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Impacts of Increased Climate Variability
on the Profitability of Midwest Agriculture

Bruce L. Dixon and Kathleen Segerson

ABSTRACT

Approximate profit functions are estimatedusing time-series, cross-sectional, county level
data for 12 midwest states.Measures of climate variability are included in the profit func-
tions. Simulated impacts of climate changes on profits are derived. Results show that
inclusion of measuresof climate variationare importantfor measuringthe impact of chang-
es in mean temperatureand precipitation levels. Failure to account for the impact of dif-
ferences in variability leads to an overestimate of damages. If global warming increases
diurnal variation, such increases would have negative impacts on the profitability of mid-
west agriculture.
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There has been considerable debate about the
potential effect of emissions of “greenhouse
gases” on climate change or “global warm-
ing” and its impact on economic and ecolog-
ical systems (see Helms et al.). One sector
thought to be sensitive to climate effects is the
agricultural sector. The impact of global
warming on the United States agricultural sec-
tor has been studied by a number of authors
(e.g., Adams et al. 1988; Adams et al. 1999;
Dudek; Adams; Adams et al. 1995; Crosson;
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Kaiser et al.; Mendelssohn, Nordhaus, and
Shaw 1994, 1999; Rosenzweig and Parry;
Dalton). The typical approach is to assume
some level of change in the prevailing climate
and then deduce the crop yields that would be
associated with that climate regime. Different
climate scenarios lead to different expected
yields and, therefore, different economic im-
pacts.

Unpredictable variability in both economic
and non-economic factors usually affects pro-
ducer decisions such as the quantity produced
(Chavas and Holt). Thus an accurate assess-
ment of the impact of climate change on some
sector of the economy, such as agriculture, re-

quires explicit consideration of the impact of
changes in climate variability. Among the
global warming studies listed above, only Dal-
ton and Mendelssohn, Nordhaus, and Shaw
(1999) address changing climate variability
explicitly, the latter by using a Ricardian mod-
el.

The present study uses an approximate prof-
it function, which is a variant of the Ricardian
method, to evaluate the impact of increased
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climate variability on midwest farm profitabil-
ity. This approach allows projected changes in
net returns due to hypothesized climate chang-
es to be estimated using observed (i.e., actual)
farmer adaptation to geographical climate var-
iation, assuming such adaptation will persist
under the projected climate change scenarios.
In contrast, most previous studies that incor-
porate adaptation (e.g., Adams et al. 1988;
Kaiser et al.; Lambert et al. ) are based on hy-
pothesized adaptation patterns.

The results of the present analysis suggest
two important conclusions. First, models that
fail to account for differences in variability
across the sample are likely to overstate the
damages resulting from climate change. In
other words, losses attributable to a given in-
crease in mean temperature will be over-esti-
mated if the model used for the estimation
does not control for differences in climate var-

iability across regions. Second, if global
warming induces not only increases in mean
temperature and precipitation but also in-
creased variability, the economic impacts of
warming could be considerably larger. We
find, in particular, that in our sample region
increased diurnal (within-day temperature)
variation can generate significant losses,

Methodology

The theoretical basis for the estimated models,
a profit function, is a variant of the Ricardian
method. The Ricardian approach assumes that
climate changes cause farmers to adapt to the
most profitable alternative by switching enter-
prises, seed varieties, technology, etc., and that
markets are functioning efficiently so that the
land rents reflect land’s best use and the as-
sociated profitability. With well-functioning
markets, net profits should be equal to the
rental value of land. In this study net profits
are used as the Ricardian measure instead of
land values. One advantage of net profits over
land value is that land values may include a
speculative component that is most likely not
a function of climate. In addition, use of net
profits does not require an assumption about
the efficiency of the land market.

An advantage of the Ricardian approach is

that it does not require direct observation of
the impact of climate change on crop yields.
Instead, it makes use of the fact that climate
varies considerably across large regions of the
U. S., and that farmers have adapted to the dif-
ferent climates (and would presumably also
adapt to future climate changes in like pat-
terns). Profit-maximizing farmers should or-
ganize crop selection, input intensity, etc. in
concert with the expected climate. Thus, two
farmers facing identical situations except for
climate would likely organize their operations
differently because of adapting to climate dif-
ferences. The resulting differences in net prof-
its would then reflect the direct cost of climate
differences without having to use intervening
yield functions to estimate the effect of cli-
mate change on output levels. In addition, by
including climate variation variables directly
into the regression model, there is no need to
make specific assumptions about farmers’ risk
aversion since the direct relationship of this
variation to profits reveals producers reaction
to climate risk. Moreover, use of observed data
in estimation reflects real-world adaption
whereas models such as Adams et al. (1988),

Kaiser et al., or Lambert et al. rely primarily
on assumptions about producer behavior.

A weakness of the Ricardian or profit func-
tion approach is that prices are held constant
under the environmental change so profit loss-
es are likely to be overestimated. 1 Mendel-
ssohn,Nordhaus, and Shaw (1999) address this
problem by examining the error in using the
Ricardian measure as a measure of change in
the sum of consumer and producer surplus.
Using plausible values of elasticities of supply
and demand for agricultural goods, they con-
clude that for the modest changes in supply
due to changing climate the Ricardian welfare
measures are reliable for modest supply shifts.
Simulations using the Ricardian approach are
also premised on the assumption that technol-
ogy and policy are held constant.

A second limitation is that our methodol-
ogy does not allow for movements of land in

1Price increases triggered by large reductions in
supply would offset some of the losses in profit due to
those reductions.
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and out of agriculture, i.e., the simulated im-
pacts are predicated on the land base remain-
ing constant after climate change. 2 To the ex-
tent that climate change induces the land base
to change, the methodology used here does not
capture the full impact of adaptation to climate
change. Assuming the land base is constant
almost certainly provides conservative esti-
mates of loss due to negative climate change
impacts,s The potential effects of carbon di-
oxide fertilization are also not included in our
analysis. Including such effects is desirable,
but the lack of a consistent data set on ob-
served carbon dioxide levels precludes such
an analysis.

In the present study four regression models
are estimated with observed profits per acre as
the dependent variables and climate, intra-an-
nual weather, edaphic and price variables
along with time and regional binaries as in-
dependent variables. A listing of the variables
is provided in the Appendix. Effects of chang-
es in the climate distribution are determined
by simulating total profits within the midwest
before the climate change and subtracting the
simulated total profits after the climate change.

Data and Model Specification

County-level data for the four agricultural cen-
sus years of 1978, 1982, 1987, and 1992 are
used to estimate approximate profit functions.4
By using four years of data as opposed to one
year, the peculiar effects of any one year bi-
asing adaptation patterns are more likely to be

2This assumption is necessitated by a practical
consideration. If land base is used as an explanatory
variable for county level profits, it overwhelms all oth-
er variables in explaining total county profit variation.

~Suppose profitability per acre decreases due to a
climate change. In this case some land would likely be
drawn into alternative non-agricultural uses with a
higher returnthan thatreflected in the diminished prof-
itability. Thus by holding the land base constant in pre-
dicting aggregate profits, the net returnsunder the less
profitable scenario would be underestimated, implying
the overall losses due to the adverse climate event are
overestimated.

4The applications in Mendelssohn, Nordhaus, and
Shaw (1994, 1999) are limited to one year of cross-
sectional data. In addition, the dependent variables are
gross revenue and farm value per acre.

averaged out. The sample consists of 981
counties in a 12-state region, consisting of the
12 Midwest states in the USDA farm produc-
tion regions of the Lake States, Northern
Plains, and Corn belt. Only this 12-state region
is used because of its relatively homogeneous
technology.s

Cost and revenue data were taken directly
from the Census of Agriculture.6 Profit (or
more precisely, net revenue) per acre was de-
fined as the market value of agricultural prod-
ucts sold minus the sum of variable farm pro-
duction expenses and machinery and
equipment costs, divided by the sum of crop-
land and pastureland for all farms. This is an
approximate computation of profit because it
ignores inventory shifts, and input costs were
limited to those items available in all four cen-
sus years. Because the actual revenues and
costs are used, the net revenues are ex-post.

A proper profit function has output and in-
put prices in its domain, as well as other fixed
or uncontrollable factors—in this case climate
and weather measures and edaphic variables.
The particular Ricardian approach by Men-
delssohn, Nordhaus, and Shaw (1994, 1999)
has no price variables because the data were
purely cross sectional and price variations
would be due primarily to transportation costs
and be reflected in the land values. However,
because the sample used here spans four years,
price variables are necessary. The use of ob-
served profits also necessitates the inclusion of
variables measuring observed weather in a
given year. Thus, profit variations due to de-
viations in a given year’s weather from long-
term trends in climate are explained by the
weather variables.

Output price data come from Agricultural
Statistics and are state-level, market year pric-
es rather than expected prices.7 The included

5These consist of counties for which at least 20%
of the land was in agriculture and complete observa-
tions were available. See Segerson and Dixon for full
details on sample selection.

6Nominal values of all prices, revenues, and costs
were converted into 1987 dollars using the GNP defla-
tor.

7Use of output prices lagged one year did not
change parameter estimates substantially because pric-
es turn out not to be very important, probably due to
having only four different years.



540 Journal of Agricultural and Applied Economics, December 1999

price variables are the market year prices re-
ceived for the major field crops (corn, soy-
beans, wheat, and hay) and the mean per-ca-
pita value of inventory for the major livestock
animals (cattle and swine). The latter two var-
iables performed better than beef and pork
prices and the per-capita cattle value also re-
flects the value of beef and dairy cattle.

Since county or state-level data on input
prices are not available for all the inputs listed
in the census, regional input price variation
was captured by two regional dummy vari-
ables, one for the Northern Plains states and
one for states in the Lake States region. The
three binary variables capturing year effects
also represent time series effects in input price
shifts, as well as technology trends and vari-
ation in farm policies, For moderate input
price variations, the comparative advantages
and biological imperatives of various enter-
prises likely outweigh the effect of input price
fluctuations. Thus, the results reported here
should be reasonably accurate for the input
prices in effect during the study period.

The climate data (seasonal temperature and
precipitation) and the data on soil and site
characteristics are identical to the variables
used in Mendelssohn, Nordhaus, and Shaw
(1999). Intra-year weather data were provided
by USDA/ERS.8 The climate variables, ob-
served by county, are as follows: 30-year
(195 1–1980) mean seasonal temperature lev-
els (January, April, July, and October), 30-
year mean seasonal precipitation levels (same
four months), the observed range of each of
the prior eight variables (maximum annual
value observed over 30 years for a county less
the minimum annual observation) and 30-year
mean diurnal temperature variation for each of
the four months.9 Four months of these data
are used to capture major climate variations
within a year and seasons important in agri-
culture. Spring, summer, and fall are clearly
important for much of the planting, growing,

8The data were provided by David Westenbarger
of the Economic Research Service, U.S. Department
of Agriculture.

gNote that a given climate variable is the same for
each of the four years for a given county.

and harvesting and winter is important for
livestock and winter wheat. Two weather var-
iables representing deviations of actual sum-
mer (June, July, and August) temperature and
precipitation from their respective thirty year
climate for July are also included. 10

Because of the potential sensitivity of the
simulation results to the specification of the
profit function, results from four different
models are discussed. The first model, A, is
additive and is thus similar to Mendelssohn,
Nordhaus, and Shaw (1999) except for the de-
letion of some site characteristics not found to
be relevant, addition of the two weather vari-
ables and the interaction terms. Model A is
linear in the dependent variable (per-acre net
revenue) and all the independent variables ex-
cept the eight climate level variables and the
interaction terms. Quadratic terms were in-
cluded in addition to linear terms for the mean
seasonal temperatures and precipitation.
Twelve interaction terms were included for the
interactions of mean seasonal temperature
with observed temperature range and diurnal
variation, and mean seasonal precipitation
with the observed precipitation range as de-
scribed in more detail in Table A 1. Model A 1
is similar to Model A except that the range
and diurnal variation variables and their as-
sociated interaction terms are deleted. Model
L regresses per-acre profits on the logs of all
the regressors in Model A except the binary
variables for time and region (which remain
as binaries) and includes quadratic log terms
for output prices to allow for proper curvature
of the profit function in prices. 1‘ Model L 1 is
the same as L except the range and diurnal
variables and their interaction terms are delet-
ed.

Estimated Models and Elasticities

Since each of the four models has a large num-
ber of coefficients, they are not presented here

I~The weather variables temperature and precipi-
tation are observed at NOAA regional levels where
each region consists of several counties within a state.

1I To get log~ithms of the two weather variables,
logs were taken of the ratio of the mean of the ob-
served three months to the thirty year averages. The
quadratic terms are the logs of the relevant variables
squared.
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Table 1. SummaryRegression Statistics forthe Estimated Models

Model

Statistic A Al L L]

R2 0.6571 0.6231 0.6623 0.6289
R2 0.6516 0.6195 0.6564 0.6248
Maximum Condition Index 43624 24835 .76784E+6 .49562E+6
B-P-G Test for Heteroscedastic-

ity’ 332 269 419 333

nThis is the Breusch-Pagan-Godfreytestfor heteroscedasticitywhere the varianceis a function of all the regressorsas
discussed in Judge et al.

but are available upon request from the senior
author. Summary regression statistics are pre-
sented in Table 1. All models were estimated
by least squares and were characterized by
high levels of multicollinearity and heteros-
cedasticity. Coefficient standard errors were
estimated by White’s method. This implies
that the ratios of coefficients to their standard
errors are asymptotically, normally distributed.
The high levels of multicollinearity suggest
difficulty in identifying significant climate ef-
fects of individual climate variables. 12Much
of this collinearity is associated with the linear
and quadratic climate variables. Indeed, the re-

1z The condition indexes displayed in Table 1 for
each of the four models indicate extraordinarily high
levels of collinearity so that indications of coefficient
statistical insignificance are suspect.

Table 2. Seasonal Temperature and Precipi-
tation Elasticities For the Four Alternative
Modelsa

Model

Month A Al L LI

Jan
Apr
Jul
Ott

Jan
Apr
Jul
Ott

Seasonal TemperatureElasticities

–2.87 –3.51 – 1.49 –1.11
5.31 –2.33 3.37 –3.45

–15.47 –18.88 – 12.26 –13.50
7.97 19.13 4.82 12.01

Seasonal PrecipitationElasticities

0.291 0.129 –0.341 –0.295
–0,001 0.097 0.779 0.702
–0.084 0.025 – 1,498 0.490
–0.476 –0.408 –0.491 –0.512

“ Elasticitiesare evaluatedat the sample means of the ap-
propriatedependentand independentvariables,

suiting imprecision motivates the use of sim-
ulation in which all the temperature or precip-
itation variables are varied simultaneously to
identify climate impacts.

Models A and L fit the cross-sectional data
well with Model A having an R2 of ,657 and
Model L an R’ of .662. By the adjusted R2
criterion, inclusion of the variation variables
with their interaction terms (by comparison
with Models A 1 and L 1, respectively) is jus-
tified. Omitting these variables results in some
noticeable differences in the climate variable
elasticities, as verified in Table 2.13A majority
of the climate variable coefficients are statis-
tically significant in both models.’4

Models A and L do not totally agree on the
signs and significance of the various climate
variables. The impacts of the various climate
variables between models can be compared by
computing elasticities. The elasticities for the
temperature and precipitation seasonal vari-
ables computed at sample means are presented
in Table 2. Temperature has substantially larg-
er elasticities than precipitation. July and Oc-

1Jme extent to which omitting climate variation
and interactions matters in valuing climate change is
estimated in the simulation section.

MModeI A has three of the eight (four linear and
four quadratic) seasonal temperaturevariables signifi-
cant at .05, and four of the eight seasonal temperature
variables are significant at .05 in Model L. Two of the
eight seasonal precipitation level variables in Model A
are significant at .05, and all eight seasonaI precipita-
tion level variables are significant in Model L. Both
models have 12 interaction terms. Ten of these terms
are significant in Model A and seven are significant in
Model L. In Models A and L, nine and seven of the
12 range and diurnal variation variables, in each model
respectively, are significant at .05.
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tober temperatures have the largest elasticities.
Model A has July and October temperature
elasticities of – 15.5 and 7.97 while Model L
has corresponding elasticities of – 12.3 and
4.82.

It is clear that increased July temperatures
reduced profits, whereas higher temperatures
in October increased profit. For crops both ef-
fects on profits are plausible since higher sum-
mer temperatures can exacerbate moisture
stress and higher fall temperatures can lower
grain drying costs. All models imply that win-
ter temperature increases would be profit de-
crea5ing.15The elasticity signs fOr spring tem-

perature increases are mixed and show the
inclusion of the interaction and variation terms
change signs in both the additive and logarith-
mic models.

In general, the precipitation effects are
much smaller in elasticity terms than temper-
ature effects. Models A and L only agree in
the signs of precipitation effects in summer
and fall. The negative signs in summer are sur-
prising although too much moisture can hinder
some field operations. The negative fall effect
is expected since rain can delay harvests and
increase drying costs. Thus the impact of pre-
cipitation on profits is somewhat ambiguous
for two of the seasons in contrast to the agree-
ment between the models for temperature ef-
fects.

In terms of intra-annual weather effects, the
models are in agreement that higher-than-av-
erage temperatures for a given summer are
detrimental and higher-than-average precipi-
tation is profitable. These results are not sur-
prising given the sparse use of irrigation in the
rnidwest. However, the significance of the var-
iables is not consistent across models. The
weather variable for temperature deviation is
significant in Model A but not in Model L,
and precipitation deviation variable is signifi-
cant in Model L but not in Model A.

The importance and impact of the varia-
tional variables is evident from the elasticities
in Table 3. Signs of the various elasticities for
a given climate effect and season are consis-

15Wmmer winterscould be conducive to greater
pathogen growth for corn and soybeans (Talde).

tent between the two models except for diurnal
variation in April. However, signs of the var-
iational variable elasticities differ by season.
For example, increased temperature variability
is beneficial in the winter and summer but det-
rimental in the spring and fall. Increased pre-
cipitation variability is detrimental in the win-
ter and spring but beneficial in the summer
and fall. Note that in Table 3, for a given mod-
el, the sum of either the temperature or pre-
cipitation elasticities is within –.2 of zero.
This implies that a uniform increase in inter-
year variability is somewhat insensitive to prof-
its, suggesting that farmers might be offsetting
production risk with input mix and marketing
strategies.

Diurnal variation has elasticities on a com-
parable magnitude with those of temperature
variability, which implies diurnal variation ef-
fects are substantially greater than inter-year
precipitation variation. In both models greater
diurnal variation in January and July is esti-
mated to be detrimental whereas increased Oc-
tober diurnal variation is beneficial. The im-
pacts of greater April diurnal variation differ
between models. Unlike the precipitation and
temperature, there is a net negative effect on
profits from increased diurnal variation. 16

Simulation Results

Simulating profits under alternative climate
scenarios measures climate change impacts on
net revenues. In the simulations, climate var-
iables for seasonal temperature were set at ob-
served levels, then at observed levels plus
1.5”C, 2.5°C, and 5.O”C in successive simula-
tions. Seasonal precipitation was set at 90 per-
cent, 100 percent, 107 percent, and 115 per-
cent of observed levels. The variables
representing long-term climate variation-the
ranges of the seasonal temperature and precip-
itation variables observed over the 30-year in-
terval and the 30-year diurnal variations—

I~In communication with agronomists, a compre-
hensive rationale for increased diurnal variation caus-
ing a decrease in yield could not be established. Egli
and Wardlaw find empiricat support for decreased sum-
mer diurnal variation increasing soybean yields.
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Table3. Elasticities of Variational Variablesa

Month Model A Model L

Jan
Apr
Jul
Ott

Jan
Apr
Jul
Ott

Jan
Apr
Jul
Ott

Seasonal Temperature Range Elasticities

0.454 0.471
–0.474 –0.605

0.548 0.453
–0.496 –0.503

Seasonal PrecipitationRange Elasticities

–0.123 –0.026
–.177 –.167
0.007 0.032
0.299 0.169

Seasonal Diurnal VariationElasticities

–1.121 –1.609
–0.122 0.032
–2.610 –2,633

1.101 1.333

‘Elasticities are evaluatedat the sample means of the ap-
propriatedependentand independentvariables.

were set at observed levels and then increased
by 10 percent and25 percent. These levels of
range variation were chosen to represent ap-
proximately a 10-percent to 25-percent in-
crease in the standard deviations of the range
variables. The two weather deviation variables
were set to zero in all simulations to give all
counties average weather. The simulation re-
sults are for 1992 so all other variables are set
at their 1992 levels. Changes in aggregate prof-
its relative to the baseline scenario of all var-
iables at their 1992 levels, except for the two
weather deviation variables, are presented in
Table 4 (in 1987 dollars). The simulations im-
plicitly hold technology constant, If climate
change occurs, it would do so over a long pe-
riod and technology would probably change
accordingly. Thus, the loss estimates are bi-
ased upwards by holding technology constant.

Differences in profit changes between
Models A and L are not large. Both models
show that moderate temperature increases re-
sult in net revenue losses to midwest agricul-
ture. 17However, as the temperatures increase

ITIn the simulations the net revenUeper acre fOr a
given county is predicted using the regression model
and this figure is multiplied by the number of acres in
crops and pasture in thatcounty in 1992. These county

from the 2.5°C increment to the 5.0°C incre-
ment, the losses level off and start to decrease.
In models estimated without the interaction
terms (not shown here) the losses increase
monotonically with temperature. Thus, the in-
clusion of the interaction terms affects the
qualitative nature of the simulation results. In
general, Model A predicts larger losses from
increasing temperatures than Model L. These
differences do not exceed $2 billion for any
scenario except where there is a 25 percent
increase in the variational variables and a
5.O”C increase in temperature. Here, Model L
shows a $3.7 billion greater loss of net reve-
nues. In percentage terms, the losses in Table
4 are substantial in some cases since the model
predicts midwest net returns for 1992 of $16.5
billion in 1987 dollars for Model A and $21.7
billion for Model L.

Precipitation level impacts are similar in
the two models. Profits are highest when pre-
cipitation is at 90 percent of historical levels
for a given temperature. This is somewhat
counterintuitive and contrary to results in Ad-
ams et al. (1988, 1999) but consistent with
Kaiser et al. and with preliminary results when
the interaction terms were not included in
Models A and L. Maximum dollar losses from
increased rainfall for a given temperature level
are modest, about $2.1 billion for a given tem-
perature in Model A and $1.4 billion for Mod-
el L.18

Although not strictly comparable, our re-
sults show some distinct departures from those
in Mendelssohn, Nordhaus, and Shaw (1999)
for changes in the levels of the climate vari-
ables. ‘g They find benefits from some temper-
ature increases, while our findings show de-
clines in profits for all temperature increases
modeled. For example, for both the 1.5°C and

level figures are aggregated over the 12 state regions
to get total net revenues for the midwest.

lxThese me the maximum differences between the
profit changes with the scenarios having precipitation
at 90 percent of observed for a given temperaturelevel
less profits in scenarios at higher levels of precipita-
tion.

19AH our compfisons are with those models in
Mendelssohn,Nordhaus, and Shaw (1999) that weight
the Midwest more heavily, i.e., the cropland models.
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Table 4. Predicted Changes in Aggregate Profit for Various Climate Change Scenarios’

Hypothesized Changes Change in Aggregate Profit
in Climate Variablesa (1987 $S)

$ bil. $ bil. $ bil. $ bil.
AT(°C) AP Av Model A Model Al Model L Model LI

0.00
0.00
0.00
1.5
1.5
1.5
1.5

2.5
2.5
2.5
2.5

5.0
5,0
5.0
5.0

0.00

0.00

1.5

1.5

2.5

2.5

5.0

5.0

–1070
+7~o

+1570

– 1070
0.00

+7%
+15%

– 10%
0.00
+7%

+15%

– 10%
0.00

+770
+15~o

+7%

+7?40

+7~o

+7??0

+7$Z0

+7%

+7’%0

+7~o

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1O$ZO

25~o

1070

25~o

10%

25~o

10!70

25~o

+1.41

–.701
–1.21

–2.56
–3.97
–4,67
–5,19

–3.96
–5.37
–6,07
–6.59

–3.09
–4.50
–5.20
–5,71

– 10.3
(-.964)’

–24.7
(-1.36)

– 12.4
(-5.58)

–24,0
(-6.93)

– 12.6
(-7.40)

–22.3
(-9.40)

–8.58
(-7.59)

–13.7
(-11.2)

0.851
–.400
–.661

–7.42
–8.28
–8.68
–8.94

–14.1
–15,0
–15.4
–15.6

–35.0
–35.9
–36.3
–36.5

NA

NA

NA

NA

NA

NA

NA

NA

1.20 – .487
–.241 .751
– .043 1.93

–2.31 –5.96
–3.51 –5.48
–3.75 –4.73
–3.55 –3.55

–3.65 –11.3
–4.85 –10.8
–5.09 –10.0
–4.89 –8.85

–3.52 –29.0
–4.73 –28.5
–4.97 –27.7
–4.77 –26.6

–9.99 NA
(– 1.07)

–23.1 NA
(-2.17)

– 12.0 NA
(-4.94)

–23.0 NA
(-6.52)

– 12.4 NA
(-6.53)

–22.2 NA
(–8.44)

– 10.3 NA
(-7.03)

–17.4 NA
(-9.80)

‘ Figuresin parenthesesrepresentthe loss from an increasein therangesof seasonaltemperatureand precipitationwith
diurnal variation held at its observed values.
bAT,AP and AV indicatethechangefrom historicalvalues of temperature, precipitation and the variational variables,

respectively.The change in temperature is measured in ‘C

are in percentage change from observed.

2.5°C increases, Mendelssohn, Nordhaus, and
Shaw (1999) show net benefits to U.S. agri-
culture as a whole whereas our results show a
decline for the midwest. Only at the 5.0°C
temperature level do they find negative bene-
fits to agriculture. Precipitation effects in our
models are contrary to predictions in the Men-

and the changes in precipitation and variational variables

delsohn, Nordhaus, and Shaw (1999) models
that include the climate variation variables,
which find additional precipitation to be ben-
eficial. A possible explanation for the differ-
ences is that the present models are only for
the midwest where precipitation is generally
adequate and excessive precipitation can hin-
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der field operations in both the spring, sum-
mer, and fall.zo

We also simulated the impact of a simul-
taneous increase in all of the variation vari-
ables.z’ As displayed in Table 4, increasing cli-
mate variation has a large impact on profit
losses. This result holds regardless of whether

Model A or Model L is used, although Model
A shows slightly higher losses unless the tem-
perature increase is 5.O”C. The marginal im-
pact of increasing climate variability is ob-
tained by subtracting the change in profits of
the increased variability scenarios from the
change in profits for corresponding scenarios
where variability is at observed levels. For ex-
ample, with climate variation increased by 10
percent, temperature unchanged, and precipi-
tation increased by 7 percent, losses are $10.3
billion compared with $.701 billion for no cli-
mate variation change. This gives a marginal
loss of $9.6 billion due to increased climate
variation.

Table 5 shows the marginal losses due to
increased climate variability range widely as a
function of the variation assumed and the tem-
perature level. In both Model A and Model L,
the marginal losses of increased variation are

zoResults in Adams et al. (1999) indicate sOme-
what more favorable climate change impacts for U.S.
agriculturethan our results. There are a number of pos-
sible reasons for the differences. Fh’st, Adams et al.
(1999) cover the nation and our results pertain only to
the midwest. Table 2.4 of Adams et al. (1999) suggests
that impacts vary regionally. Second, Adams et al.
(1999) include regions with heat-tolerant crops which
ours does not. Inclusion of these crops mitigates or
offsets losses due to heat-sensitive crops, which are the
primary crops in our study region. Third, Adams et al.
(1999) include a carbon dioxide fertilization effect,
which boosts yields under climate change. Fourth, they
allow for price endogeneity. As noted earlier, because
our analysis does not account for price effects, it is
likely to lead to higher estimated damages. Finally, our
methodology treats the agricultural land base as fixed,
while Adams et al. (1999) do not. The ability of land
to move out of agriculture in response to reduced prof-
its would tend to reduce any negative impacts of cli-
mate change.

21For consistency, we simulate an increase in di-
urnal variation (along with the other variation vari-
ables) although it is possible thatclimate change would
actually lead to a reduction in diurnal variation. The
role of diurnal variation in the impacts of overall in-
creases in variation is discussed below.

Table 5. Marginal Losses Due to Increased
Climate Variability for Various Climate
Change Scenariosa

Hypothesized Changes in Marginal Change in
Climate Variablesb Aggregate Profit

$ bil

AT(°C) AP AV Model A Model L

0.0 ’770 10% 9.60 9.75
0.0 7~o 25910 24.0 22.9
1.5 7% 1090 7.73 8.25
1.5 7~o 25% 19.3 19.2
2.5 7~o 1070 6.53 7.31
2.5 7~o 25~o 16.2 17.1
5.0 7~o 1070 3.38 5.33
5.0 770 25yo 8.50 12.4

“ The marginal loss due to increased climate variability is

the change in profit for a given AT andAP with AV = O,
lessthecorrespondingchangeinprofitfor a given AT, AR

and AV.
bDT,DP and DV indicate the change from historical val-

ues of temperature, precipitation and the variational vari-

ables, respectively. The change in temperature is measured

in “C and the changes in precipitation and variational var-

iables are in percentage change from observed.

highest with no temperature change and then
diminish monotonically as temperatures in-
crease over the scenarios. With no change in
temperatures, profits decline about $1 billion
for each percentage increase in variation. The
decrease in dollar losses as temperatures rise
reflects the interaction effects of the level and
variation variables. However, even in the
5.0°C temperature increase scenario, a 10-per-
cent variation increase results in additional
losses of $3.38 billion for Model A and $5.33
billion for Model L.

The figures in parentheses in Table 4 below
the profit changes associated with increases in
all variational variables are the profit changes
if only the range variables are varied, i.e., if
diurnal variation is held constant. For both
Models A and L, diurnal variation accounts
for a large portion of the losses due to all
forms of increased climate variation except in
the 5.O”C temperature increase scenarios.

Because of collinearity in the data, the spe-
cific numbers that result from the simulations
must be interpreted with caution. Nonetheless,
two important conclusions emerge from the



546 Journal of Agricultural and Applied Economics, December 1999

analysis. The first relates to the importance of
including climate variation measures in mod-
els to obtain better specified models. As noted
earlier, the magnitudes of the temperature and
precipitation elasticities vary substantially in
some cases as a function of whether variation-
al variables are excluded from the model. The
net effects of such exclusions in the simula-
tions are substantial. Omitting the variational
variables and their interactions generally in-
creases the loss estimates from temperature in-
creases. The differences are most apparent at
the higher levels of temperature increases. For
example, at a 5 .O”C temperature and 15-per-
cent precipitation increase, the model without
variation (A 1) predicts a loss of $36.5 billion
compared with $5.71 billion for the model
with variation (A). Given that predicted profits
for 1992 for the midwest were $16.2 billion,
the change in specification yields a very dif-
ferent conclusion about the impacts of climate
change and indicates that specification is a
very important feature of measuring the im-
pacts of climate change. Mendelssohn, Nord-
haus, and Shaw (1999) found a similar result
when including variation variables in their
models. However, in their sample, inclusion of
the variation variables in the regression had
not only a quantitative but also a qualitative
effect on the simulated impact of changes in
mean temperature. In particular, when these
variables were included, moderate increases in
mean temperature were beneficial to agricul-
ture, rather than detrimental as predicted with
a model that excluded the variation variables.
Our results suggest that inclusion of the vari-
ation variables would reduce but not eliminate
the negative impacts of changes in mean tem-
perature.

Second, the simulation results show clearly
that for the changes in climate variables hy-
pothesized, changes in variation are potential-
ly very costly to Midwestern agriculture. Of
course, the magnitude of the impact depends
on the hypothesized change in variation that
would result from climate change. However,
the elasticities corroborate the results of the
simulations. Of the variation variables, our
analysis suggests that diurnal variation is po-
tentially the most important. The importance

of potential increases in variability is consis-
tent with the results in Mendelssohn, Nordhaus,
and Shaw (1999). In addition, using a sto-
chastic growth model that incorporates a link
between changes in the mean and variance of
climate variables, Dalton shows that damages
from climate change are likely to be under-
estimated in analyses that fail to account for
changes in climate variability. Thus, to predict
the impact of climate change accurately, future
studies should include not only changes in
mean temperature and precipitation but also
the impact of climate change on the variability
of these variables.

Summary

While several previous studies have estimated
the impact of climate change on U.S. agricul-
ture, for the most part these studies have not
considered the impact of climate variability. A
few recent studies (Mendelssohn, Nordhaus,
and Shaw 1999; Dalton) have begun to incor-
porate climate variability into their analyses
and have shown that variability is potentially
important. This study contributes to this recent
literature, using a variant of the Ricardian
methodology introduced by Mendelssohn,
Nordhaus, and Shaw (1994).

Four approximate profit function models
were estimated and used to simulate the im-
pact of long-run climate change on agricultur-
al net revenues in the midwest. Models were
estimated both with and without variables re-
flecting climate variability and for the two dif-
ferent functional forms. Choice of functional
form was of minor consequence. The simula-
tion results were very sensitive to the inclu-
sion of climate variability variables and their
associated interaction terms. Perhaps the most
important aspect of this sensitivity is in mea-
suring the impact of changes in mean temper-
ature and precipitation. When the variation
variables are excluded from the estimated
models, the net revenue losses due to changes
in mean temperature are estimated to be much
higher. In other words, accounting for differ-
ences in climate variability across the sample
reduces the estimated damages. However, in
contrast to the results in Mendelssohn, Nord-
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haus, and Shaw (1999), in our study incor-
porating these variables does not eliminate
losses or make moderate mean temperature in-
creases beneficial. Nonetheless, if the impact
of changes in the levels of climate variables
are to be estimated accurately, the analysis
must control for the impact of climate vari-
ability.

In addition, the estimated elasticities and
simulations suggest that damages from global
warming could be substantially higher if
warming leads to greater climate variability. In
our analysis, damages were particularly sen-
sitive to increases in diurnal variation, a result
that is consistent with other studies (Mendel-
ssohn, Nordhaus, and Shaw 1999; Dalton).
This suggests that meteorologists predicting
climate change effects should focus their at-
tention not only on changes in the mean values
but also on any impact that global warming is
likely to have on climate variability.
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Table Al. Definition of Variables

Variable Definition

PROFIT/ACRE

TEMP1 , TEMP4, TEMP7
and TEMP1 O

TEMP12, TEMP42,
TEMP72 and TEMP102

PRE1, PRE4, PRE7 and
PRE1O

PRE12, PRE42, PRE72 and
PRE102

DIURN1 , DIRUN4,
DIURN7, and DIURN1O.

TEMP IR, TEMP4R,
TEMP7R, TEMP1OR

PREIR, PRE4R, PRE7R,
PRE1OR

TIR1, T4R4, T7R7, and
TIOR1O

PIR1, P4R4, P7R7, and
P1OTIO

TIDI1, T2D12, T7D17, and
TIODI1O

WTD

WPD

LATITUDE

ALTITUDE

SALINITY

WATER CAP

PERMEA

WET

KFAC

SLOPE

PCORN

PWHEAT

PSOY

HAYPRICE

PBEEF

PPORK

LAKEST, NORPLA

D1978, D1982 and D1992

Market revenue less variable costs and machinery costs divided by sum
of cropland and pastureland. ($)

Mean daily mean temperature in the month from 195 1–1980, Fahrenheit
+ 3°. Computed as being the temperature one-half way between the mean
daily maximum and mean daily minimum temperatures for the month.
Number indicates month, where 1 = January, 4 = April, 7 = July, 10 =
October.

Square of TEMP1, TEMP4, TEMP7 and TEMP1O, respectively.

Mean precipitation for the month, in inches averaged from 195 1–1980.

Square of PRE1, PRE4, PRE7 and PRE 10, respectively.

The difference between mean daily maximum and daily minimum tem-
peratures in the month, Fahrenheit (diurnal cycle).

The range between the year with the highest and the year with the lowest
mean monthly temperature over 195 1–1980, Fahrenheit.

The range between the year with the greatest and the year with the least
monthly precipitation over 1951-1980, inclusive in inches.

Interaction of temperature and temperature range so that T1 R1 = TEMP1
. TEMPIR, etc.

Interaction of precipitation and precipitation range so that PIR1 = PRE1
. PREIR, etc.

Interaction of temperature with diurnal variation so that TID1 = TEMPI
. DIURN1, etc.

Mean of June, July and August mean temperatures for observation year
less TEMP7, Fahrenheit.

Mean of June, July and August precipitation for observation year less
PRE7, inches.

Latitude measured in degrees from southern most point in U. S.

Height of county from sea level in feet.

Percent of land which needs special treatment because of saltialkaline in
the soils.

Water capacity-Ability of soil to hold water (inches per pound).

Permeability-Ability of water to pass through soil (inches per hours).

Percent of land considered wetland.

K factor-soil erodibility factor in hundredths of inches.

Number of feet length of slope (not steepness).

Market price of corn ($/bu.).

Market price of wheat ($lbu.).

Market price of soybeans ($/bu.).

Market price of hay ($/ton.).

Per capita inventory value of cattle ($/head).

Per capita inventory value of pork ($/head).

Lake states (MI, WI, MN) binary; Northern Plains States (ND, SD, NE,
KA) binary.

Annual binary variables taking on the value of 1 for the indicated year, O
otherwise




