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Spatio–Temporal Modeling of Lightning Fires on

Forestland: A Compensation Scheme

Xuan Chen ∗ Barry K. Goodwin †

Abstract

In the US forestry industry, wildfire has always been one of the leading causes of damage. This
topic is of growing interest as wildfire has caused huge losses in recent years. Among all causes,
lightning has always been the leading hazard. Unlike human related wildfires for which timber
owners may be able to trace the responsible persons to claim losses, forestland owners essentially
have no means to recover their losses against lightning–induced wildfire. In light of the fact
that there are very few risk management instruments available to compensate timber losses.
Following this line of inquiry, our paper studies risks of lightning induced wildfire, conditioning
on crucial informational variables, across both spatial units and time periods. A non–parametric
bootstrapping method is used to quantify the risks. Some relevant observable variables, such
as environment and climate factors, are found to be statistically significant factors related to
wildfire risks. A group index insurance scheme has been proposed and its associated actuarially
fair premium rates have been estimated. Implications for wildfire management policies are also
discussed.
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1 Introduction

Forests cover a large land area in the United States. Since the early twentieth century, the size of

U.S. forestland area has been stable at around 746 million acres, comprising about one third of the

total land of the United States. In a world context, the U.S. makes up about 10% of the world’s total

forestland, and its timber production for industrial products accounts for about one–fourth of the

world’s production (Brad and David, 2004). On average, three pounds of forestry industry products

are consumed by each U.S. resident every day. This means that every year an amount equivalent to

100–foot tree will be consumed by each American (Bronson).

Although forest and timber industries play an important role in the U.S., they are constantly

threatened by wildfire outbreaks. A wildfire is any uncontrolled fire in combustible vegetation that

occurs in the countryside or in a wilderness area. The temperature of a wildfire could rise to 2,600

degrees Fahrenheit. Since such heat can even melt iron, properties and trees in the way are destroyed

immediately. Wildfires usually spread rapidly over large areas. The forward blasts could be as wide

as 60 feet and flames could rise up to 325 feet and move as fast as 100 miles per hour. This is

especially true for violent crown fires – called “firestorms ”or “blowups”, that engulf the top of huge

trees as they sweep across the landscape (Bronson). These characteristics make it difficult to contain

a large wildfire within a small space and to extinguish it in a short period of time. The vector of

wildfire transmission risks, involving significant weather events and idiosyncratic fuel buildups on the

ground, makes containment a major challenge.

In December 2003, the Healthy Forest Restoration Act (Act, 2003) was signed by President

George W. Bush with the aim of protecting land from wildfire disasters. Preceded by the two worst

wildfire seasons (2000 and 2002) after World War II, this act stipulates that it will:

“improve the capacity of the Secretary of Agriculture and the Secretary of the Interior to conduct

hazardous fuels reduction projects on National Forest System land and Bureau of Land Management

lands aimed at protecting communities, watersheds, and certain other at–risk lands from catastrophic

wildfire, to enhance efforts to protect watersheds and address threats to forest and rangeland health,

including catastrophic wildfire, across the landscape, and for other purposes.”

———Healthy Forest Restoration Act (Act, 2003, pp 108)

After the passage of this act, many more hazardous fuel reduction projects on federal lands have

been expedited to protect forest–adjacent communities from wildfires. This act has proved to be a

significant effort in wildfire prevention.
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Among all sources of wildfire, lightning is the leading one for both outbreaks and damage (Figure

1). Unlike human related wildfires for which timber owners may be able to trace the responsible

persons to claim losses, forestland owners essentially have no means to recover their losses against

lightning–induced wildfire. Disaster relief, a form of ad hoc assistance, is often used to compensate

property owners after disastrous wildfires. Some national organizations such as the American Red

Cross offer immediate aid to victims after large wildfires. Other local non–profit programs, such as the

Georgia Wildfire Relief Fund, provide assistance to affected residents and engage in local ecosystem

restoration in the long term. In addition, affected private timber business owners are always highly

dependent on government disaster relief programs. For example, southern California suffered from

large wildfires in two consecutive years from 2007 to 2008. In 2007, the Internal Revenue Service

(IRS) granted tax relief for Southern California wildfire victims. After the 2008 wildfire season,

both the IRS and the California state government granted tax relief for affected business owners in

Southern California.

Wide spread disasters such as lightning fire pose a significant hazard to timber production and

assets, and thus warrant consideration of a relevant single–peril forest insurance product. First, such

an approach can provide an actuarially fair rate by empirically quantifying risks, which may attract

insurance companies and forest landowners to engage in a private insurance market. Further, the

possibility of removing the government externality in the disaster payment market will likely result

in a more efficient market scheme. Second, the potential economic benefits from mitigation and

reduction of the further spread of lightning wildfire will be enhanced under such a specific–peril plan.

Finally, quantification of wildfire risks may provide important benefits to local, state, and federal

land managers, who must contemplate wildfire prevention and mitigation actions in advance of fires.

The first benefit stems from the notion that comprehension of a particular hazard and its spatio–

temporal transmission mechanisms warrants the development of a class of single–peril insurance

products that measure wildfire risks accurately. Given the fact that wildfire risks are usually catas-

trophic, if actuarially fair rates can be implemented in a single–peril insurance plan, risk–averse

forest landowners will purchase such insurance products once offered by insurance companies. Such

a private insurance market can ease the destructive losses of forest landowners, even in the absence

of government intervention. Furthermore, as forest disaster relief is becoming a fast–growing burden

for governments worldwide (Holecy and Hanewinkel, 2006), development of private wildfire insur-

ance products can lessen the government financial stress if ad hoc disaster relief eventually becomes

unnecessary.
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The second benefit stems from the notion that understanding the spatio–temporal aspects of

wildfire risks and recognizing the potential spatio–temporal externalities can provide benefits to forest

landowners, insurance companies, local and state governments and society in general. To fully capture

those benefits, a comprehensive study of spatio–temporal relationships of wildfire risks, observable

forest characteristics and environmental factors is required. In addition, a practical effective insurance

policy needs to minimize adverse selection and moral hazard issues and should be able to induce

incentive–compatible actions by forest landowners to prevent wildfire risks. A fair premium insurance

plan also needs to evaluate compliance policies that decrease outbreak probabilities by reducing

hazards in advance. Prescribed burning permits are an example of efforts made by forest landowners

and governments to reduce wildfire risks.

The State of Florida, with a significant forest land portion of its total land area and a history of

frequent lightning wildfire outbreaks, represents an ideal case–study for modeling losses associated

with lightning fire risks. As many as 16 million acres of forest land cover almost half of Florida’s total

land area. Ranked among top four tree–planting states, Florida plants over 82 million trees every

year, with 5 trees planted for each tree harvested. The forest and forest products industries have

an economic impact of $16.5 billion, including 133,000 jobs (Bronson). At the same time, Florida

suffers from over 1,200 lightning induced wildfire occurrences per year on average, with approximately

100,000 acres of forest land being burned in a typical year. Moreover, the fact that more than 300,000

private (non–industrial) landowners own half of Florida’s forest land suggests a potentially significant

demand for timber insurance product against lightning induced wildfire.

As broadscale lightning fire risks have rarely been studied before, our study provides a spatio–

temporal model which is used to empirically evaluate lightning fire risks on forestland at the county–

level and to develop an associated actuarially sound, single–peril insurance product. This paper

studies the spatio–temporal correlated risks (see Figure 2 and Figure 3) of Florida lightning fires

using data collected between 1981 and 2005. In addition to modeling the spatial and temporal

aspects of lightning fires, it is also critical to understand their underlying causes. Our results suggest

significant impacts on lightning fire risks by environmental factors and human interventions. We find

that vegetation structures, climate variables and socioeconomic conditions are significant influences

on the risks of fire. An annual county–level contract, which pays a pre–determined indemnity to all

the insured in the event that the wildfire index exceeds a pre–specified level, is proposed. Statistical

models are used to quantify lightning risks and to estimate associated insurance indemnities.
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2 Risk Models and Insurance Contract

Although timber production and crop production share some similarities, forest insurance plans

rarely exist while crop insurance policies are widely adopted in the agricultural sector. According

to unpublished USDA statistics, total liability in the federal crop insurance program exceeded $113

billion in 2011.1 Crop insurance programs have played an important role in U.S. agriculture for

the last seventy–five years. This role has risen in prominence in recent years as programs expanded

and government subsidies were increased. Multi–peril insurance policies, as well as single–peril

insurance policies, have been popular among farmers. Because of the difficulties to accurately measure

risks from all possible hazards, efforts to supply all risk (multiple–peril) insurance policies in the

private market have typically turned out to be failures (Smith and Goodwin, 2011). As a matter of

fact, the current existing multiple–peril insurance programs are all heavily subsidized by the federal

government. Further, most all–peril crop insurance programs around the world are also highly

dependent on government subsidies. Single–peril insurance policies, however, have been developed

adequately well in the private market. One of the pioneer agriculture insurance policies was the

hail insurance introduced to tobacco farmers in 1879. Ever since then, various kinds of single–peril

agriculture insurance plans have been invented. For fire risks particularly, crop insurance the against

single peril of fire was introduced by private companies at least as early as 1938 (Smith and Goodwin,

2011).

Although our goal is not to directly evaluate arguments in favor of or against government inter-

vention in the provision of wildfire insurance, it is an issue that is relevant to the debate. Economists

typically argue that such intervention reduces overall economic welfare unless a specific failure of the

market exists. Many arguments pointing to market failures are advanced by proponents of subsidized

insurance and most such arguments are countered by empirical evidence (Smith and Goodwin, 2011).

However, one persuasive case favoring government support for specific peril or multiple peril insur-

ance exists when such insurance may be used to encourage mitigation efforts by those threatened

by risk. Goodwin and Vado (2007) note that the case of an infectious disease may present such a

situation. If government compensation for losses is provided when disease is provided, agents may

have a greater incentive to report the threat. Likewise, if such compensation is provided to those who

are at a greater risk of exposure, even if no losses are realized, mitigation efforts may be encouraged

and the spread of the disease may be inhibited. In such a case, aggregate economic welfare may be

enhanced by subsidized insurance since aggregate risk may be diminished by subsidized insurance.

1See the online summary of business statistics at http://www.rma.usda.gov/data/sob.html.

5



Lightning fire risk provides a a potential example of such a risk. If lightning fire occurrences in a

specific geographic area surpass a threshold, it is likely that those forest landowners in the area may

face higher risks and thus may benefit from subsidized mitigation efforts. Indemnities provided under

such a government program may be restricted by regulatory restrictions. Again, it is not our intent

to address the rationale or necessity of such subsidized insurance, though many similarities to crop

insurance can be identified. Accurate quantification of conditional risks and the provision of precise

insurance premium rates is a necessary ingredient of any insurance program, whether subsidized or

private. Our objective is to derive such measures to guide public policymakers and private insur-

ance providers. The role of government in the provision and maintenance of such wildfire insurance

remains an important topic for future policy deliberations and research.

Forest insurance plans against all risks, similar to those in agriculture production, can barely

survive without government subsidies. In a global context, government financial support has helped

expanding forest insurance coverage. In Brazil, most commercial forest owners were unwilling to buy

insurance until 2004, when the Brazilian authorities started to subsidize forest insurance premiums.

In 2009, the estimated value of these subsidies reached almost $100 million (Kunzemann, 2009). In

China, 50% of the premiums are subsidized for forest insurance. As a result, the plans have covered

18 million hectares, with the insurance subsidy totaling $17 billion by June 2010 (Petry, Zhang, and

Zhang, 2010). In the U.S. forest sector, a very limited number of timber insurance programs against

multiple perils are available in the private market. Examples include the Davis–Garvin Agency’s

standing timber insurance and the Outdoor Underwriters’ standing timber insurance. These two

programs offered all risk policies on a case by case basis in a couple of small regional markets.

However, the overall nationwide forest landowners’ insurance participation is infinitesimal and no

single–peril forest insurance plan has been offered.

The almost total absence of multi–peril forest insurance plans in private markets implies a high

cost that results from the difficulties associated with monitoring and administering multi–peril in-

surance. It is in some sense too difficult to precisely measure all the associated risks from all possible

hazards. In the case of inaccurately measured risks, insurance providers may face moral hazard and

adverse selection problems. Moral hazard problems arise when agents assume more risks because they

have been provided insurance. Such moral hazard actions may range from simple mismanagement

of properties to intentional fraud. If the insurer is unable to monitor such behavior on an individual

basis, the insurance program may be distorted and may suffer actuarial losses. Index plans, such

as those provided here, are generally more robust to such moral hazard concerns. If the actions
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of individual agents are unable to significantly affect the aggregate index or index threshold that

governs coverage and establishes losses, issues associated with moral hazard may be diminished. The

design of our proposed index plan offers such advantages.

Adverse selection occurs when high–risk agents tend to overinsure while low–risk agents underin-

sure. Such selection will lead to an adversely selected insurance pool. Precisely modeling and pricing

risks is essential to avoid adverse selection problems. Compared with multi–peril insurance which is

difficult to trace all risk sources, a single–peril insurance plan only requires considerations limited

to risks associated with this specific hazard. An actuarially fair single–peril insurance plan can be

more easily implemented, and therefore has the potential to increase insurance participation and to

reduce adverse selection.

The central piece of any effective insurance scheme is a full understanding of all risks underlying

the associated hazards. In insurance contracts, an actuarially fair insurance premium (or premium

rate) is calculated upon knowledge of risks. The actuarially fair rate is the rate (expressed in terms of

total premium as a percentage of total liability) that sets total premiums equal to total indemnities.

For example, if someone expects to pay $1,000 in a typical year on an insurance contract that covers

up to $10,000 in total liability, the actuarially fair premium rate is 0.10 (or 10%).

A risk model measuring the actuarially fair premium rate is usually expressed in terms of a con-

ditional probability density or a cumulative distribution function that underlies the risks associated

with possible outcomes. One example is crop yield insurance. The focus in yield insurance modeling

is to estimate probability densities describing crop yields. Suppose a farmer i decides to insurance his

crops in the coming year t, and his expected yield is µ. He can choose a coverage level θ (0 < θ 6 1).

In the case that the crop yield is below the pre–determined level θµ, his loss will be compensated,

which is the difference between his actual yield yi,t and the target level θµ. Given the pre–determined

target price Pricet, the indemnity is calculated as:

Indemnityi,t = Pricet ∗max{0, θµ− yi,t}. (2.1)

In some insurance programs, a loss is an all–or–nothing event. For example, life insurance policies

will pay a fixed amount of money only upon death of the insured. This kind of insurance scheme

simplifies the premium calculation, because the payout amount is predetermined, and an actuarially

fair premium rate is equivalent to the conditional probability that a loss event occurs. Such insurance

contracts are suitable to address wildfire risks, where any exposure to wildfire for properties within a

small site usually results in a total loss. For an insurance contract underwriting a total loss event, the

actuarially fair premium is set equal to the expected loss, which is the product of the loss probability
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and the conditional expected loss given the loss event occurs. If we denote z = 1 to be a loss event

(z = 0 otherwise), the expected loss can be expressed as

E(Loss) = P (z = 1) ∗ E(loss|z = 1). (2.2)

The probability of a loss event is usually given as a function that is conditional on a vector of

observable covariates X and the associated parameter estimates vector β, i.e.

P (z = 1) = F (Xβ). (2.3)

If the contract specifies a fixed indemnity amount in case of a loss event, i.e. E(loss|z = 1) =

Payment, is predetermined, then a fair premium is equivalent to E(Loss) = F (Xβ) ∗ Payment.

The only remaining concern in deriving the actuarially fair premium rate is in how to model the loss

probability.

Understanding factors that loss probabilities should be conditioned on is crucial in modeling risks.

For example, in modeling life insurance, age and healthiness of the insured are always explicitly

recognized when assessing death risks. As long as observable factors are pertinent to risks underlying

an insurance contract, a more accurate actuarially fair premium can be constructed with these factors

considered. For timber insurance against lightning fire risks, factors such as tree types, characteristics

of forest land, weather and socio–economic classes are important risk determinants. We should model

wildfire risks conditional on these factors to assess risks accurately.

A couple of operational issues should also be considered to design an insurance program. One

important component of insurance provisions is the insurance period. For example, in agricultural

insurance contracts, the insurance period is usually specified on a calendar year or crop season

basis. The insurance protection covers associated risks from the beginning of the insurance period

until the end of the insurance period. It is important to identify insurance periods, because risks

can only be conditioned (i.e., modeled) upon information available prior to the beginning of an

insurance period. In lightning fire risk analysis, we assume with no loss of generality an insurance

period corresponding to a calendar year. The other practical issue is that information about all the

associated observable factors in the following year (the insurance period) is unavailable before the

wildfire insurance contracts are signed. For example, drought is recognized as a significant predictor

for fire hazard. However, even though they may be somewhat predictable by using various climate

models, precipitation in year t + 1 is generally unknown in year t. In contrast, the precipitation

records in year t are available when insurance coverage for year t+1 is determined. Therefore, in our
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analysis insurance parameters are always conditioned on variables that are observable in the prior

year.

3 Empirical Analysis

3.1 Discussion of Data

The Florida fire occurrence data used in this study is obtained from Florida State Forestry Divi-

sion. The data covers wildfire records for all the 67 Florida counties between 1981 and 2005. The

details of each wildfire outbreak, such as cause, fuel type and duration are all reported. Of all the

wildfire incidences, there are over 30,000 lightening–induced wildfire outbreaks on the forestland.

Weather statistics for the same time period were collected from the National Climate Database

Center (NCDC), maintained by National Oceanic and Atmospheric Administration (NOAA). Forest

land characteristics were obtained from the Forest Inventory and Analysis Database (FIADB) which

is administrated by the USDA’s Forest Inventory and Analysis National Program. Socio–economic

statistics were collected from the Regional Economic Information System (REIS) data set assembled

by the Bureau of Economics Analysis in the U.S. Department of Commerce.

In our analysis, the unit of observation is a county. This choice is dictated by our available

data, though the approach is general to any geographic or temporal unit of observation for which

suitable data exist. Although the fire data consist of township level records, detailed information

for many of the factors suspected to be relevant to lightning fire risks are unavailable at such a level

of observation. Analysis at the county level, however, is more useful to measure lightning fire risks

and develop an insurance plan. Wildfire, as a quickly transmitted disaster, can quickly spread over

a large area. With large wildfires often crossing township boundaries, county level statistics about

fire losses are more accurate. In addition to the size advantage, statistics at the county level are

more abundant. Costs of insurance management, therefore, are usually less for county–level plans,

as found in agriculture insurance adminstrations. Finally, premium calculations at the county level

are able to smooth the premiums across different timber farms. A group (index) insurance plan,

if conditioned on a county level index, can help alleviate moral hazard and adverse selection issues

(Smith and Goodwin, 2011). As noted, moral hazard is diminished or eliminated when an individual

insured is unable to significantly impact the index that determines losses. Spatial aggregation, say

to a county level, provides such an index.

The dependant variable of our empirical analysis is the annual county–level burnt ratio, which is

defined as the aggregate burnt area by lightning fire in proportion of the total forest land area within

9



a calendar year in each county. Wildfire suppression and management practices have discovered that

several observable factors are relevant to future wildfire risks. For example, certain forest types, such

as oak and hickory, are believed to be more resistant to wildfire spreading. Variables representing

the shares of four groups of forest land types are considered here. These forest classifications include

the group of longleaf slash pine forest lands and loblolly/shortleaf pine forest lands, the group of

oak/pine forest lands and oak/hickory forest lands, and the group of oak/gum/cypress forest lands.

We form an aggregate composite variable for the area in all other forest land types. Two crucial

weather variables affect wildfire likelihoods – drought and temperature. We represent drought and

temperature factors using the 12–month Standardized Precipitation (SP12) and Heating Degree Day

(HDD) indexes, respectively. Hurricanes are a significant weather phenomenon hypothesized to be a

factor influencing lightning induced wildfire risks. We measure hurricane risks by the historical annual

frequency of hurricanes in a given location.2 Human intervention, including deliberate or accidental

incendiary events, are represented by population, employment and the proportion of forest land that

is privately–owned. These factors have been suggested as potentially relevant causal factors of arson

and other crimes (see Becker (1968)) and their empirical significance has been verified by existing

research (Prestemon et al., 2002).

Table 1 presents summary statistics and definitions of measures of lightning fire risks and other

relevant explanatory variables. Our analysis covers annual county–level observations for all 67 coun-

ties in Florida from 1981 to 2005. This results in 1,675 county–year combinations. To recognize the

need for conditioning information to be available prior to the provision of insurance, all covariates

are lagged one year in the empirical models.

3.2 Regression Results

To model lightning fire risks, we apply the conditional probability model given by (2.3) to the available

data. Two estimation approaches were considered. As the simplest and most common model, an

OLS regression of Yst on Xs,t−1 is adopted

Yst = Xs,t−1β + εst, (3.1)

where Yst is a lightning fire risk indicator and Xs,t−1 is a vector of lagged observable covariates. How-

ever, existing research has found that wildfire risks are both spatially and temporally autocorrelated

2Future research may benefit from a consideration of temporally–variable hurricane risk measures that reflect long–
run weather cycles. The accuracy and utility of such measures remains open to debate and these factors are not used
in this analysis.
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(Prestemon et al. 2002; Prestemon and Butry 2005). As a result, an OLS regression based solely on

the independent variables may be insufficient to account for spatio–temporal autocorrelation.

An alternative approach is to include temporal lags of the dependent variable and the average

of neighboring observations of the lagged dependent variable in order to correct for temporal and

spatial autocorrelation. An example of such models, if only the first order temporal lag is included,

can be expressed in the form of

Yst = ρYs̄,t−1 + qYs,t−1 +Xs,t−1β + εst, (3.2)

where Ys̄,t−1 represents the average of all {Yi,t−1}, given i ∈ Θs and Θs represents the set of all the

spatial units bordered with the county s. A more general class of such models can also be written in

a vector form like

Yt = ρWYt−1 + qYt−1 +Xt−1β + εt; (3.3)

where Yt represents a vector of observations of the dependent variable for all of the spatial units at

time t, and Xt−1 represent one year lagged observable covariates. The equation (3.2) is a special case

of the model (3.3) with a special spatial weight matrix W . Many models of this genre were developed

by extending the conventional Box–Jenkins time series models (Box, Jenkins, and Reinsel, 1970) to

an analogous spatio–temporal context (Haggett, Cliff, and Frey, 1977). The main advantage of this

method, as noted by Ripley (1981), is its simplicity to apply. One of the implications underlying such

models, though, is that spatial transmissions do not occur simultaneously. In scenarios for which the

subscript t corresponded to a short period of time, Upton and Fingleton (1985) promoted this model

because such a lagged impact across spatial units is more reasonable than an instantaneous impact.

However, the response variable of our interest, either lightning fire frequency or propensity, is

observed annually. While a wildfire rarely lasts longer than a month, spatial autocorrelation of

regression residuals can barely be controlled. To recognize such disadvantage, we adopt a non–

parametric method to estimate parameters parameters in equation (3.3) while successfully controlling

the spatial autocorrelation.

Ever since Efron (1979) proposed the bootstrapping method, it has become a powerful statistical

tool. Although the bootstrap (Efron, 1979) method can handle independent observations well, the

strong spatio–temporal autocorrelation of lightning fire risks brings about a major challenge. Moti-

vated by bootstrapping overlapping blocks method in the autoregressive time series scenario (Kunsch

1989) and block bootstrapping method of dependent data from a spatial map (Hall 1985), we have

developed a method to bootstrap overlapping spatio-temporal blocks. By selecting an appropriate

block size, the spatio-temporal correlation can be controlled.
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Table 2 presents the results of a simple ordinary least square regression (3.1) and the spatio–

temporal linear regression (3.2) estimated by a block bootstrapping method. The OLS results suggest

that climate factors, such as temperature and drought, affect lightning fires in the expected ways.

Cold (HDD index) weather appears to reduce lightning fire risks. At the same time, the positive

impact of population density verifies that human interventions are an important causal element

of lightning fires. Regional factors related to the economic welfare of the population in a given

county may also reflect other aspects of behavior. In particular, economic stresses may be related

to deliberate acts of arson and other criminal activities. A high employment ratio could mitigate

lightning fire risks, since employed persons have higher opportunities costs to commit criminal acts

of arson.

Forest land characteristics affect lightning fires through a number of ways. A high private owners’

share of forest lands always implies a higher lightning fire risk. As rangers and forest police work

actively on public forest lands, private lands are expected to be more vulnerable in the face of lightning

fire threats. The group of the longleaf/slash pine forest lands and loblolly/shortleaf pine forest lands

appear to enhance fire risks while the combination of oak/pine forest lands and oak/hickory forest

lands significantly lessen lightning fire risks. The oak/gum/cypress forest land group also appears to

have higher burning risks. This reflects the fact that most swamp fires can be easily spread in this

type of ecosystem.

Autocorrelation tests for the residuals in the OLS model, however, confirm our concerns. First,

although temporal autocorrelation is successfully controlled,3 neither model sufficiently corrects for

spatial autocorrelation. In particular, the residuals are still autocorrelated in approximately one

fourth of the observed years.4 Secondly, compared with the OLS model, adding a lagged spatial

dependent variable does not alleviate autocorrelation at all. This evidence suggests that the spatial

linkages are more likely to exist simultaneously. This is less of a concern within the context of

predicting the conditional probability of specific lightning fire risks but it does suggest that the

models are inefficiently estimated and may result in misleading inferences.

The spatio–temporal model has produced similar results. The temporal dependence has been

proven to be positive, while the lagged spatial dependence is demonstrated to be statistically in-

significant and fairly weak in the magnitude. However, spatial autocorrelation among residuals has

been reduced significantly, when compared with the results for the conventional models (i.e. the

3The time series of each county is checked for first order autocorrelation using the Breusch–Godfrey test on the 5%
significance level.

4The years in which residuals are spatially autocorrelated on the 5% significance level using Geary’s C index
permutation test.
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percentage of years with spatially autocorrelated residuals decreased from around 25% to close to

12%). This is not surprising because the block bootstrapping method appears to have accounted for

spatial interactions while the OLS models does not.

4 Indemnity and Premium Rates

The primary goal of our empirical analysis is to construct models that can precisely estimate condi-

tional lightning fire probabilities in order to determine actuarially fair premium rates. An actuarially

fair premium that abstracts from administrative and operating costs (including a return to capital)

associated with the program should be set equal to the expected loss. The expected loss is usually

expressed as

E(lossst) =

∫
E(Paymentst|Zst,Θst) ∗ f(Zst|Θst) dZst, (4.1)

where Zst is an indicator that one of the claim provisions has been triggered (i.e., that a loss event has

occurred). Θst represents the prior information set of conditioning variables that are conceptually

relevant to the risks, and f(Zst) represents the corresponding probability density function of the loss

event. If a fixed payment is made only if a specific outcome occurs, i.e. death in the life insurance

contracts, the fair premium can be simplified as

E(lossst) = Pr(Zst = 1|Θst) ∗ Paymentst, (4.2)

where Pr(Zst) represents the corresponding actuarially fair insurance premium rate. As noted, it is

also a conditional probability which can be empirically estimated by the aforementioned models.

Similarly, for lightning fire risks, a comprehensive insurance scheme offered to an individual timber

farmer can be expressed as

E(loss)st = Pr(Ost|Θst) ∗ E(Paymentst|Ost,Θst), (4.3)

where Ost is a lightning fire outbreak at the forest landowner’s location s in time t, and Payment

represents the compensation for the actual loss. However, in light of the problems associated with

adverse selection and moral hazard outlined above, such an insurance plan would not be expected to

be viable in the forest industry. The first difficulty comes from the fact that lightning fire outbreaks

are distributed fairly unevenly across space. Thus lightning fire outbreaks are too volatile to model

accurately at the individual land parcel level of resolution. Secondly, there are also huge variations

in the pricing of timber products. The prices of timber stock often are significantly different from

one category to the other. Even for the same raw product, the seasonal price usually fluctuates
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drastically. Therefore, the transaction costs associated with assessing both individual outbreak risks

and liability values may be too high to implement such a individual lightning fire insurance plan.

In contrast, a group insurance plan at the county level may be able to overcome such complica-

tions. One advantage of group insurance plans is that they can smooth risks across the whole county.

If homogeneous lightning fire risks are assumed across all relevant land in a county, the outbreak

probability can be replaced by the burnt ratio. Therefore, the equation (4.3) can be written as

E(loss)st = Zst ∗ E(Paymentst|Zst,Θst), (4.4)

where Zst is the expected burnt ratio and Payment is the fixed payout amount associated with Zst.

Our aforementioned models are able to forecast the burnt ratio for county s in time t, which follows

a lognormal distribution. However, results using the burnt ratio directly, such as (4.4), are not

robust in our empirical models. Even though the logarithm of burnt ratio is normally distributed, its

variations will be exponentially amplified when the logarithm form is converted back into the original

form.

Our index insurance plans, however, are unaffected by these issues. In a hypothetical timber

insurance program, the claim procedure could works as follows. Before the beginning of the insurance

period, both insurance providers and forest landowners agree on a trigger burnt ratio index, say Z̃st =

8%, and the insured agents pay premiums to insurance companies. At the end of the insurance period,

the Federal or state authority issues a final yearly burnt ratio for each county based on statistics.

When the actual burnt ratio Zst in a county is more than 8%, all the insured forest landowners in this

county will receive payments, even if some of them don’t have any losses. Meanwhile, if the realized

burnt ratio is smaller than 8%, then no one can claim payments. Therefore, if the predetermined

percentage that will trigger claims is Z̃st (e.g., 8%), the actuarially fair premium equation can be

written as

E(loss)st = Pr(Zst > Z̃st|Θst) ∗ E(Paymentst|Zst > Z̃st,Θst). (4.5)

At the same time, the premium rate, which is the ratio of the premium to the liability, can be

expressed as

Pr(Zst > Z̃st|Θst) = 1− Φ((ln Z̃st − µst)/σst), (4.6)

Summary statistics of the estimated premium rates with different trigger indices are presented in

Table 4. Because a smaller trigger index is equivalent to a more comprehensive protection, premium

rates are always going up as the trigger index declines. The estimated premium rates among spatio-

temporal models are fairly close.
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5 Conclusion

This analysis presents empirical models of the lightning risks in Florida. A brief overview of the

U.S forest industry and existing lightning fire management instruments is provided. We also discuss

the methodological issues related to the design of a single–peril fire insurance program in the U.S.

forest sector. In our paper, we used a non–parametric estimation method intended to correct for

spatio–temporal autocorrelation. Meanwhile, we examined important conditioning factors that could

influence lightning fire outbreaks. The impacts of crucial informational covariates, such as environ-

mental and climate factors, were assessed. A single–peril index insurance scheme was proposed and

actuarially fair premium rates were estimated.

Our empirical models are based on a complete survey of Florida wildfire loss records from 1980

to 2005. To model the conditional probabilities, crucial relevant information, such as the National

Forestry Inventory and Analysis (FIA) database, Regional Economic Information Systems (REIS)

database and the National Climatic Data Center (NCDC) database were utilized. We used the

logarithm of annual county-level burnt ratio by the lightning fires as the dependent variable and

applied regression models from different classes. In light of the fact that lightning fire risks are spatio–

temporally autocorrelated, we used a linear regression model with block bootstrapping method. The

improvement in controlling spatial autocorrelation suggests that such a non–parametric modelling

technique is more appropriate.

Our results reveal that almost all the conditioning variables, in most scenarios, exhibit positive

relationships with lightning fire risks. For example, drought, temperature and human actions could

enhance such hazards, while different components of forest land ecosystems also have influences on

lightning fire risks. The results suggest potentially important policy implications, such as employ-

ing more rangers at the urban–forest interface, and encouraging expanding oak/gum/cypress forest

composition because of its resistance to lightning fire hazard. Finally, an associated index insurance

plan is proposed and associated premium rates are estimated.
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(a) Outbreaks

(b) Damage

Figure 1: Wildfires from Different Causes
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(a) 1987 (b) 1988 (c) 1989

(d) 1990 (e) 1991 (f) 1992

(g) 1993 (h) 1994 (i) 1995

(j) 1996 (k) 1997 (l) 1998

Figure 2: County–level Florida lightning induced wildfire outbreaks during 12 consecutive years: on
each map, 4 different colors represent 4 levels of outbreaks separated by quartiles.
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