

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Extension Multi-factorial Evaluation Method on Water Quality Early-warning

Rong GUO^{1*}, Yong ZHANG¹, Fangjian XIE², Sheng ZHONG¹

1. Environmental Monitoring Center of Jiangsu Province, Nanjing 210036, China; 2. Scientific Institute of Environmental Sciences, Nanjing 210093, China

Abstract Extension multi-factorial evaluation method was used in water quality early-warning in Yincungang River based on MATLAB. The results showed that water quality in summer was safe, while that in other three seasons were in pre-warning state with the order of winter > spring > autumn.

Key words Extension multi-factorial evaluation; Water quality early-warning; MATLAB

In recent years, with the rapid development of social economy in Taihu area, large amount of industrial wastes and living sewage flew into Taihu. The high amount of nitrogen, phosphorus and potassium permanganate index are the reason why the water quality in Taihu is poor. Therefore, the scientific evaluation on the water quality of influents is significantly important to the accurate evaluation of water quality, which is the key to improve the general environment in Taihu.

For many years, although traditional single factor evaluation method can fully reflects the influence of each evaluation factor on standard value, it is disputable to use the worst factor to represent the entire water quality. The extension multifactorial evaluation method is the subject for solving contradiction^[2]. Since the foundation in 1980s, factors such as water environment quality evaluation and air quality evaluation won wide application^[3–4]. Extension multi-factorial evaluation method was used in water quality early-warning in Yincungang River based on MATLAB so as to realize the study of water quality pre-warning system.

1 Extension multi-factorial evaluation model

The extension multi-factorial evaluation model can be divided into six steps: characteristic field, unit, matter element, factor weight, relevance and evaluation standard level^[5]. The pre-warning evaluation of water quality uses triad $R = (N, C, V)$, among which N is the evaluation unit, C is the combination of evaluation factor, and V is the standard combination of evaluation.

1.1 The foundation of characteristic field R_0 There are m water quality pre-warning evaluation standards N_1, N_2, \dots, N_m . The factor field of the corresponding evaluation standard was $[a_{ij}, b_{ij}]$. Hence, the extension multi-factorial evaluation field R_0 of water quality pre-warning was as follow:

$$R_0 = \begin{bmatrix} N & N_1 & N_2 & \dots & N_m \\ c_1 & [a_{11}, b_{11}] & [a_{12}, b_{12}] & \dots & [a_{1m}, b_{1m}] \\ c_2 & [a_{21}, b_{21}] & [a_{22}, b_{22}] & \dots & [a_{2m}, b_{2m}] \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_n & [a_{n1}, b_{n1}] & [a_{n2}, b_{n2}] & \dots & [a_{nm}, b_{nm}] \end{bmatrix} \quad (1)$$

N_i stands for the j -th water quality pre-warning evaluation standard; c_i stands for the i th water quality pre-warning evaluation factor; $v_{ij} = [a_{ij}, b_{ij}]$ means the c_j range of the i th water quality pre-warning evaluation factor.

1.2 The field R_p The field R_p is as follow:

$$R_p = (P, C, V_p) = \begin{bmatrix} P & c_1 & [a_{1p}, b_{1p}] \\ & c_2 & [a_{2p}, b_{2p}] \\ & \vdots & \vdots \\ & c_n & [a_{np}, b_{np}] \end{bmatrix} \quad (2)$$

In the formula, P stands for the pre-warning evaluation standard of water quality. $[a_{ip}, b_{ip}]$ stands for the range of evaluation factor c_i .

1.3 Determination of evaluation material element R_d

$$R_d = \begin{bmatrix} P & c_1 & v_1 \\ & c_2 & v_2 \\ & \vdots & \vdots \\ & c_n & v_n \end{bmatrix} \quad (3)$$

In the formula, v_i stands for the measured value of c_i .

1.4 Weight of evaluation factors Considering the objectivity of water quality and the influence of factors on water quality, pollution method was applied^[6]. The weight coefficient was calculated based on the influence of each evaluation factor on water environment.

$$\bar{S}_{ij} = \frac{1}{m} \sum_{j=1}^m S_{ij} \quad (4)$$

$$W_i = \frac{C_i}{\bar{S}_{ij}} \quad (5)$$

$$\overline{W}_i = \frac{W_i}{\sum_{i=1}^n W_i} \quad (6)$$

In the formula, S_{ij} represents the j th evaluation standard of

Received: April 20, 2013 Accepted: May 28, 2013

Supported by Jiangsu Taihu Treatment Scientific Research Program (TH2010101).

* Corresponding author. E-mail: guorong@yeah.net.

ith evaluation factor, mg/L. \bar{S}_i is the mean value of the ith evaluation factor. W_i was the indication weight coefficient of the ith evaluation factor, $W_i \geq 0 (i = 1, 2, \dots, n)$, $\sum_{i=1}^n W_i = 1$; \bar{W}_i stands for the Normalized weight, $\sum_{i=1}^n \bar{W}_i = 1$.

1.5 Correlation $\rho(v_i, v_{ij}) = |v_i - \frac{1}{2}(a_{ij} + b_{ij})| - \frac{1}{2}(b_{ij} - a_{ij})$ (7)

$$\rho(v_i, v_{ip}) = |v_i - \frac{1}{2}(a_{ip} + b_{ip})| - \frac{1}{2}(b_{ip} - a_{ip}) \quad (8)$$

$$K_j(v_i) = \begin{cases} \frac{\rho(v_i, v_{ij})}{\rho(v_i, v_{ip}) - \rho(v_i, v_{ij})} & v_i \notin v_{ij} \\ \frac{-\rho(v_i, v_{ij})}{|v_{ij}|} & v_i \in v_{ij} \end{cases} \quad (9)$$

$$K_j(p) = \sum_{i=1}^n \bar{W}_i K_j(v_i) \quad (10)$$

Here, $K_j(p)$ stands for the correlation of evaluation factor c_i of matter-element.

1.6 Grade level of evaluated matter-element Here, $K_j(p)$ stands for the standard level of matter-element. j^* stands for the eigenvalue of matter-element.

2 Extension of multi-factorial evaluation

Take Yincungang River as an example. Water quality pre-warning evaluation standard system was constructed to study the water quality pre-warning grade based on MATLAB7.1.1 software.

2.1 Determination of evaluation factor and standard Evaluation factor was constructed: $C = \{\text{COD}_{\text{Mn}}, \text{ammonia nitrogen}, \text{total phosphorus}\}$. The water quality was monitored from January 1 to December 31, 2011 in accordance to the *Groundwater Environment Quality Standard* (GB3838-2002). The result of single factor (Table 1) suggested that the water quality in Yincun was the worse V level because of ammonia nitrogen in spring; water quality in summer and autumn was the III level and the water quality in winter was the V level.

Table 1 Evaluation result of single factor of water quality in Yincungang

Season	COD _{Mn}	Ammonia nitrogen	Total phosphorus	Evaluation result
Spring	III	Worse V	III	Worse V
Summer	III	III	III	III
Autumn	III	III	III	III
Winter	III	V	IV	V

Considering the evaluation grade of the safety of water environment and ecological environment^[7], five grades were divided as safe, quite safe, pre-warning, moderate-warning and heavy warning. In response to the requirement of the division of the function of water environment, the national standard of *Groundwater Environment Quality Standard* (GB3838-2002) value and online automatic monitor were considered to build the pre-warning evaluation standard system (Table 2).

Table 2 Extension multi-factorial evaluation standard of water quality pre-warning

Evaluation factor	Safe	Quate safe	Pre-warning	Moderate warning	Heavy warning
COD _{Mn}	3.0	5.0	8.0	12.5	20.0
Ammonia nitrogen	0.325	0.750	1.250	1.750	10.000
Total phosphorus	0.06	0.15	0.25	0.35	2.00

2.2 Determination of factor weight The weight of each factor in Yincungang was calculated. According to Table 3, the weight of ammonia nitrogen was the largest one, 0.4590, while the weight of COD_{Mn} was the smallest, 0.2397.

Table 3

Evaluation factors	W_i	\bar{W}_i
COD _{Mn}	0.7095	0.2397
Ammonia and nitrogen	1.3584	0.4590
Total phosphorus	0.8917	0.3013

2.3 Extension pre-warning evaluation and MATLAB realization

As a kind of programming software, MATLAB improves the efficiency by avoiding complicated mathematic calculation and it is widely applied in the modern mathematic evaluation^[8]. Based on MATLAB7.1.1, program realization formula 9-14 was formed to get the correlation of extension pre-warning evaluation and eigenvalue j (Table 4). As shown in Table 4, the correlation was 0.07395, 0.14540, 0.23016, 0.00055 in spring, summer, autumn, and winter respectively, which fell into the category of pre-warning, safe, pre-warning and pre-warning state. The order of pre-warning degree was winter, spring and autumn. Compared with traditional single factor evaluation method (Table 1), the extension pre-warning level of water quality in summer was safe and the single factor evaluation result was in the III level, while the extension pre-warning level of water quality in spring was in pre-warning level and its single evaluation result was worse V, which suggested poor water quality in Yincungang River. However, the evaluation result of single factor was largely affected by ammonia nitrogen. Results suggested that the result of single factor was more scientific. Experiments proved that each evaluation factor in autumn belonged to III level, but they were not any potential threats. The water quality extension pre-warning system being in pre-warning state showed potential threat in autumn. The water quality in winter was in pre-warning state, and the eigenvalue in winter 3.24646 higher than that in autumn (2.66959), which indicated that the pre-warning situation in winter was much worse than that in autumn.

3 Conclusions

Extension multi-factorial evaluation method was used in water quality early-warning in Yincungang River based on MATLAB, so as to evaluate the water quality and to improve the water quality in the estuary of Taihu Region.

Table 4 Evaluation result of water quality extension pre-warning grade

Season	Correlation					j [*]	Evaluation result
	Safety	Quite safe	Pre-warning	Moderate warning	Heavy warning		
Spring	-0.412 70 39	-0.268	0.073 95	-0.197 41	-0.239 43	3.40955	Pre-warning
Summer	-0.328 55	0.145 40	-0.076 44	-0.441 80	-0.612 41	2.339 32	Quite safe
Autumn	-0.366 63	-0.09409	0.23016	-0.30302	-0.51307	2.66959	Pre-warning
Winter	-0.405 77	-0.252 82	0.000 55	-0.160 35	-0.24645	3.24646	Pre-warning

Compared with traditional single factor evaluation method, the extension pre-warning evaluation can effectively reflect different preference of same pre-warning system. Results displayed that the water quality in Yincungang in spring, summer, autumn and winter were in pre-warning, safe, pre-warning and pre-warning state, and the pre-warning in winter was much worse than that in autumn.

The water quality extension pre-warning system can effectively reflect the potential threat of matter-element and can avoid the influence of extreme factors. The single factor evaluation result suggested that each evaluation factor in autumn belonged to III level, but they were not any potential threats. The water quality extension pre-warning system being in pre-warning state showed potential threat in autumn. The water quality in winter was in pre-warning state, which avoid from getting worse under the influence of ammonia nitrogen.

References

[1] XIU HB, CHEN W. Impacts of change of industrial structure on the water

(From page 94)

in the overall agricultural output.

(3) This paper evaluates the sustainable use of agricultural land in Zhoukou City from economy, society and ecology. The results show that the use of agricultural land has achieved initial success in terms of economic sustainability, but in terms of ecological sustainability and social sustainability, it is at a low level; the sustainable use index shows the great vitality and development potential of agricultural system; unsustainability is reflected in considerable input of chemical fertilizer and pesticide, and simple agricultural output structure.

References

[1] LIU ZE, SUN SY, GAO JM. Analysis on land use degree and regional difference in Huailai County, Hebei Province[J]. Arid Area Resource and Environment, 2010, 24(11): 125–128. (in Chinese).

[2] YUAN L, LEI GP, ZHANG XH. Regional differentia evaluation of land sustainable use with circulation economy concept in Heilongjiang Province [J]. Research of Agricultural Modernization, 2010, 31(2): 245–249. (in Chinese).

[3] LUO F. Effect of farmer's diversification level on land sustainable use[J]. Hubei Agricultural Sciences, 2011, 50(13): 2801–2806. (in Chinese).

environment in Taihu Basin: A case study of Suzhou – Wuxi – Changzhou District[J]. Journal of Lake Sciences, 2002, 14(1) : 53 – 59. (in Chinese).

[2] CHEN JL, ZHAN XQ. A summary of extension method[J]. Journal of Jilin Institute of Chemical Technology, 2002, 19(1) : 72 – 76. (in Chinese).

[3] SUN XL, MA HQ, CAO CL. Improved extension method and its application in water quality evaluation[J]. Yellow River, 2006, 28(7) : 30 – 37. (in Chinese).

[4] CAI GL, XING GF, LI YX, et al. An assessing method of multi – index extension for urban ambient air quality[J]. Urban Environment & Urban Ecology, 2003, 16(5) : 4 – 6. (in Chinese).

[5] HE FB. The realization of MATLAB based on comprehensive evaluation method[M]. Beijing: China Social Sciences Press, 2010. (in Chinese).

[6] HOU SX, LIU XM, ZHONG Q. Application of fuzzy mathematics to Dan River's water environment comprehensive evaluation[J]. Ecology and Environment, 2008, 17(4) : 1411 – 1414. (in Chinese).

[7] GONG JF. Study on the evaluation of surface water environment safety — Taking the case of Guangzhou City[D]. Guangzhou: Jinan University, 2010. (in Chinese).

[8] LUO DG, WANG XJ, GUO Q. The application of ANN method in the evaluation of groundwater quality based on MATLAB[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(2) : 296 – 302. (in Chinese).

[4] LI N, CHENG Q, HU LL, et al. Application of land property theory in land sustainable utilization and reservoir resettlement[J]. Rural Economy and Science – technology, 2009, 20(11): 83 – 84. (in Chinese).

[5] ZHAO DY, GAO XW, ZHOU YG. Sustainable land – use evaluation in counties based on entropy method with Shijiazhuang as an example[J]. Journal of Anhui Agricultural Sciences, 2010, 38 (26): 14741 – 14744, 14790. (in Chinese).

[6] WANG Y, LEI GP, SONG G. Quantitative evaluation of sustainable land use in coal resource – exhausted cities[J]. Natural Resource Economics of China, 2011(8): 40 – 43. (in Chinese).

[7] MEI ZM. Study on sustainable land use in Guizhou based on ecological footprint[J]. Guizhou Agricultural Sciences, 2009, 37(8): 198 – 200. (in Chinese).

[8] ZHANG W, LI XB, WANG XH. Sustainability assessment and land use optimization of oasis agro – economic system based on energy analysis[J]. Journal of Resources and Ecology, 2011, 2(3): 241 – 249.

[9] LIANG SS, ZHANG CZ, LI SQ. Assessment on and approaches to farmland sustainability via energy value in Xi'an City[J]. Resources and Industries, 2007, 9(6): 36 – 42. (in Chinese).

[10] LAM SF, QIN P, LU HF. Ecological economy system energy analysis [M]. Beijing: Chemical Industry Press, 2002. (in Chinese).

[11] CHEN F. Agriculture ecology[M]. Beijing: China Agriculture University Press, 2002: 260 – 261. (in Chinese).

[12] ZHOU ZY, YANG J, DUAN JN. Succession assessment of agro – ecosystem based on energy theory in Changsha [J]. Research of Agricultural Modernization, 2011, 32(4): 465 – 469. (in Chinese).