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Examination of Alternative
Heteroscedastic Error Structures
Using Experimental Data

James W. Mjelde, Oral Capps, Jr. and Ronald C. Griffin*

Abstract

Impacts of alternative specifications for heteroscedastic error structures are examined by
estimating various production functions for corn in Central Texas. Production- and profit-
maximizing levels of inputs and the shape of the profit equation obtained from models not corrected
for heteroscedasticity differed from those obtained from models corrected for heteroscedasticity.
Using the profit-maximizing input levels for each production function gave essentially the same
estimated yield and profit, regardless of the specification for heteroscedasticity employed.
Differences of up to one-quarter to one-third are noted, however, in the amount of protlt-
maximizing levels of inputs used, depending on the heteroscedasticity correction.

Key words: corn, heteroscedasticity, production functions

Evaluating crop yield response to inputs is

fundamental to studies modeling producer reactions
to changing environmental and economic conditions.
Estimation of the dependence of yield on inputs
usually involves employing ordinary least squares
(OLS) regression. One potential problem in using
OLS is the presence of heteroscedastic error terms.
Heteroscedasticity exists when the variance of the
error terms is not constant among observations,
Statistical consequences of heteroscedasticity in

OLS estimations are: I) the estimates of the
regression model are unbiased, but asymptotical] y
inefficient, and (2) the estimates of the variances of

the regression coefficients are biased (Maddala).
Yang, Koo, and Wilson contend that “. . .
heteroscedasticity has received less attention and

frequently has been handled inadequately in
empirical analysis” (p, 103), The present study

addresses this issue by examining alternative
techniques to correct for heteroscedasticity, We

also consider the influence these techniques have on

production- and profit-maximizing levels of inputs.

Generalized least squares (GLS) is
normally used to improve asymptotic efficiency of
the parameter estimates when heteroscedasticity is
present. In practice, a major difficulty lies in

knowledge of the particular form to employ to
model heteroscedastic error terms. Many different
functional forms can be used to form the GLS

estimator. Judge et al. (1985) contend “there is no
well-established ‘best way’ to model

heteroscedasticity” (p. 454). Further, Judge et al,
(1985) hypothesize that the choice among

heteroscedastic structures is not likely to be
important. The choice of which structure to use

may be based on estimation convenience, because a

priori no “best way” exists to model

heteroscedasticity, In this light, the objective of this
study is to empirically consider the impacts of
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alternative specifications for heteroscedastic error
structures in estimating corn production functions
for Central Texas. Emphasis is placed upon
whether the choice of specification influences
optimal input recommendations made to corn
producers.

Heteroscedastic Models

To examine heterosccdasticity, consider the
following general linear model

y, = f(x,, p) + v, (I)

where y, corresponds to output, x( refers to a vector

of inputs, 13is a vector of unknown parameters to be

estimated, and v, is a stochastic disturbance term.
Heteroscedasticity exists when

E(v,) =0, and

{

(2)

.E(V,, v,)=
0,2 ,fort = s,
o ,for t # s.

Equation (2) implies that the variance of the

disturbance term may vary from observation to
observation Judge et al, (1982), If 0,2 is a constant

(that is cr,2 = cr22= ... 6T2) then the disturbance is
homoscedastic and this assumption of ordinary least

square (OLS) is not violated. Usually, the a,2 are
not known; therefore some method must be used to
obtain estimated variances. These estimated
variances are then used in a generalized least

squares estimator. Judge et al. (1980) notes that
“because there are T unknown variances and T

observations, it is unlikely that we could obtain a

reasonable variance estimator without some further
assumptions that reduces the number of unknown
parameters” (p. 416). Usually, it is assumed that

each cr,2 is a function of S explanatory variables.
These variables could be anything, but in practice
the variables are selected to be a subset of the
exogenous variables. With this assumption, the
equation to estimate variances is:

0,2 = /z(x,, y) + e, (3)

where y is a vector of parameters to be estimated.

Mechanically, the estimation procedure
works as follows. First, the residuals (denoted by
v) from the OLS regression of y, on ~(x,, ~) are

obtained. Second, OLS is used in the regression of
some form of v, on I@,, y) to obtain consistent

estimates of y. The form of v, used depends on the
heteroscedasticity correction being employed. In all

cases, this form is an estimator for the variance or

standard deviation of output. Third, GLS, or

perhaps more properly weighted least squares, is
used to obtain consistent and asymptotically
efficient estimates of ~. In this stage of the

estimation procedure, both y, and ~(x,, ~) are
weighted by the inverse of the standard deviation of

h(x,, Y) where ~ are estimated parameters.

Given (1), the problem becomes not only

choosing an appropriate functional form for ,f(x,,~)
but also an appropriate specification for h(x,, y).

Our primary objective is to investigate whether the
choice of form for h(x,,y) matters for input
recommendations. Alternative functional forms for

,f(x,, b) used are the quadratic, translog, and square
root production functions. Six different

specifications for estimation of ll(x,, y) are examined
for each of the three production function

specifications. Specification of h(x,,y) requires both
a functional form for h(x,, y) and an estimator for
the variance of output. A form of the estimator for
the variance of output becomes the dependent

variable in the OLS regression to obtain ~.

Previous Spec@ca~ions ,for the Variance of Output

Different tests for heteroscedasticity have

been employed previously. These tests generally
differ in two ways: (1) the fictional form of h(x,,

Y) and (2) the estimates of the variance of output.
Several tests and previous studies are discussed
here. For a more thorough discussion of
heteroscedasticity see Carroll and Ruppert.

Hildreth and Houck, as well as Amemiya

(1977), specified h(x(, y) to be a linear function of
the exogenous variables x,. Mathematically, this

specification is:



J. Agr. and Applied Econ., July, 1995

w,! l’) = Y(I + Yl~f,
(4)

+ y2x2, + . + ykxk,.

The auxiliary regression used to determine estimates

of the y, ‘s is v,2 = ?’0 + ‘rIxll + Y2x2r + .. + I’k-%

where v~ corresponds to the residuals for the
regression of yt on f(x,, ~). This regression

corresponds to the Breusch-Pagan-God frey test of

heteroscedasticity (Breusch and Pagan). With this
specification, the weights in the GLS procedure are

r 1-H

(5)

Just and Pope (1978, 1979) and Buccola
and McCarl employed a form for h(x,, y) resembling

a Cobb-Douglas relationship, that is,

h(x,,y) = 70 Xl,y’ X2,Y’...Xk,! (6)

The auxiliary regression used to obtain estimates of
the yi’s is in v,2=lnyo+ yllnx,, +ylln x2,+...+

y~ In x~,. Just and Pope (1979) use, however, In
[v, I in lieu of In v: as an estimate for the standard

deviation of output. Given that In v? = 2 in Iv,1,
the use of either In v? or in [v, / as the dependent

variable in this auxiliary relationship to obtain
estimates of ~ is equivalent (Mjelde, Griffin, and
Capps). This regression corresponds to the Park-
Glejser test of heteroscedasticity (Park; Glejser),
With this specification, the weights used in the GLS
estimation are

(7)

Additionally, the logarithm of h(x,, y) may

be a linear function of the exogenous variables,
Judge et al. (1985) term this form multiplicative
heteroscedasticity, given by

[1W,,y)=q Y. + i Y,~,,
(8)

,=]

I99

This specification was employed by Harvey and is

popularly known as the Harvey test. The auxiliary
regression used to derive estimates of the y,’s is in

V2=YO+YIW+’Y2X 21+
specification, the weights
procedure correspond to

.. + y~ x~,. With this
used in the GLS

-Y,

11y,x,, .
(9)

Testing for heteroscedasticity in the various
formulations is similar. The null hypothesis is that

all coefficients, except the intercept, associated with

/z(x,, ~) are jointly equal to zero. A standard F-test
is used to test for the existence of heteroscedasticity.
Rejecting the null hypothesis implies the presence

of heteroscedasticity.

Caution should be used when inte~reting

R2 obtained from GLS estimation. These R=

measures are based on transformed data; that is the
data have been used three times: once in obtaining
the estimates for the variance of output, again in
obtaining estimates for y, and finally in obtaining
estimates for ~. To circumvent this problem, the

following procedure is employed to obtain
goodness-of-fit measures. For each observation,

estimated yields are obtained using the GLS
estimates for the production function. Simple

correlation coefficients between the actual and
predicted yields are then calculated. The square of
these correlation coefficients are then adjusted for
degrees of freedom.

Heteroscedastic Specifications Examined

Based on the previous studies, different

heteroscedastic error structures are examined for

each of the three production functional forms. As
noted earlier, these structures differ in assumptions

on the form of h(x,, y) and the estimator for the
variance of output. Alternative specifications for

ii(x,, y) and the variance of output are given in table
1. The exogenous variables in h(x,, y) are precisely
the same as those in ~(x(, ~).
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Table 1. Alternative Estimated Heteroscedrrstic Error Models

Model Estimator of the Specification Popular

Number Variance of Outmrf of h(x,, Y) Name

One In(v/) YO x:; d . . . d (Park - Giejser)

Four In(v?) Yo +,: ~JxJt (Harvey)

k

Five v; “fO +,$ YJXJ, (Breusch-Pagan-
Godfrey)

a Dependent variable used in the auxiliary regression equation to estimate the variance of
output.

Data

Data covering a five-year period, 1984-88,
from seven field experimental plot studies for corn

are used to investigate the effect of various
heteroscedastic specifications, The experiments
were conducted at two locations in Texas, Brazes
River Bottom Research Farm and Stiles Research
Farm, which are located approximately 40 miles
apart. Soils at the Brazes Bottom are characterized
by a higher water-holding capacity than those at the
Stiles Farm. In addition, the Brazes Bottom has
greater average annual and average growing season

rainfall (39 and 23 inches compared to 36 and 19
inches),

Management practices varied within the
pooled data set are maturity class, planting

population, applied nitrogen rate, and planting date.
All of the management practices were not varied
within an individual study; however, when pooled,
a diverse range of practices is obtained. Three
maturity classes, medium, medium-late, and late
season, are included in the data set. Planting
populations range from 1I ,008 to 36,027 seeds/acre.
Applied nitrogen varied from 40 to 267 lbs/acre.
Planting dates ranged from February 8th to April
24th (Julian dates 39 to I I4). The pooled data set

contains 1,011 observations of which 583 are from
the Brazes River Bottom location.

A more thorough discussion of the
individual plot studies and the pooled data set can

be found in Mjelde et al. One difference exists,
however, between the data set discussed in Mjeide

et al. and the data set used in this study. All
observations in which no nitrogen was applied are

deleted from Mjelde et al. data set to obtain the data
set used here. This deletion is made so the

logarithm of applied nitrogen could be taken for
some of the heteroscedastic error models and for

estimating the translog production function.

A priori it is reasonable to assume that

heteroscedasticity exists in the pooled com data set.
Two locations are included in the data with slightly

different climates and soil types. Further, each
study measured the impact of only one or two
management practices on yield, Finally, different

researchers were involved in each of the plot

studies. The pooled data set is, therefore, ideal for
a large sample empirical study on the effects of
heteroscedasticity.

Estimation of Production Functions

For each heteroscedastic error models, three

different production functions are estimated. These
three forms are modifications of the quadratic,

translog, and square root functions, because
interactions between some of the independent
variables are excluded.
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The quadratic production
estimated is:

Y = PI + ~z Nit + ~3Nit2

+ b4p0P + f15p0P2

+ ~7Pd 2 + ~8J!.0C

function to be

+ &Pd

+ bgLo@op + ~, ~LocNit

+ bll~cl + PJ4C2

+ B,3Locpd + ~ ,4PopNit

+ F15PopPd + ~ ,6NilPd

(lo)

where Y is com yield (bu/at), Nit 1s applied
nitrogen (lbs/at), Pop is planting population

(thousand seeds/at), Pd is planting date (Julian
date), Loc is a O-1 dummy for location (O for Stiles
Farm and I for Brazes Bottom), MCI is a O-I

dummy for medium maturity classes, MC2 is a O-I
dummy for medium-late maturity classes, and pi are

parameters to be estimated’. To avoid a singular
matrix, the late season maturity classification is the
reference category.

Both the square root and translog
production function are the same form as the

quadratic form with appropriate redefinition of the
variables. For the translog production function, E
Nit, Pop, and Pd are redefined as the natural
logarithm of yield, applied nitrogen, planting

population, and planting date. Whereas, for the
square root production finction, these variables are
redefined as the square root of applied nitrogen,
planting population, and planting date. Yield is not
redefined for the square root form. The dummy

variables remain the same for all three functional
forms.

Interactions between maturity class and the

other management practices are omitted in (14).
These interactions are omitted because of difficulties

in defining the maturity classes (Mjelde et al.).

Because of the absence of interactions, maturity

class shifts yields but has no affect on the

production- and profit-maximizing levels of applied
nitrogen, planting population, or planting date.

20I

As noted earlier, the exogenous variables in

/i(x,, y) are precisely the same as those in .~(x,, P).
Such a general formulation subsumes any

formulation where only a subset of the x(’s are used.

Further, this formulation allows for differences
between locations, because of the location variables.
Finally, analyses by site indicated that

heteroscedasticity exists in the data set within a site
at p-values less that .05. As such, it is appropriate
to model h(x,, y) in the manner chosen.

Empirical Results

Problems occurred when estimating the

translog and square root production function using

error model number five. A negative variance was
obtained for several of the observations when using
the estimated error model five for these two
fictional forms. Recall, that the weight associated
with model five is one over the square root of the
estimated variance (see (5)). Because the square
root of a negative number is complex, real-valued

the translog and square root production functions
could not be estimated using error model five. A
negative variance occurred because no restrictions
are placed on the possible values for predicted
variances. Some error structures may, therefore, not
be appropriate for certain situations.

Given the three alternative specifications of
,f(x,, ~) and six alternative heteroscedasticity

structures, full presentation of empirical results
would be cumbersome. Consequently, only a

summary of the results is presented. Additional
results not presented here are given in Mjelde,

Griffin, and Capps.

Production Function - Estimated Models

Summary statistics are given in table 2, for
the various GLS estimated production functions.
Each of the error models detected heteroscedasticity

as given by the F-statistics associated with the
variance model estimation. The large sample size
may contribute to the detection of heteroscedasticity

by all the error models.

The adjusted R2 values for all the error
models are low, suggesting weather or other omitted
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Table 2. Summary of Production Function and Error Model Estimates

Error Model’

f(x,+b)
Adj. Corr:
6
F-Test
5%”

h(xJ,y)
R’
e
F-Test

m!> P)
Adj. Corr:
e
F.Test
5%’

h(x,, y)
ii’
6
F-Test

m,, D
Adj. Con’
.9
F.Test
5%’

h(\, y)
R’
&

NO, Het.
& @ ~

Quadratic Production Function

0.51 0.49 0.50
621.8 3.53 1,02

69.9 66.2 68.3
13. 12, 11.

0.05 0.08
542 7,X105
4.9 70

Translog Production Function

0.52 0.45 049
0.07 3.30 .97
74.0 56.0 65.5

13. 10, 10

016 0,27
440 0.012
13.5 262

Square Root Production Function

0,51 0.49 050
62312 3.35 1.05

69.6 65,3 67.9
15. 12. 13,

0,06 0.08
4.66 7XIO$

5.3 6.8

050
1,54
67.5

11.

0.10
201,23

86

0,48
1.62
62.6

11

0,29
0.02
28.4

050
130
67.8

13.

0.10
201.93

8.6

@r

049
3s3
65.3

11,

0,05
5.44

4.6

0.45
3.29
55.0

9

0,15
4.41
13,2

049
3.34
64.7

11,

0.06
4.67

5.2

@

0.50
1.11
674

12,

0.08
7,XIO$

7.0

Nr
NA’
NK
NA”

0.27
0.01
26.4

NAe
NAG
NA”
NM

0.08
7X1O’

6,7

~

0.50
1.54
67,5

11.

0,10
20197

8.4

0.48
1,60
62.6

10

0,29
0.02
281

050
1.49
67.4

13,

0.10
202.24

8.5

a See Table 1 for a definition of the heteroscedastic error models

b Estimated production function witbout correcting for heteroscedasticity

c Adjusted squrutd correlation between the predicted and observed yields.

d Number of parameters, excluding the interwpt that are significant at the level of .05

e Unable to estimate this function+ form, because a negative estimated variance occuned for some of tie
observations.

variables play a larger role in corn yield variance

than the monitored input practices. For a given
form of f(x,, p) the R* for the error models are

similar. The major difference bet ween the error
model estimates is in the estimated standard error of

the regression & . These estimates vary
dramatically among the error models. Examination

of the error model standard goodness-of-fit tests,
such as adjusted R2, reveals no one error model
clearly dominates the others.

Although the statistical summary of the
models, adjusted R2 values, estimated standard

errors of regression, and F-tests are similar between

the models (table 2), the estimated coefficients vary

among the models. These differences are examined
in the next two subsections.

Production klaximiza~ion

Production-maximizing level of inputs and
associated yield for each production functional form

and error model are listed in table 3 for Brazes
Bottom and table 4 for Stiles Farm. For all models
except the quadratic production function at the Stiles
location, the corrected models maximize production

at lower levels of applied nitrogen than the
uncorrected models. This result is especially
apparent for the translog form. The uncorrected

translog form maximizes, for example, production
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Table 3. Production-Maximizhg Levels of Inputs and Associated Yields for a fate Season Hybrid, Brazes River Bottom
Functions

203

Error Nit Pop Pd MELD Profit
= W!!@) @ousand seedslac) (Julian Date} @!!k!?) Wb

No Het. Cor c
One
Two

llree
Four
Five
Six

No Het Cor c
One
Two

Three
Four
Fived

Six

No Het Cor.c
One
Two

llwee
Four
Fived

186.6
164.4
177.0
172.9
167.1
179.3
177,1

328,7
143 I
129.7
1509
1452

1537

170,1
151,0
166.3
162.3
152.O

Quadratic Production Function

27,452
26986
26767
26S89
26.488
26.856
26357

Translog Production Function

21,581
24.685
23616
24.228
24,507

24.099

Square Root Production Function

25.480
26,013
25,509
25.485
25.837

51
65
55
59
64
53
57

52
63
64
60
63

60

57
65
57
60
65

147.6
1498
146.6
1475
149.3
147.0
147.2

144.7
146,6
1429
145,4
146.8

145,8

145,8
148.8
145,2
146.1
1490

306.90
317.30
307.13
310,21
31601
30741
30886

296,60
315.44
310,13
311.44
316,02

“312.04

307.52
318.50
306.86
30988
31879

Six 164.2 25,374 59 146.1 309.51

a See Table 1 for a definition of the heteroscedastic error models.

b Profit (net of only applied ni~ogen and seeding density) associated with the production maximtilng level of inpus.
Prices used are com price of $2 50ibushel, nikogen price of $0 20/pound, and a seed price of $0.90/thousand seeds.

c Estimated production function without correcting for heteroscedasticity.

d Unable to estimate the production functton using this error structare, because a negative estimated variance occurred for
some of the obsewations.

at 2,583lbs/A. of applied nitrogen at Stiles Farm.
Clearly, this result is erroneous. For all functional

forms, differences between the uncorrected model

and corrected models for the remaining two
management practices are not as pronounced as for
nitrogen, but they do exist, The largest differences
in planting population are for the translog form.
Differences in planting dates also are evident. For

the uncorrected forms, it is desirable to plant earlier
(up to 14 days) than for the corrected functions for
the Brazes Bottom location. Planting date
differences are less pronounced for the Stiles
location. For the uncorrected models, generally, it
is desirable to plant later than for the corrected

production functions for the Stiles location, These
findings suggest that, if the objective is yield
maximization not correcting for heteroscedasticit y
when it is present may lead to different input usage
recommendations.

Differences between the corrected models
also exist, but they are not as pronounced as

between the uncorrected and corrected models.
Further, differences exist among functional forms.

Applied nitrogen ranges, for example, from 131-152
lbs/A. for the quadratic form depending on the error
model compared to a range of 119-146 lbs/A. for
the square root form for the Stiles location. For
production maximization, the translog functional
form has a smaller range of levels for planting date.
No additional general izable results exist for the
remaining inputs between the two locations.

As noted earlier, the Brazes Bottom area

has a higher average rainfall and better soil. These

differences make the Brazes Bottom better suited to

corn growth. As a consequence, more applied
nitrogen and a higher planting population are
recommended for the Brazes Bottom area (Cothren;

Mjelde et aL). Given the close proximity of the
two areas, planting dates might be expected to be
similar. Planting dates between the two locations

do differ for some of the error models under the
quadratic form. These differences arise because the
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Table 4. Production-Maximizhg Mvels of Inputs cnd Associated Yields for a Late Secson Hybrid, Stiles Farm

Error Nit Pop Pd
w f!!EkQ {thouscnd seedslac) (Julicn Date)

No Het. Cor,c
one
Two

‘fbrce
Four
Fwe
Six

No Het. Cor.c
One
Two

Three
Four

Fived
Six

1319
131,2
1438
1366
1316
ISIS
1395

25826
1275
145.1
137.5
1281

1394

Quadratic Production Function

11898
13643
13355
13,753
15.313
14073
14.945

Trans!08 Production FunCtiOn

8,383
14433
14784
14402
14842

14.628

No Het Cor c 1516 14,093
One 1200 15,150
Two 1459 14665

Three 1383 14,937
Four 1194 15,791

Fived
Six 1359 15,442

78
67
71
70
68
72
70

56
61
62
62
61

62

66
63
66
64
64

65

MELD Profit

@!!@ (.Wb

1178 257.42
I 17.1 25426
1163 24994
115,8 249.69
1130 24234
114,1 24223
112.4 23956

1744 -88.14
1152 2494 I
1136 24166
1165 250,68
1138 24548

115.8 24836

Square Root Production Function

1170 249,60
116,0 252.26
1154 24610
I 14.9 246.18
1142 24750

1133 242.19

a Sce Table 1 for a definition of the heteroscedastlc error models

b Profits (net of only applied nilmgen and seed costs) associated with tie production-mcximizin8 level of inputs.
Prices used we: com price of $2.50 hshel, nitrogen price of $0.201pound, and a seed price of $0.90/thousand seeds

c Estimated production function wKhout correcting for heterosc-edcsticity

d Unable tu estimate the production function using this error structure, because a negatwe estimated variance occurred
for some of the obsemations

production-maximizing planting dates under the
quadratic form for the Stiles Farm are generally
later than for the other forms and location.

Profit Maximization

Profit-maximizing input levels are
calculated for the following costiprice scenario.

Corn price is assumed fixed at $2,50/bu, nitrogen
costs $0,20/lb, and seeds cost $0.90/thousand seeds.

No cost other than yield loss is associated with
planting date. Profit-maximizing levels of inputs,
associated profits, and yields are presented in tables
5 and 6 for Brazes Bottom and Stiles Farm. The
profits reported are net of only applied nitrogen and
seeding density costs.

It was noted earlier that, in all cases except

the quadratic production function at Stiles, the
uncorrected models maximized production at higher
nitrogen levels than the corrected models, This

situation generally does not hold for the protit-
maximizing input levels given in tables 5 and 6.
Most notably, the uncorrected translog production
function has a more realistic profit-maximizing
nitrogen level than what was calculated for

production maximization. Noteworthy differences
between profit-maximizing input levels exist among
the corrected models.

The quadratic models for the Brazes
Bottom, generally, have higher profit- maximizing
levels of nitrogen and planting population than
given by either the translog or square root models.

Calculated profit-maximizing planting dates have a
greater range for the Brazes Bottom than for the
Stiles Farm. The profit-maximizing planting date
for Stiles is later for the quadratic forms than for
either the translog or square root functional form.

Corn yields associated with the various models and
profit-maximizing levels are similar within a given
location.
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Table S. Profm-MrmimizingLevels of Inputs, Associated Profitand Yield for a bte Season Hybrid, Brnzns
River Bottnma
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Error NII
Modelb (!!?@)

No Het Cord 1386
One 1332
Two 1431

Three 140.0
Four 1344
Five 1469
Six 1428

No Het Cord 1236
One lt67
Two 94.6

Three 122.9
Four 1178
Fivef

Six 1247

No Het. Core 1188
One 1230
Two 1297

Three 1257
Four 123.0
Fivef

Six 127.5

Pop Pd
(thousand seedsJac) Qulian Date)

Quadratic Production Function

26,169 62
26587 69
26.153 60
26.046 6-1
26167 69
26414 57
25,884 62

Trnnslog Production Function

22.712 63
24S32 66
23,277 70
24.123 63
24422 66

24.052 62

Squnre Root Production Function

25189 65
25.756 69
25.346 61
25.298 64
25,640 69

PROFIT
(j.@

312,28
32060
310.79
31374
319,42
310.85
312,51

304,94
31840
31444
314.63
319,05

315,35

313,19
32156
310.86
313,85
32194

YIELD
(b@@

145,4
148,5
145,2
146,1
1479
145.6
1457

140,0
!455
141,7
144,4
145.8

1448

1439
147.7
143,8
1447
147,8

25.226 63 31354 144,7

a Prices used in maximizing profits for a late season hybrid are: com price of $2.50/bushel, nitrogen price of $0.201pound,
and a seed price of $0.90/thousand seeds

b See Table 1 for a detiniticmof the heteroscedastic models.

c Yield associated with the profit-maximizing level of inputs

e Estimated production function witbout correcting for heteroscedasticity.

f Unable to estimate the production timction usingthiserrorstructure,because a ne8ative estimated vnriam%occurred for
some of the obsewations

Between the error models within a
functional form grouping, notable differences exist
for the profit-maximizing levels of inputs. Applied
nitrogen levels for Brazes Bottom, for example,

ranges from 95 lbs/A. to 125 lbs/A. with the

translog fictional form. This difference of 30
lbs/A. is between one-third and one-quarter of the

profit-maximizing input level (depending on the

base used). On the other extreme, differences in
planting dates for Stiles vary only 4 to 6 days

depending on functional form.

Similar to production maximization, it is
difficult to discern general conclusions concerning
profit-maximizing input levels. When comparing
the production- and profit-maximizing planting date
ranges for a given location, few differences exist,
This lack of changing planting dates is most likely

because no economic cost other than yield loss is

associated with planting date, Few generalities are

evident concerning the other two inputs when
comparing production- and profit-maximizing ranges
of inputs.

The above discussion on production- and
profit-maximization levels of inputs and resulting

yields and profits provides a comparison between

the functions at essentially a single point. To
provide a more comprehensive comparison of the
production functions, profit contours are used (as
suggested by Debertin). Selected contours in
nitrogen-planting date space (figures I and 2) are

presented for the Brazes Bottom location.
Additional contours including contours for the Stiles
location can be found in Mjelde, Griffin, and Capps.

All contour plots were created using a
similar procedure, The lowermost contour is
$2701ac. The increment of each successive contour
line is $5/at until the profit-maximizing level of

profit is obtained, Note that the maximum profit
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Table 6 Protit.Mnximizhg Levels of Inputs, Associated Pmtit md Yield for a Late Season Hybrid, Stiles Farma

Error Nit Pop Pd PROFIT
_

YIELD

(!W?Q {tbousmd seeddac] (Julian Date) w @.@@

Quadratic Production Function

No Het, Cord 839 10.615 89 262,79
One

115.7
100.0 13,244 72 257,56

Two
115.8

109,9 12741 76
Three

253,61 1148
lo3g 13.210 75 253.21

Four
I 14.3

99.0 14993 73
Five

24574 1116
1194 13,630 76

Six
245,67 112,7

105.2 14,471 75 24320 1109

Translog Production Function

No Het, Cord 281,96 I0047 84
One

31974 154 I
101,2 14.477 64 252,30 114,2

Two 950 14670 70 247,64
Three

1119
107.9 14,467 65 253,80 1154

Four 101,I 14913 65 24843
Fivee

1128

Six 109.3 14716 65 251.56 114,7

Square Root Production Function

No Het, Card 106.9 13997 74 25425
One

1153
97s I5050 67 254,69

Two
1151

1151 14637 69 24921
Three

1142
1059 14,907 69 249,80 1138

Four 963 15716 68 249,95
Fivee

113,3

SIX 1053 15,410 69 245.47 1122

a Prices used in maximizkg profits for a late season hybrid nre: com price of$2501mshel, nitrogen price of
$0201pound, md a seed price of $0,901tbousandseeds.

b See Table 1 for a definition of the heteroscedastic models

c Yield associated with tbe protit.maxitnizing level of inputs

d Estimated production function without correcting for heteroscedasticity,

e Unable to estimate the product function using this error structure, because a negative estipmted vnriance occurred for
some of the observations, thus, a square root could not be taken,

level varies by functional form and error model.
Plotting range for the two inputs corresponds to the
range of input levels within the data set. Because
the plots are two-dimensional, a fixed level for the

third input must be assumed. The input level for
population is 25,000 seeds/at which approximates
the profit-maximizing level for all error models.

Only general observations and a few
specific examples are discussed. Between the

contours, the largest differences, generally, are

between the functional forms. The next largest
differences are between the uncorrected and
corrected profit contours. Smaller relative
differences are noted between the different error
models. The translog production functional form
has the largest differences of the three forms
between the uncorrected and corrected profit
contours. Contours associated with the translog and
square root functional forms are, generally, less

circular than for the quadratic form.

These general differences in profit contours
have implications concerning input

recommendations. The penalty associated with

being further away from the profit-maximizing level
of inputs differs between functions. Using different
functions may result in different input
recommendations especially when risk aspects and
the stochastic nature of production are factored into
the analysis. Differing recommendations would be

a function of the steepness of the production
function.

As noted, the profit contours provide
information on the shape of the underlying

functions. Consider, as an example of the steepness

of the contours, error model one (figure I). For the
three functional forms, maximum profit is between

$318 - $32 l/A. for the Brazes Bottom location.
“Optimal” planting date is approximately Julian date
68 for all three forms, profit-maximizing levels of

applied nitrogen are approximately 133, 116, and
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Figure 1. Iso-profit Contours Contrasting Error Model One to the Production Function with No Correction
for Heteroscedasticity for the Brazo
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123 for the quadratic, translog, and square root

production functions, Contours presented in figure
I indicate that theprofit surface ismuch steeper on
the low input side for either the translog or square

root function than it is for the quadratic. This result
indicates that being further away from the profit-
maximizing level of inputs decreases profits faster
for either the square root or translog than for the

quadratic.

Quadratic – Model One

llo~

1

Q
&

50 100 150 200 250

Nit

Translog - Model One

I
110

100

90

80
E

70

60

50

40I

50 100 150 200 250

Nit

Square Root - Model One

I 1
110

100

90

~ 80 r /
&

70

60

I\

“’>
‘,,.,,:,m.,.,

50

40 .-.

50 100 150 200 250

Nit

Guidelines for Empirical Applications

In commenting on issues pertaining to the

appropriate functional form, Hildreth observed:

“it is particularly disconcerting

that, in many instances in which
several alternative assumptions [as
to fhctional form] have been
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Figure 2. Iso-profit Contours Contrasting Error Models Two and Three for the Brazes Bottom Location
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investigated, alternative fitted
equations have resulted which

differ little in terms of
conventional statistical criteria

such as multiple correlation

coefficients or F tests of the
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deviation, but differ much in their
economic implication’’ (p. 64).

The results presented here extends

Hildreth’s observations concerning functional form

toinclude problems ofheteroscedasticity. Previous
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studies have examined the implications or sensitivity
of choosing one functional form (e.g. Bay and
Schoney; Griffin et al.). The conclusion of these
previous studies is summarized by Griffin,
Montgomery, and Rister:

“given the possible differences in

economic implications, it is often
advisable to explore the sensitivity
of calculated economic optima to
the choice of functional form” (p.
224).

The results presented in this study support

and extend their summary.

Based on the extension of previous findings
provided by the current study, several
recommendations for empirical studies are made. [t
is stressed these recommendations serve as a
guideline and not as a cookbook. As with all
empirical applications, prior knowledge and
experience play an important role.
Recommendations are:

(1)

(2)

(3)

(4)

employ different production
functional forms (e.g. quadratic,
translog, and square root),

use alternative tests for
heteroscedasticity (e.g. Park-
Glejser, Harvey, Breusch-Pagan-
Godfrey),

if heteroscedasticity exists, make

appropriate corrections in the
estimation procedure, and

use both statistical and economic

criteria in examining the
consequences of different
functional forms and
heteroscedastic correction
measures.

It should be noted that negative variances may arise
in the estimation procedure and/or use of the

production functions. This potential problem may

limit which forms of heteroscedasticity can be
examined,
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As shown in the estimated production
functions in this study, conventional statistical
criteria may be similar among production functions

and heteroscedasticity corrections, but optimal input
recommendations may vary, In the functions used

here, optimal input differences of up to one-third are
noted. Further, to our knowledge, no statistical tests

exist which jointly test for both functional form and
form of heteroscedasticity, Nonnested tests of
hypothesis may be a possibility, but this area
remains for future research. The “best” procedure
is to simply report ranges of optimal input levels or
the economic implications associated with the

different functional forms and forms of
heteroscedasticity. In studies where it is impractical
to provide the sensitivity results, at a minimum,

potential biases should be noted along with the
rationale used to select the chosen function.

Discussion and Implications

Several implications can be drawn from the

results of this empirical study of heteroscedasticity.
First, this study confirms previous studies
concerning the need to correct for heteroscedasticity.
Production- and profit-maximizing levels of inputs

and the shape of the profit equation obtained from
the uncorrected models differed from those obtained
from the corrected models. In some cases, the
levels obtained from the uncorrected models were
nonsensical. This result is especially apparent for

the translog production function. Given the need to
correct for heteroscedasticity, the means by which
the corrections are obtained should not be
undertaken lightly. One should not merely correct
for heteroscedasticity without exploring alternative

specifications and the implications of the selected
specification. Differences of up to one-quarter to
one-third the amount of production- or profit-

maximizing levels of inputs are calculated when
using the different error correction models.

Results both support and contradict Judge

et al. (1985)’s hypothesis that the choice of which
heteroscedasticity correction to employ may be

unimportant. If the model is used for prediction

purposes, that is to predict yields or profits, all error
correction models gave approximately the same

levels. These results support Judge et al. (1985)’s

hypothesis, Results concerning the production/profit

maximizing levels of inputs contradict Judge et al.
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(1985)’s hypothesis when using the models in a discussion concerning heteroscedasticity corrections.
recommendation rather than a predictive framework. A natural extension of this study is to examine
Additional studies need to be conducted concerning various known forms of heteroscedastic error temm
these two uses for models and correcting for in a Monte Carlo study, Further, other functional
heteroscedasticity. forms including flexible forms, such as the Fourier

form, warrant examination. Large sample versus
The findings of this analysis are restricted small sample properties should be examined.

to the data set used but should generate potential
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Endnote

1. Formulations which included both growing season rainfall and temperature and only rainfall were
considered. A high degree of multicollinearity existed because the climatic variables vary only across years

(only five years) and locations. Location and rainfall are associated in the multicollinearity. Because of

this problem, it is felt that the formulation presented provides “better” estimates of the individual parameters
to be used in the optimization.


