

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

MICROCOPY RESOLUTION TEST CKART
MICROCOPY RESOLUTION TEST CHARY NKTIONAL bureau of standaros-1963-k
Statistical Bulletin No. 341

REFDCNCE DO in:: LOA

Estimates by States, 1959

Farm Production Economics Division Economic Research Service united states department of agriculture

For sale by the Superintendent of Documents, U.S. Government Printing Office Washicigton, D.C., 20402 - Price 30 cents

Prje
GUIDE TO TABLES v
INTRODUCTION 1
LABOR USED FOR VEGETAELES, 1939 AND 1959 4
Regional Use of Labor 7
Ghanges in Lanor Productivity 9
Vegetables for Fresi Market 9
Venctables for Processing 12
LABOR USED FOR SPECIFIC VEGETABEES, 1359 15
Vegetables for Fresh Market 15
Vegetables for Processing 16

PREFRCE

The estimates of tam labor requirements in this publication are part of a continuing nationwide research progrom centerod on agricultural production This program includes the development and maintenance of meny measures of farm ing etficiency.

This repori contains fitate estimates of the man-hours of labor used in 1959 on the major vegetable crops. Similar estimates are developed periodicall, after data from the agricultural censuses are available.

The periodic State estimates are weighted into regional averages which serve as bencharks for annual series. Each year the regional averages of manm hours per acre of vegetables, together with comparable data for other crops and per head or unit of production of livestock, are applied to the estimates of acres, numbers, and production of crops and livestocl, prepared by the Federain State crop reporting system, Statistical Reporting Scrvice, U.S. Debartment of Agriculture, to arrive at total man-hours of labor used by enterprises for regions ano the country as a whole. The total man-hours are converted to indexes which, together with comparable indexes of production, are used to com pute indexes of production per man-hour. The aggregate man-hours are also used as the labor component in an findex measure of total production inputs in farming These aggregates and indexes are published annually by the Economic Research Service in Changes in Farm Production and Efficiency, Statistical Bulletin No. 233.

A companion publication, Labor Used to Produce Livestock, Estimates by States, 1955, Statistical Bulletin No. 336, 1963, is available. Another reoort Labor Used to Produce Field Crops, Estimates by States, is in process.

ACKNO:ILEDGMENTS

The assistonce of staff menbers of State Agricultural Experiment Stations and of field personnel of the Farm Production Economics Division, Economic Research Service, who assisted in revising preliminary State estinates, is gratefully acknowletged. Their contributions were valuable in preparing the final estimates.
Icble Pxge
1
Labor used for vegetables, by regions, 1939 5
2 Labor used for vegotables, by regions, 1959 6
3455Labor used per acre to produce and harvest vegetables for freshmarket, by States and regions, 195917
Artichokes 17
Asparagus 17
Beans, green lima 17
Beans, snap 18
Beets- 19
Broccol: 19
Brussels sprouts 19
Cabbages 20
Cantaloups 21
Carrots 22
Cauliflower 23
Celery 23
Corn, sweet 24
Cucumbers 25
Eggplant 25
Escarole- 25
Garlic- 26
Kole- 26
Lettuce 26
Melons, honeydew 27
Ontons 27
Peas, green 28
Peppers, green 28
Shallots 28
Sp.inach 29
Tomatoes 30
Katermelons 31
7 Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959 32
Asparagus 32
Beans, green I ima 32
Beans, snap 33
Beets- 34
Cabbages 34
Corn, sweet 34
Cucumbers- 35
Peas, green 36
Spinach 36
Tomatoes- 37

LABOR USED TO PRODUCE VEGETABLES
 Estimates by States, 1959

by
Earle E. Gavett
Aricultural Econonist
Farm Production Economics Division
Econonte Research Service

INTRODUCTION

The production of vegetables in the United States, from a labor viempoint, is probably the most critical of all tarm industries. The seasonality of production precludes hiring year-round workers to work only on vegetables. Areas of production are scattered from the Gulf Coast and Mexican border northward to Canada. Seasonal progression of production shows these areas overlapping in need for workers, and the denand for labor in an area frequently exceeds supply. Unlike most of the field crops, many vecetables ripen unevenly and require frequent repetitive pickings. For many of these crops, mechanization of harvesting appears remote it at all possible, and labor used per acre is extremely high. In most vegetable areas thero are too few local workers to meet the demand. Producers depend upon the migration ot great numbers of workers from one area to another to work and harvest the crops. These are just a few of the reasons that vegetable production presents a baffling picture to farmers, econonists, labor-placement officials and others interested in terminating stoop labor and el iminating the necessity for farmworkers to leave home and migrate from one area to another in quest of work.

The task of producing vegetables for a groving population such as the United States is not small. Annually, bbout 3.5 million acres of vegetables are harvested (fig. 1). From 1939 to 1946, the acreage of all vegetables harvested rose rapidly, a reflection of the greatly increased demand for food during world lar II. The processing vegetable industry increased acreage by nearly one milition acres from 1939 to 1942, then held steady throughout the remaining wartime period. Fresh market acreage expanded about one-half million acres from 1943 to 1946 . Yet, from 1946 to 1959 , the total acreage of vegetables harvested, both for fresh market and for processing, shoved a slight dectine.

Production of commercial vegetables, since 1939, has been increasing art the average annual rate of about 6.8 million hundredweight per year-m 3.8 million of fresh vegetables and 3.0 mllli ion hundredweight of processing crops. The increase of nearly 7 million hundredweight of vegetables yearly on a harvested acreage which is only slightly greater than that of 1939 neans that yields must have risen substiantially during this score of years. On the average, yields of conmercial vegetabies have risen 1.75 hundredweight per acre per year since 1939. The annual gain in production per acre of tresh vegetables is only slightly higher-3 pounds-mthan that for vegetables for processing (fig. 2).

Within this dynamic industry, which has experienced increases in acreage, production, and yields, what has happened to the labor irput? Has stoop labor-hoeing, weeding, and thinning-continued at the same level of usage? Are these crops still predominately harvasted by hand, and with increased yields are these crops using more labor per acre than in 1939? This report presents the amount of labor used by crops, by States, in the comnercial production of vegetables in 1959, and draws some comparisons with labor usage, by crops and by farm production regions 20 years earlier in 1939.

TRENDS IN ÁCREAGE OF VEGETABLES HARVESTED

MIL. ACRES

Figure 1

TRENDS IN VEGETABLE YIELDS

Figure 2

The tables presented contain State and regional estimates of man-hours of direct labor per acre for those princlpal conmercial vegetables, 27 for fresh market and 10 for processing use, for which acreage, production, and value are reported by the Crop Reporting Board, Statistical Reporting Service, for 1959.

The estimates of man-hours per acre were developed from data collected by State and Federal agencies and published in reports such as State Agricultural Experiment Station and Extension Service bulletins, and information from studies of changes in farm practices and farm mechanization. $I /$

Many of these reports present labor use for specific levels of management, types of farms, or areas within a State. Adjustments were made in these data to depict estimated State average man-hours per acre.

The estimates of man-hours of preharvest work include time for all operations up to harvest, such as spreading fertilizer and manure, plowing and fitting the land, planting, cutivating, weeding, hoeing, spraying, dusting, and irrigating. When applicable, man-hours for preharvest work were estimated for both irrigated and dryland conditions and welghted by the proportion of acres grown under both conditions. For perennial crops, such as artichokes and asparagus, the estimated man-hours of preharvast labor include the annual share of establishing the stand, plus the time spent each year in caring for the crop.

Estimated man-hours of harvest work include time for the main harvesting operations and for hauling the crop to storage and to local markets or processing plants. In some areas, vegetables are sold by farmers in an unharvested or partially harvested state. Est imates of man-hours for harvest were developed to include all labor used in harvesting and hauling operations customarlly done by field crews in moving a crop to either local produce sheds or processing plants. Labor used in produce sheds and processing plants is not included.

The estimates of man-hours per acre are direct labor inputs. They do not include estimates of time needed for indirect labor or overhead work, such as service and maintenance of buildings, equipment, fences, and land improvements, record keeping, and business trips.

The 1959 yields reported for vegetables, by States, for fresh market use and for processing are the official yield estimates of the Deparment. 2/
$1 /$ For a partial list of such resource reports see: Publications Containing Recent Farm Enterprise Input-Output Data. U.S. Dept. Agr., Econ. Res. Serv., Farm Prod. Econ. Div. (unnunbered), March 1953.

2/ Statistical Reporting Service. Vegetables for Processing. Acreage, Production and Value, by States, 1954-59, Revised Estimates. U.S. Dept. Agr. Statis. Bul. 299, December 1901.

Statistical Reporting Service. Vegetables for Fresh liarket. Acreage, Production, and Value, 195A-59, Ruvised Estimates, by Seasonal Groups and States. U.S. Dept. Agr. Statis. Bul. 300, Decenber 1801.

In 1939, commercial vegetable production took an estimated 367.1 milion manhours of labor. For all vegetables, the average amount of labor used per acre exceeded II9 hours. Fresh market vegetables required twice the labor input per acre that was used on vegetabies for processing (table l).

Twenty years later, in 1959, comnercial vegetable acreage had increased nearly 353 thousand acres. Yet, the total labor input had declined some 59 million man-hours to approximately 308 million man-hours (table 2). On a per acre basis, labor used for all vegefables dropped more than 25 percent from 119 hours to 90 hours in 1959 . Part of the decrease of 29 hours per acre since 120 g is atiributable to the cecreasod proportion of the tresh market acreage. Had the proportion stayed the same as in 1939, man-hours per acre of all vegetables would have been 94 hours in 1959. A counterbalancing factor, which has tended to increase the per acre labor input, is the shift in production to the irrigated areas of the West. Preharvest labor input is increased by the added labor used for irrigation; and, with higher yields on irrigated land, the harvest labor used per acre is also increased. The decline in the amount of labor used per acre is the result of a myriad of factors. Mechanization and improved technology are major causative forces behind this decline.

Mechonization has come to the vegetable industry in many ways. In preharvest operations, tractors and tractor-drawn oquiphant, such as plowi, harrous, listers, bedders, precision planters, cultivators, high speed and high concentration sprayers and dusters have materially reduced the input of labor needed to grow a crop to harvest. The decrease in preharvest labor input per acre from 1939 to 1959 amounted to 41 percent--34 percent for fresh market vegefables and 48 percent for processing crops. Not all of this decrease can be attributed to mechanization, however. Other Incinological developments have also played a very importent role. The development of selective herbicides which are effective in controlling weeds and grasses in vegetable plantings has terminated or materially reduced the amount of hand weeding and hoeing labor used for many of the vegetables.

Possibly the most important technological development of all was flash freezing of vegetables. This development, while not on the farm, had a terrisic impact on the vegetable industry. Consider, for example, what has happened to the praduction of green peas. Prior to flash freezing in the processing plants and the widespread adoption of mechanical refrigerators with freezer space in consumers' homes, the only way to get green peas that tasted and looked like fresh peas was to buy them in the pods. However, quick freezing of peas presents a product to the public that is very similar in color, qualify, and flavor to garden fresh peas, and it requires less work for the housewife to prepare. The acreage of the fresh market portion of this crop has all but disappeared since 1939, while the acreage grown for freezing nearly quadrupled:

1 tem	1939	1959
Acreage harvested for-		
Fresh market-n-----	1/102,350	7,350
Freezing-	27,890	119,530
Canning	220, 140	227,200
Total-	350,420	354,080

1 Includes acreage partially harvested or not harvested because of low prices or other economic factors.
Source: U.S. Dept. Agr. Statis. Buls. 126, 132, 299, and 300.

Table I.--Labor used for vegetables, by regions, 1939
FOR FRESH MARKET

FOR PROCESSING

:							
Northeast---------:	319,520	10,416	32.6	14,474	45.3	24,890	77.9
Lake States-..-----:	211,240	4,330	20.5	5,830	27.6	10,160	48.1
Corn Belt-n-------:	274,130	6,908	25.2	11,102	40.5	18,010	65.7
Northern Plains---:	3,300	60	17.8	63	18.8	123	36.6
Appalachian---*---:	60,560	2,610	43.6	2,628	43.4	5,268	87.0
Southeast---------	27,680	1,650	59,6	941	34.0	2,591	93.6
Delta States-----:	21,410	925	43.2	895	41.8	1,820	85.0
Southern Plains---:	31,280	1,308	41.8	1,361	43.5	2,669	85.3
fiunta in----------:	32,520	1,424	43.8	1,873	57.6	3,297	101.4
Focifie----------	173,010	G,124	35.4	9,740	56.3	15,864	91.7
United States---:	1,154,710	35,785	31.0	48,907	42.3	84,692	73.3

atl vegetables

:							
Northeas:---------	630,000	30,287	48.1	42,728	67.8	73,015	115.9
Lake States-------:	269,740	9,888	36.7	12,499	46.3	22,387	83.0
Corn Belt-r--m----	378,770	12,663	33.4	15,427	48.6	31,090	82.0
Northern $\mathrm{Sl}^{-\mathrm{i}}$ (1, ---:	4,900	150	30.2	127	25.6	277	55.8
Appalachian-------	175,370	9,299	53.0	10,780	61.5	20,079	114.5
Southeast---------:	401,390	21,457	53.5	25,980	64.7	47,437	118.2
Delta Statcs------	120,610	7,373	61.1	6,549	54.3	13,922	115.4
Southern Plains---:	359,480	24,610	68.4	19,084	53.1	43,694	121.5
Mountain---------:	157,450	11,169	70.9	13,866	38.1	25,035	159.0
Pacific----------:	583,520	35,681	61.1	54,486	93.4	90,167	! 54.5
United States---:	3,081,290	162,577	52.7	204,526	66.4	367,103	Ii9.1

Table 2.a~Labor used for vegetables, by regions, 1959

FOR FRESH MARKET

Region $\begin{array}{cc}\text { R } \\ & \\ & \\ & \\ & \\ \end{array}$	Acreage of vegetables harvested	Man-hours used					
		Preharvest		Harvest		All	
		Total	Per acr	Total	Per ac	Total	Per acre
-							
:	Acres	Thous. hours	Hours	Thous. hours	Hours	Thous. hours	Houts
:							
Northeast---0-----:	249,590	8,985	36.0	22,214	89.0	31,199	125.0
Lake States------:	66,180	3,243	49.0	5,162	78.0	8,405	127.0
Corn Beltr----m--:	86,140	2,929	34.0	4,996	58.0	7,925	92.0
Northern Plainsw-:	4.100	184	45.0	275	67.0	459	112.0
Appalachianmom-	101,600	2,845	28.0	6,198	61.0	9,043	89.0
Southeastm---v---s:	430,900	19,821	46.0	24,561	57.0	44,382	103.0
Delta States-----:	42,000	1,806	43.0	1,932	46.0	3,736	89.0
Southern Plainsw-:	280,110	9,524	34.0	9,244	33.0	18,768	67.0
Mountainm-------	135,220	5,950	44.0	10,818	80.0	16,768	124.0
Pacific-------m-	464,420	25,079	54.0	43,191	93.0	68,270	147.0
United States-m:	1,860,260	80,366	43.2	128,591	69.1	208,957	112.3

FOR PROCESSING

:							
Northeast---m---*:	312,640	4,596	14.7	13,537	43.3	18,133	58.0
Lake Statesm---*:	433,090	4,201	9.7	11,260	26.0	15,461	35.7
Corn Beltu-n-a---	204,230	3.288	16.1	8,864	43.4	12,152	59.5
Morthern Plainsm-:	510	4	7.8	7	13.8	11	21.5
Appalachianm--m:	56,340	980	17.4	3,499	62.1	4,479	79.5
Southeast-m---mo:	28,430	972	34.2	2,183	76.8	3,155	111.0
Delta States----:	24,880	550	22.1	1,346	54.1	1,896	76.2
Southern Plains---:	45,580	1,035	22.7	2,894	63.5	3,929	86.2
Mountain----------:	53,360	1,033	19.3	1,958	36.7	2,988	56.0
Pecific-----m---:	414,630	8,915	21.5	27,946	67.4	36,861	88.9
United Statesmen:	1,573,690	25,571	16.2	73,494	46.7	99,065	52.9

ALL VEGETARLES

Northeast---m--m-	562,230	13,58!	24.1	35,751	63.6	49,332	87.7
Lake States-u-u--	499,270	7,444	14.9	16,422.	32.9	23,866	47.8
Corn Belt---mo--	290,370	6,217	21.4	13,860	47.7	20,077	69.1
Northern Plains-m:	4,510	188	40.8	282	61.2	470	102.0
Appalachian------:	157,940	3,825	24.2	9,697	61.4	13,522	85.6
Southeast-------m:	459,330	20,793	45.3	26,744	58.2	47,537	103.5
Delta States-m-m:	66,880	2,356	35.2	3,278	49.0	5,634	84.2
Southern Plainsm-:	325,690	10,559	32.4	12,138	37.3	22,697	69.7
	188,580	6,983	37.0	12,776	67.7	19,756	104.7
Pacific---------	879,050	33,994	38.7	-11,136	80.9	105,131	119.6
United States---:	3,433,950	105,937	30.9	202,085	58.8	308,022	89.7

The shift from the fresh to frozen peas enabled growers to drastically alter production practices. After seedbed preparation, instead of planting in rows, cultivating, weeding, and hoeing, and then handpicking several times, growers now drill the seed and harvest mechanically.

Labor used for harvesting vegetables has decreased only 2 million man-hours from 1939 to 1959, but, on a per acre basis, harvest labor for all vegetables declined about 11 percent-from 66 to 59 hours in the 20 years (tables 1 and 2). Labor used in harvesting fresh vegetables has dropped about 11 hours per acre, while that used to harvest processing vegetables has actually increased from 42.4 to 46.7 hours per acre. The increase in the per acre labor input for processing vegetables is due primarily to one crop--tomatoes. While mechanization has been effective in reducing harvest labor inputs for many of the processing srops, the method of harvesting tomatoes in 1959 varied little from that used in 1939; yet, per acre yields of tomatoes more than doubled in the 20 years. The harvest labor input per acre of tomatoes did not double, but did increase about two-thirds from 60.8 hours per acre in 1939 to 101.0 hours in 1959 (table 5).

Regional Use of Labor

The Pacific region was the major user of labor in vegetable production. In 1939, this region used about one-fourth of the 367 milli ion man-hours expended on all vegetables. In 1959, with increased acreage in the region, more than one-third of all vegetable labor was used in the Pacific region (tables 1 and 2). By order of importance of labor used, the Northeast and the Southeast regions were second and third, respectively. From 1939 to 1959 there has been little change in the proportion of labor used for vegetabies by regions. The Lake States moved from seventh to fourth place, while the Southern Plains, Corn Belt, and Mountain regions each moved back one place to fifth, sixth, and seventh place, respectively. The Appalachian, Delta States, and Northern Plains regions used the least amount of labor for vegetables, both in 1939 and 1959.

While there has been little change in the regional use of labor since 1939, there has been a substantial shift in vegetable production. Acreage-wise the irrigated areas of the West--the Mountain and Pacific regions, combined-gained more than 325,000 acres in 1959 over the 1939 acreage. The Lake States region had the greatest percentage gain in acreage with an increase of 85 percent (table 3). As shown in tables 1 and 2 , only 4 regions have materially increased acreage of fresh market vegetables from 1939 to 1959. The Northern Plains region had 156 percent more acreage in 1959, but had a total of only 4,100 acres. The Southeast region, and primarily Fiorida winter vegetable production, increased acreage 15 percent. The Pacific and Mountain regions registered acreage gains of 13 and 8 percent, respectively. In total, fresh market acreage declined.

The major reason for the gain in total vegetable acreage in the West and in the Lake States was because of the increased acreage of vegetables for processing in these areas. The Pacific region had a processing acreage increase of 140 percent, Lake States were up 105 percent, and the Mountain region gained 64 percent. The Southern Plains had a 46-percent increase in processing acreage, but this could not counteract the 15percent drop in fresh market acreage.

Labor used per acre for all vegetables has dropped more than one-fourth from 1939 to 1959. Among regions, the Mountain and Pacific State groups still use more labor per acre than do the other regions. All regions but one show decreases in the per acre labor input. The Northern Plains, with higher yields and a shift to more intensive fresh vegetables, used 83 percent more labor per acre than in 1939 when yields were poor. The Southern Plains and the Lake States regions had the greatest per acre decrease, with 43 and 42 percent, respectively. Such decreases were possible because of the increased proportion of processed vegefable acreage with its lower per acre

Table 3,--Harvested acreage of conmercial vegetables, importance by regions, 1939 and 1959

Region	1939		1959		Chango from 1039 to $1059 \mathrm{in}-$	
	Acreage harvested $1 /$	Regional rank	Acreage harvested $2 /$	Regional rank	Acreage harvested	Regional rank
:	Acres	Number	Acres	Number	Percent	Number
Northeast-------------------:	630,000	1	562,230	2	-10.8	-1
Lake States-------------	269,740	6	499,270	3	+85.1	+3
Corn Belt------------------	378,770	4	290,370	6	-23.3	-2
Northern Plains-----------	4,960	10	4,610	10	-7.1	0
Appalach ian----------------	175,370	7	157,940	8	-9.9	-1
Southeast-------------------	401,390	3	459,330	4	+14.4	-1
Delta Stares----------------	120,510	9	65,880	9	-44.6	0
Southern Plains-----------	359,480	5	325,690	5	-9.4	0
Mountain--------------------:	157,450	8	188,580	7	$+19.8$	+1
Pacific--	583,520	2	879,050	1	+50.6	$+1$
United States-	3,081,290	-	3,433,950	---	$+11.4$	--

1/ U.S. Bureau of Agricultural Economics. Commercial Vegetables for Fresh Market-Acreage, Production, and Value, Revised Estinates, 1939-50, by Seasonal Groups and States. U.S. Dept. Agr. Statis. Bul. 126, May 1853.
U.S. Bureau of Agricultural Econonics. Vegutables for Comercial Processing-Acreage, Production, and Value, Revised Estimates, 1918-50, by States. U.S. Dept. Agr. Statis. Bul. 132, June 1953.

2/ See footnote 2/, page 3 .
labor input. The Southeast region reglstered the smallest decline per acre--12 percent. Fresh market vegetables grom in the Southeast used 14 percent less labor per acre in 1959 than in 1939, but favor for the processing vegetables increased 19 percent. Increased labor inputs per acre for processed crops in this region is influenced by increased acreages of snap beans and tomatoes. Both of these crops are grown for the fresh market, but when this demand is fulfilled excess production is sent to processing plants. Thus, the processing portion of snap bean and tomato production in the Southeast region have about the same labor inputs per acre as the fresh market portion.

Changes in Labor Productivity

Notwithstanding the difficulty of mechanizing many operations in vegetable crop production, efficiency has occurred in the use of labor on these crops. In 1959, labor used in vegetable production had an output of 99 pounds of produce per man-hour. Twenty years prior, the 1939 output per man-hour was 51 pounds. Thus, productivity of labor used on vegetables has increased 94 percent during the period.

Many factors were responsible for increasing output per man-hour. Prior to 1939, the shift from horse to fractor power had not been so rapid in vegetable production as in other crop enterpriges because many truck crop operations were too small to justify the purchase of a tractor. Also, a small row-crop tractor having good maneuverability and good operator visibility was not avaifable to vegetable growers until about 1940. Thus, the 1939 man-hours reflect, to a considerable extent, horse-powered operations, particularly in the preharvest operations. Since that time, the shift from horse to tractor power has been rapid. While some horses are still used in the production of vegetables in a few areas, they have all but disappeared. Besides tractor power, crop dusting, spraying, and fertilizing operations are now being performed by airplanes. This source of power has further reduced labor input per acre.

Vegetable yields per acre have been increasing as a result of many factors: Plant breeders have developed new and better producing varieties; more fertilizers are used and they are better placed for maximum utllization; chemical controls for weeds, insects, and diseases have been developed and are being adopted rapidly; machinery and equipment have been developed which enable growers to perform tasks at the optimum time with a minimum of plant danage; and irrigation of vegetable acreage has increased even in the humid areas of the East. These are some of the factors responsible for the $45-$ percent increase in yield per acre of all vegetables from 1939 to 1959.

With greater production per acre and a decrease in the labor used, productivity of labor used on vegetables has nearly doubled in 20 years. The increase in labor productivity from 1939 to 1959 has been very rapid for some crops, moderate for others, and negative for a few. The following two sections discuss in some dettit changes in labor productivity for specific crops grown for fresh market and for ;rocessing.

Vegetables for Fresh Market

The labor used for fresh market vegetables has decreased from 147 hours per acre in 1939 to 112 hours in 1959. This reduction of 24 percent in labor input was achieved while yield per acre increased 48 percent, or from 75 to 111 hundredweight, in the - 20 -year period. Output per man-hour increased 9.4 percent (rom 1939 to 1959 (table 4).

The greatest gains in efficiency of labor used on vegetables were recorded for spinach, carrots, onions, beets, and garlic. For each of these crops, output per manhour more then doubled from 1939 to 1959. Spinach had the greatest increase in fabor efficiency. Operations performed in growing this crop have changed materially in the past twenty years. Preharvest labor has dropped nearly two-thirds, largely as a result of precision planting and application of selectlve herbicides. The former has eliminated the need for hand thinning, and the latter, hand hoeing and weeding. Harvest labor inputs have dropped drastically-about 83 percent--while yields increased by over onefourth. Spinach harvesting in 1939 was performed entirely by hand, with workers cutting and packing leaves into baskets. In 1959, virtually the entire fresh market crop was mechanically harvested.

Declines in preharves \ddagger labor inputs per acre were tremendous for carrots, onions, and beets. On these crops, selective herbicides have been developed which provide good weed control and eliminate the costly repetitive hand weeding and hoeing operations which were commonly performed in 1939. Precision planters have been especially helpful in reducing the thinning labor requirements in carrot and onion production. Many growers no longer thin these crops at all.

Harvesting operations have changed considerably. Few carrots are now bunched and tied in the field; they are machine topped and lifted. After bulk hauling to a packing shed, they are washed and packaged in tilm bags by nonfarm workers. Onions are also machlne lifted, windroved, and topped. Fewer beets are sold as bunch beets; more are now sold topped and packaged.

Four crops-artichokes, lima beans, eggplants, and shallots--had lower output per man-hour in 1959 than in 1939. With the exception of eggplants, yield per acre either remained the same or declined for these crops. Artichokes required about threefourths more preharvest labor per acre to produce the higher quality product desired by the housewife in 1959. Harvest labor inputs increased slightly. This crop is entirely hand harvested. Because of uneven maturity of buds, artichokes are harvested about once every 5 to 8 days, with as many as 25 to 30 pickings common on most plantings. While preharvest labor on lima beans declined per acre, considerably more time was spent in harvesting the same output in 1959 than was needed in 1939. This crop is hand p icked, and the attempt to have a more uniform product has necessitated spending more time in selecting pods at the proper stage of maturity.

Eggptant production has not materially changed since 1939. However, more acreage is now located in Flo-ida, and preharvest labor on acreage in that State averages considerably higher than that incurred on acreage in other producing States. More intensive care was used in the production of eggplants in 1959 than in the earlier year. Frequent fertilization, and numerous hand hoeing, weeding, and raking operations make this crop a high user of preharvest labor. A survey of 1958-59 eggplant production in Floride indlates that 36 percent of the acreage received no mechanical cultivation. All work on this acreage was done by hand. 3/ In this same survey, eggplant acreage was hand harvested an average of 19 times. The fragility of this crop dictates slow, carefu! work in production and harvesting.

3/ Gavett, Earle E. Truck Crop Production Practices, Broward and Palm Beach Counties, Florida-Labor, Power, and Materials, by Operation. U.S. Dept. Agr., ERS-79, Oct. 1962.

Louisiana is the only State for which commercial production of shallots is reported for 1959. Acreage of this crop is 1 ittle more than inalf that reported for 1939. Production practices have changed little. Preharvest iabor hes declined about 6 percent, but harvest labor dropped neariy 10 percent per acre. The decrease in harvest labor inputs was caused by a reduction in yields and not by adoption of new tecinnology. The remaining vegetable crops grown for the fresh market reflected gains in labor efficiency ranging up to a 100 -percent increase in output per man-hour.

Mechanization of harvesting has not been common for the fresh market vegetables. Uneven maturation of most of these crops necessitates repetitive picking, as with artichokes, peppers, and eggplants. The tenderness of the product and the time lag before preparation for consumption by the housewife dictates care in harvesting, for bruises incurred in the operation will cause decay and ultimate loss of the product. Sweet corn and bush snap beans are fine examples. Both of these crops when harvested for processing are harvested mechanically. However, the crops are soon processed by the canner or freezer before mechanical damage creates an economic loss. But, the time lag in routing the fresh form of these crops to the produce shelf and consumer is sufficient for black watermarks and decay to occur on beans, and for corn kernels to decay or dry out. The crushed appearance of these crops makes them rather unsalable products. Lettuce growers in the past have used several types of mobile field conveyor-packing stations. The damage incurred in getting the heads to the central packing line necessitated stripping off many bruised leaves. The resultant packed product had lost the cushioning effect provided by the loose outer leaves and was further damaged in transit. Growers were forced to return to hand harvesting methods, rather than continue to use these machines.

Vegetables for Processing

There has been considerable mechanization in the production and harvesting of vegetables for processing. However, productivity of labor has not increased as fast as with fresh market crops. Processing crop output per man-hour increased only 71 percent from 1939 to 1959 (table 5). This compares with the 94 -percent increase on fresh market crops. There have been astounding increases in productivity of labor on some processed crops in the 20 -year interval. Spinach output per man-hour rose 559 percent from 1939 to 1959. Registered gains in output per man-hour for sweet corn, beets, and green peas were 434,381 , and 275 percent, respectively. All of these crops have experienced revolutionary changes in production practices since 1939.

Spinach is now harvested entirely by machine and bulk hauled to processing plants. In 1939, spinach was cut by hand, packed in baskets or hampers, hand loaded onto trucks and hauled to the processor. Had the same methods been employed in 1959 as 20 years prior, harvesting 4.57 tons per acre woid have required about 69 hours, rather than 4.4 hours, or about 15 times as much labor.

From 1939 to 1959, sweet corn production has shifted westward from the Northeast to the Lake States region. Large flat rectangular fields in the latter region, use of large and improved tillage equipment, plus adoption of some minimum tillage practices, and the use of chenical weedicides has enabled growers to reduce preharvest labor nearly 60 percent. Harvest labor declined from 27 hours to only 4 hours per acre, while yields increased by more than a ton. This was accomplished by the development and rapid adoption of the 2 -row cornpicker. On a per ton basis, modern mechanical methods of harvesting used only 1.1 hours as compared with 10 hours for the handpicking operation of 1939. Included in the gains made in labor efficiency is the complement of increased yields through the development and use of hybrid sweet corn varieties, and through increased fertilizer usage.

Table 5.-Commercial vegetables for processing: Labor used per acre, by crops, United States, 1939 and 1959

	1939					1959					Increase in output per man-hour, 1959 over 1939
	Man-hours per acre			$\begin{gathered} \text { Yield } \\ \text { per } \\ \text { acre } \\ \hline \end{gathered}$	Output per :man-hour\qquad	Man-hours per acre					
	Total	Preharvest 1/	arve			Total	Preharvest 1/	-	per acre	$\begin{aligned} & \text { Outpu } \\ & \text { per } \\ & \text { an-ho } \end{aligned}$	
	Hours	Hours	Hours	Ions	Ions	- Hours	Hours	Hours	Tons	Tons	Percent
Asparagus----------:	93.9	37.0	56.9	1.07	.011	130.0	11.0	119.0	1.11	. 009	-18
Beans, green lima--:	64.3	29.3	35.0	. 61	. 010	34.0	23.0	11.0	1.05	. 031	210
Beans, snap-------:	131.3	36.1	95.2	1.78	. 014	91.0	18.0	73.0	2.26	. 025	79
Beets-------------:	145.5	79.3	66.2	5.41	. 037	58.0	33.0	25.0	10.34	. 178	381
Cabbages-----------	94.4	50.1	44.3	7.44	. 079	56.0	39.0	17.0	13.73	. 245	210
Corn, sweet---man-	46.1	19.4	26.7	2.66	. 058	12.2	8.0	4.2	3.78	. 310	434
Cucumbers----------:	95.1	52.1	43.0	1.44	. 015	155.0	26.0	129.0	3.34	. 022	47
Peas, green-------:	24.7	10.9	13.8	. 79	. 032	11.3	4.7	6.6	1.36	. 120	275
Pimentos-----------:	91.1	59.8	31.3	1.05	. 012	2/	21	21	21	21	21
Sp inach------------:	83.1	42.2	40.9	2.70	. 032	21.7	17.3	4.4	4.57	. 211	559
Tomatoes-----------:	106.2	45.4	60.8	5.54	. 052	137.0	36.0	101.0	11.92	. 087	67
Total---------	73.3	31.0	42.3	2.97	. 041	62.9	16.2	46.7	4.41	. 070	71

11^{\prime} Includes labor on acres planted, but not harvested.
2/ Data on commercial production of pimento peppers are no longer reported.

Labor used for beets declined about 00 percent from 1939 to 1959. Yield per acre nearly doubled between these years, and the resultant increase in labor productivity was nearly 4 times the 1939 level. Both preharvest and harvest operations shared in the reduction of labor. The greatest single reducers of preharvest labor were the near el imination of hand hoeing, thinning, and weediag. Better cultural practices using mechanization and new technology have cut 46 hours of preharvest labor per acre from this crop. The drop from 66 to 25 hours per acre for harvesting beets reflects the greatly increased use of mechanical equipment. Mechanical toppers, lifters, and loaders have eliminated 41 hours of labor per acre. Had yields remained constant, harvest labor would have dropped from 12.2 hours to about 4.6 hours per ton. However, the near doubling of yields decreased the hours used per ton to only 2.4.

As mentioned previously, there has been a tremendous acreage increase in green peas, most of which were for freezing. Acreage has shifted westward to Minnesota and Wisconsin in the Lake States region, and to Oregon and Washington in the Pacific region. In 1959, these four States accounted for 72 percent of the harvested acreage. Twenty years earlier, the proportion was 52 percent. The shift in acreage from the East (with its smell farms and small irregularly shaped fields and hilly topography) to the West (with its large farms having large rectangular and gently rolling fields) has enabled pea growers to use larger equipment and more than halve the 1939 preharvest labor inputs. Harvest labor inputs have also dropped more than 50 percent. New pea mower-loaders and field vining stations have been responsible for this great reduction in labor, while yields have increased more than 70 percent.

Preharvest labor on cabbage for sauerkraut was reduced about 20 percent, primarily as a result of more direct seeding and transplanting by machine, rather than by hand. Harvesting is still performed by hand, but cabbages are pitched by fork onto trucks or tractor-drawn trailers, rather than being sacked or crated first. Yields increased 85 percent, while man-hours used for harvest dropped about 60 percent.

Output per manwhour of green I ima beans more than doubled from 1939 to 1959, Preharvest labor per acre dropped about 20 percent, but the big gain in productivity has been in harvesting. Only about one-third as much labor was used to harvest more than 70 percent greater production per acre in 1959, as compared with 1939. Use of mower-loaders and field viners greatly reduced labor inputs. Also in 1959, the snap bean harvester was used successfully on some lima bean acreage.

Snap bean output per man-hour did not double from 1939 to 1959. Preharvest labor input was halved, but harvest labor per acre declined less than one-fourth. The greater production of pole beans in the Pacific region-which have not yet been successfully harvested mechanicallyw-has kept the harvest hours per acre from decreasing. Bush snap beans, commonly grown in all other regions, are being harvested mechanically. Since the development of the bean harvester in 1956-57, farmers growing bush beans have rapidly adopted it. By 1959, growers in New York and Wisconsin harvested nearly all their acreage mechanically.

Tomato growers have been less successful in reducing labor requirements than have growers of most other crops. Preharvest labor has been cut over 20 percent, but harvest labor, due to greater production per acre, increased by two-thirds. Yield per acre increased 115 percent over the 1939 level, while harvest labor per ton decreased from 11.0 to 8.5 hours. A inechanical harvester has been developed for tomatoes, but has met with very little success on the round varieties. Its use to date, other than on an experimental basis, has been restricted to the pear-shaped tomatoes.

Cucumber and asparagus growers have attempted to mechanize harvesting, but as yet acceptable machines are not available. Small gains were made in labor productivity on cucumbers, but asparagus growers used nearly double the 1939 labor input to harvest only slightly larger yields per acre. Notable gains were made in reducing preharvest labor through the widespread use of chemical weedkillers, particularly on grass in asparagus.

The rise-7l percent-m in production per man-hour for all processed crops from 1939 to 1959 reflects the rather heavy weight of the four crops which did not double in labor productivity. Tomatoes, snap beans, asparagus, and cucumbers made up 45 percent of the total harvested acreage of processed crops in 1959.

LABOR USED FOR SPECIFIC VEGETABLES, 1959

The amount of labor used per acre varied immensely among the different vegetable crops. In 1959, green peas for processing took 11.3 hours per acre; while Brussels sprouts, grown for fresh market use, needed 47 times as much labor or 536 hours per acre. Obviously, the comparison between the two crops is extreme. One crop is for fresh market, and the other is for processing. One is grown as a fieid crop; the other as a row crop. One is mechanically harvested once over; the other is hand picked several times. Hore meaningful comparisons of labor inputs per acre would be among crops grown for the same market usage.

Also of significance is the geographic location of production. In States where irrigation is required, preharvest labor input is increased by the time required to level and prepare the land for irrigation, by the labor required to irrigate, and by the time required to perform additional cultivations or weedings which are common under irrigated conditions. Harvest labor used for crops grown on irrigated land is generally higher than that for crops grown on nonirrigated land because of the increase in yields attendant upon better growing conditions under irrigation. Crops grown on irrigated land in the Western States generally produce higher yields than when they are grown in humid areas of the East, even when the natural rainfall has been supplemented by irrigation.

Growing conditions can be and are more closely controlled in the irrigated areas of the West where weather vagaries are more predictable than in the East. For example, irrigation of crops in Florida frequently must be stopped, pumps reversed, and drainage started because of the sudden deluge of rain from a thundershover. (See footnote 3.) In Nestern areas, however, one can safely predict that all the water reaching a crop will be from the irrigation system.

Vegetables for Fresh Market

Comparing the levels of labor used per acre on the 26 fresh market vegetables grown in 1959 reveals a range of from 32 hours for spinach to 536 hours per acre for Brussels sprouts (table 4). Along with Brussels sprouts, celery, eggplant, shallots, and green peppers also required much labor, per acre inputs being 335, 328, 299, and 200 hours, respectively. Only four crops needed fewer than 100 hours per acre-spinach, 32; watermelons, 44; sweet corn, 48; and beets, 94 hours.

While the majority of crops required at least 100 hours of labor per acre, there was considerable variation in labor inputs among producing States. Asparagus, for example, grown in 8 States, used an average of 173 hours per acre in 1959. However, in Oregon this crop reguired only 98 hours per acre (table 6). A lower than averago yield which vas predominately hand snapped, rather than hand cut, accounts for the low harvest labor input.

Even greater variation is found among States producing Brussels sprouts. Texas used only 170 hours per acre, while California required 563 hours. Preharvest inputs were similar, but narvest inputs were nearly 5 times greater in California where yields were about it times higher than in Texas (page 19).

While irrigation alone can range from 5 to 30 hours per acre, on about half of the fresh market crops preharvest labor requirements were no higher in llestern States which are generally irrigated than in those where irrigation is seldon practiced (pages 17 through 31). Better use of labor on other cultural operations such as mechanical and chemical rather than hand weeding, and the use of planes for spraying and dusting kept the total preharvest labor inputs on irrigated crops at a low level.

Vegetables for Processing

Labor used per acre of vegetables grotm for processing averaged 63 hours per acre in 1959, yet three crops--asparagus, cucumbers, and tomatoes--required more than 100 hours per acre. Three other crops-sweet corn, green peas, and spinach needed fewer than 25 hours per acre (table 5).

While cucumbers for pickles received the highest labor input per acre-- 155 hours-of any processing crop, the greatest variability in labor input per acre among producing States was for snap beans. Labor used for producing snap beans ranged from 31 hours per acre in Pennsylvania to 425 in Oregon (table 7). This great range in labor input stems from one factor-variety, In all regions except the Pacific, bush beans are commonly grown. These beans can be and are mechanically harvested. In the Pacific region and particularly Oregon and llashington, the common bean is of the Blue Lake variety, and is a pole bean. The preharvest requirements are increased by the labor needed to set posts, stake, tie, and train bean vines. This increment is from 30 to 50 hours per acre.

Harvesting of the pole beans is also a hand operation. High yields of 5 to 8 tons per acre are obtained in 5 to 8 pickings, with a total labor input of 345 hours. In contrast, mechanical harvesting of 1 to 2 tons of bush beans per acre requires 20 to 40 hours.

Green-peas, the most mechanized of the processed crops, needed only 4.7 hours preharvest and 6.6 hours of harvest labor per acre. In Oregon, all operations on this crop required only 8.5 hours of labor per acre (page 36).

Spinach, which is fotally harvested by machine, required an average of only 4.4 hours of labor per acre in harvesting 4.5 tons (page 36).

Great differences existed in the amount of labor used per acre of tomatoes in the various States producing this crop (page 37). Preharvest labor was highest in Florida, more than four times the amount used in Virginia. This high input is attained because the crop is grown for fresh market use, and production is diverted to processors when the price declines. Harvest labor inputs are a direct function of yield and range from a low of 40 hours per acre in Arkansas to 139 hours per acre in lowa. Respective yields in the two States were 2.0 and 16.4 tons per acre.

Labor used on specific vegetables for processing in 1959 by major producing States are shown on pages 32 through 37.

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959

ARTICHOKES

State and region	Man-hours per acre			Yield per acre
	Total	Preharves	Harves \dagger	
	Hours	Hours	Hours	Cwt.
California-	135	75	60.	40.0
United States	135	75	60	40.0

ASPARAGUS

Massachusefts-.--------------	229	9	220	22
	258	8	250	25
	208	6	200	20
Northeas	254	8	$2 \div 6$	24.5
Mi	158	8.	120	15.0
llinois	158	8	150	15.0
Washington-------------------:	135	15	120	23
Oregon---.--------------------	98	15	63	16
Cal ifornia------------------	138	13	12	23
Pacific	137	13	12\%:	23.8
United States-n---------	173	$1]$	152	22.7

BEAMS, GREEN LII:A

	199	19	180	40
New Jersey-	166	19	147	30
1:aryland--	117	12	98	20
	161	19	142	30.0
North Carolina-	140	18	122	25.0
South Carolina--------------:	98	17	81	18
Goorg ia------..--------------	116	17	99	22
Flor ida------.-------------	128	20	108	24
A labama--------------------	94	18	76	17
Southeast-	108	18	90	20.0
United States----------:	120	18	102	22.0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959-Continued

BEANS, SNAP

Table 6.-Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959-Continued

BEETS

State and region	fan-hours per acre			Yield per acre
	Total	Preharve	Harvest	
	Hours	Houns	Hours	Cyit.
New Jerseym-	136	41	95	190
Pennsylvania-	136	41	95	190
Northeast	136	41	95	190.0
North Carol ina-	102	40	62	125.0
South Carolina	74	40	34.	68.0
Texas	70	30	40	S0.0
United States	94	35	59	119.0

BROCCOLI				
	115	55	60	30
New Jersey-----------------:	149	55	94	47
Pennsylvan ia---------------:	155	55	100	50
Northeast	136	55	81	41.0
Virginia-	115	55	50	30.0
South Carolina-m-----------	90	50.	40	20.0
Texas	00	48.	42	30.0
Arizona-	165	50	115	90.0
Yashington------------------:	161	50	111	74
	128	50	78	52
	131	50	81	54
Pacific	132	50	82	54.0
United States----m-------	129	$5 i$	78	50.0

BRUSSELS SPROUTS

New York--	372	60	319	85.0
Texas	170	70	100	35,0
California-	563	75	488	130,0
United States----n-------:	536	73	463	123.0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959-Continued

CABBAGE

State and region	lien-hours per acre			Yield por acre
	Total	Preharve	Harvest	
Now Hampshire--------------	Hours	truss	Hours	Cut.
	99	40	59	160
!'assachusetts--	96	35	60	168
Rhode Island-----	98	37	61	165
Connecticut---...-	92	36	56	133
New York-----	99	36	63	226
New Jersey---	102	40	62	197
Pennsylvania-	100	40	60	182
Maryland-----------	103	45	58	14.5
Northeastu---n-------------	100	38	62	198.0
Michigan-----------	98	38	60	165
Miscons in-	99	38	61	280
bimmesota-	98	38	60	174
Lake Stare	98	38	60	210,0
Ohion----	99	38	61	236
Indiana	97	38	59	160
llinois	100	40	60	190
lowo--	S8	38	60	176
Missouri-	85	38	4.7	100
Corn Bel	98	39	59	194.0
Virginia----------	101	46	55	
North Carol ina-----	115	60	55	130
Tennessee----	1.16	55.	61	165
Appalachian-	1.12	56	56	134.0
South Carolina-r....	95	52	43	86
Georgia-n-...---	87	40	47	101
Florida-	109	50	59	155
Alabama-	104	50	54	115
Southea	104	49	55	138.0
Mississippi-	102	50	52	120
Lou is iana----	92	50	42	105
Delta States	100	50	50	111.0
Texas	104	50	54	115.0
! daho---	105	36	69	
Colorado-	94	37	57	260
Arizona-	92	42	50	220
Utah----	109	40	69	360
Mountain-	96	39	57	265,0
Washington---------	95	38	57	220
Oregon=---	94	36	58	210
California	99	40	59	227
Pacific-	98	32	59	225.0
United States--	104	45	59	167.0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959--Continued

CANTALOUPS

State and region	Man-hours per acre			Yield per acre
	Total	Preharve	Harvest	
	Hours	Hours	Hours	Cut.
New York-	143	80	63	90
New Jersey-	124	75	49	70
Delaware--	145	75	70	100
Maryland	14.1	75	66	95
Northeast-	136	76	60	86.0
Michigan	133	68	65	90.0
Onio-	101	65	36	65
Indiana-	105	65	40	80
11linois	100	65	35	60
10wa-	96	60	36	65
Missouri	110	60	50	100
Corn Belt	103	64	39	73.0
Kansas	153	65	88	125.0
North Carolina	73	35	38	48.0
South Carolina.	65	35	30	30
Georgia-	70	30	40	40
Florida-	84	40	44	45
Alabama	72	35	44.	4.5
Southeast	72	34	38	38.0
Arkansas	70	30	40	55.0
Oklahoma-	84	35	49	70
Texas	80	35	45	64
Southern Plains	81	35	46	65.0
Colorado-	105	45	60	85
Nev Mexico--	97	48	49	70
Arizona-m	128.	4.5	83	112
Mountain=	124	45	79	114.0
Washington	136	70	66	95
Oregon---...-----	134	60	74	105
California	118	48	70	140
Pacific	118	48	70	139.0
United States	109	47	62	104.0

Table 6.--Labor used per acre to produce and harvest vegetables for iresh market, by States and regions, 1959--Continued

CARROTS

State and region	Nan-hours per acre			Yield per acre
	Total	Preharvest	Harvest	
:	Hours	Hours	Hours	Cuts.
	120	40	100	200
Connecticut------------------	138	36	100	200
	167	35	132	265
	143	35	110	220
Pennsy ivan ia-----------------	127	37	90	180
Northeast-------.-----------	150	36	114	229.0
	105	35	70	150
	107	35	72	290
Minnesota	1	36	75	300
	106	35	71	208.0
	160	32	128	255
lllinois	127	32	125	$2: 0$
	158	32	126	252.0
	67	26	41	101.0
	122	32	90	180
	113	28	85	170
Arizonam	137	25	112	225
Mountain-------------------	128	26	100	200.0
Wash ington-------------------	123	35	88	350
Oregon----------------------	129	35	94	375
California---n--------------:	139	28	1.1	
Pacificm------------------	138	29	109	288.0
United States--------m:	105	29	76	190.0

Table 6. - Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, l059--Continued

CAULIFLOHER

State and region	Man-hours per acre			Yield per acre
	Total	Preharve	Harvest	
	Hours.	houes	Hoyus	Cute
New York-	152	50	102	85
Ney Jersey	130	50	80	67
Northeast	150	50	100	84, 0
Michigan	91	48	43	36
Hisconsin-	138	48	00	75
Lake States	105	48	57	48.0
Ohio	135	46	32	74.0
Florida	142	52	87	58.0
Texas	1.6	60	55	52.0
Colorado-	102	59	43	85
Arizona	104	50	44	88
Nountain	102	52	43	85.0
Washington-	113	59	54	103
Oregon-	99	58	41	82
California	85	43	42	83
Paciflc--	88	45	43	84,0
United States-	106	48	58	79.0
CELERY				
Massachusetts	300	180	120	171
New York-----	404	180	224	320
New Jersey-	380	180	200	285
Pennsylvania	324	180	144	205
Northeast	386	180	206	294.0
Michigan	418	180	238	340.0
Ohio-	376	180	196	80.0
Florida	359	170	189	344.0
Colorado-	257	150	107	305
Arizona-	308	170	138	395
Mountain	296	165	131	373.0
Washington--	262	150	112	320
Californla	302	125	177	505
Pacificm	301	125	176	502.0
United States	335	150	185	4.15 .0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh merket, by states and regions, $1950-\mathrm{Continued}$

Table 6.--Labor used por acre to produce and harvest vegetables for fresh market, by States and regions, 1959--Continued

CUCU:ibers

State and region	lion-hours per acre			Yield per acre
	Total	Preharves	Harvest	
	lours	Hours	Hours	Cute
biassachusetts	175	45	130	130
New York--.-...	100	30	70	70
Nev Jersey	133	25	108	120
Pennsylvania	75	30	45	50
Delaware-	88	25	63	70
Paryland-	88	25	63.	70
Northeast	104	28	76	81.0
Pichigan	152	80	72	60.0
1llinois	170	80	90	75.0
Virginia--	77	20	57	63
North Carolina	5	20	36	40
Appolachian	65	20	45	50.0
South Caro ina-	84	25	59	54
Georgia---	65	30	35	32
Fiorida---	154	55	99	90
Alabana -------	101	35	66	60
Southeast	129	45	84	76.0
Louisiana-	97	40	57	52.0
Toxas	72	35	37	34.0
Californio-	190	80	110	219.0
United States-	11.1	41	73	77.0

Table 6,--Labor used per acre to produce and harvest vegetables for fresh market, by States, and regions, 1959m-Continued

GARLIC

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959-Confinued

NELOMS, HONEYDE日 $1 /$

Stateandregion	Man-iours per acro			Yield pe acre
	Total	Preharve	Harvest	
	Hours	Hours	Hours	Cut.
Texas	69	35	34.	60.0
Arizo	103	40	63	140.0
California	118	48	70	163.0
United States	107	45	62	141.0

1/ Includes honeyball melons.

ONIONS				
	130	80	50	150
New York--------------------10:	174	70	104	315
Neyl Jersey------------------3:	120	70	50	150
Northeast-----------------3:	166	70	96	290.0
Michigan--------------------	176	70	106	320
	147	70	77	235
Minnesota-	143	70	73	220
Lake States	160	70	94	285.0
Oh io--------------------------	150	65	85	244
	170	65	105	300
	150	60	90	140
lowa----	165	65	100	250
	160	64	96	234.0
	220	70	150	300
Kansas--------.---------	160	70	90	180
Northern Plains	168	70	98	195.0
Virginia--------------------	138	58	80	100
North Carol ina	130	58	72	90
Appalachian	132	58	74	92.0
	132	55	77.	26.0
Texas	81	55	26	75.0
	135	35	100	425
	115	35	80	280
New Mexicom-----------------	131	40	91	275
	220	40	180	275
	154	40	114	320
Novada	152	40	112	340
Mountain	139	37	102	228.0
	115	50	65	410
Oregon---	120	50	70	457
Californi	245	110	135	347
Pasiftc	207	22	115	390.0
United Statesm------...--:	1.39	64	75	226.0

Table 6.-Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959--Continued

PEAS, GREEN

State and region	$:$			Man-hours per acre		

PEPPERS, GREEN

Whassachusetrs--------------	120	70	50	50
Rhode Island----------------:	125	70	55	55
	105	65	4,0	40
	120	60	60	60
New Jersey	1	50	55	5
Northeast	108	52	54	Ot,
Michigan-	120	6	6	60.0
Ohio	120	60	0	75.0
Virginia---------------------	75	35	41	43
North Carolina	75	35	40	36
Appalachian	75.	35	40	38.0
Florida-	390	250	140	70.0
Mississippi-----------------	99	80	39	27
Louisiana-	95	40	55	25
Delta States	27	4	12	26.0
Texas-	132	120	52	52.0
California-	181	60	121	195,0
United States-----------:	200	116	84	71.0

SHALLOTS

	299	250	4.9	28.0
United States---------*:	299	250	49	28.0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959--Continued

SPINACH

Table $6 .-$-Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959-Continued

TOMATOES

state and region	Man-hours per acre			Yield per acre
	Total	Preharves	Harvest	
	Hours	Hours	Hours	Cut.
Massachusetts--	448	138	310	155
Rhode Island-----	390	110	280	140
Connecticut---...--	340	95	245	125
New York----------	201	59	142	95
New Jersey	187	45	142	95
Pennsylvania	208	58	150	100
Delaware-	128	28	100	100
Maryland	125	25	100	105
Northeast	212	57	155	103.0
Michigan-	190	70	120	80.0
Ohio	190	50	130	100
Indiana-	165	60	105	75
llilnois---------	149	65	84	70
lowa--	150	60	90	75
Missour	180	60	120	100
Corn Be	173	61	112	86.0
Virginiam	105	25	80	70
North Carolina-	110	40	70	50
Kentucky	154	70	84	75
Terinessee-	164	80	84	80
Appalachian	125	46	79	68.0
South Carolina-	120	40	80	70
Georgia--	100	30	70	40
Florida---	185	85	100	112
Alabama--	115	35	80	70
Southeast	163	70	93	97.0
Mississippin	122	52	70	35
Arkansas---	149	55	94	105
Louisiana-	124	55	69	45
Delta States	136	54	82	73.0
Texas-	121	45	76	42.0
Colorado	170	50	120	150
New Mexico	158	50	108	140
Mountain	164	50	114	145.0
Washington	307	95	212	170
Oregon----	201	80	121	97
Callforniam	291	100	191	182
Pacific	290	100	190	180,0
United States	186	67	119	102.0

Table 6.--Labor used per acre to produce and harvest vegetables for fresh market, by States and regions, 1959m-Continued

WATERMELONS

State and region	Man-hours per acre			Yield per acre
	Total	Preharvest	Harvest	
	Hours	Hours	Hours	Cuther
Delaware	65	25	40	160
Maryland-	65.	25	40	160
Northeast------	65	25	40	160.0
Indlana-	55	30	25	130
lllinols--..--..-	47	25	22	100
lowa-	47	25	22	100
Missouri	50	25	25	110
Corn Belt+---...	51	27	24	116.0
Virginia---	58	20	38	150
North Carolina	35	20	15	60
Appalachian	42	20	22	86.0
South Carolina-	33	18	15	75
Georgia---	32	17	15	75
Florida----	67	50	17	68
Alabama	41	17	24	95
Southeast-	50	33	17	74.0
Mississippi	33	20	13	65
Arkansas-	38	20	18	90
Louis iana	36	20	16	80
Delta States	35	20	15	77.0
Oklahoma	27	15	12	80
Texas	24	15	9	60
Southern Plains-	24	15	9	62.0
Arizona-	65	30	35	160.0
Washington-	51	30	21	115
Oregon-	53	30	23	130
Cailiforniam	68	40	28.	156
Pacific-	66	39	27	152.0
United States-	44	27	17	82.0

Table 7.--Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959

ASPARAGUS				
State	Man-hours per acre			
$\begin{aligned} & \text { and } \\ & \text { region } \\ & \hline \end{aligned}$	Total	Preharves	Harvest	acre
:	Heurs	Hours	Hours	CWt.
Naw Jersey----..------------	196	8	188	25
	158	8	150	20
Maryland-	158	8.	150	20
Northeast	187	8	179	24.0
Wichigan--	119	7	112	15.0
111inoism--n----------------	136	8	128	17.0
Wash ington-------------------:	94	14	80	23
	70	14	56	16
Californiam-----------------	113	13	100	24
	109	13	96	24.0
	130	11	119	22.0

BEANS, GREEA LIMA

	29	19		1,710
				1,490
Deiaware-------------------	28	19	9	1,220
Marytand-	27	19	8	1.140
Northeast--	28	19	9	1,249
Michigan---------------------	33	18	15	2,100
Wisconsin	33	18	12	2,140
Lake States-	33	18	15	2,128
Virginia-	27	19	8	1.000
Washington-	35	20	15	2,180
California	47	35	12	3.410
	46	34	12	3,366
United States L/--m-n-	34	23	11	2,105

L/ Includes minor production in States not listed.

Table 7.--Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959--Continued

BEANS, SNAP

State and region	Man-hours per acre			Yield per acre
	Total	Preharves	Harvest	
	Houcs	Hours.	Hours	Tons
Maine-	48	12	36	1.8
Now York	48	8	40	1.7
Pennsylvania	31	8	23	1.5
Delaware--	36	8	28	1.1
Maryland-	42	8	41.	1.3
Northeast	38	8	30	1.6
Michigan--	69	12	57	1.8
Wiscons in	35	15	20	1.6
Lake States--	43	14	29	1.6
Virginia-	56	8	48	1.1
North Carolina-	95	8	87	2.0
Tennessee	22	8	84	2.2
Appalachiar	85	8	77	1.9
South Carolina-	85	10	75	1.0
Florida-	113	12	101	1.4
Southeast-	110	12	98	1.3
Arkansas-	120	16	104	2.5
Louisiana-	64.	12	4.	
Delta States-	112	16	96	2.3
Oklahoma-	98	16	82	2.1
Texas-	73	16	57	1.4
Southern Plains-	83	16	67	1.7
Colorado-	ل15	70	81	3.0
Hashington-	278	75	203	5.8
Oregon---	425	80	345	7.5
Callfornia	281.	40	241	7.1
Pacific-	377	70	307	7.2
United States 1	91	18	73	2.3

1/ Includes minor production in States not listed.

Table 7.--Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959--Continued

BEETS

State and region	Man-hours per acre			Yield per acre
	Total	Preharve	Harvest	
	Houss	Hours.	Hours	Tons
New York	63	30	33	12.9
Michlgan-	63	35	28	10.8
Wisconsin-	61	35	26	10.6
Lake States	61	35	26	10.6
Oregon	66	35	31	15.7
United States	58	33	25	10.6

New York	58	40	18	13.9
	52	38	17	13.4
	57	38	19	15.1
	50	38	12	98
Corn Belt	57	38	19	12.9
United States $1 / \sim \cdots$	56	39	17	13.7

CORN, SWEET

Maine-r--------------------	19.2	14.0	5.2	4.30
	12.6	9.0	3.6	3.01
	12.1	9.0	3.1	2.60
Delawarem-----------------:	13.1	9.0	4.1	3.40
	12.4	9.0	3.4	2.84
Northeast	12.6	9.0	3.6	2.88
	10.3	6.0	4.3	3.91
	11.2	7.0	4.2	3.83
	10.3	6.0	4.3	3.87
	10.6	7.0	3.6	3.30
	9.2	6.0	3.2	2.91
	9.8	6.0	3.8	3.44
lowa-	11.2	7.0	4.2	3.78
Corn Belt	S. 7	6.0	3.7	3.37
1 daho	17.9	12.0	5.9	5.22
	16.8	12.0	4.8	4.82
	17.3	12.0	5.3	5.29
Paclific	17.1.	12.0	5.1	5.06
United States L/m-n-m-n:	12.2	8.0	4.2	3.78

1/ Includes minor production in States not listed.

Table 7.--Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959--Continued

CUCLMBERS

State and region	Man-hours per acre			Yield per acre
	Total	Preharvest	Harvest	
	Hours	Hours	Hours	Bushel:
Delavare	208	30	178	185
Maryland-	208	30	178	185
Northeast-------------------	208	30	178	185
Michigan--	209	25	184	192
Wisconsin-	140	25	11.15	120
	181	25	156	163
	198	25	173	180
Indiana-	204	25	179	186
Corn Belt	201	25	176	183
	90	25	65	65
North Carolina	100	20	80	83
Appalach ian--------------m:	98	21	77	80
South Carolina-------m-----	72	25	47	45
Texasw------~---------n------	150	30	120	117
	395	45	350	365
	212	45	167	174
	223	45	178	185
	299	50	249	4.15
Pac\|fic-------------------	275	49	226	357
United States L/--------	1.55	26	129	139

L/ Includes minor production in States not listed.

Table 7.-LLabor used per acre to produce and harvest vegetables for processing, by States and regions, 1959--Continued

PEAS, GREEN

State and region	Man-hours per acre			Yield per acre
	Total	Preharves	Harvest	
	Hours	Hours	Hours	Pounds
New York--	14.9	5.0	9.9	2,820
Pennsylvaniam	14.4	5.0	9.4	2,700
Delaware--	14.4	5.0	9.4	2,690
Maryland--	14.8	5.0	9.8	2.800
Northeast	14.7	5.0	9.7	2,764
Michigan-	10.8	5.0	5.8	1,980
Wisconsin	10.0	4.0	6.0	2,500
Minnesota	9.9	4.0	5.9	2.230
Lake Sta	10.0	4.0	6.0	2,396
Indiana-	10.5	5.0	5.5	1,820
lilinols	15.7	5.0	10.7	3.260
Corn Be	15.3	5.0	10.3	3,424
\| dahom-------------->--------:	13.5	7.0	6.5	2.610
Vashington	11.5	5.0	6.5	3,250
Oregon----	8.5	4.0	4.5	2,510
Californla--n----	18.5	12.0	6.5	3,230
Pacific-	10.6	5.0	5.6	2.928
	11.3	4.7	6.6	2,730

SPINACH

New Yor	$2 L 5$	17.0	4.5	8.2
Florida	24.5	19.0	5.5	4.4
Arkensas	20.3	17.0	3.3	2.2
Oklatioma	2 L .4	17.0	4.4	2.2
Washington-	23.1	18.0	5.1	7.9
Californio-	22.6	18.0	4.6	7.1
Pacific	22.6	18,0	4.6	7.2
United States L/--------	21.7	17.3	4.4	4.5

L/ Includes minor production in States not listed.

Table 7.--Labor used per acre to produce and harvest vegetables for processing, by States and regions, 1959-montinued
tomatoes

1/ Includes minor production in States not listed.

