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Abstract. We present a new Stata estimation program, mboxcox, that computes
the normalizing scaled power transformations for a set of variables. The multivari-
ate Box–Cox method (defined in Velilla, 1993, Statistics and Probability Letters

17: 259–263; used in Weisberg, 2005, Applied Linear Regression [Wiley]) is used
to determine the transformations. We demonstrate using a generated example and
a real dataset.
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1 Theory and motivation

Box and Cox (1964) detailed normalizing transformations for univariate y and univari-
ate response regression using a likelihood approach. Velilla (1993) formalized a multi-
variate version of Box and Cox’s normalizing transformation. A slight modification of
this version is considered in Weisberg (2005), which we will use here.

The multivariate Box–Cox method uses a separate transformation parameter for
each variable. There is also no independent/dependent classification of the variables.
Since its inception, the multivariate Box–Cox transformation has been used in many
settings, most notably linear regression; see Sheather (2009) for examples. When vari-
ables are transformed to joint normality, they become approximately linearly related,
constant in conditional variance, and marginally normal in distribution. These are very
useful properties for statistical analysis.

Stata currently offers several versions of Box–Cox transformations via the boxcox

command. The multivariate options of boxcox are limited to regression settings where
at most two transformation parameters are allowed. We present the mboxcox command
as a useful complement to boxcox. We will start by explaining the formal theory of
what mboxcox does.

First, we define a scaled power transformation as

ψs (y, λ) =

(
yλ−1

λ
if λ 6= 0

log y if λ = 0

)

Scaled power transformations preserve the direction of associations that the trans-
formed variable had with other variables. So scaled power transformations will not
switch collinear relationships of interest.
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Next, for n-vector x, we define the geometric mean: gm(x) = exp (1/n
∑n

i=1 log xi).

Suppose the random vector x = (x1, . . . , xp)
′ takes only positive values. Let Λ =

(λ1, . . . , λp) be a vector of real numbers, such that {ψs(x1, λ1), . . . , ψs(xp, λp)} is dis-
tributed N(µ,Σ).

Now we take a random sample of size n from the population of x, yielding data
X = (x1, . . . ,xp). We define the transformed version of the variable Xij as Xij

(λj) =
ψs(Xij , λj). This yields the transformed data matrix X(Λ) =

{
x1

(λ1), . . . ,xp
(λp)
}
.

Finally, we define the normalized transformed data:

Z(Λ) =
{

gm(x1)
λ1x1

(λ1), . . . , gm(xp)
λpxp

(λp)
}

Velilla (1993, eq. 3) showed that the concentrated log likelihood of Λ in this situation
was given by

Lc(Λ) = −
n

2
log

∣∣∣∣∣Z
(Λ)′

(
In −

1n1
′

n

n

)
Z(Λ)

∣∣∣∣∣

Weisberg (2005) used modified scaled power transformations rather than plain scaled
power transformations for each column of the data vector.

ψm(yi, λ) = gm(y)1−λψs(yi, λ)

Under a modified scaled power transformation, the scale of the transformed variable
is invariant to the choice of transformation power. So the scale of a transformed vari-
able is better controlled under the modified scaled power transformation than under
the scaled power transformation. Inference on the optimal transformation parameters
should be similar under both scaled and modified scaled methods. The transformed
data under a scaled power transformation is equivalent to the transformed data under
an unscaled power transformation with an extra location/scale transformation. A mul-
tivariate normal random vector yields another multivariate normal random vector when
a location/scale transformation is applied to it. So the most normalizing scaled trans-
formation essentially yields as normalizing a transformation as its unscaled version. We
thus expect great similarity between the optimal scaled, modified scaled, and unscaled
parameter estimates.

The new concentrated likelihood (Weisberg 2005, 291, eq. A.36) is

Lc(Λ) = −
n

2
log

∣∣∣∣∣Z∗
(Λ)′

(
In −

1n1
′

n

n

)
Z∗

(Λ)

∣∣∣∣∣

Here Z(Λ) has been replaced by the actual transformed data.

Z∗
(Λ) =

{
gm(x1)

1−λ1x1
(λ1), . . . , gm(xp)

1−λpxp
(λp)
}
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In terms of the sample covariance of Z∗
(Λ), Lc(Λ) is a simple expression. In terms

of Λ, it is very complicated. The mboxcox command uses Lc(Λ) to perform inference
on Λ, where the elements of Λ are modified scaled power transformation parameters.
Because of the complexity of Lc(Λ), a numeric optimization is used to estimate Λ. The
second derivative of Lc(Λ) is computed numerically during the optimization, and this
yields the covariance estimate of Λ.

We should take note of the situation in which the data does not support a multi-
variate Box–Cox transformation. Problems in data collection may manifest as outliers.
As Velilla (1995) states, “it is well known that the maximum likelihood estimates to
normality is very sensitive to outlying observations.” Additionally, the data or certain
variables from it could simply come from a nonnormal distribution. Unfortunately, the
method of transformation we use here is not sensitive to these problems. Our method
of Box–Cox transformation is not robust. For methods that are robust to problems like
these, see Velilla (1995) and Riani and Atkinson (2000). We present the basic multivari-
ate Box–Cox transformation here, as a starting point for more robust transformation
procedures to be added to Stata at a later date.

2 Use and a generated example

The mboxcox command has the following basic syntax:

mboxcox varlist
[
if
] [

in
] [

, level(#)
]

Like other estimation commands, the results of mboxcox can be redisplayed with the
following simpler syntax:

mboxcox
[
, level(#)

]

The syntax of mboxcox is very simple and straightforward. We also provide the
mbctrans command to create the transformed variables. This command is used to
streamline the data transformation process. It takes inputs of the variables to be trans-
formed and a list of transformation powers, and saves the transformed variables under
their original names with a t prefix. The command supports unscaled, scaled, and
modified scaled transformations. Accomplish scaled transformations by specifying the
scale option. To obtain modified scaled transformations, specify the mscale option.

mbctrans varlist
[
if
] [

in
] [

, power(numlist) mscale scale
]

We generate 10,000 samples from a three-variable multivariate normal distribution
with means (10, 14, 32) and marginal variances (1, 3, 2). The first and second variables
are correlated with a covariance of 0.3.

. set obs 10000
obs was 0, now 10000

. set seed 3000
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. matrix Means = (10,14,32)

. matrix Covariance = (1,.3,0)\(.3,3,0)\(0,0,2)

. drawnorm x1 x2 x3, means(Means) cov(Covariance)

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 10000 10.00191 .9943204 5.42476 13.72735
x2 10000 13.9793 1.713186 7.683866 21.38899
x3 10000 31.98648 1.41477 26.26886 38.04641

Next we transform the data using unscaled power transformations (2,−1, 3). Note
that the correlation direction between the first and second variable changes.

. mbctrans x1 x2 x3, power(2 -1 3)

. correlate t_x1 t_x2
(obs=10000)

t_x1 t_x2

t_x1 1.0000
t_x2 -0.1585 1.0000

We will use mboxcox to determine the optimal modified scaled power transformation
estimates for normalizing the transformed data. The optimal unscaled power transfor-
mation vector is (1/2,−1, 1/3), each element being the inverse of the variable’s original
transformation power.

. mboxcox t_x1-t_x3
Multivariate boxcox transformations

Number of obs = 10000

Likelihood Ratio Tests

Test Log Likelihood Chi2 df Prob > Chi2

All powers -1 -67280.73 2078.173 3 0
All powers 0 -66461.51 439.7275 3 0
All powers 1 -66837.99 1192.704 3 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lambda
t_x1 .5318023 .0402718 13.21 0.000 .452871 .6107336
t_x2 -.9715714 .065297 -14.88 0.000 -1.099551 -.8435915
t_x3 .3647025 .0613916 5.94 0.000 .2443772 .4850278

We find that the modified scaled transformation parameter estimates of mboxcox are
close to the unscaled parameters. The postestimation features of mboxcox tell us that
there is no evidence to reject the assertion that the optimal modified scaled transforma-
tion parameters are identical to the unscaled parameters. This correspondence between
modified scaled and unscaled is not surprising, as we detailed in the last section.
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. test (t_x1= .5) (t_x2= -1) (t_x3 = 1/3)

( 1) [lambda]t_x1 = .5
( 2) [lambda]t_x2 = -1
( 3) [lambda]t_x3 = .3333333

chi2( 3) = 1.08
Prob > chi2 = 0.7831

3 Real example

Sheather (2009) provides an interesting dataset involving 2004 automobiles. We wish
to perform a regression of the variable highwaympg on the predictors enginesize,
cylinders, horsepower, weight, wheelbase, and the dummy variable hybrid.

. use cars04, clear

. summarize highwaympg enginesize cylinders horsepower weight wheelbase hybrid

Variable Obs Mean Std. Dev. Min Max

highwaympg 234 29.39744 5.372014 19 66
enginesize 234 2.899145 .925462 1.4 5.5
cylinders 234 5.517094 1.471374 3 12

horsepower 234 199.7991 64.03424 73 493
weight 234 3313.235 527.0081 1850 4474

wheelbase 234 107.1154 5.82207 93 124
hybrid 234 .0128205 .1127407 0 1

. regress highwaympg enginesize cylinders horsepower weight wheelbase hybrid

Source SS df MS Number of obs = 234
F( 6, 227) = 146.40

Model 5343.19341 6 890.532235 Prob > F = 0.0000
Residual 1380.84505 227 6.08301785 R-squared = 0.7946

Adj R-squared = 0.7892
Total 6724.03846 233 28.8585342 Root MSE = 2.4664

highwaympg Coef. Std. Err. t P>|t| [95% Conf. Interval]

enginesize .166796 .5237721 0.32 0.750 -.8652809 1.198873
cylinders -.1942966 .3171983 -0.61 0.541 -.8193262 .4307331

horsepower -.0182825 .0052342 -3.49 0.001 -.0285963 -.0079687
weight -.00662 .0007513 -8.81 0.000 -.0081003 -.0051397

wheelbase .1797597 .0570666 3.15 0.002 .0673117 .2922078
hybrid 20.33805 1.468368 13.85 0.000 17.44467 23.23142
_cons 36.05649 4.726131 7.63 0.000 26.7438 45.36919

The model is not valid. It has a number of problems. Nonconstant variance of
the errors is one. As explained in Sheather (2009), this problem can be detected by
graphing the square roots of the absolute values of the standardized residuals versus the
fitted values and continuous predictors. Trends in these plots suggest that the variance
changes at different levels of the predictors and fitted values. We graph these plots and
see a variety of increasing and decreasing trends.
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. predict rstd, rstandard

. predict fit, xb

. generate nsrstd = sqrt(abs(rstd))

. local i = 1

. foreach var of varlist fit enginesize cylinders horsepower weight wheelbase {
2. twoway scatter nsrstd `var´ || lfit nsrstd `var´,

> ytitle("|Std. Residuals|^.5") legend(off)
> ysize(5) xsize(5) name(gg`i´) nodraw

3. local i = `i´ + 1
4. }

. graph combine gg1 gg2 gg3 gg4 gg5 gg6, rows(2) ysize(10) xsize(15)
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Figure 1.
√

|Standard residuals | versus predictors and fitted values.

Data transformation would be a strategy to solve the nonconstant variance problem. As
suggested in Weisberg (2005, 156), we should first examine linear relationships among
the predictors. If they are approximately linearly related, we can use the fitted values
to find a suitable transformation for the response, perhaps through an inverse response
plot (Sheather 2009). A matrix plot of the response and predictors shows that we will
not be able to do that. Many appear to share a monotonic relationship, but it is not
linear.
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Figure 2. Matrix plot original response and predictors.
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Figure 3. Box plots original response and predictors.

In addition, a look at the box plots reveals that several of the predictors and the
response are skewed. The data are not consistent with a multivariate normal distribu-
tion. If the predictors and response were multivariate normal conditioned on the value
of hybrid, then it would follow that the errors of the regression would have constant
variance. The conditional variance of multivariate normal variables is always constant
with regard to the values of the conditioning variables.

There are actually only three observations of hybrid that are nonzero. Data anal-
ysis not shown here supports the contention that hybrid only significantly affects the
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location of the joint distribution of the remaining predictors and response. Successful
inference on other more complex properties of the joint distribution, conditional on
hybrid = 1, would require more data. Hence, we ignore the value of hybrid in cal-
culating a normalizing transformation. In the first section, we mentioned that outliers
could be a serious problem for our method. Our approach here could lead to outliers
that would cause the transformation to fail.

If the marginal transformation that we estimate is suitably equivalent to the trans-
formations obtained by conditioning on hybrid and approximately normalizes the other
predictors and the response, then the errors of the regression will be at least approxi-
mately constant and its predictors and response more symmetric.

. mboxcox enginesize cylinders horsepower highwaympg weight wheelbase
Multivariate boxcox transformations

Number of obs = 234

Likelihood Ratio Tests

Test Log Likelihood Chi2 df Prob > Chi2

All powers -1 -2431.978 202.6359 6 0
All powers 0 -2369.889 78.45681 6 7.438e-15
All powers 1 -2483.247 305.1733 6 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lambda
enginesize .2550441 .1304686 1.95 0.051 -.0006697 .5107579
cylinders -.0025143 .1745643 -0.01 0.989 -.344654 .3396255

horsepower -.0169707 .1182906 -0.14 0.886 -.2488161 .2148747
highwaympg -1.375276 .1966211 -6.99 0.000 -1.760646 -.9899057

weight 1.069233 .226236 4.73 0.000 .6258187 1.512647
wheelbase .0674801 .6685338 0.10 0.920 -1.242822 1.377782

. test (enginesize=.25)(cylinders=0)(horsepower=0)(highwaympg=-1)
> (weight=1)(wheelbase=0)

( 1) [lambda]enginesize = .25
( 2) [lambda]cylinders = 0
( 3) [lambda]horsepower = 0
( 4) [lambda]highwaympg = -1
( 5) [lambda]weight = 1
( 6) [lambda]wheelbase = 0

chi2( 6) = 3.99
Prob > chi2 = 0.6777

Following the advice of Sheather (2009), we round the suggested powers to the closest
interpretable fractions. We will use the mbctrans command to create the transformed
variables so that we can rerun our regression. We demonstrate it here for all cases
on highwaympg. The relationship it holds with the variable dealercost is used as a
reference. Recall how the unscaled transformation may switch correlation relationships
with other variables, and how the modified scaled transformation maintains these re-
lationships and the scale of the input variable. The unscaled transformed highwaympg

is referred to as unscaled hmpg. The scaled transformed version of highwaympg is
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named scaled hmpg. The modified scaled transformed version of highwaympg is named
mod scaled hmpg.

. summarize highwaympg

Variable Obs Mean Std. Dev. Min Max

highwaympg 234 29.39744 5.372014 19 66

. correlate dealercost highwaympg
(obs=234)

dealer~t highwa~g

dealercost 1.0000
highwaympg -0.5625 1.0000

. mbctrans highwaympg,power(-1)

. rename t_highwaympg unscaled_hmpg

. summarize unscaled_hmpg

Variable Obs Mean Std. Dev. Min Max

unscaled_h~g 234 .0349275 .0052762 .0151515 .0526316

. correlate dealercost unscaled_hmpg
(obs=234)

dealer~t unscal~g

dealercost 1.0000
unscaled_h~g 0.6779 1.0000

. mbctrans highwaympg,power(-1) scale

. rename t_highwaympg scaled_hmpg

. summarize scaled_hmpg

Variable Obs Mean Std. Dev. Min Max

scaled_hmpg 234 .9650725 .0052762 .9473684 .9848485

. correlate dealercost scaled_hmpg
(obs=234)

dealer~t scaled~g

dealercost 1.0000
scaled_hmpg -0.6779 1.0000

. mbctrans highwaympg,power(-1) mscale

. rename t_highwaympg mod_scaled_hmpg

. summarize mod_scaled_hmpg

Variable Obs Mean Std. Dev. Min Max

mod_scaled~g 234 810.9419 4.433584 796.0653 827.5595

. correlate dealercost mod_scaled_hmpg
(obs=234)

dealer~t mod_sc~g

dealercost 1.0000
mod_scaled~g -0.6779 1.0000
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Both the scaled and modified scaled transformation kept the same correlation rela-
tionship between highwaympg and dealercost. The unscaled transformation did not.
Additionally, the modified scaled transformation maintained a scale much closer to that
of the original than either of the other transformations. Now we will use mbctrans on
all the variables.

. mbctrans enginesize cylinders horsepower highwaympg weight wheelbase,
> power(.25 0 0 -1 1 0) mscale

The box plots for the transformed data show a definite improvement in marginal nor-
mality.
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Figure 4. Box plots transformed response and predictors.

A matrix plot of the predictors and response shows greatly improved linearity.
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Figure 5. Matrix plot transformed response and predictors.

Now we refit the model with the transformed variables.

. regress t_highwaympg t_enginesize t_cylinders t_horsepower t_weight
> t_wheelbase hybrid

Source SS df MS Number of obs = 234
F( 6, 227) = 135.72

Model 3581.57374 6 596.928957 Prob > F = 0.0000
Residual 998.430492 227 4.39837221 R-squared = 0.7820

Adj R-squared = 0.7762
Total 4580.00424 233 19.6566705 Root MSE = 2.0972

t_highwaympg Coef. Std. Err. t P>|t| [95% Conf. Interval]

t_enginesize -.406318 .4557007 -0.89 0.374 -1.304262 .4916264
t_cylinders -.5353418 .2622172 -2.04 0.042 -1.052033 -.0186507

t_horsepower -.0280757 .0051522 -5.45 0.000 -.038228 -.0179234
t_weight -.0042486 .0006911 -6.15 0.000 -.0056103 -.0028868

t_wheelbase .2456528 .0490344 5.01 0.000 .1490321 .3422736
hybrid 6.552501 1.276605 5.13 0.000 4.03699 9.068012
_cons 735.9331 23.74779 30.99 0.000 689.1388 782.7274

. predict trstd, rstandard

. predict tfit, xb

. generate tnsrstd = sqrt(abs(trstd))

. local i = 1

. foreach var of varlist tfit t_enginesize t_cylinders t_horsepower t_weight
> t_wheelbase {

2. twoway scatter tnsrstd `var´ || lfit tnsrstd `var´,
> ytitle("|Std. Residuals|^.5") legend(off) ysize(5) xsize(5) name(gg`i´)
> nodraw

3. local i = `i´ + 1
4. }

. graph combine gg1 gg2 gg3 gg4 gg5 gg6, rows(2) ysize(10) xsize(15)
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The nonconstant variance has been drastically improved. The use of mboxcox helped
improve the fit of the model.
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|Standard residuals | versus transformed predictors and fitted values.

4 Conclusion

We explored both the theory and practice of the multivariate Box–Cox transformation.
Using both generated and real datasets, we have demonstrated the use of the multivari-
ate Box–Cox transformation in achieving multivariate normality and creating linear
relationships among variables.

We fully defined the mboxcox command as a method for performing the multivariate
Box–Cox transformation in Stata. We also introduced the mbctrans command and
defined it as a method for performing the power transformations suggested by mboxcox.
Finally, we also demonstrated the process of obtaining transformation power parameter
estimates from mboxcox and rounding them to theoretically appropriate values.
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