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Abstract 

 

This paper examines the effect of off-farm work on the economic performance of corn 

farms.  It estimates returns to scale and technical efficiency following an input distance 

function approach and compares the relative performance of corn farm operator households 

with and without off-farm work. We use farm-level data from the USDA’s ARMS survey 

for 2002-2011.  The impact of off-farm work on scale and technical efficiency is examined 

at the household level.  We find that off-farm income boosts scale efficiency on corn farms. 

We also find that operator hours worked off farm negatively affects technical efficiency, 

while we find no impact on technical efficiency for spouse hours worked off farm. Finally, 

we find that corn farms relying on off farm income have comparable returns on farm assets 

across all size classes, but significantly higher household returns (with off-farm income and 

assets accounted for) across all size classes.  
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Made possible by alternative employment opportunities and facilitated by labor-saving 

technological progress, such as mechanization, off-farm work by farm operators and their 

spouses’ has risen steadily (until very recently)
1 

over the past decades, becoming the most 

important component of farm household income.  Based on USDA data, total net income 

earned by farm households from farming grew from about $15 billion in 1969 to nearly $50 

billion in 1999 and is estimated at $118 billion in 2012.  However, off-farm earned income, 

which began at a roughly comparable figure in 1969 ($15 billion), soared to about $120 billion 

in 1999 and is estimated at more than $150 billion in 2012.  In addition, as women’s wages 

have risen, married women have become more likely to work in the paid labor market and 

household tasks are now shared between spouses.  Moreover, as U.S. farms continue to grow 

markedly in size, issues related to the interaction of off-farm income, farm size, and economic 

performance in general are among the leading concerns affecting U.S. agriculture.  Because of 

the controversies surrounding these issues, agricultural economists have been looked to for 

objective information on these issues.  Therefore, the purpose of this study is to analyze how 

off-farm work affects economic performance of corn farms.    

     Off-farm income also appears to smooth out income flows because off-farm wages are 

generally less variable than farm sources of income as described in Mishra and Sandretto 

(2002).  Do off-farm sources of income also increase the overall efficiency of farm operator 

households and reduce costs as suggested in a report by the USDA, USDA (2001b).
2
 

                                                 
1
Using 2011 ARMS data, off-farm work and other sources of off-farm income remain the most important component 

of farm household income for all farms, with off-farm sources of income now about 20 percent larger than net farm 

income ($71,000 versus $36,000); however such off-farm sources of income were nearly 5 times larger than net farm 

income in 2002 ($61,000 versus $13,000).     

 
2 
For purposes of our analysis farm operator household income includes income from farm activities and wages and 

salaries that the operator and all other household members received from off-farm sources.  For our base farm 
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Gardner (2005) argues that integration of farm and nonfarm labor markets means that many 

small farms are surviving and even flourishing to an extent not thought possible 20 or 30 

years ago.  Other authors such as Boisvert (years) have stressed not only the growing links 

between farming activities and off-farm labor markets but also the links between farm 

household activities and conservation payments and agricultural pollution. Despite its 

considerable importance, and perhaps due to modeling and data challenges, issues related 

to the impact of off-farm income have been largely neglected (with a few notable 

exceptions) in studies of farm structure and economic performance in U.S. agriculture.  

               As on-farm and off-farm activities compete for scarce managerial time in U.S. 

farm operator households, economic decisions (including technology adoption and other 

production decisions) are likely to shape and be shaped by time allocation within the farm 

household (Fernandez-Cornejo, 2007).  While the importance of off-farm income to all 

U.S. farmers is widely acknowledged, it is less clear if off-farm work is actually helping 

farm households to improve their economic performance across farm sizes and types of 

enterprises.  In particular, because of the higher managerial labor required in livestock 

production (e.g., dairy) compared to crop production, off-farm work is likely to have a 

larger impact on farm-level efficiency of livestock farms than of crop farms.  However, the 

effect of off-farm work on household-level efficiency is less clear because it depends on 

the relative weight on on-farm and off-farm activities on the farms under study (Fernandez-

Cornejo, 2007). 

In a study of U.S. farms, Nehring, Fernandez-Cornejo, and Banker (2005) found 

that larger farms are generally more efficient than smaller farms in transforming farm 

                                                                                                                                                             
operator household model we constrain all such off-farm income to zero. 
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inputs into outputs given the technology at their disposal.  But focusing on farm inputs and 

outputs alone is misleading because off-farm income-generating activities can be important 

in determining economic performance of the farm household.  When off-farm activities are 

included, farm household-level efficiencies are higher than farm-level efficiencies, across 

all farm sizes. Further, efficiency gains from integrating off-farm work into the output 

portfolio are relatively greatest for smaller farms (Fernandez-Cornejo, 2007).  As a result, 

household-level efficiencies of smaller farms are comparable to farm-level efficiencies of 

larger farms.  This suggests that households operating small farms have partially adapted to 

shortfalls in farm-level performance by increasing their off-farm income. We show these 

changes by typology—recently update by ERS to reflect commodity price inflation and the 

shift of production to larger farms---as defined in Table 1 (USDA 2013). 

In this study we include the Corn Belt, Lake States, the Northern Plains and  

Southern Plains.  Using farm-level data from Agricultural Resource Management Survey 

(ARMS) and an input distance function approach we estimate returns to scale and technical 

efficiency--and compare the relative performance of farm operator households with and 

without off-farm wages and salaries.  The study proceeds as follows. In the first section we 

provide the background followed by the methodology. We then describe the ARMS data 

used in this study. Results are discussed in the next section followed by summary and 

conclusions section.  

Background 

Off-farm income received by U.S. operators and their spouses’ has risen steadily over 

recent decades as job opportunities grew and technological progress such as mechanization 

has lessened on-farm labor needs.  The off-farm income share of total household income of 
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U.S. farmers rose from about 50 percent in 1960 to more than 80 percent by the early 

2000s, becoming the most important component of farm household income (Mishra et al., 

2002).   

     However, robust growth in farm incomes and soft macroeconomic employment trends 

in the last five years have dramatically altered the off-farm/farm playing field. Even though 

off-farm employment by farm families may have decreased in intensity in recent years, as 

pointed out by Mishra et al., (2002), off-farm employment still varies by farm type. The 

ARMs data from 2002-2011 indicate a sharp decrease in off-farm participation for 

specialized corn farms and all farms. For example, off-farm participation by operators 

decreased from 20 percent in 2002 to 8 percent in 2011 for corn farms and from 53 to 29 

percent for all farms.  Similarly, spouses off-farm participation decreased from 53 to 20 

percent and 45 to 27 percent for specialized and  all farms, respectively 

 Also, data reveal that the average hours worked off-farm by farm operators for all 

farms decreased from 999 hours per year in 2002 to 509 in 2011, while the hours devoted 

to farm work increased significantly, from 1,310 hours in 2002 to 1,621 in 2011. Similarly, 

the number of hours worked off the farm by spouses decreased from 761 in 2002 to 435 in 

2011, while the hours devoted to farm work on farm nearly tripled from 301 hours in 2002 

to 823 in 2011. 

           Off-farm employment remains important as a component of total income. But 

ARMS data indicates that earned income for all farms averaged 15 percent of total income 

in 2011, down from 21 percent in 2002. Recent increases in farm income and accelerating 

specialization in corn production have reduced the share of off-farm income in total 

household income.  A farm household earned about $71,000 in 2011, up from about 
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$10,000 in nominal terms in 2002, but income from farming activities more than doubled 

to about $36,000.    

Another trend that emerges is in cropping patterns. Cropping patterns have changed 

significantly over the time period analyzed, partly due to the ethanol support policy 

favoring corn production over alternative crops, particularly soybeans, and  new corn seed 

technology allowing corn production in new growing areas (Malcolm et al.).  ARMS data 

for 2002-2011 show that the proportion of harvested acres in corn on specialized corn 

farms increased from 47.1 percent in 2002 to 50.3 percent in 2011, while the percent of 

harvested acres in soybeans decreased from 39.0 percent to 35.5 percent. For example, corn 

acres in three states (Kansas, North Dakota, and South Dakota) increased from 10.6 million 

acres in 2002 to 14.5 in 2011.  

 Cropping pattern shifts favoring corn because of the ethanol program and new seed 

technology significantly changed pesticide and fertilizer use and altered the composition 

and level of pesticides and fertilizer used. In general, fertilizer use per acre increased per 

acre increased as shown in (SWCS 2011).   Fertilizer application rates for the Corn Belt 

increased from 136 pounds per acre for all crops in 2000 to 140 pounds per acre in 2010, 

with dramatic increases in North and South Dakota, and large increases in Iowa and 

Minnesota offsetting small declines in Illinois and Nebraska.   Concomitantly, increased 

demand for corn due to the ethanol program and higher disposable incomes ( NYT 2013) 

boosted corn acres at the expense of soybean acres in key states such as Iowa, where corn 

acres increased from 12.2 million acres in 2002 to 14.1 million acres in 2011 with most of 

the additional corn acres coming out of soybean acres. SWCS 2011 gives an overview of 

the changes in fertilizer used in the states analyzed.   



 

 

6 

 

Additionally the use of GMOs in corn and soybean production boosted the use of 

glyphosate relative to other herbicides (Nehring et al. AAEA 2011).  This study gives an 

overview of the changes in herbicides used in the states analyzed.  They show that cropping 

pattern shifts and GMO use led to 1) large increases in herbicide use in the western Corn 

Belt states, and in general to a substitution of glyphosate for alternative herbicides. Eastern 

corn belt corn growers encountered weed resistance to heavy glyphosate use in recent 

years. Hence, alternative herbicide use in these states is now increasing (Nehring. et al. 

AAEA 2011)   

Methodology 

We use an input distance function approach to represent the farms’ technological structure 

in terms of minimum input use required to produce given output levels, because farmers 

typically have more short-term control over their input than output decisions. The resulting 

theoretical framework characterizes input contributions per acre, which is consistent with 

analysis of yields in traditional agricultural studies but stems theoretically from the 

homogeneity properties of the distance function.   

 Many  econometric studies that have modeled a multiple-output technology have used 

a dual cost function (e.g., Ferrier and Lovell, 1990).  The cost function approach requires 

that output and input prices be observable and requires the assumption of cost-minimizing 

behavior. The input distance function, on the other hand, permits a multi-input, multi-

output technology without requiring observations on output and input prices as described 

by Coelli and Perelman (1996, 2000). The input distance vector considers how much the 

inputs may be proportionally contracted with outputs held fixed. In this sense it implies 
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cost minimization. The appropriate functional form is ideally flexible, easy to calculate, 

and permits the imposition of homogeneity.  

This primal representation allows us to measure production structure indicators such 

as marginal input/output contributions and scale economies, and has advantages over dual 

measures representing economic optimizing behavior not only because we do not have data 

on prices across observations, but also because one might not wish to assume full price 

responsiveness, due to input fixities and time lags in farmers’ observation of output prices.  

        Input endogeneity has been a concern in the estimation of input distance functions; if 

found, biased estimates result.  Some studies have used instrumental variables to correct 

the problem, while others have argued either that (1) it was not problematic in their studies 

because random disturbances in production processes resulted in proportional changes in 

the use of all inputs (Coelli and Perelman 2000, Rodriguez-Alvarez 2007) or (2) no good 

instrumental variables existed, thus endogeneity was not accounted for (Fleming and Lien 

2010).  We did not test for endogeneity in the variable inputs in this analysis.  The 

Hausman test was used to test for endogeneity in the Coelli inefficiency effects.  Since 

endogeneity was found, the predicted values are used as instruments in the stochastic 

production frontier (SPF). We correct for endogeneity of the hours worked off farm by the 

operator and spouse as they are modeled in the Coelli inefficiency effects; after testing for 

endogenity and finding it in the inefficiency effects we replace ophours and sphours with 

predicted values using available instruments in ARMS.   

      Based on previous related research we expect the distance function analysis to reveal 

that the economic impact of off-farm activities and income is likely to vary considerably across 

the subset of corn farms considered over the 2002-2011 period, and, in general, boosting the 
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efficiency of smaller-scale operations. We find that spousal off-farm labor tends to dominate the 

off-farm labor supply and in contrast to operator labor is consistent with higher overall farm 

efficiency. When off-farm activities are included, farm household-level efficiencies are higher 

than farm-level efficiencies across all farm sizes, and efficiency gains from integrating off-farm 

work into the output portfolio are relatively greatest for smaller farms (Fernandez-Cornejo, 

2007).  As a result, household-level efficiencies of smaller farms are comparable to farm-level 

efficiencies of larger farms.  This suggests that households operating small farms have partially 

adapted to shortfalls in farm-level performance by increasing their off-farm income. 

We also expect climatic variables to impact technical efficiency quite differently across the 

sub-regions of the corn producing states because of differential changes in weather patterns 

over time as shown by, among others, Babcock 2012.      

     

The Model  

Empirical analysis of economic performance requires representing the underlying multi-

dimensional (-input and -output) production technology.  A general form for such a 

technology may be characterized by an input set, L(Y, X, R), summarizing the production 

frontier in terms of the set of all input vectors X that can produce the output vector Y, given 

the vector of shift and environmental variables R (the nonfarm assets, animal units, age, 

education, soil quality, CRP indicators, and time dummies). From this production set we 

can specify an input distance function (denoted by superscript I) that identifies the 

minimum possible input levels for producing a given output vector:  

(1) D
I
(X,Y,R) = max{: (X/)  L(Y,R)} . 



 

 

9 

 

 D
I
(X,Y,R) is therefore essentially a multi-input input-requirement function, representing 

the production technology while allowing deviations from the frontier. 

We estimate this function using stochastic production frontier (SPF) techniques. 

Technical efficiency is characterized assuming a radial contraction of inputs to the frontier 

(constant input composition).  The econometric model includes two error terms, a random 

(white noise) error term, vit, assumed to be normally distributed, and a one-sided error 

term, uit, assumed to be distributed as a half normal, to represent the distance from the 

frontier.  We test for and correct for inputs that are endogenous to the production process.   

Estimating D
I
(X,Y,R) requires imposing linear homogeneity in input levels (Färe and 

Primont), which is accomplished through normalization (Lovell, Richardson, Travers, and 

Wood); D
I
(X,Y, R)/X1 = D

I
(X/X1,Y, R) = D

I
(X*,Y, R).

3 
Approximating this function by a 

translog functional form to limit a priori restrictions on the relationships among its 

arguments results in:  

(2a)    ln D
I
it/X1,it = 0 + m m ln X*mit + .5 m n mn ln X*mit ln X*nit + k k ln Ykit  

       + .5 k l kl ln Ykit ln Ylit + q q Rqit + .5 q r qr Rqit Rrit + k m km ln Ykit ln X*mit   

       + q m qm ln Rqit ln X*mit  + k q kq ln Ykit ln Rqit + vit  =  TL(X*,Y, R) + vit  , or 

 (2b)  -ln X1,it= TL(X*,Y, R) + vit - ln D
I
it = TL(X*,Y, R) + vit - uit  , 

where i denotes farm, t the time period, k,l, the outputs, m,n, the inputs, and q, r the R 

variables.  We specify X1 as land (acres operated), so the function is specified on a per-acre 

basis, consistent with much of the literature on farm production in terms of yields.  

                                                 
3. By definition, linear homogeneity implies that D

I
(X,Y,R) = D

I
(X,Y, R) for any >0; so if  is set arbitrarily at 

1/X1, D
I
(X,Y, R)/X1 = D

I
(X/X1,Y, R). 
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 In addition, the distance from the frontier, -ln D
I
it is explicitly characterized as the 

technical inefficiency error -uit. As in Battese and Coelli,
4 

we use maximum likelihood 

(ML) methods to estimate (2b) as an error components model.  The one-sided error term uit 

is a nonnegative random variable independently distributed as a truncation at zero of the 

N(mit,u
2
) distribution, where mit=Rit, Rit is a vector of farm efficiency determinants 

(assumed here to be the factors in the R vector), and  is a vector of estimable parameters. 

The random error component vit is assumed to be independently and identically distributed, 

N(0,v
2
).  We estimate both a household model and a farm model (which omits the off-

farm income output and the farm efficiency determinants R). 

The productivity impacts (marginal productive contributions, MPC) of outputs or 

inputs can be estimated from this model by the first order elasticities MPCm = -DI,Ym =    -

ln D
I
(X,Y,R)/ln Ym = X1,Ym and MPCk = -DI,X*m = -ln D

I
(X,Y,R)/ln X*k = X1,X*k.  

MPCm indicates the increase in overall input use when output expands (and so should be 

positive, like a marginal cost or output elasticity measure), and MPCk indicates the shadow 

value (Färe and Primont) of the k
th

 input relative to X1 (and so should be negative, like the 

slope of an isoquant). Similarly, the marginal productive contributions of structural factors 

(TEXTURE, WATER, POPACC, and the time, and farm size shifters) can be measured 

through the elasticities MPCRq = -DI,Rq = -ln D
I
(X,Y,R)/Rq = X1,Rq  (if X1,Rq <0, 

increased Rq implies that less input is required to produce a given output, which implies 

enhanced productivity, and vice versa).
5
 

                                                 
4.We used STATA Version 12 commands for the SPF estimation. 

 

5 Note that a standard “productivity” or “technical change” measure, usually defined as the elasticity with respect to 

time, or the time trend of the input-output relationship, is not targeted here. Elasticities with respect to the time 
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Scale economies (SE) are calculated as the combined contribution of the M outputs 

Ym, or the scale elasticity SE = -DI,Y = -mln D
I
(X,Y,R)/ln Ym = X1,Y. That is, the sum of 

the input elasticities, m ln X1/ln Ym, indicates the overall input-output relationship and 

thus returns to scale. The extent of scale economies is thus implied by the short-fall of SE 

from 1; if SE<1 inputs do not increase proportionately with output levels, implying 

increasing returns to scale. 

In addition to the more common estimation of the productive effects of outputs and 

inputs, we measure the direct marginal productive impacts or contributions of 

structural/policy factors (such as population accessibility, farm typology, off-farm work 

hours, and weather trends) on overall scale economies and technical efficiency.  To identify 

the impact of off-farm income on household economic performance we sort on U.S. farm 

household typologies partitioning small and large farms by whether they reported earned 

income or not. 

 Finally, technical efficiency (TE) “scores” are estimated as TE = exp(-uit.). The 

impact of changes in Rq on technical efficiency can also be measured by the corresponding 

coefficient in the inefficiency specification for -uit. 

 

 

The Data 

We  use U.S. farm-level data from the 2002 through 2011 ARMS surveys and ARMS 

surveys in 2001, 2005 and 2010 specifically collecting economic and technical information 

                                                                                                                                                             
dummies provide indications of production frontier shifts for each time period, but for short time series other 

external factors such as weather often confound estimation of a real technical change trend.   
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on corn production.  Data from these USDA surveys related to the value of output and cost 

of production make our analysis possible. ARMS is an annual survey covering farms in the 

48 contiguous States, conducted each year by USDA, and designed to incorporate 

information from both a list and area frame.  The list and area frame components are 

incorporated using a system of weights.  Inferences for the states and regions must account 

for the survey design by using weighted observations. The farm-level data is used in an 

innovative way.  We link ten annual ARMS surveys to form a pooled time-series cross-

section, assuming that the survey design for each year is comparable.  We define three 

outputs: corn, livestock/other crops, and off-farm income, and three inputs: labor, 

miscellaneous (including fertilizer and fuel) , capital, and a quality adjusted land input 

(including climate information).     

       The summary statistics for the 2002-2011 data, presented in Table 4, document the 

sharp variation across farm size in the value/level of revenues, expenses and selected farm 

characteristics. 

 Our data cover thirteen primary corn producing states in the Corn Belt, Lake States, 

Northern Plains and Southern Plains : Illinois, Indiana, Iowa, Kansas, Missouri, Ohio, 

Nebraska, Michigan, Minnesota, North Dakota, South Dakota, Texas, and Wisconsin. We 

define corn farms as those grain only corn farms reporting corn acres and corn\livestock 

farms (less than 30 cows, 250 hogs, 50 beef units, and 1000 chickens) reporting corn acres. 

Using these criteria our sample averages more than 47 percent of total value of farm 

production from corn.   Many corn farmers in these states have opportunities to work off 

farm. Our sample contained 17,992 observations on such specialized corn farms.  

Summary statistics are presented in table 2. We see that off-farm income (including earned 
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income and other off-farm income such as social security payments and dividends on 

stocks) represents close to 12 percent of total household income on corn farms, ranging 

from about 40 percent on retirement farms to about 20 percent on small farms to 8 percent 

on midsized farms to only 3 percent on large farms. 

These data include information on the value of earned income (EARNED), the soil 

texture by county, (TEXTURE), water holding capacity, (WATER), and population 

accessibility (POPACC). Additional outputs and inputs distinguished for our analysis 

include three specific outputs for  dairy farms: YCRP= all crops, YLIV=livestock (primarily 

dairy cows) and  YOFF=off-farm earned income; and three specific outputs for corn farms 

YCRN= corn, YNCRN= non corn production, and YOFF=off-farm earned income; and six 

inputs for both dairy and corn farms , XLD=land, XL=labor, XK=capital, and 

XMIS=miscellaneous inputs (primarily feed, fuel and fertilizer on corn/small livestock 

farms).  Time dummies, t2005-t2011, are also included as fixed effects. In the household 

model, labor is augmented by adding a wage bill for operator and spouse earned income 

off-farm. 

Agricultural outputs are computed as the sum of the value of sales for each type of 

farm product, in dollars per farm.  The variable inputs, capital and machinery, are measured 

as annual per-farm expenditures on each input category. Land is measured as an annualized 

flow of services from land (the quality adjusted price by state using data from ERS 

productivity accounts multiplied times acres operated, annualized over 20 years at a 
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discount rate of 5 percent). All these variables are deflated by the estimated increase or 

decrease in agricultural production prices in 2002-2011 compared to 2002.
6
 

     We include county-level monthly climate data (min-temperature and max- 

temperature, 1982-2011, computing 20 year growth rates for 2002-2011). Our analysis is 

based on the impact of seasonally adjusted growth rates in maxtemp, mintemp, and 

precipitation.  

 

The Empirical Results   

The parameter estimates for corn household model are reported in Table 3. Although most 

of the parameter estimates are not directly interpretable due to the flexible functional form 

(the elasticity measures are combinations of various parameters and data), some estimates 

are directly interpretable. For example, we find that increased urbanization (POPACC) 

decreases the productive contribution of (increases the inputs required for)  corn but 

increases the productive contribution of noncorn. Also, the variables in the technical 

inefficiency effects are directly interpretable.  Notably we find that higher number of 

operator hours in off-farm work decrease technical efficiency suggesting that this activity 

reduces the time spent on making effective management decisions in the farm operation. In 

contrast we find no significant impact on technical efficiency as spouse hours worked off-

farm increase. Among the weather variables we find that growth rates in precipitation have 

no significant impact on technical efficiency
7
 while most interesting of the results is a 

                                                 

6. These deflators are computed using the indexes of prices received and paid (1990-92=100), Ag Statistics. 

 

7 We calculated growth rates by county (20 year seasonally adjusted trends beginning in 1982) for precipitation, 

tmin, and tmax for all Corn Belt states used in the analysis. Notably, we generally found fewer than 10 percent of 

counties exhibiting significant declines or increases in precipitation (Indiana, Minnesota, Ohio and Texas Counties 
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positive impact on technical efficiency due to increases in tmin centered in Minnesota 

providing an expanded growing season for corn production. Weather data information is 

documented in PRISM.        

     Table 4 presents the average MPCs across all observations for each output and input to 

further evaluate the estimated production patterns. The MPCs for the outputs represent the 

proportional “marginal cost” or input-use share of the output. On corn farms  corn and non 

corn outputs represent roughly equal shares. 

 The MPCs for the inputs indicate the contribution of that input to overall input use 

(substitutability). The largest (in absolute value) MPC is capital and labor on corn farms.  

              Table 5 reports by typology the levels of our overall performance indicators (scale 

economy, SE, and technical efficiency, TE), and the productive contributions (MPCs) for 

the whole sample, and for different size farms. 

 As shown in table 5 the measures show strong scale economies, which are greatest 

for smaller farms, indicating scale inefficiency for these farms (lower unit costs associated 

with growth, due to increasing returns to scale). Technical efficiency is basically constant 

as farm size increases.  We see no major difference in TE across size classes in corn farms 

induced by adding off-farm income to the model.      

           However we find that off-farm income significantly boosts scale efficiency on corn 

farms.  As shown in table 5 household model calculations indicate that scale efficiency on 

small, midsize, and large corn farms with earned income is significantly higher than on 

small, midsize, and large corn farms with no earned income. 

                                                                                                                                                             
are exceptions), and in tmin (Minnesota, Texas, and Wisconsin are exceptions) and in  tmax trends (Ohio and Texas 

are exceptions) using PRISM data.      
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     Finally, we find that corn farms relying on off farm income have significantly higher 

returns on household assets, with comparable returns on farm assets.  

         

Summary and Concluding Remarks 

 

This study examines the economic impact of off farm income and environmental factors on 

economic performance in key corn-producing states.  It uses an input distance function 

approach to evaluate the scale and technical efficiency of small independent as compared 

to large farming operations, and the additional productive and thus competitive 

contributions of off-farm income (both operator and spousal). We correct for endogeneity 

of the hours worked off farm by the operator and spouse as they are modeled in the Coelli 

inefficiency effects
8
.    

     As U.S. farms continue to grow markedly in size, issues related to the interaction of off-

farm income, farm size, and economic performance in general are among the leading 

concerns affecting U.S. agriculture. Because of the controversies surrounding these issues, 

agricultural economists have been looked to for objective information on these issues. 

Despite its considerable importance, and perhaps due to modeling and data challenges, 

issues related to the impact of off-farm income have been largely neglected (with a few 

notable exceptions) in studies of farm structure and economic performance in U.S. 

agriculture.  

                                                 

8 The Durbin-Wu-Hausman test concluded that spousal and operator hours worked were both 

endogenous in the inefficiency term of the input distance function. The chi-square test statistic of 

114.23 with 2 degrees of freedom is highly significant. 
 



 

 

17 

 

     We find the economic impact of off-farm work varies considerably across types of 

farms.  For our sample of corn farms, off-farm work by spousal labor has no impact on 

household-level technical efficiency while operator labor off farm decreases the household 

technical efficiency. Most importantly, we find that off-farm income significantly boosts 

scale efficiency on corn farms. Finally, we find that corn farms relying on off farm income 

have significantly higher household returns on small and midsize farms.      

     Recent work by Babcock on corn yields and drought emphasizes the importance of 

including salient climatic information in any thorough specification examining 

performance measures related to corn production. For our sample of corn farms we find 

that 20 year growth rates of minimum and maximum temperatures have a significant 

impact on the efficiency of corn production. We find that 20 year growth rates in 

precipitation (basically flat in most corn belt Counties, particularly in Illinois and Iowa) 

have no impact on corn production efficiency
9
.  

     We did not test for endogeneity in the variable inputs used in the primal in this analysis 

and leave this task for future research. We also will include off-farm trends in the dairy 

industry as they influence economic performance as a useful counterpoint to the corn 

analysis (See Fernandez et al. 2007).         

 

 

 

                                                 
9 Removing the weather trend variables from the inefficiency effects in Table 2 does not materially affect the results 

for the off-farm variables.  
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                              Table 1. Farm Typology Groupings 

 

                        Small Family Farms (sales less than $350,000) 

 

1. 1. Retirement farms.  Small farms whose operators report they are retired (excludes limited-resource farms 

operated by retired farmers). 

 

2. 2. Off-farm occupation* farms.  Small farms whose operators report a major occupation other than 

farming. 

 

3. 3. Farming occupation/low-sales.  Small farms with sales less than $150,000 whose operators report 

farming as their major occupation. 

 

4. 4. Farming occupation/moderate-sales.  Small farms with sales between $100,000 and $349,999 whose 

operators report farming as their major occupation. 

 

               Midsize family** Farms (sales of $350,000 to $999,999) 

4.    5. Family farms with sales between $350,000 and $999,999 whose operators report farming as their major 

occupation. 

 

 

               Large-scale family  Farms (sales $1,000,000 or more) 

 

 

6. Large family farms.  Sales between $1,000,000 and $4,999,999. 

 

7. Very large family farms.  Sales of $5,000,000 or more 

 

            Nonfamily Farms (no occupation or farm size criterion) 

 

 

5. 8.    Nonfamily farms.  Farms for which principal operator and those related to the principal operator own 

50% of the farm business.  

** 
 

        Source: U.S. Department of Agriculture, Economic Research Service 

* Operator spend 50 percent or more of work time 

         ** majority of business owned by family 

 

 

 

 

 

 



 

 

Table 2. Summary Statistics for Corn Farms by Group: Size, Earned and No Earned Income, 13 States, 2002-2011: New ERS Farm typologies  

 GROUP 

Item Retire 

Off-farm 

occup 

Small 

Farms: No 

Earned 

Income 

Small 

Farms: 

Earned 

Income 

Midsize 

Farms: No 

Earned 

Income 

Midsize 

Farms: Earned 

Income 

Large Farms: 

No Earned 

Income 

Large Farms: 

Earned Income 

Non Family 

 Corp 

All Farms 

Number of obs. 1,571        492     6,811 508 5,507 284 2,199 620 17,992 

Number of farms 144,712 31,592 469,522 14,842 184,719 3,857 34.183 27,392 910,821 

Percent of farms 15.88 3.47 51.55 1.63 20.28 0.42 3.75 3.00 100.0 

Percent of  production 6.29 2.11 31.21 2.81 32.94 2.24 18.47 3.93 100.0 

Revenues (Dollars/farm) 

Corn production 63,568 90,003 90,209 249,840 290,402 746,651 663,361 182,206 146,087 

Soybean production 53,921 79,392 78,453 193,695 210,938 498,327 495,109 163,652 123,314 

Other crop production  8,650 23,825 22,635  101,755   65,384 427,459 429,808   76,139   49,016 

Animal production  4,487 10,187   8,119   34,166   19,902 135,939 123,728   22,645   15,745 

Earned income 74,229          0 36,926            0   43,219            0   47,147            0   41,435 

Expenditures (Dollars/farm) 

Labor   44,970   39,362   41,621   51,197   54,507    128,526   118,948   46,120  48,351 

Pesticides     8,313   12,250    12,069   35,585   31,987    108,870     90,210   25,982  19,666 

Fertilizer   22,792   33,875   32,081   95,992   86,608    294,533    257,238   70,589  53,893 

Miscellaneous  110,673 165,043 157,934 506,198 457,702 1,823,640 1,644,081 363,863 286,163 

Capital   18,775   24,945   27,789   82,393   80,524    224,693    207,013   46,711   45,972 

Land 176,061 254,392 236,193 563,504 582,079 1,656,816 1,510,590 505,650 364,700 

Other variables (Item/farm) 

Average acres operated 

(acres) 

470    781    731 1,909 1,579 4,207 3,802 1,263 1,024 

Off-farm earned/totalin 0.347 0 0.145 0 0.065 0 0.023 0.0 0.098 

Age 52.5 56.4 53.6 52.6 52.2 51.5 51.7 53.8 53.3 

Education 2.877 2.462 2.614 2.707 2.855 2.831 2.968 2.804 2.720 

Earned income=wages/salaries plus off farm interest income. Off-farm all includes earned income only.  totalin= total farm income plus earned income.  

 

 



Table 3 Parameter Estimates for input distance function for corn farmers.    

Variable Parameter (t-value) 

 

Variable  Parameter (t-value) 

   

0 164.98  (26.62)*** XL,XM   0.008   (1.16) 

XL -0.202  (-13.47)*** XL,XK   0.014   (4.14)*** 

XMISC -0.232  (-10.22)*** 

 

XM,XK -0.014  (6.35)*** 

XK -0.008  (-0.95) 

 

2005-2011 -0.102 (-5.09)*** 

YCRN -1.384  (-11.24)*** 

 

year -0.075 (-24.13)*** 

YNCRN -0.018   (-0.40) 

 

MEDLARGE 

                 

     

 0.120  (7.37)*** 

YOff,    -0.014  (-0.40) 

 

lARGE        

               

 0.127   (6.35)*** 

YCRN,YCRN  0.087   (15.65)*** 0          

           

 203.94 (3.62)*** 

YNCRN,YNCRN  0.032   (35.08)*** POPDUME    

            

     

-44.38 (-43.21)*** 

YOFF,YOFF  0.005   (6.15)*** POPDUMW    

            

     

-0.162  (-0.72) 

YCRN,YNCRN -0.027   (-7.95)*** 

 
Spousehrs  

            

       

-0.021 (-0.10) 

YCRN,YOFF -0.001   (-0.22) Operhrs    

            

     

 1.201   (2.16)*** 

YNCRN,YOFF -0.003   (-2.87)*** Precip     

            

   

 72.81   (1.05) 

YCRN,Text  0.011    (6.68)*** 

0.004  (0.55) 
PrcipCenter

texp        

             

-111.7  (-0.61) 

YCRN,Water -0.003  (-5.00)*** Tmin       

            

  

 216.6  (4.00)*** 

YCRN,POP  0.005   (1.59) TminCent   

            

      

 -455.3 (-5.58)*** 

YNCRN,POP -0.006 (-1.99)* Tmax       

            

  

 -131.3 (-4.11)*** 

XL,XL -0.022 (-15.07)*** YEAR       

             

-0.104 (-3.70) 

XM,XM -0.008  (-1.46) Sigma 
   

            

      

 0.317  (63.40) 

XK,X -0.006   (4.33)***   

Log likelihood =  -377239.20 

 

Notes: *** Significance at the 1% level (t=2.576). ** Significance at the 5% level (t=1.96). * Significance at the 10% 

level (t=1.645) based on a robust estimators in STATA. The t-statistics are based on 22,261 observations using robust 

estimators in STATA.  

 

 

 

 

 

 

 

 



 

 

 

 

Table 4. Marginal Productive Contributions (MPC) for Outputs, Inputs, and Time Shifts,                         Full 

Sample for Corn Farms for the Household Model, 2002 to 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output MCP t-value  Input MCP t-value 

Corn 0.339  9.11  Labor -0.183 -2.11 

Non Corn 0.352 10.71  Miscellaneous -0.314 -4.39 

Off-farm earned 

income 0.033 1.65  Capital  -0.132   0.16 

     

 

 

 

 

 

 

 

 

 

  

       

       



Table 5. Performance Measures for Corn Farms by Group: Size, Earned and No Earned Income, 13 States, 2002-2011: ERS Farm typologies 

 GROUP 

Item Retirement 

Off-farm 

occupation 

Small  

Farms: 

No Earned 

Income 

Small Farms: 

Earned  

Income 

Midsize 

Farms: 

No Earned 

Income 

Midsize 

Farms: 

Earned 

Income 

Large 

Farms: 

No Earned 

Income 

Large 

Farms: 

Earned 

Income 

Non  

Family 

Corporations 

All 

farms 

Corn Household Model 

Efficiency score 0.94 0.94 0.93 0.94 0.94 0.94 0.93 0.93 0.94 

Returns to scale 0.62 0.62 0.67* 0.81 0.85* 0.97 1.00* 0.70 0.71 

Net return on assets 3.90 4.10 4.36 7.14 7.34 9.76 11.82 5.50 6.36 

Household assets return 10.33 3.94 7.40* 7.81 9.59* 14.57 16.04 n.a. 9.37 

Ophours on-farm 1738 2142 2075 2318 2160 2585 2419 1789 2060 

Sphours on-farm 602 472 564 532 787 765 983 690 615 

 

Ophours off-farm 1140 0 308 0 204 0 136 0 394 

Sphours off-farm 706 0 634 0 608 0 518 0 596 

 

Ophours off-farm 2002 1647 0 405 0 205 0 113 0 421 

Sphours off-farm 1496 0 1274 0 1202 0 1244 0 929 

 

Ophours off-farm 2011 610 0 232 0 189 0 89 0 169 

Sphours off-farm 475 0 571 0 669 0 632 0 395 

*  Significantly differently from farms in the same size category at the 1% level of significance  

 

 

 

 

 

 


