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Abstract. In this article, I discuss a method by Erikson et al. (2005, Proceedings

of the National Academy of Science 102: 9730–9733) for decomposing a total
effect in a logit model into direct and indirect effects. Moreover, I extend this
method in three ways. First, in the original method the variable through which
the indirect effect occurs is assumed to be normally distributed. In this article, the
method is generalized by allowing this variable to have any distribution. Second,
the original method did not provide standard errors for the estimates. In this
article, the bootstrap is proposed as a method of providing those. Third, I show
how to include control variables in this decomposition, which was not allowed in
the original method. The original method and these extensions are implemented
in the ldecomp command.

Keywords: st0182, ldecomp, mediation, intervening variable, logit, direct effect,
indirect effect

In this article, I aim to study direct, indirect, and total effects in a logit model and,
in particular, a generalization of a method by Erikson et al. (2005) for computing those
effects when the variable whose effect we want to decompose is a categorical variable.
Direct, indirect, and total effects are studied to reveal a mechanism through which
one variable affects another variable. The idea is illustrated using figure 1: There is
a variable X that has an effect on a variable Y, but part of this effect occurs through
another variable, Z. This indirect effect occurs because X influences Z, which in turn
influences Y. Within this framework, the effect of X on Y while controlling for Z is called
the direct effect. The indirect and direct effect together form the total effect of X on
Y. The indirect effect is the part of the effect of X on Y that can be explained, while
the direct effect is the residual, or unexplained, part of the effect. The aim of such an
analysis is to try to explain why a variable X influences a variable Y by specifying a
mechanism: the effect occurs through the third variable, Z. Z is called an intervening
variable. It differs from a confounding variable in the direction of the effect between X
and Z. If Z was a confounding variable, then it would affect X rather than the other
way around.

c© 2010 StataCorp LP st0182



12 Direct and indirect effects in a logit model

X Y

Z

Figure 1. Direct, indirect, and total effects.

X, Y, and Z could be many things. For example, within political science there is
literature (e.g., Campbell et al. [1960]) that explains the effect of party identification (X)
on voting for a party (Y) in part through how one perceives the issues and the parties
(Z). The idea is that someone’s party identification is a relatively stable characteristic
of a person, almost like a personality trait, which can color/distort the perceptions
of the issues and the positions of the candidates or parties,1 which in turn influences
voting behavior. This indirect effect thus represents a mechanism through which party
identification influences voting behavior, and we want to know how important that
mechanism is relative to the total effect of party identification.

Alternatively, within sociology there is literature (e.g., Boudon [1974]) that looks
at the degree to which children from different social backgrounds (X) have different
probabilities of attending college (Y) and the part of this effect that can be ascribed
to an indirect effect through academic performance in high school (Z): Children from
a higher class background do well in high school, and those children who do well in
high school are more likely to attend college. Possible explanations for this could be
that higher class parents have better genes (nature) or are able to provide a more
intellectually stimulating environment for their children (nurture) or both. Again, the
aim is to estimate how important this mechanism is relative to the total effect of family
background.

1. A striking example of this is reported by Bartels (2002), who found in a survey held in 1988 that
more than 50% of the respondents who identified themselves as a “strong Democrat” thought that
the inflation got worse or a lot worse during the Reagan presidency, while only 13% of the “strong
Republicans” thought that this was the case. In actual fact, the inflation rate in consumer prices
fell from 13.5% in 1980 to 4.1% in 1988.
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More generally, the common practice of comparing regression coefficients before and
after controlling for a set of other covariates is implicitly an attempt at decomposing a
total effect into a direct and an indirect effect. Within linear regression ([R] regress),
this is an easy and convenient way of estimating the direct, indirect and total effect. In
this case, the total effect of X is estimated using a regression that does not control for Z.
The direct effect of X is the effect of X in a regression with both X and Z as explanatory
variables, and the indirect effect is the difference between these two, because the total
effect is the sum of the direct and indirect effect. However, this method will not work
when dealing with nonlinear models like logistic regression ([R] logit). In this article, I
will show why this is the case. I will also discuss a method proposed by Erikson et al.
(2005) for solving this problem, I will propose a generalization of this method, and I
will introduce the ldecomp command, which implements these methods in Stata.

1 The problem of indirect effects in a logit model

The key problem when estimating the direct, indirect, and total effects is that the
standard method of estimating them—comparing estimates from models that do and
do not control for Z—will not work in nonlinear models like logistic regression. The
easiest way to see that is in an example where there is no indirect effect.

To illustrate the problem, I create artificial data where I know that there cannot be
an indirect effect of X through Z on Y; I show that the näıve method finds a substantial
indirect effect. The variable Z is created so that it can take three values (0, 1, and 2),
and the variable X is created so that it can take two values (0 and 1). There is no
relationship between X and Z (a low X individual is as likely to be a high value on Z as
a high X individual). So in this example, there is no indirect effect of X on Y through
Z. We start by creating the variables X and Z:

. drop _all

. set obs 60000
obs was 0, now 60000

. generate z = ceil(_n/20000) - 1

. bysort z: generate x = ceil(_n/10000) - 1

. tab x z

z
x 0 1 2 Total

0 10,000 10,000 10,000 30,000
1 10,000 10,000 10,000 30,000

Total 20,000 20,000 20,000 60,000

Next we create the dependent variable Y according to the logistic regression equation
P (y = 1)/1 − P (y = 1) = −4 + 4X + 2Z, as discussed in Buis (2007b).

. set seed 12345

. generate y = runiform() < invlogit(-4 + 4*x + 2*z)
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Next we compute the näıve estimates of the indirect effect:

. quietly logit y x z

. estimates store direct

. local direct = _b[x]

. quietly logit y x

. estimates store total

. local total = _b[x]

. estimates tab direct total

Variable direct total

x 4.0391332 2.6256242
z 2.026339

_cons -4.0452305 -1.3123133

. display "naive indirect effect = " `total´ - `direct´
naive indirect effect = -1.413509

Someone who did not know that the data were created such that the indirect effect
is exactly zero and so used the näıve estimate of the indirect effect would conclude that
the indirect effect is about 54% of the total effect; the fact that it has the opposite sign
from the total effect would suggest that this indirect effect has a noticeable dampening
influence on the effect of X on Y. This is not caused by sampling variation but instead
caused by a structural bias in the näıve estimator.

The reason for this bias is that a logistic regression is comparison of proportions
that have first been transformed into log odds-ratios;2 this is illustrated in figure 2. It
consists of four vertical lines: on the two outer lines are plotted the probabilities of
success on Y, while the equivalent log odds are plotted on the two inner lines. The two
left lines represent the high X group, while the two right lines represent the low X group.
The open symbols and the solid arrows show how the probabilities are transformed into
log odds and how, within each category of Z, the log odds of the high X group are
compared with the log odds of the low X group.

This represents what happens when we estimate a logit model with both X and Z
as explanatory variables. When we leave the variable Z out of the model—for example,
because we want to estimate the total effect—we are in effect first computing the average
of the proportions and then transforming them into log odds. This is represented by the
closed circles and the dashed arrows. However, the more extreme values are less extreme
in the probability metric than in the log odds metric; that is, the probabilities close to
either 0 or 1 are more bunched together than their log odds counterparts. Therefore,
computing the average proportion before transforming the proportions into log odds
means that the extreme values are less influential than they would have been if the

2. The odds and the log odds contain exactly the same information as the proportion, just presented
differently. The proportions times a hundred tell you how many people out of a hundred are
expected to attend college, while the odds tell you how many people are expected to attend college
for every person who does not attend college. The odds (O) can be derived from the proportion
(p) in the following way: O = p/1 − p.
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means were computed in the log odds metric, so the average is being pulled toward the
less extreme categories. As a consequence, the effect in terms of log odds will be less
when Z is left out of the model, even if there is no indirect effect. This problem is very
similar to the problems discussed in Bartus (2005) and Buis (2007a).
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Figure 2. The effect of X with and without controlling for Z.

2 A solution

2.1 Outline

For there to be an indirect effect of X on Y through Z, X needs to have an effect on
Z and Z has to have an effect on Y. For example, children from higher classes (X) are
likely to do better in high school (Z) than children from lower classes, and those who
have done better in high school (Z) are more likely to enter college (Y). In figure 2, there
was no indirect effect because the distribution of Z was the same for both categories of
X. In figure 3, this has changed to include an indirect effect. The distribution of Z is
represented by the size of the symbols. So in this new example, there are within the
high X group more high Z individuals than medium Z individuals and more medium Z
individuals than low Z individuals. The distribution of Z for the low X group is exactly
the opposite. Now there are two reasons why high X individuals are more likely to
belong to the high Y group: 1) They are more likely to belong to the high Z group, and
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those who belong to the high Z group are more likely to belong to the high Y group.
This is the indirect effect of X through Z on Y. Figure 3 shows this in the following
way: for the high X group, the high Z group is more influential when computing the
average probability because the high Zs are more numerous, while for the low X group,
the low Zs are more influential. This leads to a larger difference between the high and
low status group. 2) They are more likely to belong to the high Y group even when
compared with a low X group that has the same value on Z. Figure 3 shows this in the
following way: for each level of Z, the high X group has a higher proportion belonging
to the high Y group than does the low X group. This is the direct effect.

0

.5

1

p
ro

p
o
rt

io
n

−4

−2

0

2

4

lo
g
 o

d
d
s

transformation comparison transformation

proportion log
odds

log
odds

proportionhigh X low X

Z=0

Z=1

Z=2

 

not
controlled

Figure 3. Indirect and direct effects.

Erikson et al. (2005) propose two related methods for estimating a direct, indirect,
and total effect such that the direct and indirect effects add up to the total effect. The
first method is illustrated in figure 4 and consists of the following steps:

1. Estimate a logistic regression using both X and Z, and optionally, the interactions
between X and Z.

2. Predict for each individual the log odds of success on Y (this is the linear predictor)
and transform these to probabilities.
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3. Compute within each group of X the average predicted probability and transform
these to log odds. The difference in these log odds between the groups of X
represents the total effect.

4. Assume that the low X individuals are actually high X individuals, predict for
each low X individual the log odds in this counterfactual scenario, and transform
these to probabilities.

5. Compute the average of these probabilities. This is the counterfactual probability
of success on Y for high X individuals if they had the distribution of Z of the low
X individuals. These are then transformed into log odds.

6. The high X individuals and this counterfactual group differ with respect to the
distribution of Z, but the probabilities conditional on X and Z are kept constant.
Therefore, comparing these groups gives the effect of X caused by the differences
in the distribution of Z, that is, the indirect effect.

7. The low X individuals and the counterfactual group differ with respect to the
probabilities conditional on X and Z, but the distribution of Z is kept constant.
Therefore, comparing these groups gives the effect of X while controlling for the
distribution of Z, that is, the direct effect.

total
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Figure 4. Method 1.
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Figure 4 above and (1) on the following page both show that this way the total effect
is always the sum of the direct and indirect effect. In (1), the O is the odds of success
on Y, the first subscript represents the logistic regression coefficients, and the second
subscript represents the distribution of Z.3 So Ox=1,z | x=1 is the odds of success for the
high X group, while Ox=1,z | x=0 is the counterfactual odds of success for the high X
group if it had the distribution of Z of the low X group.

ln(Ox=1,z | x=1) − ln(Ox=0,z | x=0)︸ ︷︷ ︸
total

= ln(Ox=0,z | x=1) − ln(Ox=0,z | x=0)︸ ︷︷ ︸
indirect

+

ln(Ox=1,z | x=1) − ln(Ox=0,z | x=1)︸ ︷︷ ︸
direct

(1)

Using the rule that ln(a) − ln(b) = ln(a/b), it can be shown that these effects are
actually log odds-ratios:

ln

(
Ox=1,z | x=1

Ox=0,z | x=0

)

︸ ︷︷ ︸
total

= ln

(
Ox=0,z | x=1

Ox=0,z | x=0

)

︸ ︷︷ ︸
indirect

+ ln

(
Ox=1,z | x=1

Ox=0,z | x=1

)

︸ ︷︷ ︸
direct

(2)

This means that this decomposition can also be presented in terms of odds ratios, by
exponentiating both sides of (2). Because of the rule that exp(a+ b) = exp(a)× exp(b),
the total effect is now the product of the direct and indirect effects:

Ox=1,z | x=1

Ox=0,z | x=0︸ ︷︷ ︸
total

=
Ox=0,z | x=1

Ox=0,z | x=0︸ ︷︷ ︸
indirect

×
Ox=1,z | x=1

Ox=0,z | x=1︸ ︷︷ ︸
direct

(3)

The second method of decomposing the total effect into a direct and indirect effect
proposed by Erikson et al. (2005) is exactly the same as the first method, except that it
uses the counterfactual probability of success on Y for the low X individuals assuming
that they have the distribution of Z of the high X individuals, as is illustrated in figure 5.
The logic behind these two methods is exactly the same, but they do not have to result
in exactly the same estimates for the direct and indirect effects, though they are often
very close. Jackson et al. (2007) propose to solve this problem by computing the size of
the indirect effect relative to the total effect using both methods and report the average
of the two.

3. In fact, as can be seen in the description of this technique, these are averaged estimated log odds,
so some people would prefer to incorporate that in the notation by adding hats and bars. However,
I think that this notation is complicated enough as is, and hats and bars are not crucial for the
points that these equations make, so I chose not to include them.
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Figure 5. Method 2.

Another difficulty with this method is that the variable whose effect we want to
decompose (X) must be categorical and the number of effects that must be decom-
posed increases very quickly with the number of categories in X. The reason is that
the decomposition will be different for all pairwise comparisons of categories. Normally,
a categorical explanatory variable consisting of C categories can be entered as C − 1
dummies, with each dummy representing a comparison between the reference category
and one of the other categories, leading to C−1 effects. All other pairwise comparisons
can be directly derived from those effects. Consider a logit model with a categorical
variable with three categories—low (x = 0), middle (x = 1), and high (x = 2)—and
the low category was chosen to be the reference category. This will result in two odds
ratios: the odds ratio comparing the medium and the low group, and the odds ratio
comparing the high and the low group, or Ox=1/Ox=0 and Ox=2/Ox=0, respectfully.
This excludes the third possible comparison: the medium versus the high group. This
comparison can be derived directly from the other two odds ratios by dividing the two
odds ratios:

Ox=1/Ox=0

Ox=2/Ox=0
=
Ox=1

Ox=0
×
Ox=0

Ox=2
=
Ox=1

Ox=2
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This same reasoning, however, will not work for the decomposition. Consider the
three indirect effects we get when using the first method: Ox=0,z | x=1/Ox=0,z | x=0,
Ox=0,z | x=2/Ox=0,z | x=0, and Ox=1,z | x=2/Ox=1,z | x=1.

Ox=0,z | x=2/Ox=0,z | x=0

Ox=0,z | x=1/Ox=0,z | x=0
6=
Ox=1,z | x=2

Ox=1,z | x=1

So with this decomposition, we cannot get away with only presenting all comparisons
with a single reference category (leading to C − 1 effects), but we will have to display
the decomposition for all pairwise comparisons (leading to

(
C
2

)
effects).

2.2 Generalization

In the original formulation of this method, the variable through which the indirect ef-
fect occurs (Z) has to be normally distributed. This is because of the way Erikson et al.
(2005) propose to compute the average predicted probabilities. As discussed in steps
3 and 5 in the previous section, these averaged predicted probabilities play a key role
in this decomposition. Erikson et al. (2005) compute these averages by assuming that
Z follows a normal distribution, and then they integrate over this distribution. This
method is generalized in this article to allow Z to follow any distribution by comput-
ing the average predicted probability by using the arithmetic mean of the predicted
and counterfactual probabilities, thereby integrating over the empirical distribution of
Z instead of over a normal distribution. As an added bonus, this method is also easier
to compute because the integration over the normal distribution has to be done nu-
merically since there is no closed-form solution for this integral. For these reasons, the
generalized method is the default method in the ldecomp command, which implements
both decompositions in Stata.

2.3 Standard errors

To get an idea about the degree of uncertainty around these estimates, one would
usually also estimate standard errors. These are not provided by Erikson et al. (2005)
and Jackson et al. (2007), but can be easily computed using the bootstrap (Efron and
Tibshirani 1993). The bootstrap uses the idea that the standard error is the result
of the following thought experiment: Assume we could draw many samples from the
population and compute a statistic in each of these samples. Because these samples
will slightly differ from one another, so will the estimates of the statistic. The standard
error is the standard deviation of these different estimates and indicates how much
variation one can expect due to the estimate being based on a random sample. Drawing
many random samples from the population is not practical, but we do have a good
estimate of the population—the sample—and we can without any difficulty draw (with
replacement) many samples from this “estimate of the population”. So when using the
bootstrap, many samples are drawn with replacement from the observed sample, the
statistic is computed within each sample, and the estimate of the standard error is the
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standard deviation of these statistics. Within Stata, this process has been automated
with the bootstrap command; see [R] bootstrap.

2.4 Control variables

Control variables can be included in this method by estimating the logit model from
step 1 (in section 2.1) including these control variables, but afterward, at steps 2 and
4, fixing their value at one specific value, for example their mean.

3 Implementation in Stata

Both the original method proposed by Erikson et al. (2005) and the generalizations
proposed in this article have been implemented in Stata as the ldecomp command.

3.1 Syntax

ldecomp depvar
[
control var1

[
...

] ] [
if
] [

in
] [

weight
]
, direct(varname)

indirect(varlist)
[
at(control var1 #

[
; control var2 #

] [
...

]
) obspr

predpr predodds or rindirect normal range(# #) nip(#) interactions

nolegend nodecomp nobootstrap bootstrap options
]

fweights, pweights, and iweights are allowed when the nobootstrap option is speci-
fied.

3.2 Options

direct(varname) specifies the variable whose direct effect we want to decompose into
an indirect and total effect. This has to be a categorical variable, and each value of
varname is assumed to represent a group.

indirect(varlist) specifies the variable(s) through which the indirect effect occurs. By
default, multiple variables are allowed and these can follow any distribution. If the
normal option is specified, only one variable may be entered, and this variable is
assumed to be normally distributed.

at(control var1 #
[
; control var2 #

] [
...

]
) specifies the values at which the control

variables are to be fixed. The default is to fix the control variables at their mean
value.

obspr specifies that a table of the observed proportions be displayed.
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predpr specifies that a table of predicted and counterfactual proportions be displayed.
If the normal option is not specified and there are no control variables, then the
diagonal elements of this table will be exactly the same as the observed proportions.

predodds specifies that a table of predicted and counterfactual odds be displayed.

or specifies that the decomposition be displayed in terms of odds ratios instead of log
odds-ratios.

rindirect specifies that the relative contributions of the indirect effects to the total
effect (in terms of log odds-ratios) be displayed.

normal specifies that the predicted and counterfactual proportions be computed accord-
ing to the method specified by Erikson et al. (2005). This means that the variable
specified in indirect() is assumed to be normally distributed. This option was
primarily added for compatibility with Erikson et al. (2005). By default, ldecomp
uses the more flexible method described in this article.

range(# #) specifies the range over which the numerical integration of the variable
specified in indirect() is to be performed. The default is the minimum of that
variable minus 10% of the range of the variable and the maximum of the variable
plus 10% of the range of the variable. This option may only be specified with
the normal option because in the default method there is no need for numerical
integration.

nip(#) specifies the number of integration points used in the numerical integration of
the variable specified in indirect(). The default is nip(1000). This option may
only be specified with the normal option because in the default method there is no
need for numerical integration.

interactions specifies that interactions between the categories of the variable specified
in direct() and the variable(s) specified in indirect() be included. In other words,
the effects on the dependent variable of the variables specified in indirect() are
allowed to differ from one another for each category of the variable specified in
direct(). This option was added primarily for compatibility with Erikson et al.
(2005).

nolegend suppresses the legend that is by default displayed at the bottom of the main
table.

nodecomp prevents ldecomp from displaying the table of decompositions, which can be
useful in combination with the obspr, predpr, or predodds options.

nobootstrap prevents ldecomp from using bootstrap to calculate standard errors.

bootstrap options are allowable options of bootstrap. The following options are allowed:
reps(#), strata(varlist), size(#), cluster(varlist), idcluster(newvar), bca,
saving(filename

[
, suboptions

]
), jackknifeopts(jkopts), mse, seed(#), nodots,

and level(#). See [R] bootstrap.
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3.3 Example

The use of ldecomp is illustrated using data from the Wisconsin Longitudinal Study
(Hauser and Sewell 1957–1977), which contain data on a random sample of 10,317 men
and women who graduated from Wisconsin high schools in 1957. In this example, we
want to study the part of the effect of social class on the probability of entering college
that can be explained by performance during high school. The dependent variable is
whether a respondent ever attended college (college). Class is measured by the type
of occupation of the father (ocf57). The original data contained five classes, which
would lead to

(
5
2

)
= 10 effects that are to be decomposed. To keep the number of

effects manageable, the number of classes has been reduced to three: a lower class
(unskilled workers and farmers), a middle class (skilled workers), and a higher class
(white collar workers, professionals, and executives). The performance during high
school is measured with the percentile rank of high school grades (hsrankq). This
means that computing the counterfactual proportions using the method proposed by
Erikson et al. (2005) will be problematic, because percentile rank scores will follow a
uniform distribution instead of a normal distribution. However, the default method
can be used without problem because it does not make any assumption about the
distribution of performance. Relevant descriptive statistics are shown below:

. use wisconsin, clear
(Wisconsin Longitudinal Study)

. recode ocf57 2=1 3=2 4=3 5=3
(ocf57: 6196 changes made)

. label define ocf57 1 "lower" 2 "middle" 3 "higher", modify

. label value ocf57 ocf57

. table ocf57 if !missing(hsrankq, college),
> contents(mean college mean hsrankq freq) format(%9.3g) stubwidth(15)

occupation of r
father in 1957 mean(college) mean(hsrankq) Freq.

lower .284 48.2 5218
middle .38 50.6 868
higher .619 56.2 2837

There are big differences between the classes in the proportion of respondents that
attend college. Moreover, those classes with a low proportion attending college also
tend to have done worse during high school. So part of the differences in proportions
attending college could be due to differences in performance. ldecomp is used to estimate
these direct, indirect, and total effects. In the example below, the effects are presented as
odds ratios, so the total effect is the product of the indirect and direct effect. Consider
the decomposition according to the first method of the difference between high class
(denoted as 3) and low class (denoted as 1) students, that is, the first three coefficients
of the panel labeled “3/1”. Overall, the odds of attending college for high class students
is 4.10 times as large as the odds for low class students (the total effect). Low class
students would have 1.23 times higher odds of attending college if they had the same
performance as high class students (indirect effect according to method 1), while the
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high class students would have 3.34 times higher odds of attending college than low
class students when we keep the performance constant at the level of high class students
(direct effect according to method 1).

. ldecomp college, direct(ocf57) indirect(hsrankq) or
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

2/1
total 1.547746 .1087768 6.22 0.000 1.34858 1.776327

indirect1 1.061166 .0297615 2.12 0.034 1.004408 1.12113
direct1 1.458534 .0889065 6.19 0.000 1.294287 1.643624

indirect2 1.060416 .0292343 2.13 0.033 1.004638 1.11929
direct2 1.459565 .0889226 6.21 0.000 1.295284 1.644683

3/1
total 4.098896 .1563335 36.99 0.000 3.80366 4.417047

indirect1 1.228616 .0205526 12.31 0.000 1.188987 1.269566
direct1 3.33619 .1231675 32.63 0.000 3.103313 3.586542

indirect2 1.22293 .0212813 11.56 0.000 1.181922 1.26536
direct2 3.351702 .1256571 32.26 0.000 3.114249 3.607259

3/2
total 2.6483 .1803249 14.30 0.000 2.317438 3.026399

indirect1 1.157325 .03452 4.90 0.000 1.091606 1.226999
direct1 2.288295 .1361168 13.92 0.000 2.036475 2.571253

indirect2 1.153977 .0331169 4.99 0.000 1.090861 1.220745
direct2 2.294933 .1384071 13.77 0.000 2.039079 2.582889

in equation i/j (comparing groups i and j)
let the fist subscript of Odds be the distribution of the the indirect variable
let the second subscript of Odds be the conditional probabilities
Method 1: Indirect effect = Odds_ij/Odds_jj

Direct effect = Odds_ii/Odds_ij
Method 2: Indirect effect = Odds_ii/Odds_ji

Direct effect = Odds_ji/Odds_jj

value labels
1 lower
2 middle
3 higher

To get an idea of the relative importance of the indirect effect compared with the
total effect, one can add the rindirect option, like in the example below. This means
that the sizes of the indirect effects relative to total effects are shown at the bottom of the
decomposition table. These are labeled #/#r. So if we look again at the comparison
between children from higher and lower class fathers (the rows labeled 3/1 and 3/1r),
we see that according to method 1 the indirect effect is 0.206/1.41 × 100% = 14.6%
of the total effect. According to method 2, this is 0.201/1.41 × 100% = 14.3%. So,
on average, the indirect effect is 14.5% of the total effect. In general, this table shows
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that the size of the indirect effect is about 14 percent of the total effects. Additionally,
the example below illustrates that by leaving out the or option, ldecomp will show the
direct, indirect, and total effects in terms of log odds-ratios, which means that the total
effect is now the sum of the direct and indirect effects.

. ldecomp college, direct(ocf57) indirect(hsrankq) rind nolegend
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

2/1
total .4367997 .0681297 6.41 0.000 .303268 .5703314

indirect1 .0593679 .0244276 2.43 0.015 .0114906 .1072451
direct1 .3774319 .0684413 5.51 0.000 .2432894 .5115743

indirect2 .0586611 .0240686 2.44 0.015 .0114875 .1058347
direct2 .3781386 .0684292 5.53 0.000 .2440198 .5122575

3/1
total 1.410718 .0421018 33.51 0.000 1.3282 1.493236

indirect1 .2058881 .014635 14.07 0.000 .177204 .2345723
direct1 1.204829 .0390007 30.89 0.000 1.12839 1.281269

indirect2 .2012494 .014978 13.44 0.000 .1718931 .2306057
direct2 1.209468 .0386461 31.30 0.000 1.133723 1.285213

3/2
total .9739179 .075011 12.98 0.000 .8268989 1.120937

indirect1 .1461109 .0234312 6.24 0.000 .1001865 .1920353
direct1 .8278069 .0759825 10.89 0.000 .678884 .9767298

indirect2 .1432144 .0237856 6.02 0.000 .0965955 .1898332
direct2 .8307035 .0760533 10.92 0.000 .6816418 .9797652

2/1r
method1 .1359155 .0574128 2.37 0.018 .0233885 .2484425
method2 .1342975 .0568445 2.36 0.018 .0228844 .2457105
average .1351065 .0571076 2.37 0.018 .0231776 .2470354

3/1r
method1 .1459457 .0096034 15.20 0.000 .1271234 .164768
method2 .1426575 .0097455 14.64 0.000 .1235567 .1617583
average .1443016 .0095878 15.05 0.000 .1255099 .1630933

3/2r
method1 .1500239 .0256887 5.84 0.000 .0996749 .2003729
method2 .1470497 .0258689 5.68 0.000 .0963475 .1977519
average .1485368 .0256919 5.78 0.000 .0981816 .198892

Notice that the size of the indirect effect relative to the total effect can be larger than
100%, negative, or both. This might puzzle people who think of these relative effects as
the proportion of the total effect that can be explained by the indirect effect. However,
there is no reason why the direct and indirect effect cannot have opposite signs, and in
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those cases, these “weird” proportions can occur. Thinking of these numbers as the size
of the indirect effect relative to the size of the total effect can help avoid confusion.

In addition to the decomposition itself, ldecomp can produce a number of tables
that together illustrate step by step how it builds this decomposition. The first of these
tables is the table of the predicted and counterfactual proportions, shown below.

. ldecomp college, direct(ocf57) indirect(hsrankq) predpr nodecomp

predicted and counterfactual proportions

association
distribution lower middle higher

lower .284 .366 .571
middle .296 .38 .585
higher .327 .415 .619

The diagonal elements in this table represent the predicted proportions, both fac-
tual distribution of performance (the rows) and factual conditional probabilities (the
columns), while the off-diagonal elements represent the counterfactual proportions. For
example, 28.4% of the children from lower class fathers will attend college. If these
children had the same performance as the children of higher class fathers, then 32.7%
of them would attend college. If they had the same conditional probabilities as the
children of higher class fathers, then 57.1% would attend college. This indicates that
the direct effect is stronger than the indirect effect. The next step in the computation
is to transform these proportions into odds:

. ldecomp college, direct(ocf57) indirect(hsrankq) predodds nodecomp

predicted and counterfactual odds

association
distribution lower middle higher

lower .396 .578 1.33
middle .421 .613 1.41
higher .487 .71 1.62

The proportions are transformed into odds by dividing the proportion by one minus
the proportion, so the odds of attending college for children from lower class fathers is
0.284/1 − 0.284 = 0.397. The difference between this number and the number in the
table is caused by rounding. This odds is interpreted as follows: for every child of a
lower class father who does not go to college, there are only 0.397 children of lower class
fathers who do go to college.

The results that were obtained at the beginning of this example can be computed
using the predicted and counterfactual odds from the previous table. For example, if
we return to the decomposition of the total effect of having a higher class father rather
than a father from the lower class using method 1, we can compute it by filling in (3)
with the predicted and counterfactual odds from the previous table:
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1.62

0.396︸ ︷︷ ︸
total

=
0.487

0.396︸ ︷︷ ︸
indirect

×
1.62

0.487︸ ︷︷ ︸
direct

4.09︸︷︷︸
total

= 1.23︸︷︷︸
indirect

× 3.33︸︷︷︸
direct

This example also makes it possible to see if the näıve method is really as bad as I
claim, and if the generalization that I proposed in this article is really an improvement.
We know that hsrankq deviates considerably from a normal/Gaussian distribution,4 so
if the generalized method is an improvement on the original method, then in this example
it should yield noticeably different estimates. The estimates using the original method
by Erikson et al. (2005) are obtained by specifying the normal option in ldecomp.

The näıve estimate was computed as follows: First, a logit model of college on
ocf57 was estimated. The effect of ocf57 is the näıve estimate of the total effect. Then
a logit model of college on ocf57 and hsrankq was estimated. The effect of ocf57 is
the näıve estimate of the direct effect. The näıve estimate of the indirect effect relative
to the total effect is (total effect − direct effect) / total effect. The results are shown in
table 1. This table clearly illustrates the major underestimation of the indirect effect
when the näıve method is used. Moreover, the method by Erikson et al. (2005) also leads
to a considerable underestimation of about a quarter of the effect obtained using the
generalized method. This underestimation is the result of the incorrect assumption made
by Erikson et al. (2005) that hsrankq is normally distributed. Because the generalized
method makes no such assumption, it seems to be the safest method of the three for
computing the decomposition of total effects into direct and indirect effects after a
logistic regression model.

Table 1. Comparing different estimates of the size of the (average) indirect effect relative
to the size of the total effect.

generalization Erikson et al. (2005) näıve

middle versus low 0.135 0.110 0.009
high versus low 0.144 0.105 0.014
high versus middle 0.149 0.102 0.017

4 Summary and discussion

In this article, I began by showing why getting estimates of the direct and indirect effects
in a logistic regression is hard. I then presented a method by Erikson et al. (2005) to

4. As noted before, it is a percentile rank score, so it follows a uniform distribution.



28 Direct and indirect effects in a logit model

estimate these effects, and I proposed a generalization of this method. The idea is that
a categorical variable X can have a direct effect on a variable Y and an indirect effect
through Z. One can find the direct effect of X by comparing the log odds of successes in
one category of X with the counterfactual log odds of successes of another category of
X given that they have the distribution of Z of the first category. This way, the factual
and counterfactual group only differ with respect to X and not with respect to the
distribution of Z, thus controlling for the distribution of Z. Similarly, the indirect effect
can be found by comparing the log odds of success within one category of X with the
counterfactual log odds of success within that same category of X with a distribution of
Z of another category of X. This way, the factual and counterfactual groups differ only
with respect to the distribution of Z. In its original form, this method assumed that
the variable through which the indirect effect occurs has a normal distribution. In this
article, this method was generalized by allowing the variable to have any distribution.
Moreover, the use of the bootstrap is proposed to estimate standard errors, and I added
the possibility to include control variables.

This is a relatively new methodology, and so there are still some loose ends to tie
up. First, the fact that there are two different estimates of the direct effects and two
different estimates of the indirect effects is less than elegant. Second, the fact that
a separate decomposition needs to be estimated for all pairwise class comparisons in-
stead of all comparisons with a single reference category can quickly lead to a very
large number of estimates. Third, this method is not the only way of attaining esti-
mates of direct and indirect effects; there are, for instance, the methods proposed by
Gomulka and Stern (1990), Even and Macpherson (1990), Fairlie (2005), Yun (2004),
and Bauer and Sinning (2008). Two of these have been implemented in Stata: the
method by Fairlie (2005) in the fairlie command (Jann 2006), and the method by
Bauer and Sinning (2008) in the nldecompose command (Sinning, Hahn, and Bauer
2008). How these alternatives compare with the method discussed in this article needs
to be explored.
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