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Abstract. We present a new Stata command, irp, that generates the inverse
response plot (Cook and Weisberg, 1994, Biometrika 81: 731–737) of a response
on its predictors. Using the inverse response plot, an appropriate scaled power
transformation for the positive response variable can be found so that the trans-
formed response mean is linear in the predictors. The optimal transformation is
displayed in the plot, as are user-specified guesses. By using the graphical display,
the user may determine whether an appropriate transformation exists as well as
determine its value. We demonstrate the irp command using both a generated
and a real example.
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1 Theory/motivation

When investigating the regression of the positive variable y on x1, . . . , xp, one may
discover or suspect a nonlinear relationship between the response and the predictors.
To overcome this difficulty, one may decide to transform y or its predictors so that the
transformed variables have a linear relationship via the invertible power transformation
t. There are methods for this procedure that are already implemented in Stata (see
[R] boxcox). These methods are useful and powerful, but they mostly rely on numeric
output.

By using an inverse response plot, we provide a concise and intuitive plot that
demonstrates the effectiveness of the transformation by the closeness of the transfor-
mation’s curve to points in a scatterplot. This plot may significantly ease comparison
between different transformations and vividly demonstrate the adequacy of the optimal
transformation.

Cook and Weisberg (1994) used results in Li and Duan (1989) to develop the inverse
response plot. To use an inverse response plot to estimate t, Cook and Weisberg showed
that the following results should also hold.

c© 2010 StataCorp LP st0188
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For unknown constant matrices α = (α0, . . . , αp), Λp×p = (λij), Φp×p = (φij), and
zero mean random variable ǫ, where ǫ is independent of the x0, . . . , xp,

t(y) = α0 + α1x1 + · · ·+ αpxp + ǫ (1)

p 6= 1 E(xi |xj) = λij + φijxj , i, j = 1, . . . , p (2)

p = 1 x1 is elliptically symmetric (3)

Both (2) and (3) are implied by (multivariate) normality of the predictors. Equation
(2) need only apply approximately for the inverse response plot to work in practice.
Equation (3) is not satisfied if the predictor is skewed. A skewed predictor is easy to
check for with a kernel density plot (see [R] kdensity) or a Q–Q plot (see [R] diagnostic

plots). Similarly, checking the linear relation of (2) with a matrix plot (see [G] graph

matrix) is simple. Equation (1) is difficult to check before using the inverse response
plot, because (1) depends directly on t, which we use the inverse response plot to
estimate. If we find that (2) and (3) are met, and we obtain a satisfactory estimate of
t from the inverse response plot, then (1) is implied.

Supposing that (2) and (3) are met, we estimate t by plotting the fitted values

ŷ = β̂0 + β̂1x1 + · · · + β̂pxp for the regression of y on x1, . . . , xp on the vertical axis
versus the actual response values y on the horizontal axis. We fit scaled power curves
to this scatterplot. The power of the curve suggests the functional form of t. The curve
fitting is done by transforming y with a scaled power transformation, and then scaling
and relocating the transformed values so that they are an optimal fit for the scattered
points.

Essentially, we regress ŷ on the transformed y. Then we plot a curve through the
predictions of ŷ from the transformed y. This methodology of predicting t was developed
by Cook and Weisberg (1994) based on results of Li and Duan (1989). In particular,
Cook and Weisberg show that this method works even though the fitted values are from
an invalid regression model.

It will be instructive to look at a sample inverse response plot (see figure 1). Here y
is the cube of its predictor and error term. (We will return to this example in the next
section, where all details will be given.) The first entry in the legend corresponds to the
optimal choice of transformation. We have y1/3 = x+ ǫ, so this choice is quite logical.
The 0 curve shows how log(y) approximates y1/3. The 1 curve shows how poorly y
approximates y1/3.

(Continued on next page)
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Figure 1. Generated example y = (x+ ǫ)3

In this example, t was an unscaled power transformation. Sometimes using such a
transformation will switch the direction of the relationship between the response and
predictors. For example, suppose y and x are directly related. When we transform y to
1/y, we make x and the new y inversely related.

We define a scaled power transformation as

ψs (y, λ) =

(
yλ−1

λ , ifλ 6= 0
log y, ifλ = 0

)

Scaled power transformations preserve the direction of associations that the trans-
formed variable had with other variables. So scaled power transformations will not
switch or erase collinear relationships of interest. The power of the optimal scaled
power transformation should in principle be identical to the power of the optimal un-
scaled transformation.

Finding the closest fitting scaled power curve (and thus the best estimate of t)
is equivalent to finding the scaled power transformation that, when performed on y,
minimizes the residual sum of squares for the regression of ŷ on the transformed y. The
optimal transformation is found in irp via a numerical optimization on this residual
sum of squares.

The power of the closest fitting scaled power curve may be quite esoteric to the
user or the subject matter experts that he or she is helping. So it is often necessary
to try more than one transformation, picking the curve with the best fit and most
plausibility with respect to the subject matter of the data. We visually compared three
transformations in our first example. The process was intuitive and simple.



C. Lindsey and S. Sheather 203

We can augment a scaled power transformation by multiplying the transformed
variable by the original’s geometric mean, gm(Y ) = exp

(
1/n

∑n
i=1 log yi

)
raised to the

1−λ power. This transformation would maintain the scale of the transformed variables.
We denote this as a modified scaled power transformation:

ψM (y, λ) = gm(Y )1−λψs(y, λ)

Box and Cox (1964) make the additional assumption that the ψM (y, λ) is normal
with a mean that is linearly determined by x1, . . . , xp for the true transformation power
λ. Under Box and Cox’s assumption, the optimal transformation power λ minimizes the
residual sum of squares for the regression of ψM (y, λ) on x1, . . . , xp. Using this method
does allow for statistical inference on λ through likelihood methods, but it also imposes
distributional assumptions.

2 Use and a generated example

The irp command is straightforward to use. We will demonstrate this as we revisit the
generated example that produced figure 1.

In this example, we generate predictor x distributed as N(2.6, 0.752) and error term
ǫ distributed as N(0, 0.012). Our response variable y = (x + e)3. See figure 2.

. set obs 100
obs was 0, now 100

. set seed 1234

. generate x = .75*invnormal(runiform()) + 2.6

. generate e = .01*invnormal(runiform())

. generate y = (x + e)^3

(Continued on next page)
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. twoway scatter y x
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Figure 2. x versus y, y = (x + ǫ)3

Clearly, y and x lack a linear relationship. So linear regression of y on x is ill-
advised. We will see if we can use an inverse response plot to transform y to linearize
its relationship with x. See figure 3.

. summarize y

Variable Obs Mean Std. Dev. Min Max

y 100 21.23332 17.5544 .0000891 84.59297

. swilk x

Shapiro-Wilk W test for normal data

Variable Obs W V z Prob>z

x 100 0.99201 0.660 -0.922 0.82175
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. qnorm x
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Figure 3. x normal quantile plot

The response y is positive. The swilk and qnorm commands show that x is consistent
with a normal distribution. So we can use an inverse response plot to determine a scaled
power transformation for y so that the new y is linear in x.

The irp command has the following syntax:

irp depvar indepvars
[
if
] [

in
] [

, optimum try(numlist) old(matname)

generate twoway options
]

The depvar variable is the response variable of the inverse response plot, and inde-

pvars are the predictors. A subset of the data may be specified with the optional if

condition or in range. The optimum option instructs irp to find the best scaled power
transformation for depvar by a numerical optimization. The try() option allows the
user to specify a list of transformation powers to be examined in the plot. The old()

option allows the user to specify a matrix containing calculations from a previous ex-
ecution of irp that will be incorporated into the inverse response plot. The generate

option outputs the transformed response variables for the given input powers to the data.
Finally, additional graphical options are allowed to be specified in twoway options.

Now let’s test irp on our example. See figure 1 for the graphical output.

(Continued on next page)
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. irp y x, opt try(0 1)

Response y

Fitted 20.34*x + -30.58

Optimal Power .3353386

Power RSS( F | R )

.3353386 4.263288
0 8082.853
1 3787.411

. return list

scalars:
r(optimum) = .335338566748325

matrices:
r(tranres) : 3 x 4

. matrix list r(tranres)

r(tranres)[3,4]
Power RSS Intercept Slope

r1 .33533857 4.2632882 -30.373909 6.7538795
r1 0 8082.853 -.80120822 8.5953352
r2 1 3787.4108 3.0839681 .85475809

The irp command provides the residual sum of squares for the regression of the
fitted values on each scaled power transformation attempted on the response. Under the
default display of irp, the residual sum of squares are shown under the RSS( F | R )

column. The corresponding power transformation parameters are given in the Power

column. This quantitative information can help the user understand the magnitude of
fit difference between transformations.

In the returned results, the slopes and intercepts for each regression of the fitted
values on a transformed response are also provided. If the user wishes to compare
additional transformation powers without reperforming any calculations, then the user
can pass the name of a matrix with the same format as r(tranres) into the old()

option. This option is only useful when the user wants to redraw an inverse response
plot that took considerable computation to draw the first time. We will demonstrate
the use of the old() option in our next example, in section 3.

In this example, the additional quantitative information provided by irp strongly
corroborates the notion that 1/3 is an appropriate transformation power.

We will put 1/3 into the try() list and reexecute irp to compare the fit of 1/3 and
the optimal transformation. See figure 4.
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. irp y x, opt try(.3333333)

Response y

Fitted 20.34*x + -30.58

Optimal Power .3353386

Power RSS( F | R )

.3353386 4.263288

.3333333 4.36517
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Figure 4. 1/3 versus optimum inverse response plot

The fits are nearly identical. We will transform y to ψs(y, 1/3) and recheck the
linearity of y in x. See figure 5.

. generate trany = (y^(1/3) - 1)/(1/3)

. summarize trany

Variable Obs Mean Std. Dev. Min Max

trany 100 4.641468 2.390982 -2.865988 10.1694

(Continued on next page)
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. twoway scatter trany x
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Figure 5. x versus ψs(y, 1/3), y = (x + ǫ)3

We could have used an unscaled power transformation in this case without disturb-
ing the direction of association between y and x, but it was instructive to practice
implementation of the scaled power transformation. We will have strong reason to use
one in our next example.

3 Real example

Consider the UCI Machine Learning Repository (1993) dataset auto-mpg.dta. The
data contain information on individual automobiles. Of interest is the regression of
miles per gallon, mpg, on the car’s weight, wt, and horsepower, hp. A matrix plot of the
three variables reveals a problem and the path to a solution. See figure 6.
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Figure 6. Auto 1993 example, matrix plot

The mpg variable appears to have a nonlinear relationship with both hp and wt, but
the two predictors appear to have an approximately linear relationship. Therefore (2)
for the use of an inverse response plot is satisfied.

We will now use irp to render an inverse response plot. We are going to be conser-
vative and not guess any transformation powers. See figure 7.

. irp mpg hp wt, optimum

Response mpg

Fitted -.0473*hp + -.0058*wt + 45.64

Optimal Power -.8776173

Power RSS( F | R )

-.8776173 3149.255

(Continued on next page)
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Figure 7. Auto 1993 example, inverse response plot optimum

. matrix b = r(tranres)

We stored the results of our optimum power calculation in the matrix b. Momen-
tarily, we will use them again. Miles per gallon is often translated to gallons per mile
via the reciprocal transformation 1/mpg. We will compare this transformation with our
optimal transformation. See figure 8.

. irp mpg hp wt, try(-1) old(b) generate

Response mpg

Fitted -.0473*hp + -.0058*wt + 45.64

Optimal Power Not Calculated/Re-Calculated

Power RSS( F | R )

-1 3157.848
-.8776173 3149.255
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Figure 8. Auto 1993 example, inverse response plot optimum, −1

The reciprocal transformation is nearly as good as the optimal transformation. Be-
cause it makes more sense theoretically, we will use the reciprocal transformation instead
of the optimal.

Note how the matrix b was used in the last irp call. We were able to save compu-
tation time by using the previously calculated results in b. This was not necessary; we
could have executed irp mpg hp wt, optimum try(-1) and obtained the same results.

It may be tempting to just raise mpg to the −1 power and ignore whatever relation-
ships mpg had before we transformed it. Under the reciprocal transformation, any direct
relationships mpg had with other variables are now inverse relationships. Similarly, all
inverse relationships mpg had with other variables are now direct relationships.

The following correlation matrices demonstrate what happens when we use a recip-
rocal transformation. The ecc variable is the acceleration capability of the automobile.

. correlate mpg hp wt acc
(obs=392)

mpg hp wt acc

mpg 1.0000
hp -0.7784 1.0000
wt -0.8322 0.8645 1.0000
acc 0.4233 -0.6892 -0.4168 1.0000

. generate rmpg = 1/mpg
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. correlate rmpg hp wt acc
(obs=392)

rmpg hp wt acc

rmpg 1.0000
hp 0.8548 1.0000
wt 0.8851 0.8645 1.0000
acc -0.4563 -0.6892 -0.4168 1.0000

It may be wise to maintain the direction of the variable relationships mpg holds so
that we do not falsely take them for granted and make a mistake. We can easily maintain
the direction by transforming mpg using the scaled power transformation ψs(mpg,−1) =
−1/mpg + 1. We will generate a new variable using this formula and compare it with
that produced by irp in the irp1 variable.

The following correlation matrix demonstrates how the scaled power transformation
maintains the directionality of mpg relationships and how the generated variable from
irp perfectly matches with the scaled power transformation.

. describe irp1

storage display value
variable name type format label variable label

irp1 float %9.0g Transform Power = -1

. generate srmpg = -1/mpg + 1

. correlate mpg srmpg irp1 hp wt acc
(obs=392)

mpg srmpg irp1 hp wt acc

mpg 1.0000
srmpg 0.9359 1.0000
irp1 0.9359 1.0000 1.0000

hp -0.7784 -0.8548 -0.8548 1.0000
wt -0.8322 -0.8851 -0.8851 0.8645 1.0000
acc 0.4233 0.4563 0.4563 -0.6892 -0.4168 1.0000

So we will be careful and use the scaled power transformation to transform mpg.
Now we should check that this transformation solves our nonlinearity problem. First,
we will revisit our matrix plot from figure 6. See figure 9.
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Figure 9. Auto 1993 example, matrix plot revisited

The relationships between srmpg (the transformed mpg), hp, and wt are all approx-
imately linear. Our transformation was successful. We will conclude this example with
a final graphic that demonstrates how the transformation we found via irp affected
the fit of the regression of mpg on hp and wt; see figure 10. The first plot shows mpg

versus its predicted values under initial regression, with no transformation. The second
plot shows mpg versus its predicted values, after the transformation. Note the change
in linearity.
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Figure 10. Auto 1993 example, fitted versus response
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4 Conclusion

We have demonstrated the use of inverse response plots in response transformations to
linearity. We used generated and real datasets. Both the theory and the practice of the
method was explored.

The irp command was fully defined as a method for using inverse response plots in
Stata. Its graphical and numeric output were demonstrated, and the process of fitting
multiple inverse response plots to the same data was also shown.
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