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When fitting a nonlinear model such as logit (see [R] logit) or poisson (see
[R] poisson), we often have two options when it comes to interpreting the regres-
sion coefficients: compute some form of marginal effect or exponentiate the coefficients,
which will give us an odds ratio or incidence-rate ratio. The marginal effect is an ap-
proximation of how much the dependent variable is expected to increase or decrease for
a unit change in an explanatory variable; that is, the effect is presented on an additive
scale. The exponentiated coefficients give the ratio by which the dependent variable
changes for a unit change in an explanatory variable; that is, the effect is presented on
a multiplicative scale. An extensive overview is given by Long and Freese (2006).

Sometimes, we are also interested in how the effect of one variable changes when
another variable changes, called the interaction effect. Because there is more than one
way in which we can define an effect in a nonlinear model, there must also be more
than one way in which we can define an interaction effect. This tip deals with how
to interpret these interaction effects when we want to present effects as odds ratios or
incidence-rate ratios, which can be an attractive alternative to interpreting interactions
effects in terms of marginal effects.

The motivation for this tip is many recent discussions on how to interpret interac-
tion effects when we want to interpret them in terms of marginal effects (Ai and Norton
2003; Norton, Wang, and Ai 2004; Cornelißen and Sonderhof 2009). (A separate con-
cern about interaction effects in nonlinear models that is often mentioned is the possi-
ble influence of unobserved heterogeneity on these estimates; for example, see Williams
[2009]. But I will not deal with that potential problem here.) These authors point out
a common mistake, interpreting the first derivative of the multiplicative term between
two explanatory variables as the interaction effect. The problem with this is that we
want the interaction effect between two variables (x1 and x2) to represent how much
the effect of x1 changes for a unit change in x2. The effect of x1, in the marginal effects
metric, is the first derivative of the expected value of the dependent variable (E[y]) with
respect to x1, which is an approximation of how much E[y] changes for a unit change
in x1. The interaction effect should thus be the cross partial derivative of E[y] with
respect to x1 and x2—that is, an approximation of how much the derivative of E[y]
with respect to x1 changes for a unit change in x2. In nonlinear models, this is typically
different from the first derivative of E[y] with respect to the multiplicative term x1×x2.
This is where programs like inteff by Norton, Wang, and Ai (2004) and inteff3 by
Cornelißen and Sonderhof (2009) come in.
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Fortunately, we can interpret interactions without referring to any additional pro-
gram by presenting effects as multiplicative effects (for example, odds ratios, incidence-
rate ratios, hazard ratios). However, the marginal effects and the multiplicative effects
answer subtly different questions, and thus it is a good idea to have both tools in your
toolbox.

The interpretation of results is best explained using an example. Here we study
whether the effect of having a college degree (collgrad) on the odds of obtaining a
“high” job (high occ) differs between black and white women.

. sysuse nlsw88
(NLSW, 1988 extract)

. generate byte high_occ = occupation < 3 if occupation < .
(9 missing values generated)

. generate byte black = race == 2 if race < .

. drop if race == 3
(26 observations deleted)

. generate byte baseline = 1

. logit high_occ black##collgrad baseline, or noconstant nolog

Logistic regression Number of obs = 2211
Wald chi2(4) = 504.62

Log likelihood = -1199.4399 Prob > chi2 = 0.0000

high_occ Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.black .4194072 .0655069 -5.56 0.000 .3088072 .5696188
1.collgrad 2.465411 .293568 7.58 0.000 1.952238 3.113478

black#
collgrad

1 1 1.479715 .4132536 1.40 0.161 .8559637 2.558003

baseline .3220524 .0215596 -16.93 0.000 .2824512 .3672059

If we were to interpret these results in terms of marginal effects, we would typically
look at the effect of the explanatory variables on the probability of attaining a high job.
However, this example uses a logit model together with the or option, so the dependent
variable is measured in the odds metric rather than in the probability metric. Odds have
a bad reputation for being hard to understand, but they are just the expected number
of people with a high job for every person with a low job. For example, the baseline
odds—the odds of having a high job for white women without a college degree—is
0.32, meaning that within this category, we expect to find 0.32 women with a high
job for every woman with a low job. The trick I have used to display the baseline
odds is discussed in an earlier tip (Newson 2003). The odds ratio for collgrad is 2.47,
which means that the odds of having a high job is 2.47 times higher for women with
a college degree. There is also an interaction effect between collgrad and black, so
this effect of having a college degree refers to white women. The effect of college degree
for black women is 1.48 times that for white women. So the interaction effect tells how
much the effect of collgrad differs between black and white women, but it does so in
multiplicative terms. The results also show that this interaction is not significant.
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This example points to the difference between marginal effects and multiplicative
effects. Now we can compute the marginal effect as the difference between the expected
odds of women with and without a college degree, rather than as the derivative of the
expected odds with respect to collgrad. The reason for computing the marginal effect
as a difference is that collgrad is a categorical variable, so this discrete difference
corresponds more closely with what would actually be observed. Although it is a slight
abuse of terminology, I will continue to call it the marginal effect.

The margins command below shows the odds of attaining a high job for every
combination of black and collgrad. The odds of attaining a high job for white women
without a college degree is 0.32, while the odds for white women with a college degree
is 0.79. The marginal effect of collgrad for white women is thus 0.47. The marginal
effect of collgrad for black women is only 0.36. The marginal effect of collgrad is
thus larger for white women than for black women, while the multiplicative effect of
collgrad is larger for black women than for white women.

. margins, over(black collgrad) expression(exp(xb())) post

Predictive margins Number of obs = 2211
Model VCE : OIM

Expression : exp(xb())
over : black collgrad

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

black#
collgrad

0 0 .3220524 .0215596 14.94 0.000 .2797964 .3643084
0 1 .7939914 .078188 10.15 0.000 .6407457 .9472371
1 0 .1350711 .0190606 7.09 0.000 .097713 .1724292
1 1 .4927536 .1032487 4.77 0.000 .29039 .6951173

. lincom 0.black#1.collgrad - 0.black#0.collgrad

( 1) - 0bn.black#0bn.collgrad + 0bn.black#1.collgrad = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .471939 .081106 5.82 0.000 .3129742 .6309038

. lincom 1.black#1.collgrad - 1.black#0.collgrad

( 1) - 1.black#0bn.collgrad + 1.black#1.collgrad = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .3576825 .1049933 3.41 0.001 .1518994 .5634656

The reason for this difference is that the multiplicative effects are relative to the
baseline odds in their own category. In this example, these baseline odds differ substan-
tially between black and white women: for white women without a college degree, we
expect to find 0.32 women with a high job for every woman with a low job, while for
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black women without a college degree, we expect to find only 0.14 women with a high
job for every woman with a low job. So even though the increase in odds as a result of
getting a college degree is higher for white women than for black women, this increase
as a percentage of the baseline value is less for white women than for black women. The
multiplicative effects control in this way for differences between the groups in baseline
odds. However, notice that marginal and multiplicative effects are both accurate rep-
resentations of the effect of a college degree. Which effect one wants to report depends
on the substantive question, whether or not one wants to control for differences in the
baseline odds.

The example here is relatively simple with only binary variables and no controlling
variables. However, the basic argument still holds when using continuous variables
and when controlling variables are added. Moreover, the argument is not limited to
results obtained from logit. It applies to all forms of multiplicative effects, and so,
for example, to odds ratios from other models such as ologit (see [R] ologit) and
glogit ([R] glogit); relative-risk ratios ([R] mlogit); incidence-rate ratios (for example,
[R] poisson, [R] nbreg, and [R] zip); or hazard ratios (for example, [ST] streg and
[R] cloglog).
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