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Abstract. The development and use of synthetic regression models has proven
to assist statisticians in better understanding bias in data, as well as how to best
interpret various statistics associated with a modeling situation. In this article, I
present code that can be easily amended for the creation of synthetic binomial,
count, and categorical response models. Parameters may be assigned to any num-
ber of predictors (which are shown as continuous, binary, or categorical), negative
binomial heterogeneity parameters may be assigned, and the number of levels or
cut points and values may be specified for ordered and unordered categorical re-
sponse models. I also demonstrate how to introduce an offset into synthetic data
and how to test synthetic models using Monte Carlo simulation. Finally, I intro-
duce code for constructing a synthetic NB2-logit hurdle model.

Keywords: st0186, synthetic, pseudorandom, Monte Carlo, simulation, logistic,
probit, Poisson, NB1, NB2, NB-C, hurdle, offset, ordered, multinomial

1 Introduction

Statisticians use synthetic datasets to evaluate the appropriateness of fit statistics and
to determine the effect of modeling after making specific alterations to the data. Models
based on synthetically created datasets have proved to be extremely useful in this respect
and appear to be used with increasing frequency in texts on statistical modeling.

In this article, I demonstrate how to construct synthetic datasets that are appropri-
ate for various popular discrete-response regression models. The same methods may be
used to create data specific to a wide variety of alternative models. In particular, I show
how to create synthetic datasets for given types of binomial, Poisson, negative binomial,
proportional odds, multinomial, and hurdle models using Stata’s pseudorandom-number
generators. I demonstrate standard models, models with an offset, and models having
user-defined binary, factor, or nonrandom continuous predictors. Typically, synthetic
models have predictors with values distributed as pseudorandom uniform or pseudoran-
dom normal. This will be our paradigm case, but synthetic datasets do not have to be
established in such a manner—as I demonstrate.

In 1995, Walter Linde-Zwirble and I developed several pseudorandom-number gen-
erators using Stata’s programming language (Hilbe and Linde-Zwirble 1995, 1998), in-
cluding the binomial, Poisson, negative binomial, gamma, inverse Gaussian, beta bino-
mial, and others. Based on the rejection method, random numbers that were based on
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distributions belonging to the one-parameter exponential family of distributions could
rather easily be manipulated to generate full synthetic datasets. A synthetic binomial
dataset could be created, for example, having randomly generated predictors with cor-
responding user-specified parameters and denominators. One could also specify whether
the data was to be logit, probit, or any other appropriate binomial link function.

Stata’s pseudorandom-number generators are not only based on a different method
from those used in the earlier rnd* suite of generators but also, in general, use different
parameters. The examples in this article all rely on the new Stata functions and are
therefore unlike model creation using the older programs. This is particularly the case
for the negative binomial.

I divide this article into four sections. First, I discuss creation of synthetic count
response models—specifically, Poisson, log-linked negative binomial (NB2), linear nega-
tive binomial (NB1), and canonical negative binomial (NB-C) models. Second, I develop
code for binomial models, which include both Bernoulli or binary models and binomial
or grouped logit and probit models. Because the logic of creating and extending such
models was developed in the preceding section on count models, I do not spend much
time explaining how these models work. The third section provides a relatively brief
overview of creating synthetic proportional slopes models, including the proportional
odds model, and code for constructing synthetic categorical response models, e.g., the
multinomial logit. Finally, I present code on how to develop synthetic hurdle models,
which are examples of two-part models having binary and count components. Statis-
ticians should find it relatively easy to adjust the code that is provided to construct
synthetic data and models for other discrete-response regression models.

2 Synthetic count models

I first create a simple Poisson model because Stata’s rpoisson() function is similar to
my original rndpoi (used to create a single vector of Poisson-distributed numbers with
a specified mean) and rndpoix (used to create a Poisson dataset) commands. Uniform
random variates work as well as and at times superior to random normal variates for the
creation of continuous predictors, which are used to create many of the models below.
The mean of the resultant fitted value will be lower using the uniform distribution, but
the model results are nevertheless identical.

(Continued on next page)
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* SYNTHETIC POISSON DATA

* [With predictors x1 and x2, having respective parameters of 0.75 and -1.25

* and an intercept of 2]

* poi_rng.do 22Jan2009

clear

set obs 50000

set seed 4744

generate x1 = invnormal (runiform()) // normally distributed: values between
// ~ -4.5 - 4.5

invnormal (runiform()) // normally distributed: values between
// ~ -4.5 - 4.5

generate xb = 2 + 0.75%x1 - 1.25%x2 // linear predictor; define parameters

generate x2

generate exb = exp(xb) // inverse link; define Poisson mean
generate py = rpoisson(exb) // generate random Poisson variate with mean=exb
glm py x1 x2, nolog family(poi) // model resultant data

The model output is given as

. glm py x1 x2, nolog family(poi)

Generalized linear models No. of obs = 50000

Optimization : ML Residual df = 49997

Scale parameter = 1

Deviance = 52295.46204 (1/df) Deviance = 1.045972

Pearson = 50078.33993 (1/df) Pearson = 1.001627
Variance function: V(u) = u [Poisson]

Link function : g(u) = 1n(w [Log]
AIC = 4.783693
Log likelihood = -119589.3262 BIC = -488661
0IM

Py Coef. Std. Err. z P>|z| [95% Conf. Intervall

x1 .7488765 .0009798 764.35 0.000 . 7469562 . 7507967

x2 -1.246898 .0009878 -1262.27 0.000 -1.248834 -1.244962

_cons 2.002672 .0017386 1151.91 0.000 1.999265 2.00608

Notice that the parameter estimates approximate the user-defined values. If we
delete the seed line, add code to store each parameter estimate, and convert the do-file
to an r-class ado-file, it is possible to perform a Monte Carlo simulation of the synthetic
model parameters. The above synthetic Poisson data and model code may be amended
to do a simple Monte Carlo simulation as follows:
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* MONTE CARLO SIMULATION OF SYNTHETIC POISSON DATA

* 9Feb2009

program poi_sim, rclass
version 11
drop _all
set obs 50000
generate x1 = invnormal (runiform())
generate x2 = invnormal (runiform())
generate xb = 2 + 0.75%x1 - 1.25%x2

generate exb = exp(xb)

generate py = rpoisson(exb)

glm py x1 x2, nolog family(poi)

return scalar sx1 = _b[x1]
return scalar sx2 = _b[x2]
return scalar sc = _b[_cons]

end

The model parameter estimates are stored in sx1, sx2, and sc. The following simple
simulate command is used for a Monte Carlo simulation involving 100 repetitions. Es-
sentially, what we are doing is performing 100 runs of the poi_rng do-file, and averaging
the values of the three resultant parameter estimates.

. simulate mxl=r(sx1) mx2=r(sx2) mcon=r(sc), reps(100): poi_sim

(output omitted)

. summarize
Variable ‘ Obs Mean Std. Dev. Min Max
mx1 100 .7499039 .000987 . 7473155 . 7524396
mx2 100 -1.250145 .0009411 -1.25298 -1.248092
mcon 100 1.9999 .0015481 1.995079 2.003942

Using a greater number of repetitions will result in mean values closer to the user-
specified values of 0.75, —1.25, and 2. Standard errors may also be included in the
above simulation, as well as values of the Pearson-dispersion statistic, which will have
a value of 1.0 when the model is Poisson. The value of the heterogeneity parameter,
alpha, may also be simulated for negative binomial models. In fact, any statistic that
is stored as a return code may be simulated, as well as any other statistic for which we
provide the appropriate storage code.

It should be noted that the Pearson-dispersion statistic displayed in the model output
for the generated synthetic Poisson data is 1.001627. This value indicates a Poisson
model with no extra dispersion; that is, the model is Poisson. Values of the Pearson
dispersion greater than 1.0 indicate possible overdispersion in a Poisson model. See
Hilbe (2007) for a discussion of count model overdispersion and Hilbe (2009) for a
comprehensive discussion of binomial extradisperson. A good overview of overdispersion
may also be found in Hardin and Hilbe (2007).

Most synthetic models use either pseudorandom uniform or normal variates for pre-
dictors. However, it is possible to create both random and fixed-level categorical pre-
dictors as well. Next I create a three-level predictor and a binary predictor to build the
synthetic model. I create the categorical variables by using the irecode() function,
with specified percentages indicated. x1 is partitioned into three levels: x1_1 consists
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of the first 50% of the data (or approximately 25,000 observations). x1_2 has another
30% of the data (approximately 15,000 observations), and x1_3 has the final 10% of
the data (approximately 10,000 observations). x1_1 is the referent. x2 is binary with
approximately 30,000 zeros and 20,000 ones. The user-defined parameters are x1_2 = 2,
x1.3 =3, and x2 = —2.5. The intercept is specified as 1.

* SYNTHETIC POISSON DATA

* poif_rng.do 6Feb2009

* x1_2=2, x1_3=3, x2=-2.5, _cons=1

clear

set obs 50000

set seed 4744

generate x1 = irecode(runiform(), 0, 0.5, 0.8, 1)
generate x2 irecode(runiform(), 0.6, 1)
tabulate x1, gen(x1_)

generate xb = 1 + 2*x1_2 + 3*x1_3 - 2.5%x2
generate exb = exp(xb)

generate py = rpoisson(exb)

glm py x1_2 x1_3 x2, nolog family(poi)

The model output is given as

. glm py x1_2 x1_3 x2, nolog family(poi)

Generalized linear models No. of obs = 50000

Optimization : ML Residual df = 49996

Scale parameter = 1

Deviance = 50391.75682 (1/df) Deviance = 1.007916

Pearson = 50115.71287 (1/df) Pearson = 1.002394
Variance function: V(u) = u [Poisson]

Link function : g(u) = In(w [Logl
AIC = 3.959801
Log likelihood = -98991.02229 BIC = -490553.9
0IM

Py Coef.  Std. Err. z P>|z| [95% Conf. Interval]

x1_2 1.995445 .0053683 371.71 0.000 1.984923 2.005966

x1_3 2.996465 .0051336 583.70 0.000 2.986404 3.006527

x2 -2.490218 .0059027 -421.88 0.000 -2.501787 -2.478649

_cons 1.00166 .0048605 206.08 0.000 .9921333 1.011186

We can obtain exact numbers of observations for each level by using the inrange ()
function. Using the same framework as above, we can amend x1 to have exactly 25,000,
15,000, and 10,000 observations in the factored levels by using the following example
code:

generate x1 = _n

replace x1 = inrange(_n, 1, 25000)*1 + inrange(_n, 25001, 40000)*2 + //
inrange(_n, 40001, 50000)*3

tabulate x1, gen(x1_)
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The tabulation output is given as

. tabulate x1, gen(x1_)

x1 Freq. Percent Cum.

1 25,000 50.00 50.00

2 15,000 30.00 80.00

3 10,000 20.00 100.00
Total 50,000 100.00

Poisson models are commonly parameterized as rate models. As such, they use
an offset, which reflects the area or time over which the count response is generated.
Because the natural log is the canonical link of the Poisson model, the offset must be
logged prior to entry into the estimating algorithm.

A synthetic offset may be randomly generated or may be specified by the user. For
this example, I will create an area offset having increasing values of 100 for each 10,000
observations in the 50,000-observation dataset. The shortcut code used to create this
variable is given below. I have commented code that can be used to generate the same
offset as in the single-line command that is used in this algorithm. The commented
code better shows what is being done and can be used by those who are uncomfortable
using the shortcut.

* SYNTHETIC RATE POISSON DATA
* poio_rng.do 22Jan2009
clear

set obs 50000

set seed 4744

generate off = 100 + 100*int((_n-1)/10000) // creation of offset

* generate off = 100 in 1/10000 // These lines duplicate the single line above
* replace off = 200 in 10001/20000

* replace off = 300 in 20001/30000

* replace off = 400 in 30001/40000

* replace off = 500 in 40001/50000

generate loff = ln(off) // log offset prior to entry into model
generate x1 = invnormal (runiform())

generate x2 = invnormal (runiform())

generate xb = 2 + 0.76%x1 - 1.25%x2 + loff // offset added to linear predictor
generate exb = exp(xb)

generate py = rpoisson(exb)

glm py x1 x2, nolog family(poi) offset(loff) // added offset option

We expect that the resultant model will have approximately the same parameter
values as the earlier model but with different standard errors. Modeling the data without
using the offset option results in similar parameter estimates to those produced when
an offset is used, with the exception that the estimated intercept is highly inflated.

(Continued on next page)
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The results of the rate-parameterized Poisson algorithm above are displayed below:

. glm py x1 x2, nolog family(poi) offset(loff)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997
Scale parameter = 1
Deviance = 49847.73593 (1/df) Deviance = .9970145
Pearson = 49835.24046 (1/df) Pearson = .9967646
Variance function: V(u) = u [Poisson]
Link function : g(w) = InCw) [Log]
AIC = 10.39765
Log likelihood = -259938.1809 BIC = -491108.7
0IM
Py Coef.  Std. Err. z P>|z| [95% Conf. Intervall
x1 .7500656 .0000562 1.3e+04 0.000 . 7499555 .7501758
x2 -1.250067 .0000576 -2.2e+04 0.000 -1.25018 -1.249954
_cons 1.999832 .0001009 2.0e+04 0.000 1.999635 2.00003
loff (offset)

I mentioned earlier that a Poisson model having a Pearson dispersion greater than 1.0
indicates possible overdispersion. The NB2 model is commonly used in such situations
to accommodate the extra dispersion.

The NB2 parameterization of the negative binomial can be generated as a Poisson-
gamma mixture model, with a gamma scale parameter of 1. We use this method to
create synthetic NB2 data. The negative binomial random-number generator in Stata
is not parameterized as NB2 but rather derives directly from the NB-C model (see Hilbe
[2007]). rnbinomial() may be used to create a synthetic NB-C model, but not NB2 or
NB1. Below is code that can be used to construct NB2 model data. The same parameters
are used here as for the above Poisson models.

* SYNTHETIC NEGATIVE BINOMIAL (NB2) DATA

* nb2_rng.do 22Jan2009

clear

set obs 50000

set seed 8444

generate x1 = invnormal (runiform())

generate x2 = invnormal (runiform())

generate xb = 2 + 0.75%x1 - 1.26%x2 // same linear predictor as Poisson above

generate a = .5 // value of alpha, the NB2 heterogeneity
parameter

generate ia = 1/a // inverse alpha

generate exb = exp(xb) // NB2 mean

generate xg = rgamma(ia, a) // generate random gamma variate given alpha

generate xbg = exb*xg // gamma variate parameterized by linear
predictor

generate nby = rpoisson(xbg) // generate mixture of gamma and Poisson

glm nby x1 x2, family(nb ml) nolog // model as negative binomial (NB2)
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The model output is given as

. glm nby x1 x2, family(nb ml) nolog

Generalized linear models No. of obs = 50000

Optimization : ML Residual df = 49997

Scale parameter = 1

Deviance = 54131.21274 (1/df) Deviance = 1.082689

Pearson = 49994.6481 (1/df) Pearson = .999953
Variance function: V(u) = u+(.5011)u"2 [Neg. Binomiall

Link function : g(u) = 1n(w [Logl
AIC = 6.148235
Log likelihood = -1563702.8674 BIC = -486825.2
0IM

nby Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7570565 .0038712 195.56 0.000 . 749469 . 764644

x2 -1.252193 .0040666 -307.92 0.000 -1.260164 -1.244223

_cons 1.993917 .0039504 504.74 0.000 1.986175 2.00166

Note: Negative binomial parameter estimated via ML and treated as fixed once

The values of the parameters and of alpha closely approximate the values specified
in the algorithm. These values may of course be altered by the user. Note also the
values of the dispersion statistics. The Pearson dispersion approximates 1.0, indicating
an approximate “perfect” fit. The deviance dispersion is 8% greater, demonstrating that
it is not to be used as an assessment of overdispersion. In the same manner in which
a Poisson model may be Poisson overdispersed, an NB2 model may be overdispersed as
well. It may, in fact, overadjust for Poisson overdispersion. Scaling standard errors or
applying a robust variance estimate can be used to adjust standard errors in the case
of NB2 overdispersion. See Hilbe (2007) for a discussion of NB2 overdispersion and how
it compares with Poisson overdispersion.

If you desire to more critically test the negative binomial dispersion statistic, then
you should use a Monte Carlo simulation routine. The NB2 negative binomial hetero-
geneity parameter, «, is stored in e(a) but must be referred to using single quotes,
‘e(a)’. Observe how the remaining statistics we wish to use in the Monte Carlo simu-
lation program are stored.

* SIMULATION OF SYNTHETIC NB2 DATA

* x1=.75, x2=-1.25, _cons=2, alpha=0.5
program nb2_sim, rclass

version 11

clear

set obs 50000

generate x1 = invnormal (runiform()) // define predictors
generate x2 = invnormal (runiform())

generate xb = 2 + 0.75%x1 - 1.25%x2 // define parameter values
generate a = .5

generate ia = 1/a

generate exb = exp(xb)
generate xg = rgamma(ia, a)
generate xbg = exb*xg
generate nby = rpoisson(xbg)
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glm nby x1 x2, nolog family(nb ml)

return scalar sxl = _b[x1] // x1

return scalar sx2 = _b[x2] // x2

return scalar sxc = _b[_cons] // intercept (_cons)
return scalar pd = e(dispers_p) // Pearson dispersion
return scalar dd = e(dispers_s) // deviance dispersion
return scalar _a = “e(a)” // alpha

end

To obtain the Monte Carlo averaged statistics we desire, use the following options
with the simulate command:

. simulate mxl=r(sxl) mx2=r(sx2) mxc=r(sxc) pdis=r(pd) ddis=r(dd) alpha=r(_a),
> reps(100): nb2_sim

(output omitted )

. summarize

Variable Obs Mean Std. Dev. Min Max
mx1 100 .750169 .0036599 . 7407614 . 758591

mx2 100 -1.250081 .0037403 -1.258952 -1.240567

mxc 100 2.000052 .0040703 1.987038 2.010417

pdis 100 1.000241 .0050856 .9881558 1.01285

ddis 100 1.084059 .0015233 1.079897 1.087076

alpha 100 .5001092 .0042068 .4873724 .509136

Note the range of parameter and dispersion values. The code for constructing syn-
thetic datasets produces quite good values; i.e., the mean of the parameter estimates is
very close to their respective target values, and the standard errors are tight. This is
exactly what we want from an algorithm that creates synthetic data.

We may use an offset into the NB2 algorithm in the same manner as we did for the
Poisson. Because the mean of the Poisson and NB2 are both exp(xb), we may use the
same method. The synthetic NB2 data and model with offset is in the nb2o0_rng.do file.

The NB1 model is also based on a Poisson-gamma mixture distribution. The NB1
heterogeneity or ancillary parameter is typically referred to as 4, not a as with NB2.
Converting the NB2 algorithm to NB1 entails defining idelta as the inverse of the value
of delta, the desired value of the model ancillary parameter, multiplying the result by the
fitted value, exb. The terms idelta and 1/idelta are given to the rgamma() function.
All else is the same as in the NB2 algorithm. The resultant synthetic data are modeled
using Stata’s nbreg command with the disp(constant) option.



J. M. Hilbe 113

SYNTHETIC LINEAR NEGATIVE BINOMIAL (NB1) DATA
nbl_rng.do 3Apr2006

Synthetic NB1 data and model

x1=1.1; x2= -.8; x3= .2; _c= .7

delta = .3 (1/.3 = 3.3333333)

quietly {

clear

set obs 50000

set seed 13579

generate x1 = invnormal (runiform())
generate x2 = invnormal (runiform())
generate x3 = invnormal (runiform())
generate xb = .7 + 1.1xx1 - .8%x2 + .2%x3
generate exb = exp(xb)

generate idelta = 3.3333333*exb

generate xg = rgamma(idelta, 1/idelta)
generate xbg = exb*xg

generate nbly = rpoisson(xbg)

LR R

}
nbreg nbly x1 x2 x3, nolog disp(constant)

The model output is given as

. nbreg nbly x1 x2 x3, nolog disp(constant)

Negative binomial regression Number of obs = 49910
LR chi2(3) = 82361.44

Dispersion = constant Prob > chi2 = 0.0000
Log likelihood = -89323.313 Pseudo R2 = 0.3156
nbly Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 1.098772 .0022539  487.49  0.000 1.094354 1.103189

x2 -.8001773 .0022635 -353.51  0.000 -.8046137  -.7957409

x3 .1993391 .0022535 88.46  0.000 .1949223 .2037559

_cons .7049061 .0038147  184.79  0.000 .6974294 .7123827
/1lndelta -1.193799 .029905 -1.252411  -1.135186
delta .3030678 .0090632 .2858147 .3213623

Likelihood-ratio test of delta=0: chibar2(01) = 1763.21 Prob>=chibar2 = 0.000

The parameter values and value of delta closely approximate the specified values.

The NB-C, however, must be constructed in an entirely different manner from NB2,
NB1, or Poisson. NB-C is not a Poisson-gamma mixture and is based on the negative bi-
nomial probability distribution function. Stata’s rnbinomial (a,b) function can be used
to construct NB-C data. Other options, such as offsets, nonrandom variance adjusters,
and so forth, are easily adaptable for the nbc_rng.do file.

* SYNTHETIC CANONICAL NEGATIVE BINOMIAL (NB-C) DATA
* nbc_rng.do 30dec2005

clear

set obs 50000

set seed 7787

generate x1 = runiform()

generate x2 = runiform()
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generate xb = 1.26*x1 + .1*x2 - 1.5

generate a = 1.15
generate mu = 1/((exp(-xb)-1)*a) // inverse link function
generate p = 1/(1+a*mu) // probability

generate r = 1/a
generate y = rnbinomial(r, p)
cnbreg y x1 x2, nolog

I wrote a maximum likelihood NB-C command, cnbreg, in 2005, which was posted
to the Statistical Software Components (SSC) site, and I posted an amendment in late
February 2009. The statistical results are the same in the original and the amended
version, but the amendment is more efficient and pedagogically easier to understand.
Rather than simply inserting the NB-C inverse link function in terms of xb for each
instance of y in the log-likelihood function, I have reduced the formula for the NB-C log
likelihood to

LLNB_C = Z [y(xzd) + (1/a)In{l — exp(zb)} + InI'(y + 1/a) — In'(y + 1) — In['(1 /)]

Also posted to the site is a heterogeneous NB-C regression command that allows
parameterization of the heterogeneity parameter, a. Stata calls the NB2 version of
this a generalized negative binomial. However, as I discuss in |Hilbe (2007), there are
previously implemented generalized negative binomial models with entirely different
parameterizations. Some are discussed in that source. Moreover, LIMDEP has offered
a heterogeneous negative binomial for many years that is the same model as is the
generalized negative binomial in Stata. For these reasons, I prefer labeling Stata’s
gnbreg command a heterogeneous model. A hecnbreg command was also posted to SSC
in 2005.

The synthetic NB-C model of the above created data is displayed below. I have
specified values of x1 and x2 as 1.25 and 0.1, respectively, and an intercept value of
—1.5. alpha is given as 1.15. The model closely reflects the user-specified parameters.

. cnbreg y x1 x2, nolog

initial: log likelihood = —<inf> (could not be evaluated)

feasible: log likelihood = -85868.162
rescale: log likelihood = -78725.374
rescale eq: log likelihood = -71860.156

Canonical Negative Binomial Regression Number of obs = 50000

Wald chi2(2) = 6386.70

Log likelihood = -62715.384 Prob > chi2 = 0.0000

y Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 1.252675 .015776 79.40  0.000 1.221754 1.283595

x2 .1009038 .0091313 11.05 0.000 .0830068 .1188008

_cons -1.504659 .0177159  -84.93  0.000 -1.539382  -1.469937

/1lnalpha .133643 .0153947 8.68  0.000 .1034699 .1638161

alpha 1.142985 .0175959 1.109012 1.177998

AIC Statistic = 2.509
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3 Synthetic binomial models

Synthetic binomial models are constructed in the same manner as synthetic Poisson
data and models. The key lines are those that generate pseudorandom variates, a line
creating the linear predictor with user-defined parameters, a line using the inverse link
function to generate the mean, and a line using the mean to generate random variates
appropriate to the distribution.

A Bernoulli distribution consists entirely of binary values, 0/1. y is binary and is
considered here to be the response variable that is explained by the values of 1 and
x2. Data such as this is typically modeled using a logistic regression. A probit or
complementary log-log model can also be used to model the data.

y xl  x2
1. 1 1 1
2.0 1 1
331 0 1
4: 1 1 0
5 1 0 1
6: 0 O 1

The above data may be grouped by covariate patterns. The covariates here are, of
course, x1 and x2. With y now the number of successes, i.e., a count of 1s, and m
the number of observations having the same covariate pattern, the above data may be
grouped as

y m xl 22
1. 1 2 1 1
222 3 0 1
31 1 1 0

The distribution of y/m is binomial. y is a count of observations having a value of
y = 1 for a specific covariate pattern, and m is the number of observations having the
same covariate pattern. One can see that the Bernoulli distribution is a subset of the
binomial, i.e., a binomial distribution where m = 1. In actuality, a logistic regression
models the top data as if there were no m, regardless of the number of separate covariate
patterns. Grouped logistic, or binomial-logit, regression assumes appropriate values of y
and m. In Stata, grouped data such as the above can be modeled as a logistic regression
using the blogit or glm command. I recommend using the glm command because glm is
accompanied with a wide variety of test statistics and is based directly on the binomial
probability distribution. Moreover, alternative linked binomial models may easily be
applied.

Algorithms for constructing synthetic Bernoulli models differ little from creating
synthetic binomial models. The only difference is that for the binomial, m needs to
be accommodated. I shall demonstrate the difference—and similarity—of the Bernoulli
and binomial models by generating data using the same parameters. First, the Bernoulli-
logit model, or logistic regression:
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* SYNTHETIC BERNOULLI-LOGIT DATA

* berl_rng.do 5Feb2009

* x1=.75, x2=-1.25, _cons=2

clear

set obs 50000

set seed 13579

generate x1 = invnormal (runiform())

generate x2 = invnormal (runiform())

generate xb = 2 + 0.75%x1 - 1.26%x2

generate exb = 1/(1+exp(-xb)) // inverse logit link
generate by = rbinomial(l, exb) // specify m=1 in function
logit by x1 x2, nolog

The output is displayed as

. logit by x1 x2, nolog

Logistic regression Number of obs = 50000
LR chi2(2) = 10861.44

Prob > chi2 = 0.0000

Log likelihood = -18533.1 Pseudo R2 = 0.2266
by Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 .75557156  .0143315 52.72  0.000 . 7274822 . 7836608

x2 -1.256906 .016125  -77.95  0.000 -1.28851  -1.225301

_cons 2.018775  .0168125 120.08  0.000 1.985823 2.051727

Second, the code for constructing a synthetic binomial, or grouped, model:

* SYNTHETIC BINOMIAL-LOGIT DATA

* binl_rng.do 5feb2009

* x1=.75, x2=-1.25, _cons=2

clear

set obs 50000

set seed 13579

generate x1 = invnormal (runiform())
generate x2 = invnormal (runiform())
*
* Select either User Specified or Random denominator.

* generate d = 100 + 100*int((_n-1)/10000) // specified denominator values
generate d = ceil(10*runiform()) // integers 1-10, mean of “5.5
*
generate xb = 2 + 0.75%x1 - 1.256%x2
generate exb = 1/(1+exp(-xb))
generate by = rbinomial(d, exb)

glm by x1 x2, nolog family(bin d)

The final line calculates and displays the output below:
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. glm by x1 x2, nolog family(bin d)

Generalized linear models No. of obs = 50000

Optimization : ML Residual df = 49997

Scale parameter = 1

Deviance = 47203.16385 (1/df) Deviance = .9441199

Pearson = 50135.2416 (1/df) Pearson = 1.002765
Variance function: V(u) = ux(1-u/d) [Binomiall

Link function : g(u) = 1n(u/(d-u)) [Logit]
AIC = 1.854676
Log likelihood = -46363.90908 BIC = -493753.3
0IM

by Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 .7519113 .0060948 123.37 0.000 .7399657 .7638569

x2 -1.246277 .0068415 -182.16 0.000 -1.259686 -1.232868

_cons 2.00618 .0071318 281.30 0.000 1.992202 2.020158

The only difference between the two is the code between the lines and the use of d
rather than 1 in the rbinomial () function. Displayed is code for generating a random
denominator and code for specifying the same values as were earlier used for the Poisson
and negative binomial offsets.

See |Cameron and Trivedi (2009) for a nice discussion of generating binomial data;
their focus, however, differs from the one taken here. I nevertheless recommend reading
chapter 4 of their book, written after the do-files that are presented here were developed.

Note the similarity of parameter values. Use of Monte Carlo simulation shows that
both produce identical results. I should mention that the dispersion statistic is only
appropriate for binomial models, not for Bernoulli. The binomial-logit model above has
a dispersion of 1.002765, which is as we would expect. This relationship is discussed in
detail in Hilbe (2009).

It is easy to amend the above code to construct synthetic probit or complementary
log-log data. I show the probit because it is frequently used in econometrics.

* SYNTHETIC BINOMIAL-PROBIT DATA

* binp_rng.do 5feb2009

* x1=.75, x2=-1.25, _cons=2

clear

set obs 50000

set seed 4744

generate x1 = runiform() // use runiform() with probit data
generate x2 = runiform()

*
* Select User Specified or Random Denominator. Select Only One

* generate d = 100+100*int((_n-1)/10000) // specified denominator values
generate d = ceil(10*runiform()) // pseudorandom-denominator values
*
generate xb = 2 + 0.75%x1 - 1.25%x2

generate double exb = normal(xb)

generate double by = rbinomial(d, exb)

glm by x1 x2, nolog family(bin d) link(probit)
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The model output is given as

. glm by x1 x2, nolog family(bin d) link(probit)

Generalized linear models No. of obs = 50000

Optimization : ML Residual df = 49997

Scale parameter = 1

Deviance = 35161.17862 (1/df) Deviance = .7032658

Pearson = 50277.67366 (1/df) Pearson = 1.005614
Variance function: V(u) = u*x(1-u/d) [Binomiall

Link function : g(u) = invnorm(u/d) [Probit]
AIC = 1.132792
Log likelihood = -28316.80908 BIC = -505795.3
0IM

by Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 .T467577 .0148369 50.33 0.000 .717678 .7758374

x2 -1.247248 .0157429 -79.23 0.000 -1.278103 -1.216392

_cons 2.003984 .0122115 164.11 0.000 1.98005 2.027918

The normal () function is the inverse probit link and replaces the inverse logit link.

4 Synthetic categorical response models

I have previously discussed the creation of synthetic ordered logit, or proportional odds,
data in Hilbe (2009), and I refer you to that source for a more thorough examination of
the subject. I also examine multinomial logit data in the same source. Because of the
complexity of the model, the generated data are a bit more variable than with synthetic
logit, Poisson, or negative binomial models. However, Monte Carlo simulation (not
shown) proves that the mean values closely approximate the user-supplied parameters
and cut points.

I display code for generating synthetic ordered probit data below.

* SYNTHETIC ORDERED PROBIT DATA AND MODEL
* oprobit_rng.do 19Feb 2008
display in ye "bl = .75; b2 = 1.25"
display in ye "Cutl=2; Cut2=3,; Cut3=4"
quietly {
drop _all
set obs 50000
set seed 12345
generate double x1 = 3*runiform() + 1
generate double x2 = 2*runiform() - 1
generate double y = .75%x1 + 1.25%x2 + invnormal (runiform())
generate int ys = 1 if y<=2
replace ys=2 if y<=3 & y>2
replace ys=3 if y<=4 & y>3
replace ys=4 if y>4
}
oprobit ys x1 x2, nolog
* predict double (opprl oppr2 oppr3 oppr4), pr
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The modeled data appears as

. oprobit ys x1 x2, nolog

Ordered probit regression Number of obs = 50000
LR chi2(2) = 24276.71

Prob > chi2 = 0.0000

Log likelihood = -44938.779 Pseudo R2 = 0.2127
ys Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 .7461112 .006961  107.18  0.000 . 7324679 . 7597544

x2 1.254821 .0107035  117.23  0.000 1.233842 1.275799

/cutl 1.994369  .0191205 1.956894 2.031845

/cut2 2.998502  .0210979 2.957151 3.039853

/cut3 3.996582  .0239883 3.949566 4.043599

The user-specified slopes are 0.75 and 1.25, which are closely approximated above.
Likewise, the specified cuts of 2, 3, and 4 are nearly identical to the synthetic values,
which are the same to the hundredths place.

The proportional-slopes code is created by adjusting the linear predictor. Unlike
the ordered probit, we need to generate pseudorandom-uniform variates, called err,
which are then used in the logistic link function, as attached to the end of the linear
predictor. The rest of the code is the same for both algorithms. The lines required to
create synthetic proportional odds data are the following;:

generate err = runiform()
generate y = .75xx1 + 1.25*%x2 + log(err/(1-err))

Finally, synthetic ordered slope models may easily be expanded to having more
predictors as well as additional levels by using the same logic as shown in the above
algorithm. Given three predictors with values assigned as x1 = 0.5, x2 = 1.76, and
x3 = 1.25, and given five levels with cuts at 0.8, 1.6, 2.4, and 3.2, the amended part of
the code is as follows:

generate double x3 = runiform()

generate y = .6%xl1 + 1.75%x2 - 1.25%x3 + invnormal (uniform())
generate int ys = 1 if y<=.8

replace ys=2 if y<=1.6 & y>.8

replace ys=3 if y<=2.4 & y>1.6

replace ys=4 if y<=3.2 & y>2.4

replace ys=5 if y>3.2

oprobit ys x1 x2 x3, nolog

(Continued on next page)
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Synthetic multinomial logit data may be constructed using the following code:

* SYNTHETIC MULTINOMIAL LOGIT DATA AND MODEL
* mlogit_rng.do 15Feb2008
* y=2: x1= 0.4, x2=-0.5, _cons=1.0
* y=3: x1=-3.0, x2=0.25, _cons=2.0
quietly {
clear
set memory 50m
set seed 111322
set obs 100000
generate x1 = runiform()
generate x2 = runiform()
generate denom = 1+exp(.4*x1l - .5*x2 + 1) + exp(-.3%x1 + .25%x2 + 2)
generate pl = 1/denom
generate p2 = exp(.4*xl - .5%x2 + 1)/denom
generate p3 = exp(-.3*x1l + .25%x2 + 2)/denom
generate u = runiform()
generate y = 1 if u <= pl
generate pl2 = pl + p2
replace y=2 if y==. & u<=pil2
replace y=3 if y==.

}

mlogit y x1 x2, baseoutcome(1l) nolog

I have amended the uniform() function in the original code to runiform(), which is
Stata’s newest version of the pseudorandom-uniform generator. Given the nature of the
multinomial probability function, the above code is rather self-explanatory. The code
may easily be expanded to have more than three levels. New coefficients need to be
defined and the probability levels expanded. See Hilbe (2009) for advice on expanding
the code. The output of the above mlogit_rng.do is displayed as

. mlogit y x1 x2, baseoutcome(1l) nolog

Multinomial logistic regression Number of obs = 100000
LR chi2(4) = 1652.17
Prob > chi2 = 0.0000
Log likelihood = -82511.593 Pseudo R2 = 0.0099
y Coef.  Std. Err. z P>|z| [95% Conf. Interval]
1 (base outcome)

2
x1 .4245588 .0427772 9.92 0.000 .3407171 .5084005
x2 -.5387675 .0426714 -12.63  0.000 -.6224019 -.455133
_cons 1.002834 .0325909 30.77  0.000 .9389566 1.066711

3
x1 -.2953721 .038767 -7.62 0.000 -.371354  -.2193902
x2 .2470191 .0386521 6.39 0.000 .1712625 .3227757
_cons 2.003673 .0295736 67.75  0.000 1.94571 2.061637
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By amending the mlogit_rng.do code to an r-class ado-file, with the following lines
added to the end, the following Monte Carlo simulation may be run, verifying the
parameters displayed from the do-file:

return scalar x1_2 = [2]_b[x1]
return scalar x2_2 = [2]_b[x2]
return scalar _c_2 = [2]_b[_cons]
return scalar x1_3 = [3]_b[x1]
return scalar x2_3 = [3]_b[x2]

return scalar _c_3 [3]1_b[_cons]

end
The ado-file is named mlogit_sim.
. simulate mx12=r(x1_2) mx22=r(x2_2) mc2=r(_c_2) mx13=r(x1_3) mx23=r(x2_3)

> me3=r(_c_3), reps(100): mlogit_sim
(output omitted )

. summarize
Variable Obs Mean Std. Dev. Min Max
mx12 100 .4012335 .0389845 .2992371 .4943814
mx22 100 -.4972758 .0449005 -.6211451 -.4045792
mc2 100 .9965573 .0300015 .917221 1.0979
mx13 100 -.2989224 .0383149 -.3889697 -.2115128
mx23 100 .2503969 .0397617 .1393684 .3484274
mc3 100 1.998332 .0277434 1.924436 2.087736

The user-specified values are reproduced by the synthetic multinomial program.

5 Synthetic hurdle models

Finally, I show an example of how to expand the above synthetic data generators to con-
struct synthetic negative binomial-logit hurdle data. The code may be easily amended to
construct Poisson-logit, Poisson-probit, Poisson-cloglog, NB2—probit, and NB2-cloglog
models. In 2005, I published several hurdle models, which are currently on the SSC
web site. This example is shown to demonstrate how similar synthetic models may
be created for zero-truncated and zero-inflated models, as well as a variety of differ-
ent types of panel models. Synthetic models and correlation structures are found in
Hardin and Hilbe (2003) for generalized estimating equations models.

Hurdle models are discussed in Long and Freese (2006), Hilbe (2007), Winkelmann
(2008), and [Cameron and Trivedi (2009). The traditional method of parameterizing
hurdle models is to have both binary and count components be of equal length, which
makes theoretical sense. However, they may be of unequal lengths, as are zero-inflated
models. Moreover, hurdle models can be used to estimate both over- and underdispersed
count data, unlike zero-inflated models.

The binary component of a hurdle model is typically a logit, probit, or cloglog binary
response model. However, the binary component may take the form of a right-censored
Poisson model or a censored negative binomial model. In fact, the earliest applications
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of hurdle models consisted of Poisson—Poisson and Poisson-geometric models. How-
ever, it was discovered that the censored geometric component has an identical log
likelihood to that of the logit, which has been preferred in most recent applications. I
published censored Poisson and negative binomial models to the SSC web site in 2005,
and truncated and econometric censored Poisson models in 2009. They may be used
for constructing this type of hurdle model.

The synthetic hurdle model below is perhaps the most commonly used version—a
NB2-logit hurdle model. It is a combination of a 0/1 binary logit model and a zero-
truncated NB2 model. For the logit portion, all counts greater than 0 are given the
value of 1. There is no estimation overlap in response values, as is the case for zero-
inflated models.

The parameters specified in the example synthetic hurdle model below are

* SYNTHETIC NB2-LOGIT HURDLE DATA

* nb2logit_hurdle.do J Hilbe 26Sep2005; Mod 4Feb2009.
* LOGIT: x1=-.9, x2=-.1, _c=-.2

* NB2 : x1=.75, n2=-1.25, _c=2, alpha=.5
clear

set obs 50000

set seed 1000

generate x1 = invnormal (runiform())
generate x2 = invnormal (runiform())

* NEGATIVE BINOMIAL- NB2

generate xb = 2 + 0.75%x1 - 1.256%x2
generate a = .5

generate ia = 1/a

generate exb = exp(xb)

generate xg = rgamma(ia, a)

generate xbg = exb*xg

generate nby = rpoisson(xbg)

* BERNOULLI

drop if nby==0

generate pi = 1/(1+exp(-(.9*x1 + .1*x2 + .2)))
generate bernoulli = runiform()>pi
replace nby=0 if bernoulli==0

rename nby y

* logit bernoulli x1 x2, nolog /// test

* ztnb y x1 x2 if y>0, nolog /// test

* NB2-LOGIT HURDLE

hnblogit y x1 x2, nolog
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Output for the above synthetic NB2-logit hurdle model is displayed as

. hnblogit y x1 x2, nolog

Negative Binomial-Logit Hurdle Regression Number of obs = 43443
Wald chi2(2) = 5374.14
Log likelihood = -84654.938 Prob > chi2 = 0.0000
Coef.  Std. Err. z P>|z| [95% Conf. Interval]
logit
x1 -.8987393 .0124338  -72.28  0.000 -.9231091  -.8743695
x2 -.0904395 .011286 -8.01  0.000 -.1125597  -.0683194
_cons -.2096805 .0106156  -19.75  0.000 -.2304867  -.1888742
negbinomial
x1 . 743936 .0069378  107.23  0.000 .7303381 . 7575339
x2 -1.252363 .0071147 -176.02  0.000 -1.266307 -1.238418
_cons 2.003677 .0070987  282.26  0.000 1.989764 2.01759
/1nalpha -.6758358 .0155149  -43.56  0.000 -.7062443  -.6454272
AIC Statistic = 3.897

The results approximate the specified values. A Monte Carlo simulation was pre-
formed, demonstrating that the algorithm does what it is aimed to do.

6 Summary remarks

Synthetic data can be used with substantial efficacy for the evaluation of statistical
models. In this article, I have presented algorithmic code that can be used to create
several different types of synthetic models. The code may be extended to use for the
generation of yet other synthetic models.

T am a strong advocate of using these types of models to better understand the models
we apply to real data. I have used these models, or ones based on earlier random-number
generators, in Hardin and Hilbe (2007) and in both of my single authored texts (Hilbe
2007, 2009) for assessing model assumptions. With computers gaining in memory and
speed, it will soon be possible to construct far more complex synthetic data than we
have here. I hope that the rather elementary examples discussed in this article will
encourage further use and construction of artificial data.
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