

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Contribution of Productivity Growth to Net Farm Income in Canada and the United States

Sean A. Cahill

Research and Analysis Directorate Agriculture and Agri-Food Canada

June 2013

Paper presented at the 2013 IATRC Symposium "Productivity and Its Impacts on Global Trade", June 2-4, Seville. The author thanks Eldon Ball, ERS, USDA for generously providing data for the United States. Any policy views, whether explicitly stated, inferred or interpreted from the contents of this paper should not be represented as reflecting the views of Agriculture and Agri-Food Canada.

1 Introduction

Agricultural productivity growth is typically associated with a wide range of bene...ts, including higher net farm incomes, overall economic growth, greater national food security, more a¤ordable food and resource conservation. The multiplicity of positive outcomes attributed to productivity growth has led governments to develop policies and programs that are designed to enhance this growth.

It is important, when considering the possible need for policy intervention, to ...rst determine how signi...cant a role productivity growth plays in achieving these outcomes. In particular, productivity growth is commonly assumed to be an important contributor to net farm income (productivity growth will improve the 'prosperity of the farm sector'). Yet, to date, little research has been done to quantify this relationship.

This paper proposes a methodology that can be used to measure relationship between productivity growth and real net farm income growth. The methodology involves the use of Bennet price change and quantity change indicators, which are applied to data from agricultural production accounts for Canada and the United States. The next section outlines the methodology and the third section provides a brief description of the data. The fourth section presents the results from the decompositions. These results lead into the discussion in the last section, which posits a relationship between government policies that stimulate productivity growth and international market prices.

2 Methodology

The analysis is based on a national agricultural production account where, in each year, N inputs are used to produce M outputs. Countries vary in terms of the number and type of outputs produced, as well as in the number and type of inputs used, but the approach used to construct the accounts is the same across countries.

Individual output quantities, which are measured as gross outputs, are denoted as $y_{1;t}$; $y_{2;t}$; :::; $y_{M;t}$ and the respective prices for these outputs in year t are denoted as $p_{1;t}$; $p_{2;t}$; :::; $p_{M;t}$, where each price includes any subsidy

that is tied to production of that output. Individual input quantities are the variables $x_{1;t}$; $x_{2;t}$; \ldots ; $x_{N;t}$: While the set of inputs varies between countries, the N th input in each country is always essentially the same type of input both in its de...nition and the way in which it is measured. This commonality is important to this analysis because this input plays an important role in any country comparison. Nominal prices for all but the N th input are denoted as the variables $w_{1;t}$; $w_{2;t}$; \ldots ; $w_{N_i \ 1;t}$; where each price is adjusted by any rebate that is given for that input.¹

In the production account, the total value of gross output must equal the total cost of all inputs, i.e.

$$X_{\substack{M\\i=1}} p_{i;t} y_{i;t} \xrightarrow{X}_{\substack{N_{i} \ 1\\i=1}} w_{j;t} x_{j;t} + D_{t} ; \qquad (1)$$

where D_t is a residual that interpreted as the value of services from the Nth input. D_t adjusts to ensure that the identity holds in each year. In the account, then, rearranging (1) and using more compact notation,

where
$$R_t = \mathbf{P}_{\substack{i=1 \ j \in \mathbf{Y}, i \\ i \neq 1}}^M p_{i;t} y_{i;t}$$
 and $C_t = \mathbf{P}_{\substack{N_i \\ i = 1}}^N w_{j;t} x_{j;t}$ (the total cost of N i 1 inputs): (2)

For purposes of this analysis, the production accounts for Canadian and U.S. agriculture, input N is operator and unpaid family labour, i.e. this input is the claimant of the residual D_t . Thus, D_t can be interpreted as the nominal return to operator and unpaid family labour or, more simply, as nominal net farm income. Net farm income is assumed to be used by operators and unpaid family members to purchase consumer goods and services. Since the prices of these goods and services increase in aggregate at the rate of general in‡ation, nominal levels of net farm income (e.g. between $D_{t_i 1}$ and D_t) are converted into real terms. This is done by de‡ating (2), i.e.

$$D_t^r = D_t = h_t \quad \hat{R}_t = h_t \quad C_t = h_t ; \qquad (3)$$

¹Transfer payments made to farmers by governments – i.e. payments that are are decoupled from production – are not included in output prices: The payments may, nevertheless, be capitalized into asset values (particularly land), and therefore they may have an indirect impact on the account if they raise user costs of capital. This exect, if it exists, is treated as exogenous, much in the same way that the exects of other market forces on output and input prices are taken as given.

where h_t is the consumer price index (CPI) for all goods and services in year t; the CPI has a base year b so that the nominal value in any year t, when de‡ated by h_t is expressed in year b ('real') dollars. Unlike nominal values D_t ; D_t^r can be compared over time and is interpreted as follows: if $D_t^r > D_{t_i \ 1}^r$, the quantity of goods and services that can be purchased with net farm income has increased.

Using (3), the growth in real net farm income between t_i 1 and t is:

 $D_t^{rg} = D_t^r i D_{t_i 1}^r$ (R_t=h_{t i} R_{t_i 1}=h_{t_i 1}) i (C_t=h_{t i} C_{t_i 1}=h_{t_i 1}); (4) i.e. this is the di¤erence between the growth in the total real value of gross output and the growth in the total real cost of N i 1 inputs. Expression (4) is central to the analysis since the decomposition that follows shows how D_t^{rg} can be related to productivity growth.

The approach used to link D_t^{rg} to productivity growth is based on Diewert (2005), where it is shown that a change in the nominal value of revenue or cost can be expressed as the sum of an indicator of price change and a corresponding indicator of quantity change. There are several possible formulas for these indicators, and their properties can be assessed with a range of tests similar to those used to assess conventional index number formulas like the Fisher Ideal price index. Of the candidates, the Bennet indicators of price and quantity change are 'well-behaved' in that they satisfy all of the tests that are analogous to those met by the Fisher ideal price index. – see Diewert(2005, p.331, Prop. 2).

While Bennet indicators of price and quantity change are primarily used in the context of nominal changes in value, it is possible to adjust prices for in‡ation in one year when comparing data between two adjacent years – see Diewert(2005, p. 341). This adjustment accomplishes two things. First, the general in‡ation component in the Bennet indicators of price and quantity change – which would otherwise a¤ect the magnitude (and possibly sign) of these indicators – are removed. Second, the adjustment makes it possible to decompose growth in real net farm income into in‡ation-adjusted Bennet indicators of price and quantity change.

Diewert (2005, p. 342, expr. 81) shows that a change in the total nominal value of gross output between year t_i 1 and year t; i.e. R_{t_i} R_{t_i} 1, using the de...nition of R_t given with expression (2) above – has the decomposition:

$$p_{t} \,^{\xi} y_{t \, i} \, p_{t_{i} \, 1} \,^{\xi} y_{t_{i} \, 1} \,^{\epsilon} p_{t} \,^{\xi} y_{t \, i} \, p_{t}^{\pi} \,^{\xi} y_{t \, 1} + I_{R} \left(p_{t_{i} \, 1}; p_{t}^{\pi}; y_{t_{i} \, 1}; y_{t} \right)$$

$$+ V_{R} \left(p_{t_{i} \, 1}; p_{t}^{\pi}; y_{t_{i} \, 1}; y_{t} \right) ;$$
(5)

where: p_t is a 1 £ M matrix of output prices $[p_{1;t}; p_{2;t}; \ldots; p_{M;t}]$; y_t is a 1 £ M matrix of gross output quantities $[y_{1;t}; y_{2;t}; \ldots; y_{M;t}]$; p_t^{π} is a 1 £ M matrix of in‡ation-adjusted output prices $[p_{1;t}^{\pi}; p_{2;t}^{\pi}; \ldots; p_{M;t}^{\pi}]$; $p_{i;t}^{\pi} = p_{i;t} (h_{t_i \ 1} = h_t)$ is the in‡ation-adjusted price for output i; $i = 1; 2; \ldots M$;

$$I_{R}(p_{t_{i}}; p_{t}^{x}; y_{t_{i}}; y_{t}) = \frac{X_{n}}{\sum_{i=1}^{M} y_{i;t}^{a}} \int_{p_{i;t}}^{p_{i}} \int_{p_{i;t}}^{p_{i}} p_{i;t_{i}} \int_{p_{i}}^{p_{i}} (6a)$$

is the intation-adjusted Bennet indicator of output price change; $y_{i;t}^a$ is the arithmetic average of the quantity of output i in year t and in year t_i 1; i.e. $y_{i;t}^a = (y_{i;t} + y_{i;t_i-1})=2;$

$$V_{\mathsf{R}}(\mathbf{p}_{t_{i}-1};\mathbf{p}_{t}^{\mathtt{m}};\mathbf{y}_{t_{i}-1};\mathbf{y}_{t}) = \frac{\mathsf{X}}{\prod_{i=1}^{\mathsf{M}} p_{i;t}^{\mathtt{a}^{\mathtt{m}}}(y_{i;t-1} | y_{i;t_{i}-1})$$
(6b)

is the corresponding in‡ation-adjusted Bennet indicator of gross output quantity change; and $p_{i;t}^{a^{\alpha}}$ is the arithmetic average of the in‡ation-adjusted price of output i in t and the nominal price in t_i 1, i.e. $p_{i;t}^{a^{\alpha}} = (p_{i;t}^{\alpha} + p_{i;t_i})=2$:

The term $p_t \, {}^t y_t \, {}^i p_t^* \, {}^t y_t$ or, perhaps more obviously $(p_t \, {}^i p_t^*) \, {}^t y_t$ is the part of the change in nominal value that is needed for the real value of total revenue to remain constant. Diewert(2005, p. 341) refers to this as the "value change due to general in‡ation". If, for example, there were no change in any output quantity $(y_t = y_{t_i \ 1})$ between $t_i \ 1$ and t (i.e. if $y_t = y_{t_i \ 1}$) and if all in‡ation-adjusted prices in t were the same as unadjusted prices in $t_i \ 1$ (i.e. if $p_t^* = p_{t_i \ 1}$); each unadjusted price in t would still have to increase at the rate of general in‡ation ($h_t=h_{t_i \ 1 \ i} \ 1$) in order for real revenue to remain unchanged.

By the de...nition of intation adjusted prices p_i^{α} and by the fact that each price is adjusted in the same way, $p_t^{\alpha} = (h_{t_i \ 1} = h_t)p_t$: Substitution of this expression for p_t^{α} in (5) and rearrangement/elimination of terms gives:

$$(h_{t_{i}\ 1}=h_{t})p_{t} (y_{t_{i}\ 1} p_{t_{i}\ 1} (y_{t_{i}\ 1}) I_{R} (p_{t_{i}\ 1}; p_{t}^{x}; y_{t_{i}\ 1}; y_{t}) + V_{R} (p_{t_{i}\ 1}; p_{t}^{x}; y_{t_{i}\ 1}; y_{t}) ;$$

$$(50)$$

which, with multiplication through by $(1=h_{t_i - 1});(5^0)$ can be expressed as:

$$R_{t}^{gh} = R_{t} = h_{t | i} R_{t_{i} | 1} = h_{t_{i} | 1}$$

$$(7)$$

$$I_{R}(p_{t_{i} | 1}; p_{t}^{x}; y_{t_{i} | 1}; y_{t}) = h_{t_{i} | 1} + V_{R}(p_{t_{i} | 1}; p_{t}^{x}; y_{t_{i} | 1}; y_{t}) = h_{t_{i} | 1}$$

Expression (7) shows that growth in the real value of total gross output between t_i 1 and t is equivalent to the sum of an in‡ation-adjusted Bennet indicator of output price change and an in‡ation-adjusted Bennet indicator of gross output quantity change, where both indicators are expressed in year b dollars:

It follows from the preceding derivations (dispensing with the intermediate steps) that the growth in the real (year b dollar) cost of N $_{i}$ 1 inputs has the decomposition:

$$C_{t}^{gh} = C_{t} = h_{t | i} C_{t_{i} | 1} = h_{t_{i} | 1}$$

$$(8)$$

$$\int I_{C}(w_{t_{i} | 1}; w_{t}^{\pi}; x_{t_{i} | 1}; x_{t}) = h_{t_{i} | 1} + V_{C}(w_{t_{i} | 1}; w_{t}^{\pi}; x_{t_{i} | 1}; x_{t}) = h_{t_{i} | 1};$$

where: w_t is a 1£N $_i$ 1 matrix of input prices $[w_{1;t}; w_{2;t}; \ldots; w_{N_i-1;t}]; x_t$ is a 1£N $_i$ 1 matrix of input quantities $[x_{1;t}; x_{2;t}; \ldots; x_{N_i-1;t}]; w_t^{\tt m}$ is a 1£N $_i$ 1 matrix of in‡ation-adjusted input prices $[w_{1;t}^{\tt m}; w_{2;t}^{\tt m}; \ldots; w_{N_i-1;t}^{\tt m}]; w_{j;t}^{\tt m} = w_{j;t} (h_{t_i-1}=h_t)$ is the in‡ation-adjusted price for input j; j = 1; 2; $\ldots N_i$ 1;

$$I_{C}(w_{t_{i}}; w_{t}^{x}; x_{t_{i}}; x_{t}) = \frac{X_{i}}{\sum_{j=1}^{N_{i}} x_{j;t}^{a}} w_{j;t}^{x} i w_{j;t_{i}}^{x} i w_{j;t_{i}}^{a}$$
(9a)

is the in‡ation-adjusted Bennet indicator of input price change; $x_{j;t}^a$ is the arithmetic average of the quantity of input j in year t and in year t_i 1 i.e. $x_{j;t}^a = (x_{j;t} + x_{j;t_{j-1}})=2;$

$$V_{C}(w_{t_{i}}; w_{t}^{\mu}; x_{t_{i}}; x_{t}) = \frac{X_{i}}{\sum_{j=1}^{N_{i}} w_{j;t}^{a\mu}(x_{j;t} | x_{j;t_{i}})}$$
(9b)

is the corresponding in‡ation-adjusted Bennet indicator of output quantity change; and $w_{j;t}^{m^{\alpha}}$ is the arithmetic average of the in‡ation-adjusted price in t and the nominal price in t i 1, i.e. $w_{j;t}^{a^{\alpha}} = (w_{j;t}^{\alpha} + w_{j;t_i-1})=2$:

Substitution of (7) and (8) into (4) gives the following decomposition of real net farm income growth:

$$D_{t}^{rg} = I_{R}(p_{t_{i}1}; p_{t}^{x}; y_{t_{i}1}; y_{t}) = h_{t_{i}1}$$

$$= I_{C}(w_{t_{i}1}; w_{t}^{x}; x_{t_{i}1}; x_{t}) = h_{t_{i}1} + Z_{t}^{N_{i}1};$$

$$(10)$$

where

$$Z_{t}^{N_{i}1} = V_{R}(p_{t_{i}1}; p_{t}^{\pi}; y_{t_{i}1}; y_{t}) = h_{t_{i}1} V_{C}(w_{t_{i}1}; w_{t}^{\pi}; x_{t_{i}1}; x_{t}) = h_{t_{i}1}$$
(11)

 $Z_t^{N_i\ 1}$ is the real value of 'in‡ation-adjusted N-1 factor productivity growth' that occurs between year t $_i\ 1$ and t. Notice that, unlike most productivity measures, $Z_t^{N_i\ 1}$ is expressed in year b dollars, rather than as a percentage or proportion. This is an attractive feature of the decomposition approach since it can be used to estimate the value of productivity growth to the agricultural sector

Also notice that $Z_t^{N_i \ 1}$ is de...ned over N _i 1, not N, inputs. It represents the di¤erence between growth in total gross output and growth in all inputs but the Nth. As such it is a partial, but almost complete, measure of total factor productivity growth; that is why the term 'inflation_i adjusted N_i 1 factor productivity growth' is used to describe it.

Expression (10) shows that growth in real net farm income is comprised of three components: (i) an in‡ation-adjusted Bennet output price change indicator; minus (ii) an in‡ation-adjusted Bennet input price change indicator; plus (iii) in‡ation-adjusted N-1 factor productivity growth. All three components are valued in year b dollars.

Note that (10) is similar to that for a Bennet decomposition of a change in pro...ts within a net output framework and where the in‡ation-adjusted N-1 factor productivity growth term is interpreted as a measure of overall e¢ciency – see Diewert (2000, p. 5, expr. 13). Expression (10) is also similar to the pro...t decomposition formula derived by Han and Hughes(1999, pp. 32-33), once the gross productivity and scale impacts in that framework are combined and terms are eliminated. For the decomposition in Han and Hughes, however, the measure of productivity change is total factor productivity growth, rather than in‡ation-adjusted N-1 factor productivity growth, since pro...t is the dollar amount of revenue in excess of the opportunity cost of all inputs in an account with no residual claimants. Where owners of ...rms pay a wage or salary to operators (e.g., as in a corporation with common shareholders), such 'pure pro...t' can exist, since it is disbursed as dividends to the owners once all inputs are assigned a price in the ...rm's accounts. To measure the change in returns to a residual claimant or claimants, and to decompose this change, expression (10) is therefore more appropriate than the decomposition formulas in Diewert(2000) or Han and Hughes(1999).²

Similar decompositions to expression (10) have also been derived by Lawrence, Diewert and Fox (2004) and Gordon, Dupont, Fox and Grafton (2003). These studies, however, not only allow for pure pro...t, but also treat the change in net income as the ratio of net income in year t to that in year t_i 1; i.e. they use the ratio $D_t=D_{t_i 1}$ – see Lawrence, Diewert and Fox (2004, p. 4) and Gordon, Dupont, Fox and Grafton (2003, p. 3). Finally, in an article published by the U.K. Central Statistical O¢ce an approach similar in spirit to expression (10) was used, but in relation to a measure referred to as 'normal income' – see CSO(1961).

3 Data

The output and input data used to estimate expressions (10) and (11) are, as noted, from production accounts for Canadian and U.S. agriculture. The Canadian data (AAFC production account for Canadian agriculture) are documented in Cahill and Rich(2012), while the U.S. data are documented in Ball, Bureau, Nehring and Somwaru(1997). The CPI series for Canada are from Statistics Canada (CANSIM Table 326-0021) and for the U.S. from the Bureau of Labor Statistics (series ID CUUR0000SA0).

The production accounts for both countries comprehensively cover outputs and inputs (M and N are quite large in both cases). Rather than make the calculations across all inputs and outputs, aggregates were computed with both data sets so that M = 3 and N = 5. The three output aggregates are crops, livestock and secondary outputs. The ...ve input aggregates are capital (machinery, buildings, livestock), land, hired labour, materials (purchased materials, within-sector produced materials, energy and

²Reference to a residual claimant, the owner of the " $N+1^{st}$ " input is made in Diewert(2000,pp. 4,6). This approach can can be viewed as paying 'pure pro...t' to some ...xed factor that does not enter the production account.

services) and operator/unpaid family labour. Prices for all outputs and for all inputs but operator and unpaid family labour are the constructed price indexes for these aggregates. Output and most input quantities other than operator and unpaid family labour are measured as constant dollar implicit quantities that correspond to the price indexes. The time period covered is 1961-2006.³Annex Tables 1a, 1b, 2a and 2b provide the complete Canadian and U.S. data sets used for the computations

4 Results

Expressions (2) and (4) are evaluated with data from Annex Tables 1a, 1b, 2a and 2b to obtain real net farm income series for Canada and the United States covering the period 1961-2006. Similarly, expressions (6a), (6b), (9a) and (9b) are used with the data to compute the detated intation-adjusted Bennet output price change and intation-adjusted N-1 input price change indicator series for both countries. For each country, all four of these latter series are detated by the CPI series for that country and are then used to evaluate expressions (10) and (11).

The estimated real net farm income series for Canada and the United States are presented in Figures 1 and 2 respectively. The patterns for both countries are quite similar. Both ...gures show a substantial increase in real net farm income in the mid-1970s, followed by a general decline until the mid-1980s. There was a recovery in both countries until the early 1990's, after which real net farm income in both countries seemed to stabilize somewhat. The average level of real net farm income in the average level in the ...rst half of the period 1961-2006 generally remained below the average level in the ...rst half of the period. In fact, there was an average annual decline in real net farm income of 36 million 1996\$C in Canada, while in the United States, the average annual decline was over 1.1 Billion 1996\$US over the whole 1961-2006 period.

³Eldon Ball (ERS) provided a customized version of the U.S. data for this analysis. In particular, the measurement of U.S. land input di¤ers from that described in Ball, Bureau, Nehring and Somwaru(1997), since the service price of land is exogenous here, whereas it is endogenous (the price is based on the residual) in standard ERS account. Also, rather than valuing operator and unpaid family labour at opportunity cost, this is treated the same way as in the Canadian account, i.e. the value of this labour is determined residually as net farm income.

The results from the decomposition of real net farm income growth for Canada are presented in Table 1. The ...rst component of the decomposition, the in‡ation-adjusted Bennet output price change indicator, averaged -511 million \$1996 annually over the period. This result is due to nominal prices for all three types of output increasing at an average rate that was less than the average rate of general in‡ation; this added up to a large average negative impact on real net farm income growth.

The average annual value of the in‡ation-adjusted Bennet input price change indicator over 1961-2006 was -88 million \$C1996. This re‡ects a average annual decline in the real prices of capital and materials that o¤set increases in the real prices of land and hired labour. This outcome had a positive e¤ect on real net farm income growth, but this was dwarfed by the e¤ect of decreasing real output prices; when combined, the contribution of in‡ation-adjusted net price change (the di¤erence between the output and input price components) was -423 million \$C1996 annually.

In‡ation-adjusted N-1 factor productivity growth contributed an average 387 million \$C1996 annually to real net farm income growth between 1961 and 2006. When viewed in isolation from the price changes this supports the notion referred to in the Introduction – productivity growth certainly increased real net farm income. The rub is in the output price changes, which more than negated the real bene...ts from productivity growth on average.⁴

The parallel set of results for the United States is presented in Table 2, where there is a pattern that is identical to Canada, although relative magnitudes are di¤erent across the four components. In particular, the in‡ation-adjusted Bennet output price change indicator, which averaged nearly -4521 million US1996 annually between 1961 and 2006 was much larger than the in‡ation-adjusted Bennet input price change indicator, which was an average -280 million US1996 annually over the period. The ratio of the two indicators was 16:1 on average, versus the ratio in Canada which was about 6:1.⁵

⁴ It is important to recognize that, within the farm sector, some farms will have experienced positive real net farm income growth over certain periods and some will have experienced net farm income growth that was more negative than the annual average for the whole of Canada. Since the data are for the whole of Canada, this type of di¤erentiation cannot be made.

⁵Some of this di¤erence may be due to di¤erences in measurement – some inputs like

As in Canada, in‡ation-adjusted N-1 factor productivity growth made a large positive contribution to real net farm income in the United States, averaging 3073 million \$US1996 annually over the 1961-2006 period. This growth, large as it was, did not o¤set the real price e¤ects, so that there was an average annual decline in real net farm income of 1169 million \$US1996. This is consistent with results obtained by Ball, Färe, Grosskopf and Margaritis (2008, p.) who observe that total factor productivity growth and price change e¤ects "are apparently o¤setting " in their decomposition using a panel of U.S. state level production accounts.

The relative contribution of output price, input price and productivity growth elements are summarized in Figures 3 and 4 for Canada and the United States respectively. Data for (i) the intation-adjusted Bennet output price change indicator, (ii) the negative of intation-adjusted Bennet input price change indicator and (iii) in tation-adjusted N-1 factor productivity growth are each sorted in ascending order. Then each sorted series is presented side by side (data plots are ordered as sorted series (i)-(iii) going left to right). Observations that are above the x axis had a positive exect on real net farm income growth, while those below the x axis had a negative exect. What these two ...gures illustrate is the importance of real output prices in determining the negative real net farm income growth. The intation-adjusted Bennet output price change indicators are not only more frequently negative than positive but there are many more years with very large negative price exects. The overall range of the output indicators show how volatile real output prices were over the period – much more so than either the input or productivity growth components.

The ...gures also illustrate the fact that the negative of in‡ation-adjusted Bennet input price change indicator were more frequently positive than negative, but that the pattern of magnitudes was more evenly distributed than for output.

The intation-adjusted N-1 factor productivity growth series both show similar patterns – positive exects were not only more frequent but tended to be larger. The negative values are typical – irrespective of how it is measured, productivity growth can vary between positive and negative values from year

land, chemicals and hired labour are quality adjusted in the US account, whereas in the Canadian account no adjustments of this type are made.

to year. This reinforces the view that, when attempting to measure average productivity growth, it is important to use a time period that is long enough to remove random year over year variations.

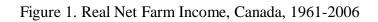
5 Conclusion

The results presented in the previous section, while shedding some light on the link between productivity growth and real net farm income growth, do not explain why the potentially large positive impact of productivity growth has been so soundly negated in both countries. It would appear that there has been no lasting exect of productivity growth on real net farm incomes, largely because of an overall decline in real output prices.

The fact that real net farm incomes have persistently declined in spite of substantial productivity growth suggests that more productivity growth may not help out on the income front. This does not mean that investments that stimulate productivity growth would not pay o[¤] in some other way (see the list of other associated positive bene...ts given in the Introduction). It just means that there is a question mark regarding the wisdom of policies that seek to raise real net farm incomes through productivity growth.⁶

A more promising avenue for further investigation of the observed juxtaposition might be to measure the exect of productivity growth on market prices. In particular, it seems likely that the output-expanding exects of productivity growth have had a price-depressing exect. Canada and the United States are large exporters of agricultural commodities and, while it is di¢cult to measure the overall importance of these two countries to international trade, it is certainly possible to determine their importance for speci...c commodities. For example, between 2002 and 2006, Canada and the United States together accounted for about 34% of world wheat exports, 58% of world corn exports and about 45% of world canola exports.⁷ These numbers suggest that the impact of productivity growth must be measured

⁶There is a counterfactual argument for investments in productivity growth, of course. This says that real net farm incomes in both countries would have been lower without productivity growth. This argument, however, treats output prices as if they evolved independently of the output-stimulating exect of productivity growth.


⁷These numbers are based on calculations with UNComtrade data. They are shares of world total trade volume in each case.

in terms of an open economy trade framework, so that nature and size of the inter-relationship between productivity growth and world market prices can be better understood.

References

- Ball, V.E., R. Färe, S. Grosskopf and D. Margaritis (2008). "R&D and U.S. Agricultural Productivity: A State Panel Approach", paper presented at the International Association of Agr-food Economics (AIEA2) meetings, Bologna, 19-21 June.
- [2] Ball, V. E., J.-C. Bureau, R. Nehring and A. Somwaru (1997). "Agricultural Productivity Revisited", American Journal of Agricultural Economics, 79, 1045–1063.
- [3] Cahill, S. A. and T. Rich (2012), "Measurement of Canadian agricultural productivity growth", in Fuglie, K. ,S.L. Wang and V.E. Ball (eds), Productivity Growth in Agriculture: An International Perspective, Wallingford: CABI
- [4] CSO (1961). "Productivity Measurement in Agriculture", Economic Trends, No. 91 (a publication of the Central Statistical O⊄ce, U.K.)
- [5] Diewert, W.E. (2005). "Index Number Theory Using Di¤erences Rather than Ratios", The American Journal of Economics and Sociology, 64, 311-360.
- [6] Diewert, W.E. (2000). "Productivity Measurement using Di¤erences Rather Than Ratios", Discussion Paper 2000/1, School of Economics, University of New South Wales.
- [7] Gordon, D.V., D.P. Dupont, K.J. Fox and R.Q. Grafton (2003). "Pro...t and Price Exects of Multi-Species Individual Transferable Quotas", Discussion Paper 2003-08, Department of Economics, University of Calgary.
- [8] Han, S.-H. and Hughes, A. (1999). "Pro...t Composition Analysis: A Technique for Linking Productivity Measurement & Financial Performance", Research and Information Paper TRP 99-5, New South Wales Treasury.

[9] Lawrence, D., W.E. Diewert and K.J. Fox (2004). "The Contributions of Productivity, Price Changes and Firm Size to Productivity", paper downloaded as a pdf from the worldwide web via the url: http://www.ipeer.ca/SSHRC.htm

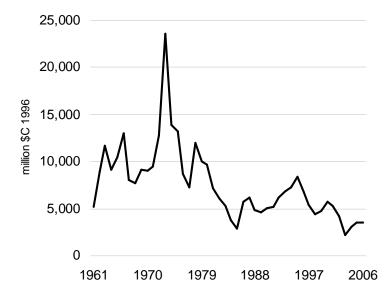
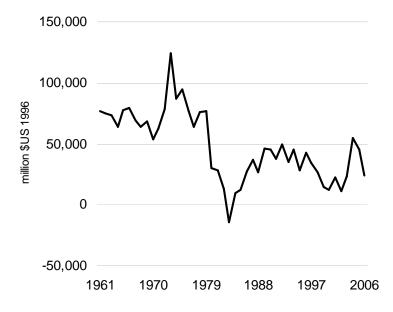



Figure 2. Real Net Farm Income, United States, 1961-2006

Callaua, 1701-2000	
	Average value 1961-2006
Component	(million \$C 1996)
A: Inflation-adjusted Bennet output price change indicator B: Inflation-adjusted Bennet N-1 input price change indicator	-511 -88
C: Inflation-adjusted gross output quantity change indicator D: Inflation-adjusted N-1 input quantity change indicator	801 414
Inflation-adjusted net price change (A-B) Inflation-adjusted N-1 factor productivity growth (C-D)	-423 387
Net Farm Income Growth [(A-B)+(C-D)]	-36
Notes:	

1. Components are derived using (11) and (12) with data from Annex Table 1a and Annex Table 1b.

2. All components are deflated and so are expressed in 1996 \$US.

Fable 2. Decomposition of Real Net Farm Income Growth ,	ed States, 1961-2006
Table 2. Decomposition	United States,

	Average value 1961-2006
Component	(million \$US 1996)
A: Inflation-adjusted Bennet output price change indicator B: Inflation-adjusted Bennet N-1 input price change indicator	-4521 -280
C: Inflation-adjusted gross output quantity change indicator D: Inflation-adjusted N-1 input quantity change indicator	4014 941
Inflation-adjusted net price change (A-B) Inflation-adjusted N-1 factor productivity growth (C-D)	-4242 3073
Net farm income growth [(A-B)+(C-D)]	-1169
Notes:	-

17

and Annex Table 2b. 2. All components are deflated and so are expressed in 1996 \$US.

^{1.} Components are derived using (11) and (12) with data from Annex Table 2a

Figure 3. Ascending Inflation-Adjusted Bennet Output Price Change Indicator, - Inflation-Adjusted Bennet Input Price Change Indicator and Inflation-Adjusted N-1 Factor Productivity Growth, Canadian Agriculture, 1961-2006

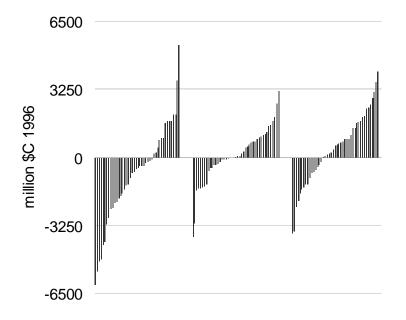
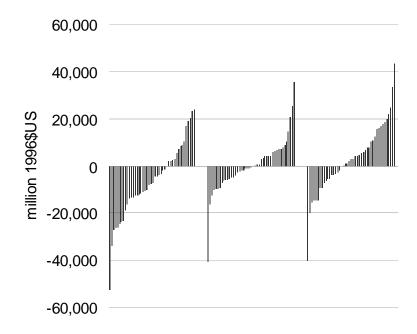



Figure 4. Inflation-Adjusted Bennet Output Price Change Indicator, - Inflation-Adjusted Bennet Input Price Change Indicator and N-1 Factor Productivity Growth, United States Agriculture, 1961-2006

	output price			constant dollar implicit output quantities			
year		estock	secondary	crops	livestock	secondary	CPI
	19	61=1			million 1961 \$		1996=1
1961	1.000	1.000	1.000	1610	2282	99	0.177
1962	0.971	1.062	1.025	2346	2276	99	0.179
1963	0.993	1.048	1.049	2683	2425	100	0.181
1964	1.018	1.020	1.075	2359	2483	98	0.184
1965	1.067	1.082	1.110	2582	2478	98	0.189
1966	1.070	1.192		3086	2605	97	0.197
1967	1.015	1.210		2555	2579	96	0.204
1968	0.921	1.231		2728	2557	98	0.211
1969	0.899	1.352		2909	2618	101	0.222
1970	0.940	1.331		2696	2823	103	0.228
1971	0.907	1.349		3146	2823	111	0.235
1972	1.268	1.542		2826	2954	114	0.246
1973	2.319	1.982		2985	2984	118	0.265
1974	2.400	2.074		2650	2879	113	0.295
1975	2.281	2.111		3113	2965	115	0.326
1976	2.004	2.097		3363	2937	121	0.350
1977	2.004	2.168		3496	2810	104	0.378
1978	2.353	2.668		3793	2914	89	0.378
		3.170		3469	3071		0.412
1979	2.612					88	
1980	3.095	3.194		3587	3202	97	0.495
1981	2.823	3.328		4124	3228	97	0.557
1982	2.625	3.424		4305	3278	99	0.618
1983	2.979	3.335		4083	3227	99	0.654
1984	3.018	3.501		3973	3280	112	0.682
1985	2.586	3.474		4341	3311	121	0.709
1986	2.484	3.620		4932	3301	133	0.738
1987	2.500	3.745		4692	3384	142	0.771
1988	2.855	3.685		3822	3573	150	0.801
1989	2.561	3.797		4489	3613	155	0.841
1990	2.229	3.809		5149	3646	178	0.882
1991	2.192	3.797		5060	3826	187	0.931
1992	2.417	3.831		4737	4073	198	0.945
1993	2.516	4.041	4.937	5299	3887	202	0.963
1994	2.794	4.065	5.184	5351	4145	221	0.964
1995	3.352	3.927	5.308	5393	4333	245	0.985
1996	3.125	3.938	5.482	5745	4486	274	1.000
1997	3.042	3.996	5.777	5376	4564	311	1.017
1998	2.789	3.843	5.873	5769	4850	312	1.027
1999	2.534	4.007	6.007	6305	4805	313	1.045
2000	2.650	4.427		5974	4979	310	1.073
2001	2.997	4.668		5124	5183	307	1.100
2002	3.320	4.445		4571	5505	310	1.125
2003	2.981	4.070		5856	5062	310	1.156
2000	2.667	4.101		6399	5308	301	1.178
2005	2.641	4.204		6646	5301	325	1.204
2006	3.007	4.308		6536	5056	324	1.227

Annex Table 1a. Production Account Data for Canadian Agriculture, Outputs, 1961-2006 with CPI series

operator/ unpaid family	out price indexes constant dollar implicit output quantities								
labo		hiredlabour	land	capital	materials	iredlabour		capital	year
m. hou	m. 1961\$		m. 1961\$	m. 1961\$	1961=1	\$/week	1961=1	1961=1	<i>j</i> eu.
16	2003	4.809	179	689	1.000	42.330	1.0000	1.000	1961
16	2000	4.671	180	691	1.043	44.250	1.0430	1.036	1962
15	1979	4.325	180	710	1.038	46.180	1.1230	1.051	1963
15	2066	4.111	181	739	1.043	48.110	1.2390	1.063	1964
14	2108	4.311	181	777	1.070	50.030	1.3990	1.080	1965
14	2294	3.977	180	823	1.111	53.520	1.5720	1.117	1966
13	2371	3.972	179	859	1.118	57.010	1.7930	1.161	1967
13	2329	3.925	178	872	1.084	60.500	1.9910	1.202	1968
12	2394	3.761	177	876	1.068	63.980	2.0180	1.262	1969
12	2439	3.832	176	857	1.077	67.470	2.0410	1.296	1970
11	2526	3.842	176	859	1.101	82.770	2.0700	1.314	1971
11	2680	3.627	175	892	1.177	98.070	2.2670	1.390	1972
11	2770	3.417	175	960	1.616	113.370	2.7700	1.469	1973
11	2711	3.421	174	1037	2.079	128.670	3.6590	1.665	974
10	2685	3.687	174	1132	2.187	143.970	4.6690	1.815	1975
10	2799	4.633	174	1228	2.166	154.400	5.6040	1.944	1976
10	2789	4.539	174	1295	2.157	164.820	6.4970	2.090	977
10	2957	4.073	173	1358	2.280	175.240	7.8070	2.351	978
9	3140	4.255	173	1438	2.604	185.660	9.7980	2.698	979
9	3135	4.536	173	1470	2.995	196.080	12.5310	3.017	980
9	3152	4.125	172	1497	3.350	212.640	14.1970	3.267	981
9	3244	4.305	172	1477	3.287	229.190	14.3470	3.418	982
8	3332	4.937	172	1443	3.343	245.740	13.8110	3.591	983
8	3403	5.226	171	1414	3.684	262.290	13.2360	3.707	984
8	3436	5.716	171	1357	3.603	278.840	12.3340	3.801	985
8	3565	5.900	170	1298	3.262	299.660	11.4870	3.957	986
8	3711	6.030	170	1243	3.080	320.470	10.9020	3.998	987
7	3708	5.520	170	1190	3.296	341.280	11.0140	4.069	988
7	3770	5.553	170	1143	3.483	362.100	12.2020	4.188	989
7	3901	5.327	169	1093	3.276	382.910	13.0230	4.267	990
7	3940	6.029	169	1049	3.213	391.090	13.0620	4.242	991
7	4053	5.945	169	1010	3.248	399.260	12.7650	4.385	992
7	4188	6.320	169	1002	3.359	407.440	12.9270	4.636	993
6	4520	6.371	170	986	3.576	415.610	13.6490	4.930	994
6	4610	6.360	170	975	3.896	423.790	14.8680	5.086	995
6	4669	6.524	171	961	4.238	432.670	15.9560	5.195	996
6	4859	6.134	171	975	4.092	441.540	17.8220	5.396	997
6	5093	6.932	171	990	3.957	450.420	19.0690	5.590	998
6	5260	6.945	170	980	3.788	459.300	20.0430	5.782	999
6	5413	7.101	170	975	3.908	468.170	20.9690	5.818	000
5	5381	6.670	170	962	4.276	483.120	21.8290	5.971	2001
5	5485	6.663	170	960	4.358	498.060	23.3680	6.094	2002
5	5333	6.633	170	959	4.585	513.010	25.0030	5.747	2003
5	5379	6.575	170	960	4.423	527.950	26.6770	5.768	2004
5	5493	7.111	170	959	4.323	542.890	28.5320	5.710	2005
5	5494	7.650	170	948	4.512	521.020	30.6200	5.667	2006

year	output pr	rice indexes		constant dolla	constant dollar implicit output quantities			
	crops	livestock	secondary	crops		secondary	CPI	
		2005=1			million 2005 \$		1996=1	
1961	0.377	0.267	0.218	59424	78034	4919	0.191	
1962	0.400	0.273	0.224	60393	78759	4712	0.192	
1963	0.410	0.262	0.226	62798	80715	4897	0.195	
1964	0.410	0.251	0.233	60753	81915	4387	0.198	
1965	0.419	0.275	0.236	64555	80691	4334	0.201	
1966	0.458	0.313		63036	82873	3980	0.207	
1967	0.429			65892		4029	0.213	
1968	0.418			67996		3754	0.222	
1969	0.424			70513		3514	0.234	
1970	0.452			66883		3168	0.247	
1971	0.452			74833		3245	0.258	
1972	0.497			75177		3290	0.266	
1973	0.707			79979		3640	0.283	
1974	0.899			72650		3723	0.314	
1975	0.779			83128		3858	0.343	
1976	0.775			82542		3819	0.363	
1977	0.743			89526		3720	0.386	
1978	0.788			91868		4069	0.416	
1979	0.843			100615		4230	0.463	
1980	0.934			91584		4224	0.525	
1981	0.961	0.742		104615		3624	0.579	
1982	0.911	0.742		105729		7435	0.615	
1983	1.144			80888		7323	0.635	
1984	1.030			102364		6733	0.662	
1985	0.915			107367		8582	0.686	
1986	0.892			107307		8376	0.699	
1987	0.884			101150		9224	0.724	
1988	1.005			89175		10582	0.754	
1989	0.999			101683		10888	0.790	
1990	0.973			108687		10509	0.833	
1991	0.946			107587		10934	0.868	
1992	0.937			117931		10263	0.894	
1993	0.965			106309		10203	0.921	
1994	0.970			125591	115568	9979	0.945	
1995	1.048			111645		11355	0.943	
1996	1.048			121284		10813	1.000	
1997	1.091			127428		12232	1.023	
1997	0.948						1.023	
1998	0.948			125627 127033		14226 15246	1.039	
	0.890						1.062	
2000				129420		14366 15616		
2001	0.910			128924		15616	1.129	
2002	0.931			123629		14870	1.147	
2003	0.970			128723		14001 15174	1.173	
2004	1.028			140928		15174	1.204	
2005	1.000			135503		14781	1.245	
2006	1.034	0.923	1.043	128620	129785	15900	1.285	

Annex Table 2a. Production Account Data for United States Agriculture, Outputs, 1961-2006 with CPI series

operator/ unpaid family		uantities	implicit output a	constant dollar		year			
lab	materials		land	capital	materials	hiredlabour		input price capital	Joan
- m. hours			nillion 2005 \$				2005=1		
6	94807	12797	1430379	26391	0.228	0.251	0.0004	0.158	1961
6	99775	12776	1429390	26238	0.235	0.263	0.0007	0.167	962
6	102858	12754	1427343	26411	0.241	0.270	0.0006	0.167	963
59	101683	11502	1422698	26791	0.236	0.304	0.0010	0.182	964
5	101224	10828	1414268	27182	0.245	0.332	0.0010	0.182	965
54	109300	9754	1402157	27913	0.259	0.371	0.0014	0.198	966
5	110432	9062	1386605	28794	0.255	0.404	0.0014	0.200	967
50	109673	8770	1367958	29882	0.256	0.433	0.0022	0.221	968
48	111898	8846	1346784	30423	0.267	0.458	0.0025	0.233	969
4	114286	8914	1324068	30758	0.279	0.476	0.0034	0.261	970
44	115487	8815	1301817	31056	0.290	0.482	0.0033	0.263	971
4	119434	8779	1282357	31428	0.309	0.499	0.0037	0.275	972
43	123192	8909	1268016	31931	0.404	0.580	0.0051	0.309	973
4	117574	9482	1261019	33386	0.489	0.637	0.0057	0.351	974
3	114769	9630	1262358	34853	0.493	0.680	0.0024	0.309	975
3	122333	9738	1268526	35682	0.506	0.756	0.0028	0.329	976
3	120312	9499	1275034	36609	0.517	0.829	0.0056	0.383	977
3	135183	8932	1277391	37523	0.545	0.914	0.0045	0.389	978
3	140369	9268	1272532	38243	0.625	0.957	0.0072	0.459	979
30	140102	9194	1262330	39979	0.685	1.000	0.0120	0.567	980
30	131883	9152	1249857	39698	0.725	0.978	0.0191	0.719	981
34	130719	8213	1238136	38988	0.724	1.219	0.0231	0.799	982
3	131438	9072	1229415	38155	0.764	1.064	0.0266	0.882	983
3	127150	8451	1223078	36552	0.747	1.153	0.0290	0.972	984
29	125594	7659	1217873	35849	0.703	1.293	0.0262	0.971	985
30	125383	7366	1212626	33772	0.659	1.258	0.0206	0.909	986
30	125539	7517	1206274	31755	0.676	1.263	0.0187	0.903	987
30	123254	7761	1198172	30661	0.774	1.388	0.0182	0.943	988
30	122074	7279	1189206	29817	0.807	1.566	0.0170	0.958	989
2	129776	7245	1180697	29216	0.801	1.854	0.0179	0.978	990
20	130554	7225	1174177	28914	0.803	1.831	0.0173	0.966	991
20	129305	6836	1171175	28164	0.793	1.902	0.0171	0.958	992
24	134147	6804	1172668	27509	0.823	2.085	0.0180	0.986	993
3	138169	6627	1177070	26640	0.828	2.178	0.0192	1.033	994
3	142025	6864	1182373	26299	0.849	2.246	0.0208	1.071	995
2	134032	6556	1186867	25515	0.925	2.444	0.0216	1.076	996
2	145247	6899	1189071	25332	0.905	2.485	0.0233	1.110	997
24	153236	7026	1187898	25133	0.831	2.592	0.0221	1.093	998
2	155204	7310	1183333	25028	0.819	2.586	0.0270	1.173	999
2	153560	6169	1176259	24833	0.844	3.197	0.0305	1.236	000
2	152657	6245	1167679	24763	0.876	3.344	0.0257	1.152	001
2	151476	6310	1158797	24841	0.871	3.296	0.0260	1.133	002
2	155003	6191	1150720	24786	0.892	3.311	0.0267	1.129	003
2	152788	5694	1143189	24967	0.956	3.923	0.0216	1.061	004
2	153097	5673	1135817	25737	1.000	3.986	0.0164	1.000	005
	158206	5426	1128306	25994	1.029	4.264	0.0215	1.072	2006