

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2010)
10, Number 1, pp. 125–142

Mata Matters: Stata in Mata

William Gould
StataCorp

College Station, TX

wgould@stata.com

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. The subject of this column is using Mata to
solve data analysis problems with the new Stata commands putmata and getmata,
which were added to official Stata 11 in the update of 11 February 2010.

Keywords: pr0050, Mata, getmata, putmata

1 Introduction

Some problems are more easily solved in Mata than they are in Stata. The problem is
that putting data from Stata to Mata and getting the result back again is difficult for
casual users and tedious even for experienced users. The new Stata commands putmata
and getmata solve that problem. These commands were added to official Stata 11 in
the update of 11 February 2010.

With putmata, we can type

. putmata *
(12 vectors posted)

and thus create a column vector in Mata for each variable in our data. The vectors will
have the same names as the variables. If we typed putmata * with the automobile data
in memory, we would then have vectors named make, price, mpg, rep78, headroom,
trunk, weight, length, turn, displacement, gear ratio, and foreign available for
use in Mata.

Note that you type putmata at the Stata dot prompt, not at the Mata colon prompt.
Rather than typing putmata *, let’s type

. putmata y=mpg X=(weight foreign 1)
(1 vector, 1 matrix posted)

Typing that creates a vector in Mata called y (which is just mpg, renamed) and a matrix
called X (which contains the columns corresponding to weight, foreign, and a vector
of 1s). We could then enter Mata and type

. mata
: b = invsym(X´X)*X´y
: yhat = X*b
: end
.

c© 2010 StataCorp LP pr0050

126 Mata Matters: Stata in Mata

Vector yhat now contains the predicted values from a regression of y on X. To post the
Mata vector back into our Stata dataset, we could type

. getmata yhat

We would now have the new variable yhat in our Stata dataset.

The demonstration is intended to be motivational; I am not seriously suggesting you
type the above instead of

. regress mpg weight foreign
(output omitted)

. predict yhat

Nonetheless, the motivational example is the outline for what follows. We are going to
discuss the details of putmata and getmata, we are going to use putmata as a jumping-
off point to discuss writing Mata code to solve both statistical and data-management
problems, and we are going to discuss how to package solutions in do-files.

Before we start, verify that you have the new commands putmata and getmata. In
Stata, type

. help putmata

If you are told that help for putmata is not found, you need to update your Stata. You
do that by typing

. update all

2 The putmata command

2.1 Syntax

The syntax of putmata is

putmata putlist
[
if
] [

in
] [

, replace omitmissing view
]

putlist can be any combination of the following:

varname or varlist
vecname=varname
matname=(varlist)
matname=(varlist # . . .)

For example,

1. You can type putmata mpg to create in Mata the vector mpg.

2. You can type putmata mpg weight to create in Mata the vectors mpg and weight.

W. Gould 127

3. You can type putmata * to create in Mata vectors for every variable in the Stata
dataset.

4. You can type putmata y=mpg to create Mata vector y containing the contents of
Stata variable mpg.

5. You can type putmata X=(weight foreign) to create Mata matrix X containing
weight in its first column and foreign in its second.

6. You can type putmata X=(weight foreign 1) to create Mata matrix X containing
weight in its first column, foreign in its second, and constant 1 in its third.

You can even type putmata y=mpg X=(weight foreign 1) to perform the actions
of examples 5 and 6 in a single line. If you specify the omitmissing option, however,
it does matter whether you type separate or single commands, and you do not want to
type separate commands:

. putmata y=mpg, omitmissing

. putmata X=(weight foreign 1), omitmissing

With the above commands, vector y will omit observations in which mpg contains miss-
ing. Matrix X will omit observations in which weight or foreign contain missing.
What you want, however, is to omit observations from both y and X in which any of the
variables contain missing. You want to type

. putmata y=mpg X=(weight foreign 1), omitmissing

2.2 Options

replace indicates that it is okay to replace an existing Mata vector or matrix. If you do
not specify replace and the Mata vector or matrix already exists, putmata issues
an error.

omitmissing specifies to omit observations that contain missing values in any of the
variables in putlist from the rows of the vectors and matrices created in Mata. In the
motivational example in section 1, we coded b = invsym(X’X)*X’y, and we created
y and X by typing putmata y=mpg X=(weight foreign 1). We just assumed there
were no missing values. Had there been missing values, we would have wanted to
create y and X by typing

. putmata y=mpg X=(weight foreign 1), omitmissing

view specifies that the vector and matrices be created as views onto the Stata data
rather than as copies of the contents of the data. Views can save considerable
amounts of memory and they have other advantages as well, although sometimes
those advantages can turn into disadvantages. All of which is to say, views should
be used with caution. We will discuss views later.

128 Mata Matters: Stata in Mata

3 Using putmata to produce mathematical and statistical

results

putmata is all you need to solve some problems. For instance, consider solving the set
of linear equations y = Xb for b. The solution can be obtained by premultiplying both
sides by X−1, which results in X−1y = X−1Xb or b = X−1y. If you were teaching a
course on linear algebra, you could demonstrate this solution. You might start with y

and x values entered into a Stata dataset:

. list

y x1 x2 x3

1. 27 2 -5 6
2. -20 3 7 -9
3. -9 -8 2 1

You might type the following:

. putmata y X=(x*)
(1 vector, 1 matrix posted)

. mata
mata (type end to exit)

: y
1

1 27
2 -20
3 -9

: X
1 2 3

1 2 -5 6
2 3 7 -9
3 -8 2 1

: b = luinv(X)*y

: b
1

1 4
2 7
3 9

: X*b
1

1 27
2 -20
3 -9

: end

W. Gould 129

You can read the online help or the manual about the Mata function luinv(). I chose
it because I needed a matrix inverter that could handle nonsymmetric matrices.

More interestingly, let’s consider the overdetermined linear set of equations y = Xb
when X is n×k, n > k. We have more equations than the unknown coefficients. Linear
regression b = (X′X)−1X′y provides one solution. It turns out that b = X−1y provides
the same solution if you define X−1 to be the Moore–Penrose generalized inverse for
nonsquare matrices! In the Moore–Penrose inverse, X−1X equals the identity matrix,
but XX−1 does not. In any case, we can demonstrate the equivalence:

. sysuse auto
(1978 Automobile Data)

. putmata y=mpg X=(weight foreign 1)
(1 vector, 1 matrix posted)

. mata
mata (type end to exit)

: pinv(X)*y
1

1 -.0065878864
2 -1.650029106
3 41.67970233

: end

You could compare the above result with the coefficients reported by typing

. regress mpg weight foreign

or you could compare it with the Mata calculation of invsym(X’X)*X’y.

Mata is a great way to teach. Just as importantly, if you have a matrix calculation
you need to make based on your data, you can use putmata to post the appropriate
vector and matrices from your data and then use Mata to calculate the result.

If you are going to use Mata to make real statistical calculations, I recommend you
normalize your data so that the variables are roughly scaled similarly because, when you
write matrix formulas, you are not going to concern yourself with using variants that
are more numerically accurate. For instance, Stata does not calculate linear regression
using (X′X)−1X′y, although the calculation it makes is algebraically equivalent, which
is to say, would yield the same results on an infinite-precision computer. The calcu-
lation Stata makes is more precise on finite-precision computers. Stata removes the
means (and later solves for the intercept separately), and it uses a solver to obtain the
coefficients, and more. The details are long and involved and the point is this: you are
not going to invest that kind of effort. You are going to code (X′X)−1X′y or whatever
is the equivalent for your problem. There is nothing numerically wrong with using such
formulas as long as you do not tax them by having variables that differ too wildly in
scale.

130 Mata Matters: Stata in Mata

The automobile data is an example of a dataset that is sufficiently scaled. In the
automobile data, mpg varies between 12 and 41 (mean 21.3), weight varies between
1,760 and 4,840 (mean 3,019.5), and foreign is either 0 or 1 (mean 0.2973). Scaling
that varies by a few orders of magnitude is usually of no concern. Let me show you,
however, that results would be more accurate if we divided weight by 1,000 and mpg

by 10.

It is a theoretical property of linear regression—and easy to prove—that the sum
of the residuals will be zero when the coefficient vector b is set to the least-squares
result. When we calculate the sum of those residuals using b obtained from any finite-
precision calculation, however, the sum will not be precisely zero. Using the example
above, if we use the b obtained by Stata’s regress command, the sum is –5.1e–15
(meaning −5.1 × 10−15). If we use b = pinv(X)*y, the sum is −2.3e–13. If we use
b = invsym(X’X)*X’y, the sum is 7.1e–13. Actually, I have made an adjustment to all
those numbers, which I will explain, but these are the right numbers for comparison.
If we rescaled the data by dividing weight by 1,000 and mpg by 10, the errors would
be 3.22e–14 for pinv(X)*y and −6.48e–13 for invsym(X’X)*X’y, and unchanged for
regress. The two matrix calculations are more accurate when made on better scaled
data—the errors were closer to zero—and the results from regress remain unchanged.
regress is robust to scaling.

In any case, all the errors are small. The maximum average error per observation
was a mere 7.1e–13/74 = 9.6e–15 miles per gallon. Nonetheless, errors were smaller
when we used scaled data.

I mentioned that I adjusted the errors reported above. I did that because when
one calculates error on a finite-precision computer, one obtains the desired error plus
the error in making the error calculation itself! Were you to calculate these sums
of the residuals in the obvious way, which you could do using Mata and by typing
sum(y-X*b), you would obtain results different from what I reported. You would obtain
–2.5e–13 for b obtained from regress, –2.5e–12 for b = pinv(X)*y, and –6.7e–12 for
b = invsym(X’X)*X’y. Those error calculations include not just the error caused by
numerical error in the calculation of b but also the numerical error in the calculation
of sum(y-X*b). Such unadjusted results are usually adequate for ranking techniques,
and in some sense they are actually better because they also include the error in how
you would be likely to use the calculated results. The results are adequate for ranking
because, whatever is the error in sum(y-X*b), it is a function of y and X, and you are
using the same y and X in all three calculations, so the error is roughly held constant.
I say roughly because the error in the error calculation is also a function of b and b is
not being held constant; but it is precisely the effect of the different b’s that we want
to evaluate, so we will have to accept some contamination in our results. The various
b vectors are nearly identical anyway, so the variation in the contamination cannot be
much.

I, however, want to compare results from unscaled and rescaled data, which is to say,
the y and X that will be used in sum(y-X*b) will differ, and thus the error in calculating
the error could differ across comparisons. To prevent that, after obtaining b from each

W. Gould 131

method, I made the error calculations on the scaled data in all cases, which is to say,
on the same y and X. Thus, when calculating errors for b calculated on unscaled data,
I multiplied the calculated weight coefficient by 100 and divided the other calculated
coefficients by 10 to put them on the scale for data that had mpg divided by 10 and
weight divided by 1,000. Multiplication and division introduce no error on modern
digital computers (proof omitted). That rescaling, however, allowed sum(y-X*b) to be
calculated using the same y and X in all cases, and thus I held roughly constant the
error in the error calculation. My adjustment also resulted in more accurate results,
but that is for other reasons I am not going to explain here because it is not necessary
that my results be more accurate. It is sufficient that I have held the error in the error
calculation roughly constant.

By the way, I have still not told you what the true error is because I do not know it.
To calculate the true error, I would have to calculate yet another rescaling that would
minimize the error in the error calculation, and then I would report to you the error
y-sum(X*b) calculated using that data, and I would add a plus-or-minus to the end of
the reported result that represented the error in the error calculation itself.

All of which is a long way of saying that you should think about putting all your
variables on roughly the same scale when you are not willing to think through the
numerical issues.

4 Using putmata on subsets of observations

Assume we have the following code:

putmata y=mpg X=(weight length 1)
mata:
b = pinv(X)*y
b
end

where b = pinv(X)*y is standing in for some more complicated calculation you wish to
make.

Say that we now wish to run this code on only the foreign cars in the data. We
would modify the putmata command; the Mata code would remain unchanged:

putmata y=mpg X=(weight length 1) if foreign
mata:
b = pinv(X)*y
b
end

Whereas previously y would have been 74× 1 and X would have been 74× 3, now y will
be 22 × 1 and X will be 22 × 3 because foreign is true in 22 observations in the data.

Say that we want to run on all our data, but this time, let’s assume variables mpg,
weight, and length have missing values. They do not in the automobile data, but we
will imagine we are using some other dataset. The missing values in y and X will result

132 Mata Matters: Stata in Mata

in a 3 × 1 vector b containing missing values. If we want to run on only the complete
observations, one solution would be

putmata y=mpg X=(weight length 1) if mpg<. & weight<. & length<.
mata:
b = pinv(X)*y
b
end

An easier solution is

putmata y=mpg X=(weight length 1), omitmissing
mata:
b = pinv(X)*y
b
end

The omitmissing option omits observations with missing values in any of the variables
to which we refer. If you specify omitmissing, it is important that you specify all the
vectors and matrices you want to create with a single putmata command. If we typed
putmata y=mpg, omitmissing and putmata X=(weight length 1), omitmissing, then
vector y would omit observations for which mpg contains missing and X would omit ob-
servations for which weight or length contain missing, with the result that the X and
y might not be conformable or, worse, be conformable but omit different observations.

5 The getmata command

5.1 Description

getmata is the reverse of putmata—it creates Stata variables from Mata vectors and
matrices. In many cases, you will not need getmata. In the problems above, it was
sufficient merely to report results. We used putmata to put our data into Mata, and
we used Mata to calculate and display results. In other problems, you may create new
vectors in Mata and need to put them back as variables in your data.

Here is a simplified version of a real problem that showed up on Statalist: You need
to create new Stata variable d from existing Stata variable c, to be defined as

di =
∑

j|cj>ci

(cj − ci)

where i and j index observations. This problem can be solved in Stata, but it is easier to
solve it in Mata because the Mata code we write is nearly identical to the mathematical
statement of the problem. If c and d were Mata vectors, the code would be

d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}

W. Gould 133

The most difficult part of this solution to understand is the first line, d = J(rows(c),
1, 0), and that is only because you may not be familiar with Mata’s J() function. d

= J(rows(c), 1, 0) creates a rows(c)× 1 column vector of 0s. The arguments of J()
are in just that order.

c is not a vector in Mata, however. We already know how to solve that:

. putmata c

It will hardly surprise you to learn that the way we get Mata vector d back into Stata
afterward is

. getmata d

5.2 Syntax

Before we put all this together, let me describe the getmata command, the syntax of
which is

getmata getlist
[
, double

[
update | replace

]
id(name) force

]

A getlist is much like a putlist, but reversed. A getlist can be any combination of the
following:

vecname
varname=vecname
(varname varname . . . varname)=matname
(varname*)=matname

For example,

1. You can type getmata x1 to create in Stata the new variable x1 containing the
contents of Mata vector x1.

2. You can type getmata x1, update to create or replace in Stata the variable x1

containing the contents of Mata vector x1.

3. You can type getmata x1 x2 to create in Stata the new variables x1 and x2

containing the contents of Mata vectors x1 and x2.

4. You can type getmata x1 x2, update to create or replace in Stata the variables
x1 and x2 containing the contents of Mata vectors x1 and x2.

5. You can type getmata (firstvar secondvar) = X to create in Stata the new
variables firstvar and secondvar containing the first and second columns of
matrix X. X must be N × 2. If X had three columns, then you would need to
specify three variable names. Obviously, this construction can be used with the
update option, as can all getmata constructions, so I will not mention it again.

6. You can type getmata (myvar*) = X to create in Stata the new variables myvar1,
myvar2, . . . , equal to the first, second, . . . , columns of Mata matrix X.

134 Mata Matters: Stata in Mata

5.3 Options

double creates new numeric variables as doubles rather than the default float.

update or replace allows a vector to be placed in an existing variable. The two options
have the same meaning unless the id() option is also specified.

id(name) is the topic of an entire section below.

force allows getting vectors that have fewer or more columns than observations in the
data. You should never have to specify this option.

6 Using putmata and getmata

So now we can put together the solution of creating d from c. To remind you, we wish
to create new variable d from existing variable c, where

di =
∑

j|cj>ci

(cj − ci)

To show you that the solution works, I use a dataset containing the integers from 1 to
4. The solution is

. list

c

1. 1
2. 2
3. 3
4. 4

. putmata c
(1 vector posted)

. mata
mata (type end to exit)

: d = J(rows(c), 1, 0)

: for (i=1; i<=rows(c); i++) {
> for (j=1; j<=rows(c); j++) {
> if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])
> }
> }

: end

. getmata d

W. Gould 135

. list

c d

1. 1 6
2. 2 3
3. 3 1
4. 4 0

If I had to solve this problem, I would package my solution as a do-file.

begin myfile1.do

version 11 // see note 1

clear mata // see note 2
capture drop d // see note 3

putmata c

mata: // see note 4
d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}
end

getmata d

end myfile1.do

Notes:

1. Do-files should always begin with a version statement. That is what ensures
that the do-file continues to work in years to come as new versions of Stata are
released.

2. The do-file should not depend on Mata having certain vectors, matrices, or pro-
grams already loaded. To ensure this is true, we clear Mata.

3. It was easier for me to debug this do-file if I did not have to remember to drop d

each time I reran it.

4. I coded mata: (mata with a colon), yet previously when I used Mata interactively,
I omitted the colon. Coding mata: tells Mata to stop if any error occurs, which is
exactly how I want my do-file to behave. Using mata without the colon tells Mata
not to stop, but to instead give me an opportunity to fix what I mistyped, which
is how I work interactively.

136 Mata Matters: Stata in Mata

7 Using putmata and getmata on subsets of observations

In the example above where we created variable d from c, we assumed that there were
no missing values in c, or at least we did not consider the issue. It turns out that our
code produces several missing values in the presence of just one missing value. Below I
have already dropped the data used in the previous example and have entered another
dataset:

. list

c

1. 1
2. 2
3. .
4. 3
5. 4

. do myfile1.do
(output omitted)

. list

c d

1. 1 .
2. 2 .
3. . 0
4. 3 .
5. 4 .

We could modify the Mata code in myfile1.do to watch for missing values and to
exclude them from the calculation, but we already know an easier way. Rather than
creating Mata vector c to include all the observations from Stata variable c, we could
create the vector to include only the nonmissing values by changing putmata c to read

putmata c if c<.

or

putmata c, omitmissing

The result of either of those commands will be to create vector c to be 4×1 rather than
5 × 1.

There is, however, an issue. At the end of our code where we post the Mata solution
vector d to new Stata variable d—we coded getmata d—we will need to specify which
five observations are to receive the four calculated results. getmata has a syntax for
that, but before we can use it, we will need a variable that uniquely identifies the
observations. In real data, you would be likely to already have such a variable, but in
case you do not, it is easy to create such a variable. You type generate newvar = n.
Let’s create such a variable in our data:

W. Gould 137

. generate fid = _n

. list

c fid

1. 1 1
2. 2 2
3. . 3
4. 3 4
5. 4 5

fid is a perfectly good identification variable, but I am about to multiply fid by 10
just to emphasize to you that the identification variable does not have to correspond to
observation numbers.

. replace fid = fid*10
(5 real changes made)

. list

c fid

1. 1 10
2. 2 20
3. . 30
4. 3 40
5. 4 50

An identification variable is a variable that takes on different values for each obser-
vation in the data. The values could be 1, 2, . . . ; or they could be 1.25, –2, . . . ; or they
could be Nick, Mary, and so on. The values can be numeric or string, and they can be
in any order. All that is important is that the variable contain distinct values for each
observation.

Now that we have an identification variable, we can modify the ending getmata

command to read

getmata d, id(fid)

instead of just getmata d. The id(fid) option specifies that values in variable fid are
to be matched with the values in vector fid to determine the observations of variable
d that are to be filled in from vector d. For that to work, we must post to Mata the
values of fid, so the entire solution reads

putmata fid c, omitmissing
mata:
Mata code goes here
end
getmata d, id(fid)

When we putmata fid c, omitmissing with our example data, two 4 × 1 vectors
will be created in Mata, fid and c. The vectors will contain values from observations
1, 2, 4, and 5, omitting observation 3 because c==. in that observation. Thus vector

138 Mata Matters: Stata in Mata

fid will contain (10, 20, 40, 50)′. Later, at the end of our code, when we getmata d,

id(fid), Stata will compare the contents of vector fid = (10, 20, 40, 50)′ with the values
of variable fid, and Stata will be able to work out that vector row 1 corresponds to
observation 1, row 2 corresponds to observation 2, row 3 to observation 4, and row 4 to
observation 5. In this example, fid increases with observation number, but that is not
required.

Our updated do-file reads

begin myfile2.do

version 11

clear mata
capture drop d

putmata fid c, omitmissing // (changed)

mata:
d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}
end

getmata d, id(fid) // (changed)

end myfile2.do

Here is the result of running the do-file:

. list

c fid

1. 1 10
2. 2 20
3. . 30
4. 3 40
5. 4 50

. do myfile2
(output omitted)

. list

c fid d

1. 1 10 6
2. 2 20 3
3. . 30 .
4. 3 40 1
5. 4 50 0

W. Gould 139

8 Using views

When you type or code putmata x, vector x is created as a copy of the Stata variable
x. The variable and vector are separate things. An alternative is to make the Mata
vector a view onto the Stata variable. You do that by typing putmata x, view. Now
the variable and vector share the same recording of the values. Views use less memory
than copies, although views are slightly less efficient in terms of execution time. Views
have other advantages and disadvantages, too.

Say that you type putmata x and then, in Mata, code x[1]=20. Changing vector x
leaves the variable x unchanged. If you had typed putmata x, view, however, changing
vector x would simultaneously change variable x, because the variable and the vector are
the same thing. Sometimes, that is an advantage. At other times, it is a disadvantage.

There is more to know. If you are working with views and, in the middle of the
Mata session, take a break and return to Stata, it is important that you do not modify
the Stata data in certain ways. When you create a view, Stata records notes about
the mapping. Those notes might read that variable vector x is a view onto variable
3, observations 2 though 20 and observation 39. If you change the sort order of the
data, the view will still be working with observations 2 through 20 and 39 even though
those observations now contain different data! If you were to drop the first or second
variable, the view would still be working with variable 3 even though that will now be
a different variable! Alternatively, if you update variable 3 with improved values, those
improvements will appear in the Mata vector, too.

The memory savings offered by views is considerable when working with large
datasets. Say that you have a dataset containing 1,000,000 observations on 200 vari-
ables. That dataset might be 800,000,000 bytes in size, or 763 megabytes. (To obtain
megabytes, you divide by 1,0242.) Typing putmata * would create copies of each vari-
able, meaning creation of two hundred 1,000,000-element double-precision vectors. You
would just have consumed another 200 × 1,000,000 × 8/1,0242 = 1,526 megabytes of
memory, or 1,526/1,024 = 1.5 gigabytes. Typing putmata *, view, however, would
consume only 24 or so kilobytes of memory, a practically insignificant amount.

All the examples shown so far work equally well with copies or views. We simply
would need to add the view option to the putmata commands.

If we are going to work with views, we could make d a view, too. If we make d a
view, we can eliminate the getmata commands at the end of our code, because views
are the variable and thus they put themselves back. This even means we could eliminate
the fid variable because views will handle their own alignment of vectors and variables.

Remember that the do-file creates new variable d from existing variable c. We
modify the do-file to create new variable d at the outset, in Stata, and then create views
onto both c and d.

In the creation of those views, we can omit the observations that have c>=. by simply
including the omitmissing option with putmata. Finally, we delete the now irrelevant
getmata command at the end. Our code reads

140 Mata Matters: Stata in Mata

begin myfile3.do

version 11

clear mata
capture drop d
generate d = 0 // see note 1

putmata c d, omitmissing view // see note 2

mata:
d[.] = J(rows(c), 1, 0) // see note 3
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}

end

replace d=. if c==. // see note 4
// see note 5

end myfile3.do

Notes:

1. We now create new variable d at the outset. We create it containing 0, not missing
values. That is important because we are about to issue a putmata command with
the omitmissing option, and we do not want the missing values in d to cause all
the observations to be omitted.

2. We include the view option on the putmata command, and we include variable d.

3. We could have deleted this line, but instead I modified it to remind you not to
make a terrible error. The line d[.] = J(rows(c), 1, 0) fills in d with zeros. I
could have omitted the line because d is already filled with zeros. I did not delete
it because I wanted an excuse to call your attention to the left-hand side of the
assignment. I changed what was previously

d = J(rows(c), 1, 0)

to

d[.] = J(rows(c), 1, 0)

I changed d to d[.]. That change is of great importance. What we previously
coded created vector d. What I now code changes the values stored in existing
vector d. If I left what we coded previously, Mata would discard the view stored
in d and create a new d as a regular Mata vector unconnected to Stata. Our Mata
code would have worked, but none of the values stored in regular vector d would
have made it back to Stata variable d.

4. We add the line replace d=. if c<=.. I admit that was something that I discov-
ered I needed to add the first time I tested this do-file and looked at the output.

W. Gould 141

What I saw was that d = 0 in the observation in which c==.. That happened
because we created d containing zeros at the outset. It would have been better if
we had created d by coding

generate d = 0 if c<.

rather than generate d = 0. I left the mistake in, however, to show that the
author is not infallible.

5. We omit the line putmata d or putmata d, id(fid). Vector d is variable d. We
need not worry about alignment because when the view d was created, it was
created as a view onto only the relevant observations.

My personal opinion concerning views is that I avoid them for variables that appear
on the left-hand side of the assignment operator. That is, I would have left d as a
regular vector and left in the getmata d, id(fid). If you review the above notes, all
the complication was caused by d being a view. I had to remember to code d[.] = . . .
rather than d =, which I invariably forget. I cannot fill d with missing at the outset
because putmata, omitmissing will then omit all the observations. Concerning the
latter, there are more clever ways I could have handled that. I could have filled in d

with 0 and performed the putmata, as I did, and then immediately changed the contents
of d to be missing. Even so, I try to avoid using views for variables to which I will be
making assignments. I do use views for right-hand-side variables because, in that case,
views have no implications for subsequent code.

Anyway, this do-file works:

. list

c

1. 1
2. 2
3. .
4. 3
5. 4

. do myfile3
(output omitted)

. list

c d

1. 1 6
2. 2 3
3. . .
4. 3 1
5. 4 0

142 Mata Matters: Stata in Mata

9 Conclusion

Some problems are more easily solved in Mata than in Stata. In fact, Mata and Stata
complement each other well because problems that are easy in one are often difficult in
the other. With putmata, it is easy to move your data into Mata. With getmata, you
can move data back from Mata to Stata if necessary. I showed two classes of examples:

1. Analysis. In analysis situations, you use putmata, but you do not need getmata.
I showed how to obtain b = (X′X)−1X′y, and I showed that the same results
could be obtained by b = X−1y for a suitable definition of matrix inversion. Both
of these examples would be useful in teaching, but you are to imagine that these
simple formulas stand in for more lengthy calculations implementing the latest
result found in the professional journals. I once gave a talk where I dropped into
Mata to calculate a generalized method of moments estimator for a Poisson model
with an endogenous variable, and I did so in a dozen or so lines of Mata code using
the formulas right from the original paper. Stata now does generalized method of
moments, so there is no reason to rehash an old talk here.

2. Data management. I showed how to create a difficult-to-calculate variable using
Mata. Here you use putmata to get the data into Mata, and you use getmata

to get the result back into Stata. Stata is wonderful at data management and
most complicated tasks are made easy. Every so often, however, one comes upon
a problem where the Stata solution is elusive. There is one, you know, and usually
it requires only a few lines, but you cannot imagine what they might be. In such
cases, it is usually quicker to drop into Mata and go directly at the solution.

putmata and getmata are useful commands, but bear in mind that they were de-
signed to help solve custom data analysis problems: the types of problems that arise in
a particular analysis and that one solves in do-files. They were not designed for use by
programmers coding general solutions implemented as ado-files. putmata and getmata

create and work with global vectors and matrices, and that is why their results are so
easy to use. That same feature makes them inappropriate for ado-files. Programmers
writing ado-files need results stored in local vectors and matrices. Stata already has
tools for creating such local vectors and matrices, namely, st data(), st view(), and
st store(); see [M-5] st data() and [M-5] st view(). Programmers may wish to think
of putmata as st data() and st view(), and getmata as st store(), for interactive
and do-file use.

About the author

William Gould is president of StataCorp, head of development, and principal architect of Mata.

