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Abstract

This study seeks assess how the uncertainties associated with the un-
derlying biophysical processes influence the optimal profile of land use
over the next century, in light of potential irreversibility in these deci-
sions. Our analysis is based on a dynamic stochastic model of global
land use, and employs 3 modeling scenarios constructed using global crop
simulation and climate models. The results of the deterministic model
show that climate impacts appear to have mixed effects on yields - higher
temperatures hurt food production but this effect is partially offset by
greater CO2 fertilization effect. Declining food crop yields result in rela-
tively small expansion of cropland and accumulated GHG emissions from
land use change. We then contrast this optimal path to that obtained
when the uncertainty is not ignored, thereby demonstrating significance
of factoring uncertainty in the optimization stage.
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1 Introduction

The allocation of the world’s land resources over the course of the next cen-
tury has become a pressing research question. Continuing population increases,
improving, land-intensive diets amongst the poorest populations in the world,
increasing production of biofuels and rapid urbanization in developing countries
are all competing for land even as the world looks to land resources to supply
more environmental services. The latter include biodiversity and natural lands,
as well as forests and grasslands devoted to carbon sequestration. And all of
this is taking place in the context of faster than expected climate change which
is altering the biophysical environment for land-related activities. This com-
bination of intense competition for land, coupled with highly uncertain future
productivities and valuations of environmental services, gives rise to a signifi-
cant problem of decision-making under uncertainty. The issue is compounded
by the inherent irreversibility of many land use decisions.

Change impacts on yields and available area in agriculture and forestry
sectors have received significant attention in the agronomic, biophysical, and
economic literatures (Parry et al. 2004, Lobell and Field 2007, Reilly et al.
2007, Lobell and Burke 2008, Gumpenberger et al. 2010, Hertel, Burke and
Lobell 2010, Lobell et al. 2011). The economic analysis of this issue is primar-
ily based on large-scale computational models, which are ‘backward looking’
in their recursive-dynamic structure, and therefore limited ability to address
important intertemporal policy issues such as e.g. inter-temporal allocation of
GHG emission flows from land-use through abatement policies, efficiency impli-
cations of carbon taxes and caps, and endogenous depletion of non-renewable
land resources. None of these studies explicitly incorporates climate change un-
certainty into the determination of the optimal path of global land use. To the
extent that uncertainty is dealt with, this is only through sensitivity analysis.

In this study, we seek to assess how the uncertainties associated with the
underlying biophysical processes influence the optimal profile of land use over
the next century, in light of potential irreversibility in these decisions. Our
analysis is based on stochastic extension of FABLE, an integrated model of
global land use, which brings together distinct strands of economic, agronomic,
and biophysical literature and incorporates key drivers affecting global land-use.

The model we develop is a long-run dynamic, forward-looking, stochastic
partial equilibrium framework in which the societal objective function being
maximized places value on food production, liquid fuels (including biofuels),
timber production, forest carbon and biodiversity. A non-homothetic AIDADS
utility function represents model preferences, and, as society becomes wealth-
ier, places greater value on eco-system services, and smaller value on additional
consumption of food, energy and timber products. Given the importance of
land-based emissions to any GHG mitigation strategy, as well as the poten-
tial impacts of climate change itself on the productivity of land in agriculture,
forestry and ecosystem services, we aim to identify the optimal allocation of the
world’s land resources, over the course of the next century, in the face of alter-
native GHG constraints. The forestry sector is characterized by multiple forest
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vintages, which add considerable computational complexity in the context of
this dynamic stochastic analysis.

The model is solved over the period 2005-2204, with an emphasis on the
first century. The model baseline accurately reflects developments in global
land use over the 10 years that have already transpired, while also incorpo-
rating projections of population, income and demand growth from a variety of
international agencies. We identify the optimal allocation of the world’s land
resources, over the course of the next century, in the face of variability in agricul-
tural productivity as driven by climate change. Our comprehensive estimates
of climate impacts on agricultural yields are based on the Decision Support
System for Agrotechnology Transfer (DSSAT) crop simulation models for four
major crops, run globally on a 0.5 degree grid and weighted by agricultural
output under different GHG forcing scenarios using outputs from five different
global climate models.

We first show the results of the perfect foresight model, treating uncertainty
only through sensitivity analysis. Climate impacts appear to have mixed effects
on yields - higher temperatures hurt food production but this effect is partially
offset by greater CO2 fertilization effect. Declining food crop yields result in
greater requirements for cropland and fertilizers to produce agricultural out-
put used in production of food services. However, the expansion of cropland
is relatively small. Accumulated GHG emissions increase modestly relative to
the baseline scenario as GHG emissions from the use of fertilizers increase and
forest sequestration declines. Consumption of processed food services declines
significantly. Declining food crop yields also depress production of first genera-
tion biofuels, whereas the production of second generation biofuels the share of
biofuels in liquid fuel consumption remains practically unchanged.

We then contrast this optimal path to that obtained when the uncertainty is
not ignored, thereby demonstrating the implications of factoring this in at the
optimization stage.

2 Model Outline

The analysis used here employs FABLE (Forest, Agriculture, and Biofuels in a
Land use model with Environmental services), a dynamic optimization model
for the world’s land resources over the next century. This model brings together
recent strands of agronomic, economic, and biophysical literature into a single,
intertemporally consistent, analytical framework, at global scale. The model
solves for the dynamic paths of alternative land uses, which together maximize
global economic welfare, subject to a constraint on global GHG emissions. The
key model equations are described below, with complete information offered in
model’s technical documentation (Steinbuks and Hertel 2012).

FABLE is a deterministic, discrete dynamic, finite horizon partial equilib-
rium model. Income, population, wages, oil prices, total factor productivity, and
other variable input prices are assumed to be exogenous. The model focuses on
the optimal allocation of scarce land across competing uses across time.
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There are two natural resources in the model: land and fossil fuels. The
supply price of fossil fuels is predetermined, and is expected to rise over time.
The supply of land is fixed and faces competing uses that are determined en-
dogenously by the model.

We analyze eight sectors producing intermediate and final goods and ser-
vices. The agrochemical sector converts fossil fuels into fertilizers that are used
to boost yields in the agricultural sector. The agricultural sector combines crop-
land and fertilizers to produce intermediate outputs (food crops and cellulosic
feed stocks) that can be used to produce food or biofuels. The food processing
sector converts food crops into food products that are used to meet the global
food demand. The biofuels sector converts food crops and cellulosic feedstocks
into liquid fuels, which substitute imperfectly for petroleum products in final
demand. The energy sector combines petroleum products with the biofuels, and
the resulting mix is further combusted to satisfy the demand for energy services.
The forestry sector produces an intermediate product, which is further used
in timber processing. The timber processing sector converts output from the
forestry sector into a final timber product, which satisfies commercial demands
for lumber and other articles of wood. The ecosystem services sector provides
a public good to society in the form of ecosystem services. The production of
other goods and services are predetermined.

The societal objective function being maximized places value on processed
food, energy services, timber products, and eco-system services. Emissions of
greenhouse gases (GHGs) are central to the problem at hand. These are cur-
rently treated as a time-varying constraint on the flow of GHGs (emissions
target). As the model focuses on the representative agent’s behavior, the
resource endowments and consumption products are expressed in per-capita
terms. Full model’s structure, equations, variables, and parameters are summa-
rized in model’s technical documentation (Steinbuks and Hertel 2012).

2.1 Resource Use

2.1.1 Land

The total land endowment in the model, L, is fixed. The land in the economy
comprises of natural forest lands - which are in an undisturbed state (e.g., parts
of the Amazon), LNt , and managed commercial lands, LMt . The land endowment
constraint is

L = LNt + LMt . (1)

We assume that the natural land consists of two types. Institutionally protected
land, LR, includes natural parks, biodiversity reserves and other types of pro-
tected forests. This land is used to produce ecosystem services for society, and
cannot be converted to commercial land. Unmanaged natural land, LU , can be
accessed and either converted to commercial land (deforested) or to protected
land. Once the natural land is deforested, its potential to yield ecosystem ser-
vices is interrupted and cannot be restored within the (single century) time
frame of the analysis. Thus, the conversion of natural lands for commercial use
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is an irreversible decision.1 Equations describing allocation of commercial land
across time and different uses are as follows, where lower case variables describe
flows and upper cases correspond to stocks:

LNt = LUt + LRt . (2)

LUt+1 = LUt −∆LUt −∆LRt , L
U
0 > 0, (3)

and
LRt+1 = LRt + ∆LRt , L

R
0 > 0, (4)

Equation (2) shows that the total endowment of natural land is a sum of the
hectares of reserved and non-reserved natural land. Equation (3) shows that at
each period of time the area of unmanaged natural land with initial stock, LU0 ,
declines by the amounts allocated for conversion to commercial and protected
land, ∆LUt and ∆LRt , where ∆ operator denotes a change in variables LUt and
LRt . Equation (4) shows that at each period of time, the total area of reserved
land with initial stock of LR0 increases by the amount of newly protected land,
∆LRt .

Accessing the natural lands comes at cost, cUt , associated with building roads
and other infrastructure (Golub et al. 2009). In addition, converting natu-
ral land to reserved land entails additional costs, cRt , associated with passing
legislation to create new natural parks. We assume that these costs are con-
tinuous, monotonically increasing, and strictly convex functions of the share of
natural land previously accessed. There are no additional costs of natural land
conversion to commercial land, as these costs are offset by the revenues from
deforestation.

Commercial lands are used in either the agriculture or forestry sectors (we
ignore residential, retail, and industrial uses of land in this partial equilibrium
model of agriculture and forestry). Equations describing allocation of commer-
cial land across time and between agriculture and forestry are:

LMt = LAt + LCt . (5)

and
LMt+1 = LMt + ∆LUt , L

M
0 > 0. (6)

Equation (5) shows that total endowment of commercial land, LM , is a sum
of the hectares of commercial land dedicated to agriculture, LA, and managed
forest, LC , respectively. Equation (6) shows that at each period of time, the
total area of commercial land with initial stock of LM0 increases by the amount
of converted unmanaged natural land, ∆LU .

1This point requires additional clarification. The biophysical and ecological literature sug-
gests that restoration of forest structure and plant species takes at least 30–40 years and usu-
ally many more decades (Chazdon 2008), costs several to ten thousands dollars per hectare
(Nesshöver et al. 2009), and is only partially successful in achieving reference conditions (Be-
nayas et al. 2009). Modeling restoration of biodiversity under these assumptions introduces
greater computational complexity without making significant changes relative to findings pre-
sented in this study.
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2.1.2 Fossil Fuels

The fossil fuels, x, have two competing uses in our partial equilibrium model
of land-use. A fraction of fossil fuels, xn, is converted to fertilizers that are
further used in the agricultural sector. The remaining amount of fossil fuels,
xe, is combusted to satisfy the demand for energy services. The total supply of
fossil fuels is thus given by

xt = xnt + xet . (7)

The cost of fossil fuels, cxt , is pre-determined, and reflects the expenditures
on fossil fuels’ extraction, transportation and distribution, as well the costs
associated with GHG emissions control (e.g. carbon prices) in the non-land-
based economy.

2.2 Agrochemical Sector

The agrochemical sector consumes an amount of fossil fuels, denoted by xn, and
converts them into fertilizers that are further used in the agricultural sector. The
production of fertilizers, n, is a simple engineering process that can be described
by a linear production function:

nt = θnxnt , (8)

where θn is the rate of conversion of fossil fuels to fertilizers. We assume that
the non-energy cost of conversion of fossil fuels to fertilizers, cφ, is constant and
scale-invariant.

2.3 Agricultural Sector

The agricultural sector combines the agricultural land and fertilizers to deliver
an agricultural products, gi. In the model, we distinguish between two types
of agricultural outputs. Food crops, g1, can be either consumed as food, f, or
converted to first generation biofuels, b1. Cellulosic feed stocks, g2, can only
be converted to second generation biofuels, b2. Agricultural land and fertilizers
are imperfect substitutes in the production of agricultural products. The per
capita output of agricultural products, gi, is thus determined by the constant
elasticity of substitution (CES) function:

git =
θg,it
Πt

[
αg
(
LA,it

)ρg
+ (1− αg) (nt)

ρg
] 1
ρg
, i = 1, 2, (9)

where Πt is the predetermined population at time, and θg,it and αg are, respec-
tively, the crop technology (agricultural yield) index and the value share of land

in production of agricultural product i at the benchmark time 0, and LA,it are
hectares of agricultural land allocated for food crops and cellulosic feed stocks.
The parameter ρg =

σg−1
σg

is a CES function parameter proportional to the elas-

ticity of substitution of agricultural land for fertilizers, σg. The production of
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agricultural output is also subject to non-land costs from use of fertilizers and
other production factors (such as e.g. labor or capital), cg, the prices of which
are predetermined in our partial equilibrium model.

2.4 Food Processing Sector

The food processing sector converts an amount of food crops, g1, into food prod-
ucts and services, f, that are further consumed in final demand. The purpose
of this sector in the model is to capture the efficiency gains from technology
improvements in food production, which result in lower requirements for agri-
cultural inputs in final demand.2 The conversion process is represented by the
following production function:

ft = θft g
1
t , (10)

where θft is the total factor productivity (TFP) of the food processing sec-
tor, which captures the technological progress in both direct transformation of
agricultural product into edible food, and the storage, transportation, and dis-
tribution of processed food. We assume that the food processing costs per ton
of food products, cf , are exogenous and scale-invariant.

2.5 Biofuels Sector

The biofuels sector consumes the remaining amount of food crops to produce
first generation biofuels, b1. We assume that a ton of food crops, g1, can be
converted to θb,1 tons of oil equivalent (toe′s) of first generation biofuels. The
output of first generation biofuels is thus given by

b1t = θb,1
(
g1t −

ft
θf

)
. (11)

The biofuels sector also converts cellulosic feedstocks, g2, into second gener-
ation biofuels, b2. Second generation biofuels are a new technology, which is
expected to take over a market gradually. The temporal path of the share of
the market controlled by this new technology is expected to follow some type
of S-shaped function (Geroski 2000). There are many reasons cited for such
gradual penetration, including capital adjustment costs, scarcity of specialized
engineering resources and the necessary equipment to install new capacity, and
slow regulatory approval processes. In this study, the approach for representing
the penetration process is based on McFarland et al. (2004), and is similar to
that used in MIT-EPPA integrated assessment model (Paltsev et al. 2005). We
explicitly introduce in the production function an additional fixed factor spe-
cific to the new technology, φ, whose endowment in the economy limited. As

2For example, technological innovation in food conservation results in fewer losses from
spoilage, and, correspondingly, lower amounts of processed food needed to satisfy the com-
mercial demand for food. Correspondingly, input requirements for agricultural product also
decrease.
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technology penetrates the market the share of technology fixed factor in the pro-
duction function declines with the rate of factor-specific technological progress,
θφt (van Meijl and van Tongeren 1999). Under this assumptions the production
of second generation biofuels, b2, is determined by the following CES function

b2t = θb,2
[(
αb
)θφt (φ)

ρb +
(
1− αb

) (
g2t
)ρb] 1

ρb

, (12)

where where θb,2t and αb are, respectively, the technology parameter and the
value share of fixed factor in production of second generation biofuels at the
benchmark time 0. The parameter ρb = σb−1

σb
is a CES function parameter pro-

portional to the elasticity of substitution of technology fixed factor for cellulosic
feed stocks, σb. The agricultural products’ conversion to renewable fuel incurs
additional non-food processing costs, cb,i. We assume these costs are constant
and scale-invariant.3

2.6 Energy Sector

The energy sector consumes petroleum products, xe, and first and second gen-
eration biofuels, bi. First generation biofuels (e.g., corn or sugarcane ethanol)
blend with petroleum products in different proportions4, and the resulting mix
further combusted to satisfy the demand for energy services. We assume that
first-generation biofuels and petroleum products are imperfect substitutes. Sec-
ond generation biofuels (e.g., cellulosic biomass-to-liquid diesel obtained through
Fischer-Tropsch gasification) offer a full ‘drop-in’ fuel alternative. We therefore
assume that petroleum products and second generation biofuels are perfect sub-
stitutes. Under these assumptions the production of energy services per capita,
et, is given by CES function:

et = θet

(
αe
(
b1t
)ρe

+ (1− αe)
(
xet
Πt

+ b2t

)ρe) 1
ρe

, (13)

where the parameter θe describes the efficiency of energy production, (i.e., the
amount of energy services provided by one toe of the energy fuel, Sorrell and
Dimitropoulos 2008, p. 639), αe is the value share of first-generation biofuels in
energy production at the benchmark time 0, and ρe = σe−1

σe
is a CES function

parameter proportional to the elasticity of substitution of petroleum products
for first generation biofuels, σe.

3With introduction of second generation biofuels one would expect these costs to decline,
and biofuels conversion rate to increase as the biofuels’ production technology improves. We
show the model sensitivity to changes in these parameters in model’s technical documentation
(Steinbuks and Hertel 2012).

4Blends of E10 or less are used in more than twenty countries around the world, led by
the United States, where ethanol represented 10% percent of the U.S. gasoline fuel supply in
2011. Blends from E20 to E25 have been used in Brazil since the late 1970s. E85 is commonly
used in the U.S. and Europe for flexible-fuel vehicles. Hydrous ethanol or E100 is used in
Brazilian neat ethanol vehicles and flex-fuel light vehicles and in hydrous E15 called hE15 for
modern petrol cars in Netherlands.
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The total non-land cost of energy is a sum of the costs of fossil fuels and
biofuels net of land-use costs:

cet =
∑
i

cb,i + cxt , i = 1, 2. (14)

2.7 Forestry Sector

The forestry sector is characterized by v vintages of trees. At the end of period
t each hectare of managed forest land, LCv,t, has an average density of tree vin-

tage age v, with the initial allocation given and denoted by LCv,0. Each period
of time the managed forest land can be either planted, harvested or simply left
to mature. The newly planted trees occupy ∆LC,P hectares of land, and reach
the average age of the first tree vintage next period. The harvested area occu-
pies ∆LC,Hv hectares of forest land. If the managed forest land is harvested, it
yields θwv tons of forest product (raw timber), wv, where θwv is the merchantable
timber yield function, which is monotonically increasing in the average tree den-
sity of age v. Forest land becomes eligible for harvest when planted trees reach
a minimum age for merchantable timber, v. Managed forest areas with the av-
erage density of oldest trees vmax have the highest yield of θwvmax

. They do not
grow further and stay until harvested.

We assume that the average harvesting costs per ton of forest product, are
invariant to scale and are the same across all managed forest areas of different
age. With continuous growth up to vintage vmax, the average long-run cost of
harvesting per hectare of managed forest land, cw, is therefore a declining func-
tion of timber output. Harvest of managed forests and conversion of harvested
forest land to agricultural land is subject to additional near term adjustment
costs. The average planting costs per hectare of newly forest planted, cp, are
invariant to scale and are the same across all vintages.

The following equations describe the forestry sector:

LCt =

vmax∑
v=1

LCv,t, (15)

LCv+1,t+1 = LCv,t −∆LC,Hv,t , v < vmax − 1 (16)

LCvmax,t+1 = LCvmax,t −∆LC,Hvmax,t + LCvmax−1,t −∆LC,Hvmax−1,t (17)

LC1,t+1 = ∆LC,Pt , (18)

and

wt =

vmax∑
v=1

θwv,t
Πt

∆LC,Hv,t , (19)

Equation (15) describes the composition of managed forest area across forest
vintages. Equation (16) illustrates the harvesting dynamics of forest areas with
the average ages v and vmax. Equation (18) shows the transition from planted

area, ∆LC,Pt , to new forest vintage area. Equation (19) describes the output of
forest product per capita from harvested forest areas of average tree age v.
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2.8 Timber Processing Sector

The timber processing sector converts harvested forest product, w, into pro-
cessed timber products, s, that are further consumed in final demand. Similar
to food processing, the purpose of this sector in the model is to capture the
efficiency gains from technology improvements in timber production, which re-
sult in lower requirements for forest products in final demand.5 The conversion
process is represented by a linear production function:

st = θstwt, (20)

where θs is the TFP of the timber processing sector, which captures the techno-
logical progress in both direct transformation of forest product into processed
timber, and the quality improvements and durability of timber products. We
assume that the timber processing costs per ton of food products, cs, are ex-
ogenous and scale-invariant.

2.9 Ecosystem Services Sector

The ecosystem services sector combines different types of land to produce ter-
restrial ecosystem services. It is well known in both economic and ecological
literatures that ecosystem services are difficult to define, and it is even more
difficult to characterize their production process (National Research Council
2005). This stems in part from the fact that there is a significant heterogeneity
in ecosystem services (Costanza et al. 1997, Daily 1997), which include physical
products (e.g., subsistence food and lumber) environmental services (e.g., pol-
lination and nutrition cycling), and non-use goods which are valued purely for
their continued existence (e.g., some unobserved biodiversity). In many cases
the lack of markets and market prices impedes the translation from quanti-
ties of ecosystem goods and services to their production values, and requires
the application of non-market and experimental valuation techniques (Bateman
et al. 2011). And there are significant differences in definitions and modeling
approaches in the economic and ecological literatures, which the National Re-
search Council 2005, p.3 refers to “the greatest challenge for successful valuation
of ecosystem services”. While addressing these limitations is beyond the scope
of this study, given their important role in the evolution of the long run demand
for land, we incorporate ecosystem services, albeit in a stylized fashion, into the
global land use model determining the optimal dynamic path of land-use in the
coming century.

We assume that the per capita output for ecosystem services, rt, is given by
the following CES function of different land inputs:

rt =
θr

Πt

[
αA,r

(
LA
)ρr

+ αC,r
(
LC
)ρr

+
(
1− αA,r − αC,r

) (
LU + θRt L

R
)ρr] 1

ρr

.

(21)

5For example, technological innovation in durability of timber products results in their less
frequent replacement. Therefore lower amounts of forest product are needed to satisfy the
commercial demand for timber products.
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where the parameter θr describes the production “technology” of ecosystem
services6. The parameters αA,r, αC,r, and 1− αA,r − αC,r are the value shares
of agricultural, managed, and natural forest lands in production of ecosystem
services at the benchmark time 0. The parameter ρr = σr−1

σr
is a CES func-

tion parameter proportional to the elasticity of substitution of different types
of land in production of ecosystem services, σe. By characterizing the produc-
tion process of ecosystem services using equation (21) we assume that agricul-
tural, managed forest, and natural lands substitute imperfectly in production of
ecosystem services. Unmanaged and protected natural land produce the same
ecosystem services (Costanza et al. 1997). However, protected forest lands are
more efficient in delivering many ecosystem services, as they have e.g., better
management for reducing degradation of biodiversity, and better infrastructure
for providing eco-tourism and recreation services (Hocking et al. 2000).

We assume that non-land cost of producing ecosystem services is zero for
agricultural and managed forest land, as production of ecosystem services is not
their primary function. This cost is also zero for unmanaged natural lands. As
regards protected natural lands, we assume that average non-land cost of pro-
ducing ecosystem services (e.g., maintenance and infrastructure expenditures)
per hectare of reserved natural land, cr, is exogenous and scale-invariant.

2.10 Other Goods and Services

The production of other goods and services per capita, ot, in this model is pre-
determined. The reason we include it in this partial equilibrium model is to
complete the demand system (described in a section below), which determines
welfare. As the supply of other goods and services is predetermined, we assume
that they grow at the overall rate of TFP growth, which is equal to the world
economy’s TFP growth rate7. Because the production of other goods and ser-
vices does not draw on the land resource, we assume without loss of generality
that their cost of production is zero.

2.11 GHG Emissions

The GHG emissions flows, zt, in the model result from a number of sources:
(a) combustion of petroleum products, (b) the conversion of unmanaged and
managed forests to agricultural land (deforestation), (c) non-CO2 emissions from
use of fertilizers in agricultural production, and (d) net GHG sequestration
through forest sinks (which includes the GHG emissions from harvesting forests).
We differentiate between the emissions resulting from combustion of petroleum
products and the emissions resulting from land-use, zL, because the price path

6We put the term “technology” in quotation terms because, as discussed above, character-
izing “true” production process of ecosystem services is beyond the scope of the paper. Here
we use the term “technology” as a scalar that maps ecological assets to ecosystem services in
reference period 0.

7The economy’s output has a small fraction of endogenously determined output from land-
use. We ignore this complication in this partial-equilibrium model.
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for fossil fuels is pre-determined, whereas the other sources of GHG emissions
are endogenous.

We assume that GHG emissions are linearly related to the use of fossil fuels,
and the allocations of commercial lands. A ton of oil equivalent (toe) of fossil
fuel combusted emits µx tons of CO2 equivalent (tCO2e). A ton of fertilizer
applied to agricultural land emits µn tCO2e.

GHG’s can also be reduced by carbon forest sequestration.8 A hectare of
forest vintage v sequesters µwv tCO2e. Young forest vintages grow quickly and
sequester carbon at a rapid rate. Older vintages grow slowly and eventually
cease to sequester carbon. As the unmanaged forest land (both reserved and
non-reserved) comprises mainly the older tree vintages, its potential to sequester
additional GHGs is small, and may be ignored. However, the potential for GHG
releases when these trees are cut down and burned or left as slash (Fearnside
2000, Houghton 2003) is large. The conversion of natural forest land to com-
mercial land entails emissions of µL tCO2e per hectare of land deforested. Har-
vesting managed forests results in emissions of (1 − ϕ)µhv tCO2e per hectare
of land harvested, where µhv is the carbon stock associated with harvested tree
vintage v, and ϕ is the share of permanently stored carbon in harvested forest
products. We ignore the annual sequestration of carbon by agricultural product,
as those crops are harvested and subsequently consumed in the form of food or
bioenergy.

Based on the above, the equations describing net GHG flows in the economy
are

zt = µxxet + zLt , (22)

and

zt = µL∆LUt + µnxnt + (1− ϕ)

vmax∑
v=1

µhv∆LC,Hv,t −
vmax∑
v=1

µwv L
C
v,t. (23)

Equation (22) describes the composition of GHG emissions flows. Equation
(23) shows net GHG emissions from deforestation, agricultural production, and
forest sequestration.

Finally, we consider institutional control of GHG emissions’ flows (e.g. through
the Kyoto Protocol), which foresees their gradual reduction and the stabiliza-
tion of atmospheric carbon stocks. Specifically, we assume that at any point of
time net GHG emissions from deforestation, application of fertilizers, and forest
sequestration cannot exceed the emissions’ quota, zL. We do not impose the
emissions’ constraints on GHG emissions from fossil fuels’ combustion because
they are exogenously determined. Rather we assume that emissions control in-
struments are reflected in exogenous fossil fuels’ prices, which affect the demand
for fossil fuels. Finally, because biofuels provide a renewable alternative to fossil
fuels, we credit the emissions’ quota, zL,by the fraction of fossil fuels’ emissions

8GHG emissions flows are also sequestered by atmospheric and ocean sinks. We ignore this
complication as our model does not provide comprehensive accounting of all GHG emissions
flows, and focuses on understanding emissions from land use and related sectors.
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displaced by the biofuels.9 The resulting relationships for emissions control are

zLt ≤ zLt = θzt

(
zLt −

(
1− µb,i

µx

)
bit

)
, i = 1, 2. (24)

where global warming intensity, θzt is a function determining the evolution of the
GHG emissions’ quota over time, and µb,1 and µb,2 are non-land-use emissions
of first and second generation biofuels’ production. Equation (24) describes the
constraint on non-fossil fuel emissions in the atmosphere, and shows how this
constraint is derived.

2.12 Preferences

The representative agent’s utility, U , is derived from the consumption of food
products, energy services, timber products, ecosystem services and other goods
and services. The specific functional form for the utility function in this study
is based on implicitly directive additive preferences, AIDADS (Rimmer and
Powell 1996). Our choice of the utility function based on AIDADS preferences
is motivated by its several important advantages over other functional forms
underpinning standard models of consumer demand.10 First, similar to the
well-known AIDS demand system (Deaton and Muellbauer 1980) the AIDADS
model is flexible in its treatment of Engel effects, i.e. the model “allows the
MBS’ (Marginal Budget Shares) to vary as a function of total real expenditures”
Rimmer and Powell (1996, p. 1614). Second, the AIDADS has global regularity
properties, in contrast to the local properties of AIDS11. This is essential for
solution of the model over a wide range of quantities. A number of studies
(Cranfield et al. 2003, Yu et al. 2004) demonstrated that AIDADS outperforms
other popular models of consumer demand in projecting global food demand,
which makes it especially well-suited for the economic modeling of land-use.

The utility function for the AIDADS system is the implicitly directly additive
function (Hanoch 1975): ∑

q=f,e,w,r,o

F
(
−→q , u

)
= 1, (25)

where −→q = {f, e, w, r, o} is the consumption bundle, u is the utility level ob-
tained from the consumption of goods or services q, and F (q, u) is a twice-

diffirentiable monotonic function that is strictly quasi-concave in −→q . Based on

9This doesn’t necessarily mean that biofuels are ’greener’ than fossil fuels. That will depend
on the emissions associated with agricultural production and natural land conversion.

10The most popular demand systems estimated in recent applied work are the Homothetic
Cobb-Douglas System (HCD), the Linear Expenditure System (LES), the Constant Difference
of Elasticities Demand System (CDE), and the Almost Ideal Demand System (AIDS).

11One of well-known limitations of the AIDS system is that its budget shares fall outside
[0, 1] interval. This frequently occurs when AIDS is applied to model the demand for staple
food when income growth is large (Yu et al. 2004, p. 102).
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Rimmer and Powell (1996), the functional form for F
(
−→q , u

)
is

F
(
−→q , u

)
=
αq + βq exp(u)

1 + exp(u)
ln

( −→q − q
A exp(u)

)
. (26)

In equation (26) the parameters αq and βq define the varying marginal budget
shares of goods and services q in the consumers’ total real expenditures. The
parameter q defines the subsistence level of consumption of goods and services
−→q . The functional form of F

(
−→q , u

)
implies that the consumption of goods

and services q is always greater than their subsistence levels, q. The parameter

A affects the curvature of the transformation function F
(
−→q , u

)
. The AIDADS

system imposes standard non-negativity and adding-up restrictions based on the
economic theory. These restrictions ensure that the consumers’ marginal budget
shares and minimal consumption level of goods and services q are greater or
equal to zero, and the sum of marginal budget shares in total real expenditures
does not exceed one.

Rimmer and Powell (1996, p. 1615) demonstrate that maximizing the utility
function (25) subject to the budget identity constraint (26) yields the following
system of inverse demand equations:

−→p q
(
−→q
)

=
αq + βq exp(u)

1 + exp(u)

y −
∑
q

−→p q−→q

−→q − q
, (27)

where −→p q are “prices” - or in this case, the marginal valuation - of goods and

services −→q and y is the economy’s output per capita.

2.13 Welfare

The objective of the planner is to maximize welfare function, Ω, defined as the
sum of net aggregate surplus discounted at the constant rate δ > 0, and the
bequest value of unmanaged and commercial forest areas.12 Net surplus is com-
puted by integrating the marginal valuation of each product, less the land access
costs and non-land-based costs of producing each good. Thus, for agricultural
output, food, and timber products, this represents non-land production costs.
For energy, these are non-land biofuels costs and fossil fuel costs. For fertilizers,
these are non-energy costs. For forestry, these are harvesting and planting costs.
And for recreation, these are the costs of maintaining natural parks. The plan-
ner allocates commercial land for agricultural product and timber production,
and the scarce fossil fuels and reserved natural forest land to solve the following

12We do not consider the bequest value of protected forests, as they cannot be “scrapped”
in our model.
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problem:

max
f,e,s,r

Ω =

T−1∑
t=0

δt

 ∑
q=f,e,s,r,o

∫ q∗

0

(
−→p q

(
−→q
)
− cq

(
−→q
))

d−→q − cUt
(
∆LU + ∆LR

)
−cRt − cnnt − c

g
t gt − cp∆L

C,P
t − cwt


+δTΓ

(
LUT , L

C
T

)
(28)

s.t. constraints (1)-(27), where Γ is the scrap value function.

3 Introducing Uncertainty Into Optimization Stage

An important limitation of FABLE model is that it is a deterministic model,
which accounts for uncertainty only through sensitivity analysis of model pa-
rameters, and ignores its impact on agents’ decisions. Developing the stochastic
extension of the model is a complex problem, because of the vintage repre-
sentation of the forestry sector (as described by equations 15-18), which adds
considerable computational complexity in the context of a dynamic stochastic
analysis. This section shows theoretical approach for incorporating uncertainty
in the decision making stage of FABLE model.

We solve the stochastic problem by numerical dynamic programming algo-
rithms. The dynamic programming formulation of the model is the following
Bellman equation Bellman (1957):

Vt
(
LNt , L

A
t , L

R
t , L

C
t

)
= max Ωt

(
−→qt
)

+ δE
{
Vt+1

(
LNt+1, L

A
t+1, L

R
t+1, L

C
t+1

)}
,

(29)
for t < T . The terminal value function is given by computing the discounted
summation of payoffs with fixed control policies over the period [T + 1, T + 200]
, for each possible terminal state vector

(
LNT , L

A
T , L

R
T , L

C
T

)
.

In dynamic programming problems, when the value function is continuous, it
has to be approximated. We use a finitely parameterized collection of functions
to approximate a value function, V (x) ≈ V̂ (x;b), where x is the continuous state
vector (in this study, it is the (vmax + 3)-dimensional vector,

(
LN , LA, LR, LC

)
)

and b is a vector of parameters. The functional form V̂ may be a linear combi-
nation of polynomials, or it may represent a rational function or neural network
representation, or it may be some other parameterization especially designed
for the problem. After the functional form is fixed, we focus on finding the
vector of parameters, b, such that V̂ (x;b) approximately satisfies the Bellman
equation. Numerical DP with value function iteration can solve the Bellman
equation approximately Judd (1998). Thus, the Bellman equation (29) can be
rewritten in a general form:

Vt(x) = max
a∈D(x,t)

Ωt(x, a) + δE
{
Vt+1(x+)

}
,

s.t. x+ = f(x, a, ω),
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where Vt(x) is the value function at time t ≤ T (the terminal value func-
tion VT (x) is given), a is the action variable vector (in this study, it includes

∆LU ,∆LR,∆LC,H ,∆LC,Pt ,−→q , etc.), x+ is the next-stage state vector(
LNt+1, L

A
t+1, L

R
t+1, L

C
t+1

)
, D(x, t) is a feasible set of a, ω is a random variable, δ

is a discount factor and Ωt(x, a) is the payoff function at time t. The following is
the algorithm of parametric dynamic programming with value function iteration
for finite horizon problems. Detailed discussion of numerical DP can be found
in Cai (2010), Judd (1998) and Rust (2008).

Algorithm 1 Value Function Iteration for the General Dynamic Programming
Model

Initialization. Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ Nt} for

every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT ) =
VT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
a∈D(xi,t)

Ωt
(
xi, a

)
+ βE

{
V̂
(
x+;bt+1

)}
, (30)

for each xi ∈ Xt, 1 ≤ i ≤ Nt, where x+ is the next-stage state transition
from xi.

Step 2. Fitting step. Using an appropriate approximation method, compute
bt, such that V̂ (x;bt) approximates {(xi, vi): 1 ≤ i ≤ Nt} data, i.e.,
vi ≈ V̂ (xi;bt) for all xi ∈ Xt.

Algorithm 1 includes three types of numerical problems. First, we need to
solve a maximization problem at each node xi ∈ Xt. Second, the evaluation
of the objective requires us to compute an expectation. Third, we need to
efficiently take the data and compute the best fit for the new value function.
The challenge is not only to use good numerical methods for each of these steps
but also to choose methods that are compatible with each other and jointly lead
to efficient algorithms. Our code is written in FORTRAN and uses the methods
presented in Judd (1998), Cai (2010), and Cai and Judd (2010, 2012b, 2012a,
2012c, 2013) and we use NPSOL Gill et al. (1998) as the optimization solver in
the maximization step. Since this is a high-dimensional problem, we use parallel
dynamic programming methods presented in Cai et al. (2013) and apply them
in a supercomputer.
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4 Agricultural Yield Dynamics under Climate
Scenarios

This section describes agricultural yields dynamics in FABLE model and quan-
tifies their range of uncertainty under different climate scenarios. A well es-
tablished fact in the agronomic literature is that yields of major food crops
grow linearly, adding constant amount of gain per annum. However, recent
agronomic evidence (Cassman et al. 2010) shows that yields are plateauing in
some of the world’s most important cereal-producing countries. Cassman (1999)
suggested that average national yields plateau when they reach 70–80% of the
genetic yield potential ceiling. Based on this hypothesis we assume that crop
technology index, θg,1 follows logistic (Verhulst) model with declining growth
over time:

θg,1t =
θg,1T θg,10 eκgt

θg,1T + θ0 (eκgt − 1)
, (31)

where θg,10 is the initial value of crop technology index, θg,1T is crop yield
potential, i.e., “the yield an adapted crop cultivar can achieve when crop man-
agement alleviates all abiotic and biotic stresses through optimal crop and soil
management” (Evans and Fischer 1999), and κg is the logistic growth rate. In
a comprehensive study Lobell et al. (2009) report a significant variation in the
ratios of actual to potential yields for major food crops across the world, ranging
from 0.16 for tropical lowland maize in Sub-Saharan Africa to 0.95 for wheat in
Haryana, India. We assume the average ratio of 0.55. We calibrate the value of
the logistic growth rate κg to match recent crop yield dynamics, and allow for

yield plateau when they reach 70–80% of the potential yield, θg,1T .
The impact of climate change on food crop yields depends critically on their

phenological development, which, in turn, depends on the accumulation of heat
units, typically measured as growing degree days (GDDs). More rapid accu-
mulation of GDDs as a result of the climate change speeds up phenological
development, thereby shortening key growth stages, such as the grain filling
stage, hence reducing potential yields (Long 1991). However, raising concen-
trations of CO2 in the atmosphere results in an increase in potential yields due
to the “CO2 fertilization effect” (Long et al. 2006). Sorting out between rel-
ative importance of these effects and achieving more robustness in evaluating
climate impacts on agricultural yields remains an important research question
in agronomic and biophysical literatures (Cassman et al. 2010, Rosenzweig et al.
2013).

To quantify the range of uncertainty of climate change impact on potential
crop yields we obtained results from runs of the Decision Support System for
Agrotechnology Transfer (DSSAT) crop simulation model (Jones et al. 2003),
run globally on a 0.5◦ grid and weighted by agricultural output of four major
food crops (maize, soybeans, wheat and rice) under most optimistic (RCP2.6)
and pessimistic (RCP8.5) Representative Concentration Pathways GHG forcing
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Table 1: Changes in Potential Crop Yields by 2100 (t / Ha)

Model / Scenario RCP 2.6F RCP2.6NF RCP 8.5F RCP 8.5NF
GFDL-ESM2M 0,17 -0,16 0,46 -0,72
HadGEM2-ES 0,16 -0,18 -0,27 -1,30
IPSL-CM5A-LR 0,04 -0,29 -0,27 -1,30
MIROC-ESM-CHEM -0,03 -0,34 -0,34 -1,32
NorESM1-M 0,20 -0,12 0,16 -0,92

Notes. F: Fertilization Effect; NF: No Fertilization Effect.

The results are normalized relative to θg,1T = 8.8.

scenarios (Moss et al. 2008) and alternate assumptions on CO2 fertilization ef-
fects over the period between 1971 and 2099. To quantify temperature increases
due to climate change we employ outputs for five global climate models (GCM):
GFDL-ESM2M (Dunne et al. 2013), HadGEM2-ES (Collins et al. 2008), IPSL-
CM5A-LR (Dufresne et al. 2012), MIROC-ESM-CHEM (Watanabe et al. 2011),
and NorESM1-M (Bentsen et al. 2012). For each of the simulations we fit a lin-
ear trend, which is used to predict dynamics of agricultural yields over time.

Table 1 summarizes simulation results for four climate scenarios (RCP 2.6
and 8.5 with and without fertilization effects) in 2100, normalized relative to
assumed yield potential of 8.8 t / Ha. There is a significant heterogeneity in
terms of both direction and the magnitude of climate impacts on agricultural
yields across global climate models when fertilization effect is considered. For
the most optimistic scenario, RCP2.6 with fertilization effect (RCP2.6F), four
out of five GCMs predict an increase in potential yields, whereas one model
(MIROC-ESM-CHEM), predicts a very small decline in potential yield. In a
scenario of rapid increases in global temperature with CO2 fertilization effect
(RCP8.5F) three out of five GCMs predict a decline in potential yields of compa-
rable magnitude (between 0.27 and 0.34 t / Ha). Another GCM (NorESM1-M)
predicts an increase in potential yields, but to a lesser extent as compared to sce-
nario RCP2.6F. Only one climate model (GFDL-ESM2M) predicts an increase
in potential yields, which is greater than in scenario RCP2.6F. These results
are consistent with recent findings showing the potential for negative climate
impacts on major crops at higher levels of warming (Rosenzweig et al. 2013).

The predictions of global climate models become more similar, at least in
terms of impact direction, when CO2 fertilization effects are removed. For a sce-
nario of moderate temperature increases without fertilization effect (RCP2.6NF),
all GCMs predict a moderate decline in potential yields (between 0.12 and 0.34
t / Ha). Three out of five GCMs predict a decline in potential yields of a
comparable magnitude to scenario RCP8.5F. Finally, for a scenario of rapid
temperature increases without fertilization effect (RCP8.5NF), all GCMs pre-
dict a larger decline in potential yields (between 0.72 and 1.32 t / Ha). These
results are consistent with recent statistical evidence showing that “10 years of
climate trend is equivalent to a setback of roughly 1 year of technology gains”
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Figure 1: Crop Yield Dynamics under Different Climate Scenarios

(Lobell et al. 2011, p. 619).
Based on these results we construct 3 modeling scenarios capturing crop

yield dynamics as described by equation (31) under different climate scenarios
(Figure 1). The first scenario, RCP2.6F, shows yield dynamics corresponding
to moderate temperature increases with CO2 fertilization effect. The second
scenario, RCP2.6NF/RCP8.5F, shows yield dynamics corresponding to either
moderate temperature increases without CO2 fertilization effect or rapid tem-
perature increases with CO2 fertilization effect. The third scenario, RCP8.5NF,
shows yield dynamics corresponding to rapid temperature increases without
CO2 fertilization effect.

5 Results from the Perfect Foresight Model

This section describes the results of change in crop yields on the optimal path
of global land use under different climate scenarios based on FABLE model
simulations. We solve the model over the period 2005 - 2204, and present the
results for the first 100 years to minimize the effect of terminal period conditions
on our analysis.
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5.1 RCP 2.6 with CO2 Fertilization Effect (Model Base-
line)

Figure 2 depicts the optimal allocation of global land-use, land based GHG
emissions, consumption of goods and services that draw on land resources, and
consumption of biofuels under climate scenario RCP2.6F, which we choose as
the model baseline over the course of next century. Beginning with the up-
per left-hand panel of Figure 2, we see that, in the near term decades, area
dedicated to food crops increases by 18 percent compared to 2004, reaching
its maximum of 1.82 billion hectares in 2040. Managed forest area remains
practically unchanged at 1.57 billion hectares. Changes in areas dedicated to
biofuels feedstocks and protected natural forests remain insignificant. By mid-
century, slower population growth, rising real income, agricultural yields, and
improvements in food processing, storage and transportation technologies result
in a decline in demand for food crops and an increase in demand for managed
forests. By 2100 cropland area declines to 1.37 billion hectares, or 11 percent
lower than 2004. Managed forest area increases to 1.93 billion hectares, which is
20 percent larger than 2004. Growing energy prices result in significant growth
in the land area dedicated to biofuels, which reaches 0.19 billion hectares by
2100. Rising real incomes, growing demand for ecosystem services, and im-
provements in management of natural forest lands result in strong growth in
protected natural land area, which increases sharply to 0.51 billion hectares
(about 2.5 times compared to 2004) in 2100.

The upper right-hand panel in Figure 2 reports gross land based annual
GHG emissions flows and their net accumulation over time.13 Positive bars
in this panel denote emissions, whereas negative bars denote GHG abatement
through forest sinks and biofuels offsets. Conversion of natural forest lands is
a significant driver of land-based GHG emissions in the near decades, which
amounts to 3 GtCO2e/yr in 2040. By mid-century, increasing access costs of
natural land combined with declining demand for commercial land, results in
a sharp decline in deforestation. In 2050 GHG emissions from deforestation
decrease by 63 percent compared to 2004, and amount to 1.45 GtCO2e/yr.
They cease entirely by mid 2060s along this optimal global path of land use.
GHG emissions from application of fertilizers decline steadily as prices of natural
gas increase and pressure on croplands diminishes in the face of slowing global
population growth and improving crop technology. In 2100 annual flows of
GHG emissions from use of fertilizers amount to 0.53 GtCO2e/yr, which is 85
percent smaller than 2004. GHG emissions sequestration from managed forests
does not change significantly by mid-century. In the long term the amount of
sequestered GHG emissions increases with the growth in managed forest area.
In 2100 sequestered GHG emissions amount to 5 GtCO2e/yr, which is about 2
times larger than 2004. GHG emissions offsets from biofuels are insignificant
in the near term. With the arrival of second generation biofuels technology,
biofuels become a significant source of land based GHG abatement due to their

13As this study focuses on optimal path of land based GHG emissions, the emissions from
combustion of petroleum products are not shown in Figure 2.
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Figure 2: Model Baseline (RCP 2.6F)

low emissions intensity relative to petroleum (Dunn et al. 2011). In 2100 annual
biofuels offsets account for 1.5 GtCO2e/yr. Overall, accumulation of land based
GHG emissions flows increases in the first part of this century, reaching its
maximum of 115 GtCO2e around 2050. It then declines in the second part of
the century, turning negative around 2085, and abating 90 GtCO2e by 2100. As
explained above, higher oil prices, expansion of biofuels, declining deforestation,
and forest growth are the main reasons for rising GHG abatement of land based
sectors.

The lower left-hand panel in Figure 2 illustrates the results for per-capita
consumption of goods and services that draw on land resources. The consump-
tion of all goods and services increases in absolute terms. The growth in per
capita consumption is fueled by productivity growth across the board, while
population growth declines over the baseline. In 2100 the per capita consump-
tion of services from processed food, energy, processed timber, and ecosystems
is considerably higher compared to their levels in 2004. Of course, this does not
translate into an equivalent increase in consumption of the bulk agriculture and
timber products. Rather most of this rise in real consumption is due to efficiency
gains in the processing sectors, as well as increases in the use of non-primary
inputs in the production process.

The lower right-hand panel of Figure 2 describes the results for consumption
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of biofuels.14 The consumption of first generation biofuels grows slowly as oil
prices and agricultural yields increase. However, along this optimal path, first
generation biofuels do not become a significant source of energy consumption.
In 2100 the consumption of first generation biofuels is 25 Mtoe, considerably
higher than in 2004, but still small in relative terms. Second generation biofuels
become competitive around 2040 and rapidly expand reaching 250 million toe
in 2050, and 525 million toe in 2100. The share of biofuels in total liquid fuel
consumption accounts for 7.2 percent in 2050, and for 28.5 percent in 2100. This
baseline result is of comparable magnitude to findings in recent economic studies
on bioenergy and land use Gurgel et al. (2007), Chakravorty et al. (2011), Popp
et al. (2011).15

5.2 RCP 2.6 without CO2 Fertilization Effect / RCP 8.5
with CO2 Fertilization Effect

Figure 3 describes the results of simulations of changes in the optimal al-
location of global land-use, GHG emissions, consumption of goods and ser-
vices that draw on land resources, and consumption of biofuels for scenario
RCP2.6NF/RCP8.5F, corresponding to decline in potential yields as a conse-
quence of climate change. We report changes, which are incremental to the
model baseline.

The upper left-hand panel in Figure 3 shows the results for changes in allo-
cation of land use relative to the baseline scenario. Declining food crop yields
result in greater requirements for cropland and fertilizers to produce agricul-
tural output used in production of food services. However, the expansion of
cropland is relatively small. Compared to the baseline scenario, the cropland
area expands further by 8.5 million hectares (0.5 percent) in 2050 and by 11.5
million hectares (0.9 percent) in 2100. Managed forest area declines by 5 million
hectares in 2050 and by 7 million hectares in 2100. Area dedicated to biofuels
feed stocks declines by 1 million hectares in 2050, and by 2.5 million hectares
in 2100. Finally, protected forest area declines by 0.5 million hectares in 2050
and by 1.5 million hectares in 2100. The modest increase in use of cropland is
explained by a lower levels of total crop output than in the baseline, as well as

14In our baseline, biofuels expansion is driven solely by oil prices. Of course there are
government mandates which have played an important role in biofuel expansion in the US
and the EU, in particular. However, in the long run, we believe that the fare of biofuels will
be largely determined by oil prices. In our baseline, oil prices are rising steadily such that we
expect the US mandates for first generation biofuels will not be binding Meyer et al. (2011).
As regards second generation biofuels, recent evidence suggests that US-RFS2 mandate for
cellulosic biofuels will unlikely be met National Research Council (2011). More generally, we
expect that budgetary pressures will limit the extent to which governments will be willing
to subsidize biofuels in the coming decades. This leaves oil prices as the primary driver of
biofuels expansion.

15Direct comparison of model predictions of biofuels penetration is difficult due to consider-
able uncertainty in variety of factors, such as, e.g., evolution of biofuels’ production technolo-
gies, land access costs, yield growth rates, and energy demand projections. We show model
sensitivity to these factors in counterfactual simulations in model technical documentation
Steinbuks and Hertel (2012).
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Figure 3: Scenarios RCP 2.6NF / RCP 8.5F

an increased use of fertilizers. Compared to the baseline scenario, production
of food products falls by 4 percent, whereas application of fertilizers increases
by 1 percent in 2100.

The upper right-hand panel in Figure 3 shows the results for changes in
annual GHG emissions relative to the baseline scenario. Overall, accumulated
GHG emissions change modestly relative to the baseline scenario, increasing by
6 GtCO2e in 2100. The most significant effects of declining agricultural produc-
tivity on change in GHG emissions are from greater use of fertilizers, smaller
biofuels’ offsets and reduced forest sequestration. Compared to the baseline
scenario, the GHG emissions from fertilizers’ use, reduced biofuels’ offsets and
forest sequestration increase by correspondingly 7, 8, and 42 MtCO2e/yr in
2100.

The lower left-hand panel in Figure 3 shows the results for changes in per-
capita consumption of goods and services that draw on land resources. Com-
pared to the baseline scenario consumption of all goods and services decreases.
There is a significant decline in the consumption of processed food services. In
2100 their per capita consumption is 4 percent lower than in the baseline sce-
nario. The reduction in consumption of services of energy, timber products, and
ecosystem services is less than 1 percent.

The lower right-hand panel in Figure 3 shows the results for changes in biofu-
els. Declining food crop yields depress production of biofuels. In 2100 the total
consumption of first generation biofuels decreases by 2.5 million toe (10 percent)
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Figure 4: Scenario RCP 8.5NF

compared to the baseline scenario. The production of second generation biofuels
also declines as a fraction of land dedicated to biofuels’ feedstocks is substituted
for cropland. However the reduction of second generation biofuels is very small
and amounts to less than 1 million toe compared to the baseline scenario. As
first generation biofuels account for a small share in total biofuels’ consumption,
the share of biofuels in liquid fuel consumption remains unchanged.

5.3 RCP 8.5 without CO2 Fertilization Effect

Figure 4 describes the results of simulations of changes in the optimal alloca-
tion of global land-use, GHG emissions, consumption of goods and services that
draw on land resources, and consumption of biofuels for scenario RCP8.5NF,
corresponding to greater decline in potential yields as a consequence of rapid
increase in global temperatures absent CO2 fertilization benefits. We report
changes, which are incremental to scenario RCP2.6NF/RCP8.5F. Because of
same direction of climate impacts the results are very similar to previous sce-
nario, albeit at greater magnitude.

The upper left-hand panel in Figure 4 shows the results for changes in allo-
cation of land use relative to scenario RCP2.6NF/RCP8.5F. Declining food crop
yields render further expansion of cropland. Compared to scenario RCP2.6NF
/RCP8.5F, the cropland area expands further by additional 24 million hectares,
whereas managed forest area declines by additional 13 million hectares in 2100.
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Area dedicated to biofuels feed stocks and protected forest area decline corre-
spondingly by additional 4 and 3 million hectares in 2100.

The upper right-hand panel in Figure 4 shows the results for changes in
annual GHG emissions relative to scenario RCP2.6NF/RCP8.5F. Accumulated
GHG emissions increase by additional 13 GtCO2e in 2100. The GHG emissions
from fertilizers’ use, reduced biofuels’ offsets and forest sequestration increase
further by correspondingly 15, 14, and 68 MtCO2e/yr in 2100.

The lower left-hand panel in Figure 4 shows the results for changes in per-
capita consumption of goods and services that draw on land resources. Com-
pared to scenario RCP2.6NF/RCP8.5F consumption of all goods and services
decreases. Per capita consumption of services from processed food declines by
additional 8 percent. The reduction in consumption of services of energy, timber
products, and ecosystem services is less than 1 percent.

The lower right-hand panel in Figure 4 shows the results for changes in
biofuels. In 2100 the total consumption of first generation biofuels decreases
by additional 4 million toe compared to scenario RCP2.6NF/RCP8.5F. The
changes in production of second generation biofuels and the share of biofuels in
liquid fuel consumption are insignificant.

6 Results from the Dynamic Stochastic Model

TBC.

7 Conclusions

We seek to assess how the uncertainties associated with the underlying biophys-
ical processes influence the optimal profile of land use over the next century,
in light of potential irreversibility in these decisions. Our analysis is based on
stochastic extension of FABLE, an integrated model of global land use, which
brings together distinct strands of economic, agronomic, and biophysical litera-
ture and incorporates key drivers affecting global land-use.

We identify the optimal allocation of the world’s land resources, over the
course of the next century, in the face of variability in crop yields as driven
by climate change. Our economic analysis employs 3 modeling scenarios using
DSSAT crop simulation model for four major crops, run globally on a 0.5 degree
grid and weighted by agricultural output under different GHG forcing scenarios
using outputs from five different global climate models.

The results of the perfect foresight model show that climate impacts appear
to have mixed effects on yields - higher temperatures hurt food production but
this effect is partially offset by greater CO2 fertilization effect. Declining food
crop yields result in greater requirements for cropland and fertilizers to produce
agricultural output used in production of food services. However, the expansion
of cropland and accumulated GHG emissions from land use change appear rel-
atively small. Decline in crop yields also depresses demand for processed food

25



services, whereas the production of biofuels remains practically unchanged.
We then contrast this optimal path to that obtained when the uncertainty is

not ignored, thereby demonstrating the implications of factoring this in at the
optimization stage.
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