%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2010)
10, Number 1, pp. 160-163

Stata tip 85: Looping over nonintegers

Nicholas J. Cox
Department of Geography
Durham University
Durham, UK
n.j.cox@durham.ac.uk

A loop over integers is the most common kind of loop over numbers in Stata pro-
gramming, as indeed in programming generally. forvalues, foreach, and while may
be used for such loops. See their manual entries in the Programming Reference Manual
for more details if desired. Cox (2002) gives a basic tutorial on forvalues and foreach.
In this tip, I will focus on forvalues, but the main message here applies also to the
other constructs.

Sometimes users want to loop over nonintegers. The help for forvalues contains
an example:

. forvalues x = 31.3 31.6 : 38 {
2. count if varl < “x° & var2 < “x°
3. summarize myvar if varl < “x~
4.}

It is perfectly legal to loop over such a list of numbers, because forvalues allows
any arithmetic progression as lists, with either integer or noninteger constant difference
between successive terms. However, such lists can cause problems. On grounds of
precision, correctness, clarity, and ease of maintenance, the advice here is to use loops
over integers whenever possible.

The precision problem is exactly that explained elsewhere (Cox 2006; Gould 2006;
Linhart 2008). Stata necessarily works at machine level in binary, and so it does no
calculations in decimal. Rather, it works with the best possible binary approximations
of decimals and then converts to decimal digits for display. Not surprisingly, users often
think in terms of decimals that they want to use in their calculations or display in
their results. Commonly, the conversions required work well and are not detectable,
but occasionally users can get surprising results. Here is a simple example:

. forvalues i = 0.0(0.05)0.15 {
2. display "i-
3.}

0

.05

.1

The user evidently expects display of 0, .05, .1, and .15 in turn, but the loop ends
without displaying .15. Why is that? First, let us fix the loop by looping over integers
and doing the noninteger arithmetic inside the loop. That is the most important trick
for attacking this kind of problem.

© 2010 StataCorp LP pr0051



N. J. Cox 161

. forvalues i = 0/3 {
2. display "i” * .05
3.}

0

.05

.1

.15

Why did that work as desired, but not the previous loop? The default format for
display is hiding from us the approximations that are being used, which are necessary
because most multiples of 1/10 cannot be held as exact binary numbers. A format with
many more decimal places reveals the problem:

. forvalues i = 0/3 {
2. display %20.18f “i” * .05
3.}
0.000000000000000000
0.050000000000000003
0.100000000000000006
0.150000000000000022

The result 0.150000000000000022 is a smidgen too far as far as the first loop is concerned.
Otherwise put, the loop terminates because Stata’s approximation to 0.05+ 0.05 + 0.05
is a smidgen more than its approximation to 0.15:

. display %20.18f 0.05 + 0.05 + 0.05
0.150000000000000022

. display %20.18f 0.15
0.149999999999999994

A little more cryptic, but closer to the way that Stata actually works, is a display
in hexadecimal:

. display %21x 0.05 + 0.05 + 0.05
+1.3333333333334X-003

. display %21ix 0.15
+1.3333333333333X-003

The difference really is very small, but it is enough to undermine the intention behind
the original loop.

Another trick that is sometimes useful to ensure desired results is the formatting of
numerical values as desired. Leading zeros are often needed, and for that we just need
to insist on an appropriate format:

(Continued on next page)



162 Stata tip 85

. forvalues i = 1/20 {
2. local j : display %02.0f “i~
3. display "“j°"
4.}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

A subtlety to notice here is the pair of double quotes flagging to display that the
macro j is to be treated as a string. Omitting the double quotes as in display j’
would cause the formatting to be undone, because the default (numeric) display format
would produce a display that started 1, 2, 3, and so forth. The syntax here for producing
the local j is called an extended macro function and is documented in [P] macro.

If all that was desired was the display just seen, then the loop could be simplified
to contain a single statement in its body, namely,

. display %02.0f “i-

However, knowing how to produce another macro with this technique has other benefits.
One fairly common example is for cycling over filenames. Smart users know that it is
a good idea to use a sequence of filenames such as data01 through data20. Naming
this way ensures that files will be listed by operating system commands in logical order;
otherwise, the order would be datal, datall, and so forth. But those smart users then
need Stata to reproduce the leading zero in any cycle over files. The loop above could
easily be modified to solve that kind of problem by including a command such as

. use data’j~

Correctness, clarity, and ease of maintenance were also mentioned as advantages
of looping over integers. Style preferences enter here, and programmers’ experiences
vary, but on balance fewer coding errors and clearer code overall seem likely to result
from the approach here. Moreover, noninteger steps, such as .05 within the very first
example, are rarely handed down from high as the only possibilities. There is a marked
advantage to changing just a single constant rather than a series of values from problem
to problem.



N. J. Cox 163

References

Cox, N. J. 2002. Speaking Stata: How to face lists with fortitude. Stata Journal 2:
202-222.

. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems.
Stata Journal 6: 282-283.

Gould, W. 2006. Mata Matters: Precision. Stata Journal 6: 550-560.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point
format. Stata Journal 8: 255—268.





