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MEASURING PRE-COMMITED QUANTITIES 
THROUGH CONSUMER PRICE FORMATION 

Introduction 

In this article we investigate the case in which consumers pre-commit to goods in a market 

characterized by fixed supply. 1 To do so we define a translated consumer distance function that 

is a natural dual to the translated utility, indirect utility, and expenditure functions and that can 

nest most known functional forms. The translated distance function is of interest for its role in 

the theory of dual functions and for its flexibility to incorporate “pre-committed quantities” or 

“necessary quantities” into complete inverse demand systems. This research is further motivated 

by a general interest in developing a better understanding of consumer price formation through 

inverse demand functions, which is particularly relevant in food and resource markets. 

Pre-committed quantities incorporated into the direct utility, expenditure, and indirect 

utility functions have been previously investigated in the economic literature dating back to 

Samuelson (1947-1948), resulting in extensive applications on a wide range of topics. In this 

case, consumers pre-commit in markets with fixed prices. For example, the well known Stone- 

Geary utility function integrates pre-committed quantities into the Cobb-Douglas utility function 

yielding the linear expenditure system (LES). This specification generalizes the Cobb-Douglas 

to recognize pre-committed levels of consumption, such that any expenditure over the pre- 

committed expenditure is allocated according to Cobb-Douglas preferences. 2 Pollak and Wales 

(1978) provided dual relationships between the translated utility, indirect utility, and expenditure 

functions (but not the distance function) and pointed out that the LES also arises from the 

  Pre-commitment is taken to be some irreversible act or choice by an economic agent, such as pre-commitment to 
quantities by a consumer. Pre-commitment arises in broad array of topics across the economic literature, including 
(but not limited to) subsistence consumption (Samuelson, 1947-1948; Stone, 1954) as well as in the context of 
demographic translating (Pollak and Wales, 1978) and food safety (Piggott and Marsh, 2004). 
2 
  See Kakwani (1977) or Deaton and Muellbauer (1980b) for background reading on the Stone-Geary utility 
function. A recent search on EconLit finds that the term linear expenditure system itself arises in 91 articles. 

1 

1 
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translated Cobb-Douglas expenditure function. The translated distance function, and its 

application to measuring pre-committed quantities, represents novel contributions to the 

economic literature. 3 

Consumer distance functions that yield inverse demand systems are relevant when 

attempting to better understand price formation at the market level. They have been used to 

derive price and scale flexibilities that are informative economic measures of price formation, as 

well as exact welfare measures in quantity space (Palmquist 1988, Kim 1997, Holt and Bishop 

2002). Demand system modeling that specifies prices as a function of quantities is a growing 

literature in food, agricultural, environmental, and natural resource economics, wherein 

perishability and biological production lags are often inherent characteristics. For example, price 

formation has been previously studied for meat demand (Eales and Unnevehr 1994; Holt and 

Goodwin 1997; Holt 2002) and fish (Barten and Bettendorf 1989; Holt and Bishop 2002; 

Kristofersson and Rickertsen 2004, 2007). These studies provide significant contributions to the 

economic literature, but they do not theoretically investigate nor empirically test for pre- 

committed quantities through price formation. Translated consumer distance functions yield 

generalized inverse demand systems that naturally include pre-committed quantities and offer 

opportunities to empirically test for their statistical significance using straightforward inference 

methods. Pollak and Wales (1980) demonstrated that translated utility, indirect utility, and 

expenditure functions are important functional alternatives yielding demand systems that include 

pre-committed quantities and that are useful for empirical applications. This suggests that 

  A suggestion to the authors has been to address the concept of pre-commitment in prices. While intriguing, our 
interest is in extending translating (and pre-committed quantities) to inverse demand relationships. The micro- 
foundations of pre-commitment in quantities are well established by Samuelson (1947-1948), Stone (1954), and 
Geary (1950-1951). It is outside the scope of the current study to conceptualize and investigate pre-commitment in 
prices. 

3 
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generalizing inverse demand models by translating is also a plausible alternative that is important 

when investigating empirical questions of price formation and pre-commitment. 

Several studies have generalized specific functional forms of demand systems (i.e., 

quantities as a function of prices and expenditure) using translating procedures. Pollak and 

Wales (1980) developed the generalized translog (GTL) model by introducing pre-committed 

quantities to the basic translog model of Christensen, Jorgenson, and Lau (1975). Bollino (1987) 

introduced the generalized almost ideal (GAI) model by incorporating pre-committed quantities 

into the almost ideal demand system (AI) of Deaton and Meullbauer (1980a, b). Bollino and 

Violi (1990) generalized the almost ideal and translog (GAITL) model by including pre- 

committed quantities into the almost ideal translog model of Lewbel (1989). Following this 

theme, and motivated by our interest in empirical applications−but in the context of inverse 

demand models−we introduce the inverse generalized almost ideal demand (IGAI) system by 

applying translating procedures to the inverse almost ideal (IAI) model of Eales and Unnever 

(1994). 

The purpose of this article is three-fold. First, we provide selected dual relationships for 

translation to the consumer distance function. 4 In this manner, we can specify translating into 

inverse demand functions in a more theoretically general manner to facilitate the study of price 

formation and translating. This allows flexibility between pre-commitment in quantities and 

market structure. Methodologies to measure marginal effects and flexibilities are also derived. 

Second, we provide illustrative examples of the translated consumer distance function with two 

different functional forms (the Cobb-Douglas and almost ideal functional forms) and a 

framework to accommodate other functional forms. In the latter, we extend the work of Eales 

4 
  Note that we do not intend to provide a complete taxonomy of dual relationships for the translated distance 
function, but rather provide those relationships that facilitate sufficient specification and derivations to complete the 
examples and empirical applications in the paper. 

3 
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and Unnever (1994) on the inverse almost ideal demand system to define an inverse generalized 

almost ideal demand system that includes pre-committed quantities as elements of the parameter 

space. Third, we provide empirical applications demonstrating how to apply the IGAI to a 

complete translated inverse demand system and how to augment the translation parameter to 

include other shift variables. Also, we compare alternative forms of the IAI model. Our 

empirical application focuses on estimating retail price formation of U.S. food demand (food-at- 

home (FAH), food-away-from-home (FAFH), and alcoholic beverages (AB)) and relevant 

hypothesis tests. Retail price formation for food-at-home, food-away-from-home, and alcoholic 

beverages and the impacts of pre-committed quantities have not been addressed in previous 

empirical studies. Finally, concluding comments are provided. 

Translating in Dual Functions 

The direct utility maximization problem is 

(1) max {U ( x ) st p′x = M } . 
x 

                                                     =In (1), U is the 
utility function with classical properties, x 

nonnegative vector of=goods, p 

( x1 ,..., xn )′ ≥ 0 is a (n × 1) 

( p1 ,..., pn )′ > 0 is a (n × 1) vector of given prices, and M is 

total fixed expenditure. From the Hotelling-Wold Identity the uncompensated inverse demand 

                           p∂U 
system can be expressed as = 
                           M ∂x 

∑x 
j =1 

n 

j 
∂U 
    . 
∂x j 

Translating of x for some (n × 1) constant pre-committed consumption vector 

=c ( c1 ,..., cn )′ ∈ R n is defined as the linear mapping x∗= x − c . The translated utility function is 

specified as 

4 
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(2) U *= U ( x − c) .(x) 

The transformed primal problem can be expressed as 

(3) max U * ( x ) st p′x* M * , x* > [0] ,= 
 * 

x 
{ } 

       *where M= M − p′c is supernumerary expenditure. Because c is pre-committed and p fixed 

then p′c can be interpreted as pre-committed expenditure. Samuelson (1947-1948) interprets 

p′c as the minimum expenditure to which the consumer commits herself to attain a minimum 

subsistence level. 5 

It is well known that the transformed dual indirect utility function is V = V p, M * , 

which is a function of prices and supernumerary expenditure, and the transformed dual 

expenditure function is = p′c + E * ( p, u ) , which decomposes total expenditure into an additiveE 

relationship of pre-committed and supernumerary expenditure functions (e.g., Pollak and Wales 

1978). Moreover, and for example, Shephard’s Lemma applied to the transformed expenditure 

function yields total demand x= c + x∗ (p, u ) that is interpreted as the sum of pre-committed 

quantities and compensated supernumerary demand. 6 Finally, the translated utility, indirect 

utility, and expenditures functions nest original specifications and become equivalent only if the 

translating vector c=0. 

( ) 

The Distance Function 

The standard consumer distance function can be defined by 

(4) 

5 
6 

D ( x, u ) sup {d > 0 | (x / d ) ∈ S (u ), ∀u ∈ R1 } . 
    =+ d 

 Since the linear mapping is a diffeomorphism the standard economic properties still hold for x*. 
 The translated expenditure function provided the basis for studies by Bollino (1987), Bollino and Violi (1990), 
Piggott (2003), Piggott and Marsh (2004), and Tonsor and Marsh (2007). 

5 
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In (4), u is a (1× 1) scalar level of utility, x = ( x1 ,..., xn )′ is a (n × 1) vector of predetermined 

goods and S (u ) is the set of all vectors of goods x ∈ R n that can produce the utility level u ∈ R1++ 

. The underlying behavioral assumption is that the distance function represents a rescaling of all 

goods consistent with a target utility level u. Intuitively, d is the maximum value by which one 

could divide x and still produce u. The value d places x / d on the boundary of S (u ) and on a 

ray through x. 

Compensated inverse demand equations may be obtained by applying Gorman’s Lemma 

(5) 
∂D(x, u ) 

           = p ( x, u ) , 
 ∂x 

n  

where M = ∑ i =1 pi xi and p =(p1 ,...,pn ) is a (n × 1) vector of expenditure normalized prices or 

pi = pi / M . If x is a bundle for which U (x) = u then D ( x, u ) = 1 , and the share form of the 

expression in (5) is given by 
∂ ln D ( x, u ) 
               = w ( x, u ) . The Hessian (or Antonellei) matrix is given 
   ∂ ln x 

by the second order derivatives of the distance function 

   2 D(x, u ) ∂ 2 D(x, u )  
   x∂x′∂x∂u  
                            .H 
22  ∂ D(x, u ) ∂ D(x, u )  
   u∂x′∂u∂u  

(6) 

The properties of a distance function are that it is homogenous of degree one, nondecreasing, and 

concave in quantities x, as well as nonincreasing and quasi-concave in utility u (Shephard 1970; 

Cornes 1992). Because the distance function is homogenous of degree one in quantities, it 

follows that the compensated inverse demand function is homogenous of degree zero in 

quantities. Uncompensated inverse demand functions can be obtained applying the dual identity 

p(x) = p(x, U (x)) . 

6 
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Our principal interest is to extend duality theory to incorporate translation in the distance 

function. Letting U * = U ( x − c ) , we define a translated distance function through the dual(x) 

relationship 

    D ( x, u ; c ) =(7) = arg U (x* / d ) u , 

d 
{ } 

where x* ∈ R n and c ∈ R n . The translated distance function in (7) is a natural generalization of+ 

the standard distance function defined in (4), where D ( x, u; c ) = D ( x, u ) only if c=0. 7 

A modified Gorman’s Lemma can be derived applying the Envelope Theorem and a dual 

identity that defines the distance function through the normalized expenditure function 

 

= min p′x* st E * ( p, u ) 1 such thatD ( x, u; c ) = p 
{ } 

(8a) 
∂D ( x, u; c )  
= p ( x, u; c ) , 
  ∂x* 

 

where p = ( p1 ,...,pn ) is a n × 1 vector of prices normalized by supernumerary expenditure, or 

 

pi = pi / M * . 8 The compensated pi ( x, u; c ) ' s are functions of the supernumerary quantities x∗ 

and the utility level u. The consumer’s marginal willingness to pay for x∗ is represented by the 

uncompensated pi ( x, U * (x); c ) ' s which are formed on the level of pre-committed quantities. 

The second order derivatives of the translated distance function yield 

   2 D(x, u; c) ∂ 2 D(x, u; c)  
    
                     ∂x*∂u x*∂x*′*. 
H 2 
    ∂ D(x, u; c) ∂ 2 D(x, u; c)  
    
                     ∂u∂u  ∂u∂x*  

(8b) 

  Luenberger (1992) introduced the benefit function and Chambers, Chung and Färe (1996) demonstrated that the 
benefit function is equivalent to a directional distance function. As pointed out by Luenberger (1992) the consumer 
distance function, and hence the translated form of it, and the benefit function are distinctly different specifications. 
8Note that the expenditure value normalizing prices is the supernumerary expenditure M*, which leads to a modified 
Gorman’s Lemma. 

7 

7 
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where H* is concave in supernumerary portion of consumption x* and quasi-concave in u. H* is 

equivalent to H in (6) when the pre-committed quantities are all equal to zero. Hence, while the 

mathematical properties for H* are consistent with H, the relevant economic properties deserve 

further discussion. For instance, it is straightforward to demonstrate that symmetry conditions 

hold. However, the second order partial derivatives of D ( x, u; c ) with respect to x does not 

necessarily yield to a negative semi-definite matrix. 9 

Translated share equations also can be derived. If x* is a bundle of goods chosen such 

that U * (x) = u then D ( x, u; c ) = 1 , and the compensated, supernumerary share expression can be 

derived as = 
           ∂ ln x * i 

∂ ln D ( x ,u ;c ) pi ( x ,u ;c ) xi* 
= wi* ( x, u; c ) . 10 The uncompensated, supernumerary shareM* 

* 
                                                                       *  
                                                              pi xixi *  M  

                                                           wiexpression is w pi ( xi − ci ) / M that can 

be rewritten as= = wi  
            .  
                                                              M 

                                                                      M  ( xi − ci )  

* 
i 

Following Christensen et al (1975), the logarithmic form of the Hotelling-Wold Identity yields 
                  n 
 px∂ ln U∂ ln U 
      = 

                 ∑ ∂ ln x . Hence, the general share expression for a translated inverse demand 
        ∂ ln xj =1 
  Mj 
function can be represented by 

     *  M *  xi   
wi wi  

              M  ( xi − ci ) 
  

  xi   

wi*  ( x − c )  
                   
  i i  

 n  *  x   

                   j* M ∑  w j  
            

           M  ( x j − c j )  

 
 j =1  

            

(9) 

 n  x   
                 j* 

∑  w j   

         ( x j − c j )   
 j =1  

                        
  

Translating the distance function introduces a new class of functions completing the 

quadrality of dual functions that also includes the translated utility, indirect utility, and 

expenditure functions. 

9 

Moreover, the translated distance functions provides the analytical 

   Pollak and Wales (1980) point out that for the translated demand system the Slutsky symmetry conditions are 
satisfied, but that the substitution matrix need not be negative semi-definite except if c=0. 
10 
   It is termed the supernumerary share expression because it is a function of the supernumerary quantity. 

8 
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framework with which to specify translated inverse demand systems in (8a) that nest their 

original counterparts defined in (5). For example, and as illustrated below, two generalized 

inverse demand systems arise by defining the wi* ( x; c ) as the Cobb-Douglas and Almost Ideal 

Demand functional forms. Other logical candidates for the wi* ( x; c ) are the translog, the 

normalized quadratic, and variations of them. 11 As discussed in more detail ahead, translating 

also introduces the flexibility to augment each ci as linear or nonlinear function of a vector s of 

pre-committed, demographic, conditioning, or other shift variables that arise in empirical 

applications (i.e., ci = ς i ( s ) ). Hence, while the mapping on x by x∗ (s)= x − ς (s) is linear, the 

pre-committed and supernumerary quantities may have a linear or nonlinear relationship with s. 

Flexibilities 

Marginal effects and price flexibilities can also be derived in the case of a nonzero 

translation vector c. The uncompensated price flexibilities fi= 

(10a) 

where 

(10b) 

and 

        c w*  
                                         xjxi ∂wi*  nii i 

                              ∑ 
(11)  
     Aiw*  

        ( x − c )2 xi − ci ∂x  j =1 x j − c j j  i i  

∂ ln pi ( x ;c ) 
  ∂ ln x are defined by 

∂ ln pi∂w x 
       = −δi+ i . 
∂ ln x∂xwi 

∂wi 
= 
∂x 

{ Ai− Bi} / C 2 

11 
Piggott (2003) provides a discussion of generalized demand systems. 

9 
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Bi 

                               n 
 xi  *  c w*x j ∂w* j  

                             +∑ 
 wi  2 

 ( xi − ci )  ( x − c )x j − c j ∂x  
                              j =1 
                 

    n  
              xj* 

C ∑ 

                   
w . 
     j =1 x j − c j j  
                       
     

The compensated flexibilities fih = ∂ ln pi ( x ,u ;c ) 
   ∂ ln x can be recovered using the expression 

  hf= fi− fi w j . Scale flexibilities fi =i ∂ ln pi ( λ x ;c ) 
   ∂ ln λ can be derived by 

(12) 
∂ ln pi ( λx; c )n 

                = ∑ j =1 fij . 12 
   ∂ ln λ 

The price flexibility expressions for the translated inverse demand system are considerably more 

complicated than those of the IAI model. If the ci= 0 ∀i , or pre-committed consumption is zero 

for each good, then (10-11) yields the standard flexibility expression. 

A Simple Example: The Cobb-Douglas Functional Form 

A simple example demonstrating the dual relationships is the Cobb-Douglas functional form. 

                                             α 

Consider the utility function U ( x ) = x1α1 x2 2 
( ) with two goods where α 

1 
+ α 2 =1 . The translated 

Cobb-Douglas utility function can be defined as U * ( x ) = c1 )( x1 − 
α1 ( x2 − c2 ) α2 

. Following 

standard relationships the following dual functions can be derived: a) the indirect utility function 

V ( p, M * ) =α1 M1p ( * ) (α ) 
α1 

  M* 
2 p2 

α2 
and b) the expenditure function E ( p, u ) p′c + u= ( ( ) ( ) 

p1 α1 
α1 

p2 α 2 
α2 ). 

12 
From Anderson (1980), the flexibilities must satisfy the aggregate demand restrictions ∑ n 

j =1 f ij = f i 

(homogeneity), ∑     w f = − w j (Cournot), andi =1 i ij n ∑ n 
i =1 wi f i = −1 . 

10 
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From (7) the translated distance function is D ( x, u; c ) = 

derived from other dual relationships. 

( 
( x1 − c1 )α1 ( x2 − c2 )α2 

u ) , which also can be 

Further, and considering good 1 for convenience, 

applying Roy’s Identity to the translated distance function yields the uncompensated demand 

                    M* 
function x = c1 + α1which is composed of the pre-committed quantity c1 and the 
                    p1 

m 
1 

                                    M* 
supernumerary component of demand α1 
                                    p1 

x = c1 + u h 
1 

and the compensated demand function 

( 
p1 α 2 α1 −1 
p2 α1 ) (from Shephard’s Lemma). The uncompensated inverse demand function 

      α1M * 
p =(by the Hotelling-Wald Identity) and compensated inverse demand function 

    ( x1 − c1 ) 

m 
1 

     (x −c )  

p1h = 1  1 1  

      u  ( x2 − c2 )  

α1 −1 

(from Gorman’s Lemma) all include pre-committed components that 

nest the original Cobb-Douglas functions and are equivalent only if c=0. 13 From (9) the 

                                                                                xi  n  
x j 
                                                                                 which isuncompensated inverse share equation is w 

∑ α1 α1  

                                                                 ( x j − c j )  ( xi − ci )  j 

=1   

im 
1 

                                                   p1c1M * 14 
                                                                .not the same as the uncompensated 
share equation w=+ α1 
                                                   MM 

m 
1 

The Almost Ideal Functional Form 

The almost ideal functional form is pervasive in the consumer demand literature. Choosing to 

generalize the IAI model by translating allows one to compare and contrast results (theoretical 

and empirical) to past research on price formation. 

13 

Moreover, it provides an interesting 

   Note that with the Cobb-Douglas specification, it is straight forward to derive the inverse uncompensated demand 
function directly from the uncompensated demand function. However, as shown ahead with the almost ideal 
functional form, solving for the inversed demand function directly from the demand function is not always possible 
further motivating the usefulness of duality relationships. 
14 
   This uncompensated inverse share expression for the LES is identical equation (6) in Moschini and Vissa (1992). 

11 
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comparison to the GAI model and applications of it. For example, while standard theory would 

suggest that pre-committed quantities specified in a demand system or inverse demand system 

are the same, this remains an open empirical question to be examined. Next we review the 

inverse (IAI) demand system and then specify a generalized version of the IGAI demand system. 

The Inverse Almost Ideal Demand System 

Following Eales and Unnevehr (1994) the logarithmic distance function may be specified as: 

(13) ln D(x, u ) = a (x) + u ln b(x)(1 − u ) ln 

The IAI expenditure system is obtained by substituting equations (14) and (15) below into (13) 

above: 

(14) 

and 

(15)         β0 ∏ i =1 xi −β 
ln b(x) = i + ln a (x) . 

n 

ln a (x) =α 0 + ∑ α j ln x j + 
= 1j 

n     nn 
1 
2 
 = 1= 1ij 
 

∑∑ γ 
ij ln xi ln x j 

Applying Gorman’s Lemma and substituting in the direct utility function 

U ( x) = x) − ln a ( x)} , which is obtained by inverting the distance function at− ln a ( x) / {ln b( 

D(x, u ) = 1 , the share form of the inverse demand function can be derived as 

(16) 

where 

(17) ln Q =α 0 + ∑ α j ln x j + 
= 1j 

n     nn 
1 
2 
 = 1= 1ij 

wi = α i + ∑ γ ij ln x j + βi ln Q 
j =1 

n 

∑∑ γ 
ij ln xi ln x j . 

12 
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In (16) and (17), wi = expenditure share of meat type i ( wi = pi xi 
      ) and γ ij= 
M 

1 
2 (γ 

ij 
+ γ ji ) . 

Necessary demand conditions that lead to parameter restrictions of the distance function 

specification are as follows: 

(18a) 
= 

∑α 

n 

    iij 
= 1 = 1= 1iji 

1, 

n 

= 

∑γ 

n 
0, 

= 

∑β 
i 

n 
0 adding up 

(18b) 

(18c) 

∑γ 
i=1 

ij 
= homogeneity0 

γ ij = ji symmetry.γ 

Price and scale flexibilities provided in Eales and Unnevehr are defined by 

(19a) 

                              n 

                         ln pi ( x ) 1  
         = 

                i+ βi  α + ∑ γ jln 
 ∂ ln xwi j =1 
                         

( x )  − δ 
j 

 

 
i 

and 

(19b) 
∂ ln pi ( λx 

) ∂ ln λ 
= −1 + βi / wi , 

where the last equality simplifies due to imposition of general demand restrictions with reference 

vector x . 

The Inverse Generalized Almost Ideal Demand System 

Using the translation identity x∗= x − c and equations (7) and (13), we specify a generalized 

logarithmic distance function as 15 

(20) ln D(x, u; c) = a (x* ) + u ln b(x* )(1 − u ) ln 

The inverse generalized almost ideal (IGAI) expenditure system is defined by substituting 

15 
  Note that the translated distance function can also be derived from the translated direct utility function 
U ( x) = * ) − ln a ( x* ) applying the dual relationship in (7) and imposing general demand− ln a ( x* ) / ln b( x * { } 

restrictions. 

13 
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(21) 

and 

(22) 

ln a (x ) =α 0 + ∑ α j ln ( x j − c j ) + .5∑∑ γ ij ln ( xi − ci ) ln ( x j − c j ) 
n n n 

* 

= 1j = 1= 1ij 

ln b(x* ) = i =1 ( xi − ci )β0 ∏ 
n −βi 

+ ln a (x* ) , 

into equation (20). The supernumerary share expression of the inverse demand functions is then 

(23a) w = α i + ∑ γ ij ln ( x j − c j ) + βi ln Q* , ∗ 
i 

n 

j =1 

         pi xi∗ 
where w = ∗ and 
         M 

∗ 
i 

(23b) ln Q =α 0 + ∑ α j ln ( x j − c j ) + .5∑∑ γ ij ln ( xi − ci ) ln ( x j − c j ) . 
n n n 

* 

 j= 1  ij= 1= 1 

From (9) the inverse share equation can be expressed as 

               n 
       xi  *  

      ln ( x j − c j ) + βi ln Q   

      i ∑ ij 

                                             ( xi − ci )   
              j =1 
                                            
wi = 
                    n 
                                                x n *  
           

     ∑ =1  + ∑ γ j ln ( x j − c j ) + β ln Q  ( x − c )  

j =1 
                                               

(24) 

where wi = pi xi 
      . 
M 

For a n good system, including the translating constants ci creates an 

additional n parameters to estimate with each translating constant appearing in each expenditure 

equation. The parameter restrictions from homogeneity, symmetry, and adding up conditions are 

consistent to those of the IAI model in (18a)-(18c). 16 

   The role of translating procedures in dual functions is not limited to incorporating pre-committed quantities. In 
addition, translating parameters can be augmented to be functions of demand shift variables to account for other 
factors impacting demand aside from prices and income. This includes the universe of non-price and non-income 
variables thought to impact demand, including seasonal dummy variables, time trends, advertising expenditures, 
food safety information, conditioned variables, and lagged quantities to capture potential habit effects to name a few 
candidates. Introducing non-price and non-income variables into demand functions in this manner avoids potential 
pitfalls of other commonly used approaches (such as augmenting intercept terms of demand or share equations), 
which yield economic measures that are not necessarily invariant to units of measurement (Alston, Chalfant, and 

16 
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Applying (24) the uncompensated price flexibilities fi= 

with 

∂ ln pi ( x ;c ) 
  ∂ ln x are defined in (10)-(11) 

     ∂wi*  1 
(25) 
    
     ∂x  x− c 

               n 
          

 i+ βi  α + ∑ γ jln 
  
              j =1 

 

      

( x )  
      
      

* 
j 

For the case that the ci = 0, ∀i = 1,..., n , the IGAI model in (24) becomes identical to the IAI 

model in (16). Moreover, the price and scale flexibilities collapse to those for the IAI model in 

19(a) and 19(b). 

Empirical Application 

Following Eales and Unnevehr (1994), Holt and Goodwin (1997) and Holt (2002), we apply the 

IAI and IGAI model to quarterly U.S. meat consumption data as an empirical application.17 

Moreover, this allows us to compare outcomes from the IGAI model to results from previous 

studies. As an illustration of linear translating, 

the pre-committed parameters, ci = ς i ( s ) ’s, are 

modified to depend linearly upon seasonal variables shift variables. Using notation from 

equation (26), the sm = qd m (m=1, 2, and 3) are seasonal quarterly dummies with the parameters 

to be estimate being the ci0’s and the φim ' s . This IGAI model with linear translating involving 

seasonal dummy variables will be denoted as IGAI ς (s) in the discussion ahead. 

Data 

Piggott 2001). Augmenting translating constants to incorporate demographic variables in this fashion has been 
coined as demographic translation (Pollak and Wales 1981). A natural and simple choice is to employ linear 
translating where the ci‘s are specified to be a linear function of demand shift variables and parameters. 

  Scanner data information suggests consumers pre-commit to purchasing meat products relatively infrequently 
(only once or twice a month) compared to most food products. 

17 

15 



 18 

Meat data used in the analysis are quarterly observations over the period 1982(1)-2005(4), 

providing a total of 96 observations. The basic quantity data are per capita disappearance data 

from the United States Department of Agriculture (USDA), Economic Research Service (ERS) 

supply and utilization tables for beef, pork, and poultry (broiler, other-chicken, and turkey) 

published in the Red Meats Yearbook and Poultry Yearbook with data after 1990 taken from 

updated revisions of these publications made available online. The beef price is the average 

retail choice beef price, the pork price is average retail pork price, and the poultry price was 

calculated by summing quarterly expenditures on chicken, using the average retail price for 

whole fryers, and quarterly expenditures on turkey, using the average retail price of whole frozen 

birds, divided by the sum of quarterly per capita disappearance on chicken and turkey. All of the 

price variables are published in the same USDA, ERS sources with the original sources 

identified as the ERS (Animal Products branch) for the beef and pork prices (variable names 

BFVRCCUS and PKVRCCUS, respectively) and the Bureau of Labor Statistics, U.S. 

Department of Labor for the whole fryers (chicken) and whole frozen bird (turkey) prices. Table 

1 provides descriptive statistics for model variables. 

Empirical Issues 

Several important issues regarding parameter restrictions and differences in methodology need to 

be discussed. First, the necessary demand conditions that lead to parameter restrictions in (20) 

remain unchanged for the IGAI relative to the IAI expenditure system. As in the GAI model 

there are no necessary economic restrictions to be imposed on the individual pre-committed 

quantities ci’s (see Piggott and Marsh 2004) 

16 
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Meat is aggregated into three goods: beef, pork, and poultry (chicken and turkey). 

Models were estimated using iterated non-linear seemingly unrelated estimation techniques. 

The parameter α 0 is restricted zero, which has been standard practice for the IAI model (see 

Eales and Unnevehr 1994, Holt 2002) due to problems of convergence in estimation. Because of 

the singular nature of the share system one of the equations must be deleted (poultry) with the 

remaining equations being estimated (beef and pork). Theoretical restrictions such as 

homogeneity and symmetry were imposed as maintained hypotheses. 

Results and Discussion 

Parameter estimates and asymptotic standard errors are presented for the IAI, IGAI, and 

IGAI ς (s) in Table 2. Results for all three alternative models are reported for comparisons and 

robustness checks. In all three models, most of the coefficients are individually statistically 

significantly different from zero at the 0.05 level. For the IAI and IGAI models all of 

coefficients are individually statistically significantly different from zero at the 0.05 level except 

for βb and β p . Comparison of the IAI to IGAI reveals that generalization significantly enhances 

the model fit with R2 for beef increasing from 0.721 to 0.980 and R2 for pork increasing from 

0.404 to 0.964. The translating parameters are all highly individually statistically significant and 

positive in the IGAI model. Results of nested hypothesis tests shown in Table 3 demonstrate that 

the null hypothesis of the IAI model is rejected at the 0.01 level against the IGAI model. All 

reported joint hypothesis tests are based on asymptotic chi-square likelihood ratio statistics 

(Mittelhammer et al 2000), which are adjusted for small-sample size as suggested by Bewley 

(1986). 
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Comparison of the estimated parameters of IGAI and IGAI ς (s) reveals that six of the 

nine coefficients on the seasonal dummy variables are individually statistically significantly 

different from zero at the 0.05 level. Results of nested hypothesis tests shown in Table 3 also 

reveal that the null hypothesis of the IGAI model is rejected at the 0.01 level against the IGAI 

ς (s) 
model. Thus there is strong empirical evidence to support not only the existence of pre- 

committed quantities of beef, pork, and poultry but also that of seasonality. These seasonal 

differences were mostly found to be on the order of 1 pound but were as large as 2 pounds in a 

given quarter. 

Uncompensated price and scale flexibilities for the IAI, IGAI, and IGAI ς (s) models are 

reported in Table 4. The own-flexibilities and scale flexibilities are negative as expected across 

all models. The majority of the cross-flexibilities are negative, indicating gross-substitutes, with 

exception for the cross-flexibilities for beef and poultry prices with pork quantities being positive 

indicating gross-complements. The scale flexibilities for beef and poultry are all less than 1 and 

for pork greater than 1. For the statistically preferred IGAI ς (s) model, the own-flexibilities for 

beef (-0.607) and poultry (-0.606) are inflexible whereas the own-flexibility for pork (-1.567) is 

flexible. It is noteworthy that own-flexibility for pork is not robust across model specifications 

with estimates of -0.607 (IAI model), -0.912 (IGAI model) and -1.567 (IGAI ς (s) model). The 

own-price flexibilities for beef and poultry are much more robust across model specifications. 

The scale flexibilities for IGAI ς (s) reveals that the marginal value of meats in consumption 

declines by 0.6% for beef, 2.1% for pork, and 0.3% for poultry. 

The estimated price and scale flexibilities can be compared with previous results from 

Eales and Unnevehr (NL/IAIDS model, Table 3). Eales and Unnevehr own-price flexibilities for 

beef (-0.750) and poultry (-0.611) are comparable but their pork estimate (-0.785) is much more 
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inflexible. Their cross-flexibilities were all negative, indicating gross-substitutes, compared with 

mix of positive and negative estimates from the IGAI ς (s) model. Finally, there are significant 

differences in the scale flexibilities between the two studies with the most notable being for pork 

and poultry. 

The estimated pre-committed quantities were highly significant and very robust across 

the IGAI and IGAI ς (s) models. Based on the IGAI model the pre-committed quantities are 

estimated to be 13.709 pounds of beef, 10.403 pounds of pork, and 11.357 pounds of poultry per 

quarter per person. When compared to the sample means (shown in Table 1) these estimates 

show that pre-committed quantities are a significant proportion of total consumption making up 

78.8% for beef, 81.9% for pork, and 54.4% for poultry. The preferred IGAI ς (s) model yielded 

very similar estimates of pre-committed quantities (13.830 pounds of beef, 11.813 pounds of 

pork, and 12.617 pounds of poultry). Piggott and Marsh (2004), using the same quarterly data 

source but over a different period (from 1982 to 1999), estimated a GAI demand system 

(specifying quantities as a function of prices and expenditures) and reported pre-committed 

values of 15.170 pounds for beef, 7.294 pounds for pork, and 10.383 pounds for poultry. While 

the values from the IGAI and the GAI models are not identical, they were estimated over 

different time periods and are very close in magnitude. In all the inverse demand results provide 

strong statistical support for specification of the IGAI model in explaining price formation and 

offer further evidence for the existence of pre-committed quantities in U.S. meat demand. 

Conclusion 

This article investigates the case in which consumers pre-commit to goods in a market 

characterized by fixed supply. We demonstrate how to theoretically and empirically measure 
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pre-committed quantities by incorporating translating in consumer distance functions. 

Translating the distance function completes the quadrality of dual functions that also includes the 

translated utility, indirect utility, and expenditure functions. The translated distance functions 

provides the analytical framework with which to specify translated inverse demand systems that 

nest most known functional forms. 

Translating procedures are important when incorporating pre-committed quantities in the 

inverse demand system. Furthermore, translating parameters can be augmented to be functions of 

demand shift variables to account for other factors impacting demand other than prices and 

income (e.g., seasonality, advertising, health or food safety information) into distance functions 

to better understand price formation. Building upon the work of Deaton and Meullbauer on the 

almost ideal demand system, Eales and Unnevehr on the inverse almost ideal (IAI) demand 

system and of Pollak and Wales on translating dual functions, a new class of inverse demand 

systems is defined, including an inverse generalized almost ideal (IGAI) demand system. 

General results for marginal effects and price flexibilities are also derived. Further research can 

use the framework developed in this paper to examine alternative functional forms and for even 

more general inverse demand models. 

For an empirical application the IAI and IGAI models are estimated using quarterly U.S. 

meat consumption data. The IAI model is rejected in favor of the generalized model supporting 

the idea of pre-committed quantities in beef, pork, and poultry. The goodness of fit statistics 

showed dramatic improvement for the IGAI over the IAI model; especially for pork. As an 

illustration of linear translating the pre-committed quantities are modified to depend linearly 

upon seasonal dummy variables. The IGAI model is rejected against the alternative model that 

includes linear translation IGAI ς (s) indicating the importance of seasonality. 
The own- 
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flexibilities for beef (-0.607) and poultry (-0.606) are estimated to inflexible whereas the own- 

flexibility for pork (-1.567) is flexible. Most of the cross-flexibilities are negative, indicating the 

meats are gross-substitutes, with exceptions for the cross-flexibilities for beef and poultry prices 

with pork quantities being positive indicating gross-complements. In all the empirical results 

provide strong statistical support for specification of the IGAI model in explaining price 

formation, offer further evidence for the existence of pre-committed quantities in U.S. meat 

demand, and demonstrate the empirical applicability of generalized inverse demand systems 

from translated consumer distance functions. 
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Table 1: Summary Statistics of Annual Data, 1954-2007 
VariablesAverageStd. Dev. 
FAFH Expenditure ($/capita)673.363543.382 
FAH Expenditure ($/capita)871.985519.071 
Alcoholic Beverages ($/capita)215.653140.763 
Total Expenditures ($/capita)1,761.0001,201.320 
FAFH Price Index92.55760.472 
FAH Price Index94.23856.995 
Alcoholic Beverages Price Index100.78655.166 
Share FAFH0.3360.074 
Share FAH0.5370.066 
Share Alcoholic Beverages0.1270.010 

Minimum 
  94.706 
 281.831 
  56.043 
 435.072 
  21.900 
  29.500 
  40.500 
   0.217 
   0.447 
   0.110 

Maximum 
1,840.180 
1,932.630 
  538.209 
4,311.020 
  206.659 
  201.245 
  207.026 
    0.428 
    0.654 
    0.146 Sources 

    Food Expenditures are from USDA, Economic Research Service 
        http://www.ers.usda.gov/briefing/CPIFoodAndExpenditures/Data/table1.htm 
    Price Data are from US Bureau of Labor Statistics 
        http://data.bls.gov/PDQ/outside.jsp?survey=cu 
    Population Data are from US Census Bear 
        http://www.census.gov/popest/archives/1990s/popclockest.txt 
        http://www.census.gov/popest/states/NST-ann-est2007.html 
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Table 2. Estimated Coefficients for the Inverse Almost Ideal (IAI) and Inverse Generalized Almost Ideal (IGAI) Model 
                               IAI ModelIGAI model 
              matrixmatrixmatrixmatrix 
          N-RD-RF-RN-RD-Rmatrix 
α0 

α1 

α2 

γ11 

γ12 

γ22 

β1 

β2 

c1 

c2 

c3 

ρ 

ρ11 

ρ12 

ρ21 

ρ22 

LL 
R2 FAFH 
R2_FAH 
DW_FAFH 
DW_FAH 

-277.506 
(302.200) 
  32.135 
 (25.425) 
 -20.514 
 (14.807) 
  -3.335 
  (1.835) 
   2.167* 
  (0.965) 
  -1.345* 
  (0.583) 
   0.115* 
  (0.036) 
  -0.076* 
  (0.031) 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
 397.371 
   0.991 
   0.984 
   0.417 
   0.377 

 412.968 
(586.600) 
 -25.092 
 (26.400) 
  30.502 
 (30.364) 
   1.815 
  (1.156) 
  -2.059 
  (1.287) 
   2.422 
  (1.522) 
   0.061* 
  (0.027) 
  -0.073* 
  (0.033) 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   0.966* 
  (0.011) 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
 503.218 
   0.999 
   0.997 
   1.302 
   1.403 

 342.243 
(474.300) 
 -22.393 
 (22.848) 
  29.417 
 (28.701) 
   1.779 
  (1.056) 
  -2.169 
  (1.278) 
   2.743 
  (1.618) 
   0.066* 
  (0.028) 
  -0.084* 
  (0.036) 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   -- 
   0.994* 
  (0.057) 
   0.850* 
  (0.105) 
   0.048 
  (0.075) 
  -0.067 
  (0.080) 
 504.895 
   0.999 
   0.997 
   1.273 
   1.329 

23 

 1341.703 
(1560.100) 
  -57.624 
  (44.754) 
   40.757 
  (32.241) 
    2.731* 
   (0.970) 
   -1.925* 
   (0.722) 
    1.436* 
   (0.541) 
    0.043* 
   (0.017) 
   -0.030* 
   (0.011) 
    3.903* 
   (0.088) 
    5.370* 
   (0.500) 
    1.200* 
   (0.029) 
    -- 
    -- 
    -- 
    -- 
    -- 
    -- 
    -- 
    -- 
    -- 
    -- 
  404.715 
    0.987 
    0.989 
    0.288 
    0.483 

 14442.860 
(15436.600) 
  -254.854 
  (179.900) 
   174.376 
  (126.100) 
     4.719* 
    (1.579) 
    -3.241* 
    (1.120) 
     2.306* 
    (0.851) 
     0.018* 
    (0.007) 
    -0.012* 
    (0.004) 
     3.818* 
    (0.248) 
     5.010* 
    (0.996) 
     1.129* 
    (0.046) 
     0.965* 
    (0.010) 
     -- 
     -- 
     -- 
     -- 
     -- 
     -- 
     -- 
     -- 
   501.255 
     0.999 
     0.996 
     1.241 
     1.407 

F-Rmatrix 

 7866.014 
(8039.200) 
 -172.833 
 (118.800) 
  121.529 
  (82.755) 
    4.023* 
   (1.388) 
   -2.839* 
   (0.941) 
    2.075* 
   (0.687) 
    0.022* 
   (0.008) 
   -0.015* 
   (0.005) 
    3.590* 
   (0.339) 
    2.722 
   (2.066) 
    1.052* 
   (0.064) 
    -- 
    -- 
    1.134* 
   (0.068) 
    0.687* 
   (0.127) 
    0.252* 
   (0.088) 
   -0.188* 
   (0.093) 
  504.447 
    0.999 
    0.996 
    1.363 
    1.371 
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Table 3: Hypothesis Tests of Alternative Models 

H0: IAI 
Ha: IGAI 

Statistic 

df 
χ0.01,df 

415.592* 

  3 
11.35 

H0: IGAI ς (s) 
Ha: IGAI 

315.208* 

  9 
21.67 

Notes: ci = ς i ( s ) represents a function with that includes an intercept term and seasonal dummy variables using 
linear translation. df denotes degrees of freedom. Reported asymptotic chi-square test statistics are adjusted 
likelihood ratio tests calculated by adjusting the usual LR test statistic LR=2*(LLU-LLR) according to following: LRs= 
[(M*T- ku)/M*T]*LR as suggested by Bewley (1986) where LLU and LLR are the maximized likelihood value in the 
unrestricted and restricted models; M is the number of estimated equations; T is the sample size, ku is the estimated 
number of parameters in the unrestricted model. A * denotes a significant test statistic at the 5% level. 
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Table 4. Estimated Coefficients for the Inverse Almost Ideal (IAI) and Inverse Generalized 
          Almost Ideal (IGAI) Model 
                        IAI ModelIGAI model 
              matrixmatrixmatrixmatrix 
          N-RD-RF-RN-RD-RmatrixF-Rmatrix 

f11 
f12 
f13 
f21 
f22 
f23 
f31 
f32 
f33 
f1 
f2 
f3 

 0.043 
-0.452 
-0.175 
-0.445 
-0.708 
-0.041 
-0.601 
-0.196 
-0.457 
-0.584 
-1.194 
-1.253 

-0.390 
-0.215 
-0.142 
-0.304 
-0.841 
-0.044 
-0.372 
-0.017 
-0.473 
-0.746 
-1.188 
-0.862 

-0.382 
-0.219 
-0.129 
-0.326 
-0.829 
-0.055 
-0.311 
-0.032 
-0.467 
-0.731 
-1.211 
-0.810 

-0.247 
-0.434 
-0.123 
-0.378 
-0.650 
-0.080 
-0.405 
-0.313 
-0.338 
-0.803 
-1.107 
-1.056 

-0.324 
-0.431 
-0.127 
-0.335 
-0.656 
-0.082 
-0.367 
-0.308 
-0.323 
-0.881 
-1.073 
-0.998 

-0.325 
-0.435 
-0.107 
-0.345 
-0.662 
-0.072 
-0.323 
-0.272 
-0.412 
-0.868 
-1.080 
-1.006 

Note: fij represent the uncompensated price flexibilities of the ith good with respect to the jth quantity, and fi is the 
scale flexibility of the ith good, where i,j = FAFH, FAH, AB. Estimates shown are sample means of flexibilities 
computed at every data point using predicted shares. 
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Table 3: Hypothesis Tests of Alternative Models 

H0: IAI 
Ha: IGAI 

Statistic 

df 
χ0.01,df 

415.592* 

  3 
11.35 

H0: IGAI ς (s) 
Ha: IGAI 

315.208* 

  9 
21.67 

Notes: ci = ς i ( s ) represents a function with that includes an intercept term and seasonal dummy variables using 
linear translation. df denotes degrees of freedom. Reported asymptotic chi-square test statistics are adjusted 
likelihood ratio tests calculated by adjusting the usual LR test statistic LR=2*(LLU-LLR) according to following: LRs= 
[(M*T- ku)/M*T]*LR as suggested by Bewley (1986) where LLU and LLR are the maximized likelihood value in the 
unrestricted and restricted models; M is the number of estimated equations; T is the sample size, ku is the estimated 
number of parameters in the unrestricted model. A * denotes a significant test statistic at the 5% level. 

Table 4: Estimated Price and Scale Flexibilities 

IAI 
Price Flexibilities 
fbb 
fbp 
fby 

fpb 
fpp 
fpy 

fyb 
fyp 
fyy 

Scale Flexibilities 
fb 
fp 
fy 

-0.596 
-0.199 
-0.172 

-0.456 
-0.607 
-0.110 

-0.369 
-0.059 
-0.405 

-0.968 
-1.173 
-0.834 

IGAI 

-0.650 
-0.129 
-0.141 

-0.453 
-0.912 
 0.002 

-0.224 
 0.208 
-0.642 

-0.919 
-1.364 
-0.658 

IGAI ς (s) 

-0.607 
 0.136 
-0.130 

-0.552 
-1.567 
-0.041 

-0.186 
 0.478 
-0.606 

-0.602 
-2.161 
-0.315 

Notes: fij represent the uncompensated price flexibilities of demand for the ith good with respect to the jth price, and 
fi are scale flexibilities expenditure for the ith good, where i, j =b for beef, p for pork, and c for poultry. Estimates 
shown are calculated at the sample means.. 

27 



 30 

References 

Alston J. M., J. A. Chalfant, and N. E. Piggott. “Incorporating Demand Shifters in the Almost 

Ideal Demand System.” Economic Letters 70(2001): 73-78. 

Barnett, W. A. and L. J. Bettendorf. “Price Formation of Fish: An Application of an Inverse 

Demand Sytem.” European Economic Review 33(1989):1509-25. 

Bewley R. Allocation Models: Specification, Estimation, and Applications. Cambridge, Mass.: 

Ballinger, 1986. 

Bollino C. A. “GAIDS: A Generalized Version of the Almost Ideal Demand System.” Economic 

Letters 23 (1987):199-202. 

Bollino C. A. and R. Violi. “GAITL: A generalized version of the almost ideal and translog 

demand system.” Economic Letters 33 (1990): 127-129. 

Chambers, R.G., Y. Chung and R. Färe. “Benefit and Distance Functions,” Journal of Economic 

Theory 70 (1996), 407-419. 

Christensen, L. R., D. W. Jorgenson, and L.J Lau. “Transcendental Logarithmic Utility 

Functions.” American Economic Review 653 (June 1975): 367-383. 

Cornes, R. Duality and Modern Economics. 1992. Cambridge University Press: New York. 

Deaton A. S., and J. Muellbauer. “An Almost Ideal Demand System.” American Economic 

Review 70 (June 1980a):312-326. 

Deaton A. S., and J. Muellbauer. 1980b. Economics and Consumer Behavior. Cambridge 

University Press: New York. 

Eales, J. S. and L. J. Unnevehr, “The Inverse Almost Ideal Demand System,” European 

Economic Review 38 (1994), pp:101-115. 

28 



 31 

Geary, R. C. “A Note on the “Constant Utility Index of the Cost of Living,” The Review of 

Economic Studies 18 (1950-1951):65-66. 

Holt. M. T. “Inverse Demand Systems and Choice of Functional Form,” European Economic 

Review 46 (2002), 117-142. 

Holt M. T. and R. C. Bishop. “A Semiflexible Normalized Inverse Demand System: 

Application to the Price Formation of Fish.” Empirical Economics 27(2002):23-47. 

Holt M. T. and B. K. Goodwin. “Generalized Habit Formulation in an Inverse Almost Ideal 

Demand System: An Application to Meat Expenditures in the U.S.” Empirical Economics 

22(1997):293-320. 

Kakwani, N.C. “On the Estimation of Consumer Unit Scales,” The Review of Economics and 

Statistics 59(1977), 507-510. 

Kim, H.Y. “Inverse Demand Systems and Welfare Measurements in Quantity Space,” Southern 

Economic Journal 63 (1997): 663-679. 

Kristofersson, D. and K. Rickertsen. “Efficenct Estimation of Hedonic Inverse Input Demand 

System,” American Journal of Agricultural Economics 86, (2004), 1127-1137. 

Kristofersson, D. and K. Rickertsen. “Hedonic Price Models for Dynamic Markets,” Oxford 

Bulletin of Economics and Statistics, 69, 3 (2007), 387-412. 

Lewbel A., “Nesting the AIDS and Translog demand systems”, International Economic Review 

30(1989): 349-356. 

Luenberger, D.G. “Benefit Functions and Duality,” Journal of Mathematical Economics 21 

(1992), 461-481. 

Mittelhammer, R.C., Judge, G. and Miller, D. (2000). Econometric Foundations. Cambridge 

University Press, New York. 

An 

29 



 32 

Palmquist, R.B. “Welfare Measurements for Environmental Improvements Using the Hedonic 

Model: The Case of Nonparametric Marginal Prices,” Journal of Environmental 

Economics and Management 15 (1988):297-312. 

Piggott, N. “The Nested PIGLOG Model: An Application to U.S. Food Demand.” American 

Journal of Agricultural Economics 85(2003):1-15. 

Piggott, N. E. and T.L. Marsh. 2004. “Does Food Safety Information Impact US Meat 

Demand?” American Journal of Agricultural Economics, 86 (February):154-174. 

Pollak R. A. and T. J. Wales. “Estimation of Complete Demand Systems form Household 

Budget Data: The Linear and Quadratic Expenditure Systems,” American Economic 

Review 68 (June 1978): 348-359. 

Pollak R. A. and T. J. Wales. “Comparison of the Quadratic Expenditure System and Translog 

Demand System with Alternative Specifications of Demographics Effects,” Econometrica 

48:3 (April 1980): 595-612. 

Pollak R. A. and T. J. Wales. “Demographic Variables in Demand Analysis.” Econometrica 

49(November 1981):1533-51. 

Pollak R. A. and T. J. Wales. Demand System Specification and Estimation. Oxford: Oxford 

University Press, 1992. 

Samuelson, P. A. “Some Implications of Linearity.” Review of Economic Studies 15(1947-1948): 

88-90. 

Shephard, R. W. 1970. The Theory of Cost and Production Functions. Princeton University 

Press. 

Stone, R. 1954. “Linear Expenditure Systemsand Demand Analysis: An Application to the 

Pattern of British Demand,” The Economic Journal 64 (1954):511-527. 

30 



 33 

 

Tonsor, G. and T.L. Marsh. “Comparing Heterogeneous Consumption in US and Japanese Meat 

and Fish Demand.” Agricultural Economics 37 (2007) 81-91. 

31 


