F = 6.1,

where An is the number of adult RSB at stage n, En
represent error terms, and t-ratios are in parentheses
below the estimated coefficients. All the
coefficients associated with lagged RSB numbers
are statistically significant (cc=O.05),indicating that
a strong Markov relationship exists in the estimated
equations, Of the functional forms examined
(linear, quadratic, and square root), the linear form
provided the best statistical fit.

Stochastic transitions for RSB numbers
were developed by fitting cumulative distribution
functions (CDF) for the error terms associated with
equations (1)-(4). The approach, which utilizes a
hyperbolic tangent function to estimate the CDF,
allows for conditional probabilities to be generated
(Taylor 1984, 1986). Transitions are conditional on
the level of previous RSB numbers. The estimated
CDF were assumed to be independent of each other.
Maximum likelihood estimates of the CDF are:

F(el) = 0.5 + 0.5 tanh (0.1013 + 2.2545 El)

(109) (10.74)

(5)

F(@ = 0.5 + 0.5 tanh (-0.0515 + 5.7779 e

(-0.65) (10.15)

(6)

F(e3) = 0,5 + 0.5 tanh (0.3055 + 3,6135 es

(3.31) (11.57)

- 3.8088G; + 1.5441 e:)

(-6.35) (4.07)

(7)
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F(@ = 0,5 + 0.5 tanh (0.2404 + 1.5105 C4
(1.82) (7,79)

-0.6255 ej + 0.1174 c:)

(3.38) (2.00)

(8)

where t-ratios are in parentheses below the
estimated coefficients. Polynomial terms included
in the CDF’S are based on maximizing the Schwarz
criterion, The CDF’S of the error terms represent
the effect that exogenous factors such as migration
and weather have on RSB infestation levels.

Because the data set used to estimate the
transition functions did not include the effect of
spraying on RSB populations, other research
findings were used. Based on findings reported by
Way, Bowling, and Wallace, the average
effectiveness of chemicals labeled to control RSB in
rice is approximately 85 percent. To account for
spraying, the slope coefficients were reduced to 15
percent of their estimated values. Transitions in the
model, therefore, use equations (1)-(4) as presented
for the case when no spraying occurs. If spraying
occurs, the transitions are based on equations ( l)-(4)
with reduced slope coefficients. The estimated
cumulative density functions for the error terms
remain the same regardless of spraying.

As noted earlier, the sixth state variable
constrains the number of stages in which insecticide
applications can occur. Such a state variable can
represent several constraints placed on the system.
One possibility is a constraint on total insecticide
expenditures. Another might be future
governmental regulations limiting the number of
insecticide applications for RSB control. The
transition for the constraint state variable is
deterministic depending on the decision to spray or
not to spray.

The number of values for the constraint
state variable varies by stage. At the start of the
management process (heading) there are three stages
where spraying potentially can occur (heading, milk,
and soft dough). The constraint state variable at

this stage assumes one of four possible values: O,
1, 2, or 3. Each value represents the number of
possible times during the process that spraying can
occur. A “2”, for example, indicates that of the
three stages when insecticide can be applied,
spraying can occur during only two of the stages.
The model determines which two stages, if at all,
spraying occurs. At milk, the constraint state
variable represents O, 1, or 2 possible insecticide
applications, Finally, at soft dough the constraint
state variable indicates a simple spray/no spray
possibility.

Recursive Equation

The objective of the model is to maximize
expected net returns associated with RSB
management. This leads to the general recursive
equation:

Vn(Al,+ A3, A4, A5, ~ =
max {R. + E Vn_l(A1,A2, A3, A4, As, F)}
S, NS

(9)

where Vn is the expected net returns at stage n given
the state and the optimal decision rule are followed
to the end of the planning horizon, A. represents the
five RSB state variables, F represents the constraint
state variable, Rn is the immediate net returns at
stage n, S and NS represent the spraylno spray
decision, and E is the mathematical expectation
operator over RSB numbers. Subscripts on the state
variables denoting the stages have been suppressed
for simplicity As discussed earlier, the relevant
state variables vary by stage. If a state variable is
not relevant at a particular stage, it can only take on
one value in the model, effectively making it
irrelevant to the decision process at that stage.

Components within the immediate return
function, Rn, vary by stage. For the stages heading
through soft dough, the immediate return function
represents the cost of spraying. If spraying occurs,
Rn is the cost of insecticide application, If no

spraying occurs, R. is zero for this stage.
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At harvest the immediate returns function
determines the per acre returns, n, associated with
RSB management that is,

(lo)
rc={(P-zfc)o Q},

where P is the price received, HC is harvest costs,
and Q is rice yield. Harvest cost is an exogenous
parameter charged at $0.90/cwt (Dismukes).

The price received by producers for their
rice depends on prevailing supply and demand
conditions and the total amount of peck, head yield
damage, and other quality losses incurred over the
course of the growing season. To develop more
realistic RSB decision rules, two separate price
relationships were incorporated to represent a range
of potential supply/demand situations in the DP
model. These supply and demand conditions are
characterized by 1) rice moving into the U.S.
government loan program (excess supply) or 2) rice
moving directly into the market (high demand).
Rice price, therefore, is a function ofi

P = j(PECK, HY, SD, X) (11)

where PECK is RSB peck damage (percent), I-Wis
head yield (percent), SD is the supply/demand
situation, and X represents all other rice quality
factors that are exogenous to the RSB management
decisions. As noted earlier, increases in RSB
numbers increase percent peck and decrease head
yield. The number of RSB, therefore, influences
the price which producers receive.

For rice moving into the loan program, the
price received was determined by taking into
account the percentage of whole kernels (head
yield), broken kernels (mill yield minus head yield),
and the level of peck. Government loan values are
used for head yield and brokens, and a discount
structure was used for damaged kernels (including
peck- and smut-damaged kernels) and red rice (an
undesirable variety of rice which is regarded as a
weed). The price received under the loan (PJ is:

P~ = (HY/100 * WKLV) t (12)
(BROKENS/100 * BKLV) - DISC

where WKLV is the whole kernel loan value ($/cwt),
BKLV is the broken kernel loan value ($/cwt), and
DISC is the discount ($/cwt) associated with
damaged kernels (peck and smut) and red rice
(USDA).

The price received (and discounts for RSB
damage) for rice moving directly into the market are
driven by supply and demand conditions, rather than
being calculated from the government loan program
formula, To simulate the effects of selling in the
rice market, a hedonic price model estimated by
Brorsen, Grant, and Rister for the 1981/82
marketing year was used. The 1981/82 marketing
year was selected because it had the most prices
above the government loan value of the three
marketing years for which hedonic price
relationships were fitted (198 1/82, 1982/83, and
1983/84).

In the hedonic equation, rice price is a
function of mill price, head yield, broken kernels,
weed seeds, red rice, peck, smut damage, chalky
kernels, heat-damaged kernels, and test weight
(Brorsen, Grant, and Rister). For purposes of
developing economic thresholds for RSB
management, all quality factors except percent head
yield, percent peck, and test weight were set equal
to average values calculated from data found in
Grant, Rister, and Brorsen. Percent head yield and
percent peck were calculated from the damage
functions discussed in the next section. Test weight
was found using an estimated equation relating peck
to test weight (Grant, Rister and Brorsen). Finally,
in this analysis, mill price was varied.

Damage and Yield Relationships

RSB affect both head yield and peck
associated with rice. Functions relating head yield
and peck to the number of adult RSB at each stage
were used to determine the values used in the price
equations. Various theories of damage and
functional forms were tested by Harper et al.
Linear functions of adult RSB were found to
provide the best fit for these quality variables. No
significance was found between RSB numbers and
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crop yield, so rice yield is simply a function of a
variety binary variable and planting date. The
estimated damage functions are (Harper et al.):

PECK = 1.0381 - .CNJ51PD + .0206 Al + .0334 Az
(5.80) (-3.74) (3.37) (3.45)

+ .0209 A3 + .0190 A4
(2.19) (4.16)

Rx = .59, F = 35.2

(13)

HY = 36.811 + .00104 YIELD + .1832 PD - .3346 AZ

(6.04) (3.1 1) (4.30) (-0.97)

- 1.0763 A3 -.5318 Ad

(-3.37) (-2.78)

1? = .45, F = 13.6

(14)

where PECK is the percentage of rice grains
exhibiting peck damage, HY is head yield
(percentage of whole grains), PD is planting date
(Julian day), and An is the number of adult RSB at
stage n.

Previous thresholds were based on nymphs

plus adult RSB, but Harper et al. found that adult
population densities alone accounted for as much of
the variation in damage as nymphal and adult
populations. This finding greatly simplifies field
sampling because adult RSB are much easier to
identify than nymphs.

Results

Several types of results are presented.
First, unconstrained decision rules for RSB
management are discussed. Second, the impact on
the decision rules from limiting the number of
insecticide applications (constrained decision rules)
is discussed. Finally, the DP decision rule is
compared to alternative decision criteria.

Unconstrained Decision Rule

The unconstrained economic thresholds for
the RSB are found in table 1. The values in the
table indicate the threshold (or minimum) number of

adult RSB per 10 sweeps at which the decision to
spray is economically warranted. Eighty-one
combinations of supply/demand conditions,
insecticide cost, planting date, and yield are
presented. The DP model can be tailored to specific
situations by altering assumed levels of these
exogenous variables, along with the values for the
non-RSB related quality factors. Regardless of the
stage, the threshold levels generally increase as
spray costs increase and decrease as planting date
increases, expected yield increases, and when rice
enters the market instead of being placed in the
government loan program.

The thresholds for heading are presented in
part A of table 1. Thresholds for this period are the
lowest of the three sampling periods. Because the
number of adult RSB at heading influences the
number of insects present in the remaining stages,
reducing RSB infestations at heading decreases the
probability of high numbers of RSB in later periods.
The thresholds for rice moving into the loan
program are generally higher than for rice directly
entering the market. This was expected because
rice directly entering the market has a higher value
than rice entering the government loan program. At
heading, the threshold levels vary the most between
the loan and mill price situations for rice planted on
April 1. Thresholds for later-planted rice vary little
between the loan and mill price situations, For the
two mill prices considered, the thresholds are nearly
identical for all spray cost, planting date, and yield
combinations. The thresholds vary from 3 to 9
adult RSB per 10 sweeps depending on economic
and production factors.

Of the three periods, thresholds are the
highest during the milk stage (table 1, part B). The
threshold values are generally between two and
three times higher at milk than at heading. The
thresholds at milk vary from a low of 6 to a high of
more than 15 adult RSB. For the situation of high
spray cost combined with low yield, the threshold
was in excess of 15 adult RSB, Fifteen was the
upper bound associated with observed RSB in this
analysis, because of the limited number of
observations of adult RSB levels above 15 in the
data set (Harper), A threshold in excess of 15 adult
RSB is denoted by 15+ in table 1. The higher
thresholds at milk are because estimated peck
damage associated with RSB this stage has the
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smallest of the coefficients associated with RSB
numbers, while the estimated coefficient for
determining percent head yield has the second
smallest coefficient (equation 14). Further, the
coefficient associated with RSB numbers in the
transition equation for this state has the smallest
value (equation 3).

on the number of adult RSB observed at milk. This
is caused by the fixed nature of the discount
structure under the government loan program. In
contrast, the market situation was characterized by
the hedonic price models where the quality
discounts are continuous. Using the first entry in
part C of table 1 as an example, the thresholds at
soft dough for an expected yield of 4500 lb.,
$5.20/acre spray cost, and April 1 planting date are
9-13 RSB. The thresholds which depend on the
number of RSB observed at milk are: 1) 13 adult
RSB if less than 3 adult RSB were observed at

The thresholds for soft dough (table 1, part
C) are similar to those for the milk stage. The
thresholds under the loan are represented as a range
of possible values with the exact value contingent

Table 1. Flexible Economic Thresholds for the Adult R]ce Stink Bug (RSB) for Alternative Yield, Planting Date, Spray Cost, and Price
Assumptions’

(A) ADULT RSB THRESHOLDS AT HEADING

Yield

4500 lbs/A
Rice price

6000 lbs/A
Rice price

7500 lbs/A
Rice priceSpray

cost Plant

($IA) date Load $9/cwt $11 Icwt LOan Wlcwt $11 Icwt ban $9/cwt $11 Icwt

411
5.20 5/1

611

5 4 4

4 4 4

4 4 4

4
3
3

3

3

3

3

3

3

3 3 3
3 3 3
3 3 3

411
8.35 5/1

6/1

7 6 5
6 5 5
6 5 5

6
5
5

4
4
4

4
4
4

5 4 4

4 4 4

4 4 4

4/1
11.50 5/1

611

9 7 7
8 7 7
8 7 7

7
6
6

6
6
6

6
6
6

6 5 5
5 5 5
5 5 5

(B) ADULT RSB THRESHOLDS AT MILK

Yield

4500 lbs/A
Rice price

6000 lbs/A
Rice price

75W3lbs/A
Rice priceSpray

cost Plant

($/A) date Lean $9/cwt $11 /cwt Loan $9/cwt $1 llcwt Loan $91cwt $1 llcwt

8 6 6
6 6 6
7 6 6

411
5.20 5/1

6/1

12 9 9
12 9 9
11 9 9

10 7 7
s 7 7
9 7 7

4/1
8.35 5/1

6/1

15+ 14 13
15+ 13 13
15+ 13 13

14 11 11
14 11 11
12 11 11

12 9 9
12 9 9
10 9 9

15 12 12
15+ 12 12

15 11 12

411

11.50 511
6/1

15+ 15+ 15+
15+ 15+ 15+
15+ 15+ 15+

15+ 14 14
15+ 14 14
15 14 14
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able 1 (continued). Flex]ble Ecrsnomrc Thresholds for the Adult R!ce Stink Bug (RSB) for Altematwe Yield, Planting Date, Spray Cost, and
nce Assrrmptlonsi

(C) ADULT RSB THRESHOLDS AT SOkT DOUGH

Spray
cost Plant

($/A) date

411
5.20 5/1

6/1

4/1

8.35 5/1
611

411
11.50 5/1

6/1

Ydd

45(I3 lbs/A 60Q0 lbs/A 7500 lbs/A
R]ce price Rice price R]ce price

Loan $91cwt $11 /cwt Loarr $9/cwt $lllcwt Loan $91cwt $llICW

9-13 10 10 8-12 8 8 8-11 7 7
11-15+ 10 10 10-12 8 8 7-11 7 7
9-15+ 10 10 8-12 8 8 7-11 7 7

11-15 14 14 10-14 11 11 9-13 10 10
13-15+ 14 14 12-15+ II 11 11-15 10 10
9-15+ 14 14 10-15+ 11 11 9-15 10 9

15+ 15+ 15+ 11-15+ 14 14 10-14 12 12
15+ 15+ 15+ 13-15+ 14 14 12-15+ 12 12
15+ 15+ 15+ 15+ 14 14 11-15+ 12 12

The numbers m the fable mdlcate the average level of adult RSB oer 10-sweeP sample at which treatment IS econornrcally warranted. A value of
5+ mdlcates the threshold exceeds 15 adult-RSB.

Loan values based on the 1989 government cormrmhty program.

milk, 2) 12 if 3 to 6 were observed, 3) 11 if 7 to 9
were observed, 4) 10 if 10 to 13 were observed, and

5) 9 if more than 14 were observed. This general

trend of decreasing thresholds at soft dough as RSB
numbers at milk increases holds for the different
scenarios under the loan model. The thresholds at
soft dough vary from a low of 7 to a high of more
than 15 adult MB. Again, if spray costs are high
and yield expectations low, the thresholds exceed 15
adult RSB per 10 sweeps regardless of marketing
conditions.

Constrained Decision Rule

Constraining the number of insecticide
applications had little effect on the thresholds. For
the majority of the scenarios presented in table 1, if
at a given stage an insecticide application was
possible, the constrained decision rules for that stage
are identical to the unconstrained decision rule. For
those situations in which the constrained and
unconstrained rules differed, the change had one
basic pattern; the threshold level of RSB increased
by one insect when the constraint indicated that only
one opportunity for spraying remained, but more
than one stage was left in which spraying could
occur under the unconstrained model.

Comparison of Decision Rules

To determine the value of the
unconstrained flexible decision rule, the values of
these rules are compared to four alternative decision
criteria. These are: 1) insurance applications
(always spraying at the three stages irrespective of
RSB numbers), 2) never spraying, 3) using the
previously established (traditional) thresholds, and
4) using a modified set of traditional thresholds. As
noted earlier, the traditional thresholds indicated that
spraying was recommended if 5 RSB were observed
at heading and if 10 RSB were observed at milk
and soft dough (the “5-10“ rule), The sampling unit
for previously established thresholds includes both
adults and nymphs, but the sampling unit for the
flexible thresholds developed in this study was
based solely on adult RSB. To account for this
change, an alternative decision criteria of 4 adults at
heading, 9 adults at milk, and 8 adults at soft dough
was developed (the “4-9” rule). These numbers are
based on the 5-10 rule with the average number of
nymphs observed at each stage removed (Harper).

Expected increases in net returns for
flexible thresholds over alternative decision criteria
are presented in table 2 for selected economic and
production scenarios, Employing the flexible
thresholds instead of always spraying increases
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Table 2. Examplesof ExpectedIncreasesin Net Returns for Flexible RSB Thresholds Over
Alternative Decision Criteria ($/A)
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Altematlve Decismrr Cntena

A!WYS! M ~

Example 1:6000 lb/A yield, 5/1 Planting Date, $8.35/Application Spray COst

Market Situation:

Loan Prlcea 18.73 0.68

$9 Mill Price 17.92 1.39

$11 Mdl Price 17.88 1.44

Example 2: 60CM3lb/A yield, 5/1 Planting Date, Loan Prices

Spray Cost/A:

$5.20 10.34 1,81

$8.35 18.73 0,68

$11.50 27.83 0.25

Example 3: 5/1 Plsntmg Date, $8.35/Application Spray Cost, Loan Prices

Yteld/A.-

4500 lb. 20.06 0,21

6000 lb. 18.73 0,68

7500 lb. 17.75 1.50

0.20

0.01

0.02

0.28

0.20

0.82

0.54 1.16

0.20 0.55

0.19 0.26

0.55

0.17

0.16

0.08

0.55

1.71

‘ Always Spray: producer apphes insurance apphcat]ons of insecticide at each gram maturation stage.

2 Never Spray: producer uses no msectlcide to manage RSB populations.

‘ 5-10: producer uses prevmus static thresholds based on tbe total number of RSB adults and nymphs.

“ 4-9: producer uses previous static thresholds modlfiwl to account for only adult RSB.

expected net returns by approximately $10/acre to
$28/acre for the scenarios considered. In the case
of RSB management, insurance applications of
insecticides are not economically justified when
profit maximization is the objective. Experience
with the 5-10 thresholds indicates that some
producers and consultants adjust the thresholds
downward slightly, reflecting a certain degree of
risk aversion by those users. Consideration of the
impact of differences in risk preferences on RSB
management decisions, however, was beyond the
scope of this study.

The value of the new thresholds over the
three remaining decision criteria (never, 5-10, 4-9)
was positive, as expected, because the flexible
thresholds encompass these criteria, The magnitude
of expected increases in net returns in these

situations was much smaller than in the case of
always spraying, ranging from $0,0 1/acre to
$1.81/acre for the scenarios considered.

Although the flexible thresholds increase
expected per acre net returns only slightly over the
three alternative decision criteria, the increase in
expected value of the thresholds for a given
growing season depends highly on the initial RSB
infestation level. The value of employing the
thresholds in a particular growing season over the
alternative decision criteria is better gauged by
examining results for selected numbers of adult
RSB observed at heading. In table 3, one
combination of economic and production factors is
used to illustrate this point. The value of the
flexible thresholds decrease relative to always
spraying as the initial infestation of RSB increases.
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Table 3. Example of Expected Increases m Net Returns for Flexible RSB Thresholds Over Alternative
Deas]on Criteria at Different Initial RSB Infestation Levels ($/A)’

Altematlve Decmon Crrteria

Observed RSB Infestation
Level

at Heading

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A!!?!@@

22.40

20.71

18.77

16.64

14.34

13.70

13.64

13.57

13.51

13.45

13.39

13.32

13.26

13.19

13.13

13.06

w

0.09

0.11

0.12

0.14

0,16

1.93

4.31

6,66

8.93

11.07

13.03

14,79

16.33

17.64

18.70

19.51

~

0.17

0.19

0.20

0.24

0.27

0.18

0.18

0.18

0.18

0.19

0.20

0.19

0.20

0.20

0.20

0.21

w

0.42

0.48

0.54

0.63

1.04

0,46

0.47

0.47

0.48

0.50

0,51

0.51

0.52

0.53

0.54

0.56

i Scenario assumed is rrce yield of 6000 lb/A, May 1 Planting Date, $8.35 /Appiicatlon Spray Cost, and
Government Loan Program Assumphon.

2 Always Spray: producer applies insurance apphcatmns of msectlcde at each stage.

3 Never Spray: producer uses no msedwlde to manage RSB populahons.

d 5-10: producer uses previous static thresholds based on total RSB population (adults and nymphs).

s 4-9: producer uses previous static thresholds modified to account for on]y adult RSB.

An opposite pattern occurs when the alternative
criteria compared is never spraying. Both of these
patterns were expected, because an increase in
initial infestation levels leads to spraying at heading
under the flexible rule,

For the 5-10 and 4-9 criteria, the pattern is
to increase, then decrease, and finally increase in
value again as initial RSB infestation levels
increase. The flexible threshold at heading for this
scenario (table 1) is 5 RSB which is approximately
the same as the two alternative decision criteriw
therefore, the expected value of the flexible over the
alternative manifests itself in the milk and soft
dough stages. For the scenario in table 3, the 5-10
rule is closer to the flexible threshold than the 4-9

rule. Similar patterns, but different magnitudes,
were observed for different combinations of the
economic and production factors.

Discussion and Conclusions

The results show the superiority of the
flexible thresholds under a profit maximizing
framework. The flexible thresholds increase the
expected net returns to RSB management relative to
the four alternative decision criteria considered.
This is as expected, because the flexible criteria
encompass the other criteria. For several of the
alternative criteria and combinations of economic
and production factors, this increase in expected
value is small. The flexible decision rule increases
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in expected value over the 5-10 and 4-9 decision
criteria as the returns to spraying decrease. When
compared to the never spray rule, an opposite
pattern is observed. Evidence suggests that the new
flexible thresholds have been widely adopted by
producers (Domangue 1990 and 1991), consultants
(Crane; Bradshaw), and extension personnel (Texas
Agricultural Extension Service).

Based on economic conditions as they
currently relate to the rice industry, the flexible
thresholds appear to offer only relatively minor
gains when compared to the old 5-10 thresholds.
Several advantages, however, are apparent for the
new thresholds over the old. First, the old 5-10
thresholds were based on little more than expert
opinion. Because new thresholds are based on a
combination of data, economic modeling, and expert
opinion, a higher degree of confidence is associated
with the new thresholds. Second, the flexible
thresholds have the ability to adapt to changing
economic conditions. Third, the new thresholds are
no more difficult to implement than the previous
thresholds. The sampling procedure, by far the
most time consuming step in the pest management
process, is simplified by the elimination of the need
to account for RSB nymphs as the previous
thresholds required. Although a single, easily
remembered rule no longer suffices, the flexible
thresholds are summarized in a single table which is
disseminated through various extension channels,
Finally, the flexible thresholds provide a framework
for the incorporation of additional data on pest
dynamics or changing economic conditions. The
static 5-10 thresholds had no systematic process for
incorporating changes of these types.
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Constraining the number of possible
insecticide applications has little effect on the
thresholds. This occurs even though the model has
differing damages associated with RSB infestation
levels at the various stages. The most plausible
explanation for this observation is that the lowest
threshold level occurs in the initial stage. On
average, spraying earlier tends to suppress later
population pressure and makes subsequent sprays
less cost-effective,

This study is only one example of how
dynamic programming could be applied to pest
management decisionmaking problems, Economic
thresholds for other pests could be developed in a
similar fashion. The flexibility of the dynamic
programming framework allows for the development
of thresholds which encompass a wide range of
theoretical and applied considerations. This
research is an working example of how enhanced
production information can be realized through
multidisciplinary research and extension efforts.
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