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Abstract

Decentralized matching markets on the internet allow large numbers of agents to interact
anonymously at virtually no cost. Very little information is available to market par-
ticipants and trade takes place at many different prices simultaneously. We propose a
decentralized, completely uncoupled learning process in such environments that leads to
stable and efficient outcomes. Agents on each side of the market make bids for potential
partners and are matched if their bids are mutually profitable. Matched agents occasion-
ally experiment with higher bids if on the buy-side (or lower bids if on the sell-side), while
single agents, in the hope of attracting partners, lower their bids if on the buy-side (or
raise their bids if on the sell-side). This simple and intuitive learning process implements
core allocations even though agents have no knowledge of other agents’ strategies, pay-
offs, or the structure of the game, and there is no central authority with such knowledge
either.
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1. Introduction

Electronic technology has created new forms of markets that involve large numbers of
agents who interact in real time at virtually no cost. Interactions are driven by repeated
online participation over extended periods of time without public announcements of bids,
offers, or realized prices. Even after many encounters, agents may learn little or nothing
about the preferences and past actions of other market participants. In this paper we
propose a dynamic model that incorporates these features and explore its convergence and
welfare properties. We see this as a first step towards developing a better understanding
of how such markets operate, and how they might be more effectively designed.

We shall be particularly interested in bilateral markets where agents on each side of the
market submit prices at which they are willing to be matched. Examples include online
platforms for matching buyers and sellers of goods, for matching workers and firms, for
matching hotels with clients, and for matching men and women.1 Matching markets
have traditionally been analyzed using game-theoretic methods (Gale & Shapley [1962],
Shapley & Shubik [1972], Roth & Sotomayor [1990]). In much of this literature, however,
it is assumed that agents submit preference menus to a central authority, which then
employs a suitably designed algorithm to match them. The model we propose is different
in character: agents make bids that are conditional on the characteristics of those with
whom they wish to be matched, and a profitable (not necessarily optimal) set of matches is
realized at each point in time. There is no presumption that agents or a central authority
know anything about others’ preferences, or that they can deduce such information from
prior rounds. Instead, the agents, through trial-and-error, look for profitable matches
and adjust their bids dependent on whether being matched or being single.

Rules of this type have a long history in the psychology literature (Thorndike [1898],
Hoppe [1931], Estes [1950], Bush & Mosteller [1955], Herrnstein [1961]). To the best of
our knowledge, however, such a framework has not previously been used in the study
of matching markets in cooperative games.2 The approach seems especially well-suited
to modeling behavior in large decentralized matching markets, where agents have little
information about the overall game and about the identity of the other market partici-
pants. We show that a class of learning rules with simple adjustment dynamics of this
type implements the core with probability one after finite time. The main contribution
of the paper is to show that this can be achieved even though agents have no knowledge
of other agents’ strategies or preferences, and there is no central authority with such
knowledge either.

The paper is structured as follows. The next section discusses the related literature
on matching and core implementation. Section 3 formally introduces assignment games
and the concepts of bilateral stability and the core. Section 4 describes the process of
adjustment and search by individual agents. In section 5 we prove that this process
converges to the core. Section 6 concludes.

1An example is www.priceline.com’s Name-Your-Own-Price R©; www.HireMeNow.com’s Name-Your-
Own-Wage

TM

uses a similar reverse auction mechanism for temporary employment.
2For a review of other mechanisms in the literature see Sandholm [2008].
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2. Related literature

There is a sizeable literature on matching algorithms that grows out of the seminal paper
by Gale & Shapley [1962]. In this approach agents submit preferences for being matched
with agents on the other side of the market, and a central clearing algorithm matches
them in a way that yields a core outcome (provided that the reports are truthful). For
subsequent literature, see Crawford & Knoer [1981], Kelso & Crawford [1982], Demange
& Gale [1985], Demange, Gale & Sotomayor [1986], Shimer [2007, 2008], Elliott [2010,
2011].3 These algorithms have been successfully applied in situations where agents engage
in a formal application process, such as students seeking admission to universities, doctors
applying for hospital residencies, or transplant patients looking for organ donors.4

In the present paper, by contrast, we consider situations where the market is fluid and de-
centralized. Agents are matched and rematched over time, and the information they sub-
mit takes the form of prices rather than preferences. Examples include markets matching
buyers with sellers or firms with workers. These constitute a special class of cooperative
games with transferable utility (Shapley & Shubik [1972]). We shall show that even when
agents have minimal amounts of information and use very simple price adjustment rules,
the market evolves towards core outcomes.

In our model, there is a simple clearing mechanism, “the Matchmaker”, whose function
is to match agents with mutually profitable bids and offers who are currently “active”.
Neither the players nor the Matchmaker have enough information to optimize the value
of the matches. This limited role is what distinguishes our Matchmaker from a central
authority governing a traditional matching environment as in, for example, the National
Resident Matching Program (Roth & Peranson [1999]). We shall show that simple ad-
justment rules by the agents lead to efficient and stable outcomes without any centralized
information about which matches are best.

This result fits into a growing literature showing how cooperative game solutions can be
understood as outcomes of a dynamic learning process (Agastya [1997, 1999], Arnold &
Schwalbe [2002], Rozen [2010a, 2010b], Newton [2010, 2012], Sawa [2011]). To illustrate
the differences between these approaches and ours, we shall briefly outline Newton’s model
here; the others are similar in spirit.5 In each period a player is activated at random and
demands a share of the surplus from some targeted coalition of players. He chooses
a demand that amounts to a best reply to the expected demands of the others in the
coalition, where his expectations are based on a random sample of the other players’ past
demands. In fact he chooses a best reply with probability close to one, but with small
probability he may make some other demand. This noisy best-response process leads to
a Markov chain whose ergodic distribution can be characterized using the theory of large
deviations. Newton shows that, subject to various regularity conditions, this process
converges to a core allocation provided the game has a nonempty interior core.6

3Shimer [2007, 2008] and Elliott [2010, 2011] explore empirical and network elements of matching.
4See Roth [1984], Roth & Peranson [1999] for discussions of the US medical resident market, and

Roth, Sönmez & Ünver [2005] for the kidney exchange market.
5Newton [2012] nests the models of Agastya [1997, 1999] and Rozen [2010a, 2010b] as special cases.
6The interior of the core is said to be nonempty if the core is of maximal dimension. This is not
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The main difference between existing learning models and ours is the amount of informa-
tion available to market participants.7 The approach we take here requires considerably
less information on the part of the agents: players know nothing about the other play-
ers’ current or past behavior, or their payoffs. Thus, they have no basis on which to
best respond to the other players’ strategies; they simply experiment to see whether
they might be able to do better. Adaptive rules of this type are said to be completely
uncoupled (Foster & Young [2006]).8 In recent years it has been shown that there are
families of such rules that lead to equilibrium behavior in generic non-cooperative games
(Karandikar, Mookherjee, Ray & Vega-Redondo [1998], Foster & Young [2006], Germano
& Lugosi [2007], Marden, Young, Arslan & Shamma [2009], Young [2009], Pradelski &
Young [2012]). Here we shall demonstrate that a very simple rule of this form leads to
stability and optimality in two-sided matching markets.

3. Matching markets with transferable utility

In this section we shall introduce the conceptual framework for analyzing matching
markets with transferable utility; in the next section we introduce the learning pro-
cess itself. The population N = F ∪W consists of firms F = {f1, ..., fm} and workers
W = {w1, ..., wn}.9 They interact by submitting bids and offers to “the Matchmaker”,
whose function is to propose matches between firms and workers whose bids and offers
are mutually profitable.

3.1 Static components

Willingness to pay. Each firm i has a willingness to pay, p+ij ≥ 0, for being matched to
worker j.

Willingness to accept. Each worker j has a willingness to accept, q−ij ≥ 0, for being
matched with firm i.

We assume that these numbers are specific to the agents and are not known to the other
market participants or to the Matchmaker.

It will be convenient to assume that all values p+ij and q−ij can be expressed as multiples
of some minimal unit of currency δ, e.g., “dollars”. At the end of section 5 (corollary 2),
we shall show that all the results extend to continuous space.

guaranteed (and not likely) in many applications.
7Moreover, the core of an assignment game typically has an empty interior, so that the aforementioned

results cannot be applied directly to the present set-up.
8This definition is a strengthening of uncoupled rules introduced by Hart & Mas-Colell [2003].
9The two sides of the market could also, for example, represent buyers and sellers, or men and women

in a (monetized) marriage market.
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3.2 Dynamic components

Let t = 0, 1, 2, ... be the time periods.

Assignment. For all agents (i, j) ∈ F ×W , let atij ∈ {0, 1}.

If (i, j) is

{
matched then atij = 1,

unmatched then atij = 0.
(1)

If for a given agent i ∈ N there exists j such that atij = 1 we shall refer to that agent as
matched ; otherwise i is single.

Aspiration level. At the end of any period t, a player has an aspiration level, dti,
which determines the minimal payoff at which he is willing to be matched. Let dt =
{dti}i∈F∪W .

Bids. In any period t, each agent submits conditional bids for players on the other
side of the market to the Matchmaker. We assume that these bids are such that the
resulting payoff to a player (if he is matched) is at least equal to his aspiration level, and
with positive probability is exactly equal to his aspiration level. Moreover, every pair
of players submit bids to be matched with each other in any given period with positive
probability.

Formally, firm i ∈ F submits a vector of random bids bti = (pti1, ..., p
t
in), where ptij is the

maximal amount i is currently willing to pay if matched with j ∈ W . Similarly, worker
j ∈ W submits btj = (qt1j, ..., q

t
mj), where qtij is the minimal amount j is currently willing

to accept if matched with i ∈ F . The bids are separable into two components; the current
aspiration level beyond firm i’s (worker j’s) willingness to pay (accept) and a random
variable P t

ij (Qt
ij):

for all i, j, ptij = (p+ij − dt−1i )− P t
ij and qtij = (q−ij + dt−1j ) +Qt

ij (2)

Consider, for example, worker j’s bid for firm i. The amount q−ij is the minimum that j

would ever accept to be matched with i, while dt−1j is his previous aspiration level over
and above the minimum. Thus Qt

ij is j’s attempt to get even more in the current period.
We assume that P t

ij, Q
t
ij are independent random variables that take values in δN0 where

0 has positive probability.10 Note that if the random variable is zero, the agent bids
exactly according to his current aspiration level. We shall use the convention ptij = −∞
(qtij =∞) if firm i (worker j) does not bid for worker j (firm i) in the current period.

Tie-breaking. A firm (worker) prefers to be matched at p+ij (q−ij) rather than being
single.

Profitability. A pair of bids (ptij, q
t
ij) is profitable if ptij > qtij or if ptij ≥ qtij and i and j

are single.

Matchmaker. At each moment in time, at most one player is active. The Matchmaker
observes

10Note that P[P t
ij = 0] > 0 and P[Qt

ij = 0] > 0 are trivial assumptions, since we can adjust p+ij and q−ij
in order for it to hold.
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• the current bids and which agent is currently active,

• who is currently matched with whom and which bids are profitable.

The Matchmaker then matches the active agent to some agent (if one exists) with whom
the bids are profitable. (Details about the Matchmaker and about how players are acti-
vated are specified in the next section.)

Prices. When i is matched with j given bids ptij ≥ qtij, the resulting price, πt
ij, is the

average of the players’ bids subject to “rounding”. Namely, there is an integer k such
that

if ptij + qtij = 2kδ then πt
ij = kδ,

if ptij + qtij = (2k + 1)δ then

{
πt
ij = kδ with probability 0.5,

πt
ij = (k + 1)δ with probability 0.5.

(3)

This implies that when a pair is matched we have

ptij = qtij. (4)

Note that when a new match forms that is profitable (as defined earlier), neither of the
agents is worse off, and if one agent was previously matched both agents are better off in
expectation due to the rounding rule.11

3.3 Assignment games

We are now in a position to formally define matching markets and assignment games.

Match value. Assume that utility is linear and separable in money. The value of a
match (i, j) ∈ F ×W is the potential surplus

αij = (p+ij − q−ij)+. (5)

Matching market. The matching market is described by [F,W,α,A]:

• F = {f1, ..., fm} is a set of m firms (or men or sellers),

• W = {w1, ..., wn} is a set of n workers (or women or buyers),

• α =

 α11 . . . α1n
... αij

...
αm1 . . . αmn

 is the matrix of match values.

• A =

 a11 . . . a1n
... aij

...
am1 . . . amn

 is the assignment matrix with 0/1 values and
row/column sums at most one.

The set of all possible assignments is denoted by A.

11It is not necessary for our result to assume the price to be the average of the bids. We only need
that the price, with positive probability, is different from a players bid when bids strictly cross.
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Cooperative assignment game. Given [F,W,α], the cooperative assignment game
G(v,N) is defined as follows. Let N = F ∪W and define v : S ⊆ N → R such that

• v(i) = v(∅) = 0 for all singletons i ∈ N ,

• v(S) = αij for all S = (i, j) such that i ∈ F and j ∈ W ,

• v(S) = max{v(i1, j1) + ...+ v(ik, jk)} for every S ⊆ N ,

where the maximum is taken over all sets {(i1, j1), ..., (ik, jk)} consisting of disjoint pairs
that can be formed by matching firms and workers in S. The number v(N) specifies the
value of an optimal assignment.

States. The state at the end of period t is given by Zt = [At,dt] where A ∈ A is an
assignment and dt is the aspiration level vector. Denote the set of all states by Ω.

Optimality. An assignment A is optimal if
∑

(i,j)∈F×W aij · αij = v(N).

Pairwise stability. An aspiration level dt is pairwise stable if ∀i, j with aij = 1,

p+ij − dti = q−ij + dtj, (6)

and p+i′j − dti′ ≤ q−i′j + dtj for every alternative firm i′ and q−ij′ + dtj′ ≥ p+ij′ − dti for every
alternative worker j′.

The Core. The core of an assignment game, G(v,N), consists of the set C ⊆ Ω of all
states, [A,d], such that A is an optimal assignment and d is pairwise stable.

Shapley & Shubik [1972] show that the core of any assignment game is always non-empty
and coincides with the set of pairwise stable aspiration levels that are supported by
optimal assignments. (In Shapley & Shubik [1972] this is formulated in terms of payoffs,
as we now proceed to define.) Subsequent literature has investigated the structure of the
assignment game core, which turns out to be very rich.12

Payoffs. Given [At,dt] the payoff to firm i / worker j is

φt
i =

{
p+ij − πt

ij if i is matched to j,

0 if i is single.
φt
j =

{
πt
ij − q−ij if j is matched to i,

0 if j is single.
(7)

In our framework, [A,d] is in the core if all aij = 0 or 1, all φi ≥ 0 and the following
conditions hold:13

(i) ∀i ∈ F ,
∑

j∈W aij ≤ 1 and ∀j ∈ W ,
∑

i∈F aij ≤ 1,

(ii) ∀i, j ∈ F ×W , φi + φj ≥ αij,

(iii) ∀i ∈ F ,
∑

j∈W aij < 1 ⇒ φi = 0 and ∀j ∈ W ,
∑

i∈F aij < 1 ⇒ φj = 0.

(iv) ∀i, j ∈ F ×W , aij = 1 ⇒ φi + φj = αij.

12See, for example, Roth & Sotomayor [1992], Balinski & Gale [1987], Sotomayor [2003].
13These are the feasibility and complementary slackness conditions for the associated linear program

and its dual (see, for example, Balinski [1965]).
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4. Evolving play

A fixed population of agents, N = F ∪W , repeatedly plays the assignment game G(v,N)
by submitting bids to the Matchmaker and by adjusting them dynamically as the game
evolves. Agents become activated spontaneously according to independent Poisson arrival
processes. For simplicity we shall assume that the arrival rates are the same for all agents,
but our results also hold when the rates differ across agents (for example, single agents
might become active at a faster rate than matched agents). The distinct times at which
one agent becomes active will be called periods.

4.1. Behavioral dynamics

The essential steps and features of the learning process are as follows. At the start of
period t+ 1:

1. A unique agent becomes active.

2a. If a profitable match exists given the current bids, the Matchmaker selects a ran-
domly drawn profitable match with the active agent.

2b. If no profitable match exists, the Matchmaker rejects the bids.

3a. If a new match (i, j) is formed, the price is the average of the two bids (subject to
rounding). The bids of i and j next period are at least their realized payoffs this
period.

3b. If no new match is formed, the active agent, if he was previously matched, keeps
his previous bid and stays with his previous partner. If he was previously single,
he remains single and lowers his aspiration level with positive probability.

We shall now describe the process in more detail, distinguishing the cases where the active
agent is currently matched or single. Let Zt be the state at the end of period t (and the
beginning of period t+ 1), and let i be the unique active agent.

I. The active agent is currently matched

Let J ′ be the set of players with whom i can be profitably matched, that is,

J ′ = {j′ : ptij′ > qtij′}. (8)

If J ′ 6= ∅, some agent j′ ∈ J ′ is drawn uniformly at random by the Matchmaker, and
is matched with i.14 As a result, i’s former partner is now single (and so is j′’s former
partner if j′ was matched in period t). The price governing the new match, πt+1

ij′ , is the
average (subject to rounding) of ptij′ and qtij′ .

14Instead of a uniform random draw from the profitable matches, priority could be given to those
involving single agents; or any distribution with full support on the profitable matches can be used.
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At the end of period t + 1, the aspiration levels of the newly matched pair (i, j′) are
adjusted according to their newly realized payoffs:

dt+1
i = p+ij′ − π

t+1
ij′ and dt+1

j′ = πt+1
ij′ − q

−
ij′ . (9)

All other aspiration levels and matches remain fixed. If J ′ = ∅, i remains matched
with his previous partner and keeps his previous aspiration level. See Figure 1 for an
illustration.

Figure 1: Transition diagram for active, matched agent (period t+ 1).

1 11,  t t t

ij i ia d d+ +
= =

old match

new match

i

profitable match

exists ( ' )J ≠ ∅

no profitable 

match exists ( ' )J = ∅

Matchmaker picks ' '  at randomj J∈

1 1 1

' '1,  t t t

ij i ij ija d p π
+ + + +

′
= = −

1 1

' ' ' and t t

j ij ijd qπ
+ + −

= −

II. The active agent is currently single

Let J be the set of players with whom i can be profitably matched, that is,

J = {j : j single, ptij ≥ qtij} ∪ {j : j matched and ptij > qtij}. (10)

If J 6= ∅, some agent j ∈ J is drawn uniformly at random by the Matchmaker, and is
matched with i. If j was matched in period t his former partner is now single. The price
governing the new match, πt+1

ij , is the average (subject to rounding) of ptij and qtij.

At the end of period t + 1, the aspiration levels of the newly matched pair (i, j) are
adjusted to equal their newly realized payoffs:

dt+1
i = p+ij − πt+1

ij and dt+1
j = πt+1

ij − q−ij . (11)

All other aspiration levels and matches remain as before. If J = ∅, i remains single and,
with positive probability, reduces his aspiration level,

dt+1
i = (dti −X t+1

i )+, (12)

where X t+1
i is an independent random variable taking values in δ·N0, such that E[X t

i ] > C
(where C > 0 is a constant independent of δ), and δ occurs with positive probability. See
Figure 2 for an illustration.
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Figure 2: Transition diagram for active, single agent (period t+ 1).

1 1 1: 0,  ( )t t t t

ij i i ij a d d X+ + +

+
∀ = = −

no match

new match

profitable match

exists ( )J ≠ ∅

no profitable

match exists ( )J = ∅

Matchmaker picks  at randomj J∈

1 1 11,  t t t

ij i ij ija d p π
+ + + +

= = −
1 1 and t t

j ij ijd qπ
+ + −

= −

i

4.2. Example

Let N = F ∪ W = {f1, f2} ∪ {w1, w2, w3}, p+1j = 40, 31, 20 and p+2j = 20, 31, 40 for
j = 1, 2, 3, and q−i1 = 20, 30, q−i2 = 20, 20 and q−i3 = 30, 20 for i = 1, 2.

1f 2f

1w 2w 3w

(40,31,20) (20,31,40)

(20,30) (20,20) (30,20)

Then one can compute the match values: α11 = α23 = 20, α12 = α22 = 11, and αij = 0
for all other pairs (i, j). Let δ = 1.

period t: Current state

Suppose that, in some period t, (f1, w1) and (f2, w2) are matched and w3 is single. In the
illustrations below, the current aspiration level and bid vector of each agent is shown next
to the name of that agent, and the values αij are shown next to the edges (if positive).
Solid edges indicate matched pairs, and dashed edges indicate unmatched pairs. (Edges
with value zero are not shown.) The wavy line indicates that no player can see the bids
or the status of the players on the other side of the market.
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Note that some of the bids for players which are currently not matched may exceed the
respective match values. For example f2, at the beginning of the period, was willing to
pay 30 for w3, but w3 was asking for 31 from f2, 1 above the minimum bid not violating
his aspiration level. Further, note that, some matches can never occur. For example f1
is never willing to pay more than 20 for w3, but w3 would only accept a price above 30
from f1.

1120 2011

1f 2f

1w 2w 3w

tZ Matchmaker

13;(27,15,6) 10;(10,21,30)

7;(27,37) 1;(23,21) 10;(45,31)

Note that the aspiration levels satisfy dti + dtj ≥ αij for all i and j, but the assignment is
not optimal (firm 2 should match with worker 3).

period t+ 1: Activation of single agent w3

w3’s current aspiration level is too high in the sense that he has no profitable matches.
Hence, independent of the specific bids he makes, he remains single and, with positive
probability, reduces his aspiration level by 1.

1120 2011

1f 2f

1w 2w 3w

1tZ + Matchmaker

13;(27,15,6) 10;(10,21,30)

7;(27,37) 1;(23,21) 10 1;(45,31)−

period t+ 2: Activation of matched agent f2

f2’s only profitable match, under any possible bid, is with w3. With positive probability
f2 bids 30 for w3 and w3 bids 29 for f2 (hence the match is profitable), and the match
forms. With probability 0.5 the price is set to 29 such that f2 raises his aspiration level
by one unit (11) and w3 keeps his aspiration level (9), while with probability 0.5 the price
is set to 30, f2 keeps his aspiration level (10) and w3 raises his aspiration level by one unit
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(10). (Thus in expectation the active agent f2 gets a higher payoff than before.)

1120 2011

1f 2f

1w 2w 3w

2tZ + Matchmaker

13;(27,15,6) 10 1;(10,21,30)+

7;(27,37) 1;(23,21) 9;(42,29)

period t+ 3: Activation of single agent w2

w2’s current aspiration level is too high in the sense that he has no profitable matches
(under any possible bids). Hence he remains single and, with positive probability, reduces
his aspiration level by 1.

1120 2011

1f 2f

1w 2w 3w

3tZ + Matchmaker

13;(27,15,6) 11;(9,20,29)

7;(27,37) 1 1;(23,21)− 9;(42,29)

The resulting state is in the core.15

5. Core stability

Recall that a state Zt is defined by an assignment At and aspiration levels dt that
jointly determine the payoffs. Further Zt is in the core, C, if conditions (i)-(iv) are
satisfied.

Theorem 1. Given an assignment game G(v,N), from any initial state Zt = [A0,d0] ∈
Ω, the process is absorbed into the core in finite time with probability 1.

15Note that the states Zt+2 and Zt+3 are both in the core, but Zt+3 is absorbing whereas Zt+2 is not.

12



Throughout the proof we shall omit the time superscript since the process is time-
homogeneous. The general idea of the proof is to show a particular path leading into
the core which has positive probability. It will simplify the argument to restrict our
attention to a particular class of paths with the property that the realizations of the ran-
dom variables P t

ij, Q
t
ij are always 0 and the realizations of X t

i are always δ. (Recall that
P t
ij, Q

t
ij determine the gaps between the bids and the aspiration levels, and X t

i determines
the reduction of the aspiration level by a single agent.) One obtains from equation (2)
for the bids:

for all i, j, ptij = p+ij − dt−1i and qtij = q−ij + dt−1j (13)

Recall that every two agents post bids for each other with positive probability in any
given period. We shall therefore construct a path along which the relevant agents in any
period post bids for each other in that period. Jointly with equation (5), we can then
say that a pair of aspiration levels (dti, d

t
j) is profitable if

either dti +dtj < αij, or dti +dtj = αij and both i and j are single. (14)

Restricting attention to this particular class of paths will permit a more transparent anal-
ysis of the transitions, which we can describe solely in terms of the aspiration levels.

We shall proceed by establishing the following two claims.

Claim 1. There is a positive probability path to aspiration levels d such that di+dj ≥ αij

for all i, j and such that, for every i, either there exists a j such that di + dj = αij or else
di = 0.

Any aspiration levels satisfying Claim 1 will be called good. Note that, even if aspiration
levels are good, the assignment does not need to be optimal and not every agent with a
positive aspiration level needs to be matched. (See the period-t example in the preceding
section.)

Claim 2. Starting at any state with good aspiration levels, there is a positive probability
path to a pair (A,d) where d is good, A is optimal, and all singles’ aspiration levels are
zero.16

Proof of Claim 1.

Case 1. Suppose the aspiration levels d are such that di + dj < αij for some i, j.

Case 1a. i and j are not matched with each other.

With positive probability, either i or j is activated and i and j become matched. The
new aspiration levels are set equal to the new payoffs. Thus the sum of the aspiration
levels is equal to the match’s value αij.

Case 1b. i and j are matched with each other.

16Note that this claim describes an absorbing state in the core. It may well be that the core is reached
while a single’s aspiration level is more than zero. The latter state, however, is transient and will converge
to the corresponding absorbing state.
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In this case, di + dj = αij because whenever two players are matched the entire surplus
is allocated.

Therefore, there is a positive probability path along which d increases monotonically until
di + dj ≥ αij for all i, j.

Case 2. Suppose the aspiration levels d are such that di + dj ≥ αij for all i, j.

We can suppose that there exists a single agent i with di > 0 and di + dj > αij for
all j, else we are done. With positive probability, i is activated. Since no profitable
match exists, he lowers his aspiration level by δ. In this manner, a suitable path can be
constructed along which d decreases monotonically until the aspiration levels are good.
Note that at the end of such a path, the assignment does not need to be optimal and
not every agent with a positive aspiration level needs to be matched. (See the period-t
example in the preceding section.)

Proof of Claim 2.

Suppose that the state (A,d) satisfies Claim 1 (d is good) and that some single exists
whose aspiration level is positive. (If no such single exists, the assignment is optimal
and we have reached a core state.) Starting at any such state, we show that, within a
bounded number of periods and with positive probability (bounded below), one of the
following holds:

The aspiration levels are good, the number of single agents with posi-
tive aspiration level decreases, and the sum of the aspiration levels
remains constant.

(15)

The aspiration levels are good, the sum of the aspiration levels
decreases by δ > 0, and the number of single agents with a positive
aspiration level does not increase.

(16)

In general, say an edge is tight if di + dj = αij and loose if di + dj = αij − δ. Define a
maximal alternating path P to be a maximal-length path that starts at a single player
with positive aspiration level, and that alternates between unmatched tight edges and
matched tight edges. Note that, for every single with a positive aspiration level, at
least one maximal alternating path exists. Figure 3 (left panel) illustrates a maximal
alternating path starting at f1. Unmatched tight edges are indicated by dashed lines,
matched tight edges by solid lines and loose edges by dotted lines.

Without loss of generality, let f1 be a single firm with positive aspiration level.

Case 1. Starting at f1, there exists a maximal alternating path P of odd length.

Case 1a. All firms on the path have a positive aspiration level.

We shall demonstrate a sequence of adjustments leading to a state as in (15).
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Let P = (f1, w1, f2, w2, ..., wk−1, fk, wk). Note that, since the path is maximal and of odd
length, wk must be single. With positive probability, f1 is activated. Since no profitable
match exists, he lowers his aspiration level by δ. With positive probability, f1 is activated
again next period, he snags w1 and with probability 0.5 he receives the residual δ. At this
point the aspiration levels are unchanged but f2 is now single. With positive probability,
f2 is activated. Since no profitable match exists, he lowers his aspiration level by δ. With
positive probability, f2 is activated again next period, he snags w2 and with probability
0.5 he receives the residual δ. Within a finite number of periods a state is reached where
all players on P are matched and the aspiration levels are as before. (Note that fk is
matched with wk without a previous reduction by fk since wk is single and thus their
bids are profitable.)

In summary, the number of matched agents has increased by two and the number of single
agents with positive aspiration level has decreased by at least one. The aspiration levels
did not change, hence they are still good. (See Figure 3 for an illustration.)

Figure 3: Transition diagram for Case 1a.
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Case 1b. At least one firm on the path has aspiration level zero.

We shall demonstrate a sequence of adjustments leading to a state as in (15).

Let P = (f1, w1, f2, w2, ..., wk−1, fk, wk). There exists a firm fi ∈ P with current aspiration
level zero (f2 in the illustration), hence no further reduction by fi can occur. (If multiple
firms on P have aspiration level zero, let fi be the first such firm on the path.) Apply the
same sequence of transitions as in Case 1a up to firm fi. At the end of this sequence the
aspiration levels are as before. Once fi−1 snags wi−1, fi becomes single and his aspiration
level is still zero.

In summary, the number of single agents with a positive aspiration level has decreased
by one because f1 is no longer single and the new single agent fi has aspiration level
zero. The aspiration levels did not change, hence they are still good. (See Figure 4 for an
illustration.)
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Figure 4: Transition diagram for Case 1b.
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Case 2. Starting at f1, all maximal alternating paths are of even length.

Case 2a. All firms on the paths have a positive aspiration level.

We shall demonstrate a sequence of adjustments leading to a state as in (16).

With positive probability f1 is activated. Since no profitable match exists, he lowers his
aspiration level by δ. Hence, all previously tight edges starting at f1 are now loose.

We shall describe a sequence of transitions under which a given loose edge is eliminated
(by making it tight again), the matching does not change and the sum of aspiration levels
remains fixed. Consider a loose edge between a firm, say f ′1, and a worker, say w′1. Since
all maximal alternating paths starting at f1 are of even length, the worker has to be
matched to a firm, say f ′2. With positive probability w′1 is activated, snags f ′1, and with
probability 0.5 f ′1 receives the residual δ. (Such a transition occurs with strictly positive
probability whether or not f ′1 is matched because aspiration levels are strictly below the
match value of (w′1, f

′
1).) Note that f ′2 and possibly f ′1’s previous partner, say w′′1 , are

now single. With positive probability f ′2 is activated. Since no profitable match exists, he
lowers his aspiration level by δ. (This occurs because all firms on the maximal alternating
paths starting at f1 have an aspiration level at least δ.) With positive probability, f ′2 is
activated again, snags w′1, and with probability 0.5 w′1 receives the residual δ. Finally,
with positive probability f ′1 is activated. Since no profitable match exists, he lowers his
aspiration level by δ. If previously matched, f ′1 is activated again in the next period
and matches with w′′1 . At the end of this sequence the matching is the same as at the
beginning. Moreover, w′1’s aspiration level went up by δ while f ′2’s aspiration level went
down by δ and all other aspiration levels stayed the same. The originally loose edge
between f ′1 and w′1 is now tight.

We iterate the latter construction for f ′1 = f1 until all loose edges at f ′1 have been
eliminated. However, given f ′2’s reduction by δ there may be new loose edges connecting
f ′2 to workers. In this case we repeat the preceding construction for f ′2 until all of the
loose edges at f ′2 have been eliminated. If any agents still exist with loose edges we
repeat the construction again. This iteration eventually terminates given the following
observation. Any worker on a maximal alternating path who previously increased his
aspiration level cannot still be connected to a firm by a loose edge. Similarly, any firm
that previously reduced its aspiration level cannot now be matched to a worker with a
loose edge because such a worker increased his aspiration level. Therefore the preceding
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construction involves any given firm (or worker) at most once. It follows that, in a finite
number of periods, all firms on maximal alternating paths starting at f1 have reduced
their aspiration level by δ and all workers have increased their aspiration level by δ.

In summary, the number of aspiration level reductions outnumbers the number of aspi-
ration level increases by one (namely by the firm f1), hence the sum of the aspiration
levels has decreased. The number of single agents with a positive aspiration level has not
increased. Moreover the aspiration levels are still good. (See Figure 5 for an illustration.)

Note that the δ-reductions may lead to new tight edges, resulting in new maximal alter-
nating paths of odd or even lengths.

Figure 5: Transition diagram for Case 2a.
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Case 2b. At least one firm on the path has aspiration level zero.

We shall demonstrate a sequence of adjustments leading to a state as in (15).

Let P = (f1, w1, f2, w2, ..., wk−1, fk). There exists a firm fi ∈ P with current aspiration
level zero (f2 in the illustration), hence no further reduction by fi can occur. (If multiple
firms on P have aspiration level zero, let fi be the first such firm on the path.) With
positive probability f1 is activated. Since no profitable match exists, he lowers his aspi-
ration level by δ. With positive probability, f1 is activated again next period, he snags
w1 and with probability 0.5 he receives the residual δ. Now f2 is single. With positive
probability f2 is activated, lowers, snags w2, and so forth. This sequence continues until
fi is reached, who is now single with aspiration level zero.

In summary, the number of single agents with a positive aspiration level has decreased.
The aspiration levels did not change, hence they are still good. (See Figure 6 for an
illustration.)
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Figure 6: Transition diagram for Case 2b.
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Let us summarize the argument. Starting in a state [A,d] with good aspiration levels d,
we successively (if any exist) eliminate the odd paths starting at firms/workers followed
by the even paths starting at firms/workers, while maintaining good aspiration levels.
This process must come to an end because at each iteration either the sum of aspiration
levels decreases by δ and the number of single agents with positive aspiration levels stays
fixed, or the sum of aspiration levels stays fixed and the number of single agents with
positive aspiration levels decreases. Finally, single agents (with aspiration level zero)
successively match at aspiration level zero until all agents on the smaller side of the
market are matched. The resulting state must be in the core and is absorbing because
single agents cannot reduce their aspiration level further and no new matches can be
formed. Since an aspiration level constitutes a lower bound on a player’s bids we can
conclude that the process Zt is absorbed into the core in finite time with probability
1.

We have so far shown that the core is absorbed when we operate on the δ ·N0 grid. The
following corollary states that the result also holds in a continuous space in which our
price rounding assumption vanishes.

Corollary 2. Let p+ij, q
−
ij ∈ R and let X t

i , P
t
ij, Q

t
ij be independent random variables taking

values in R+ such that the expectation of X t
i is positive and there exists a constant c such

that for all ε > 0, P[P t
ij < ε] > c > 0, and P[Qt

ij < ε] > c > 0.

Define the assignment game G(v,N) as above. From any initial state [A0,d0] ∈ Ω, the
process is absorbed into the core in finite time with probability 1.

Proof. The conditions of the corollary are satisfied in the earlier setup for any δ > 0.
Hence for δ → 0 absorption into the core follows. To see that absorption occurs in finite
time, note that δ only influences the convergence time when players are single and reduce
their aspiration level. By (12) the latter reductions are bounded away from zero and the
result follows.
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6. Conclusion

In this paper we have shown that agents in large decentralized matching markets can
learn to play stable and efficient outcomes through a trial-and-error learning process. We
assume that the agents have no information about the distribution of others’ preferences,
their past actions and payoffs, or about the value of different matches. Nevertheless the
learning process leads to the core with probability one. The proof uses integer program-
ming arguments (Kuhn [1955], Balinski [1965]), but the Matchmaker does not “solve” an
integer programming problem. Rather, a path into the core is discovered in finite time
by a random sequence of adjustments by the agents.

A crucial feature of our model is that the Matchmaker has no knowledge of match values,
hence standard matching procedures cannot be used. In fact, the role of the Matchmaker
can be eliminated entirely, and the process can be interpreted as a purely evolutionary
process with no third party at all. As before, let agents be activated by independent
Poisson clocks. Suppose that an active agent randomly encounters one agent from the
other side of the market drawn from a distribution with full support. The two players
enter a new match with positive probability if their match is potentially profitable, which
they can see from their current bids and offers. If the two players are already matched
with each other, they remain so. If both are single, they agree to be matched if their bid
and offer cross. If at least one agent is matched (but with someone else), they agree to
be matched if their bid and offer strictly cross. This is essentially the same process as
the one described above, and the same proof shows that it leads to the core in finite time
with probability one.
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