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Abstract

Technological change in plant research rarely shifts the entire yield distribution upwards as

assumed in the agricultural economics literature. Rather, technologies have been targeted

at a specific subpopulation of the yield distribution—for example, drought resistant seeds

or so-called racehorse seeds—therefore, it is unlikely technological advancements are equal

across subpopulations. In this manuscript we introduce a mixture model of crop yields

with an embedded trend function in the component means, which allows different rates of

technological change in each mixture or subpopulation. By doing so, we can test some inter-

esting hypotheses that have been previously untestable. While previous literature assumes

an equivalent rate of technological change across subpopulations we reject the null in 84.0%,

82.3%, and 64.0% of the counties for corn, soybean, and wheat respectively. Conversely, with

respect to stable subpopulations through time (i.e. climate change) we reject in only 12.0%,

5.4%, and 4.6% of the counties for corn, soybean, and wheat respectively. These results

have implications for modelling yields, directing funds regarding plant science research, and

explaining the prevalence of heteroscedasticity in yield data.
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Introduction

Crop yields are agriculture’s principle unit of productivity measurement. Since the 1940s

agricultural production has experienced marked advances in technology causing yields of

staple crops to increase throughout the world. Figure 1 illustrates these remarkable increases

for Iowa with state-average yields for three staples crops—corn, soybean and wheat—mapped

over time. Even the lowest rate of technological advancement, average soybean yields, have

more than doubled. On the other end of the spectrum, average corn yields have more than

tripled in both areas. Elsewhere crop yields have risen at similarly remarkable rates.1

The rate of technological change has been exclusively measured at the mean despite ev-

idence from agronomists (i.e. Khiari et al., 2001) suggesting crop yields may have distinct

subpopulations. Technological developments in plant research rarely shift the entire yield dis-

tribution upwards but instead target a subpopulation of the yield distribution—for example,

drought-resistant seeds versus so-called racehorse seeds (which attempt to maximize yields

under optimal conditions). In particular, it is common to consider two subpopulations: a

regular year subpopulation and a poor year subpopulation. The existence of two subpopula-

tions would align with empirical evidence from the agricultural economics literature, which

suggests the majority of yield distributions are negatively skewed (see in particular Day,

1965; Gallagher, 1987; and Goodwin and Ker, 1998).2

We model crop yields as having two subpopulations or components -- a regular year com-

ponent and a poor year component -- using a mixture of two normals: (1 − λ)N(µ1, σ
2
1) +

λN(µ2, σ
2
2) where λ is the mixture weight, µj is the mean of component j and σ2

j is the

variance of component j.3 Using mixtures is not entirely new as others have first estimated

1Despite these increases there are concerns technological advancements may be stagnating. For example,
Ray et al. (2012) found 29.9% of corn, 24.3% of soybean, and 38.8% of wheat yields around the world are
“not improving” (p. 5).

2This skewness is often explained as the result of the asymmetric impact of weather shocks on yields:
ideal growing conditions cannot generate yields above biological limits while catastrophic growing conditions
can reduce yields to zero.

3While we denote the components regular and poor given the tendency towards negative skewness in the
yield data, if the underlying data is positively skewed the poor component will be located on the upper tail
of the regular component.
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yt = f(t) + εt and then using ε̂t estimate a mixture of two normals (e.g. Ker 1996; Good-

win, Roberts and Coble, 2000; Woodard and Sherrick, 2011). However, the mixture model

is significantly more flexible than previously employed: the mixture model will allow for

unique trend components, or different rates of technological change, within each individual

component. That is:

yt ∼ (1− λ)N(f(t), σ2
1) + λN(g(t), σ2

2). (1)

where f(t) and g(t) are time trend functions.

To illustrate (and provide some intuition) for the proposed model, the estimate for corn

yields from Harrison county, Illinois is presented in Figure 2. In this crop-county combination,

the rate of technological change in regular years appears greater than the rate of technological

change in poor years. Figure 2b illustrates the estimated yield densities at four different time

periods. The shape of the estimated yield densities changes noticeably over time. In 1950

the estimated yield density appears relatively normal, while in 1970 the estimated density

displays significant negative skewness. As time increases and the effect of differing rates of

technological change become more prevalent, the estimated densities become increasingly

bimodal and the overall variance increases (giving rise to the presence of heteroscedasticity).

In contrast, Figure 3 illustrates the estimated trend and mixture densities for the same

yield series using the typical method. That is, by first estimating a single temporal process

(here a linear trend) and then estimating the mixture from the heteroscedasticity-corrected

residuals as in Ker (1996), Goodwin, Roberts and Coble (2000) and Woodard and Sherrick

(2011). The estimated densities are, somewhat surprisingly, quite different. Crop insurance

premium rates based on the two density estimates at the 75% coverage level are 11.1% for

the traditional method and 13.0% for the trend mixture model. At the 90% coverage level,

these rates are 31.5% and 28.8%, respectively. Although nominally the difference may appear

small, the premium rates from the trend mixture model are 1.17 and 1.09 times larger than

the traditional model, respectively. In the context of crop insurance, such differences in rates

can have significant economic consequences for the actuarial soundness of a crop insurance
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program.

The proposed model can provide a great deal of insight into the relationship between

the rate of technological change under regular and poor years. The presence of differing

trend functions would suggest that technology has increased regular year yields differently

than poor year yields. Also, differing rates of technological change may give rise to question

previous analyses that condition yields with respect to time at the mean only because these

necessarily assume identical rates of technological change and a stable error distribution.

Finally, the hypothesis that rates of technological change are identical under regular and

poor years not only has implications for modeling yields, but could also have implications

for rating crop insurance contracts, risk management policy, and directing funds regarding

plant science research. This model also enables us to test interesting climate change questions

such as whether the probability of a poor year is increasing or decreasing over time? This

too has implications beyond yield modeling.

The manuscript attempts to make three contributions to the literature. First, we develop

a model of crop yields that can accommodate differing rates of technological change in

different components or subpopulations. Second, we use this model to empirically test if

rates of technological change differ between the components. Third, we empirically test if

the probability of the components is stable over time. To the best of our knowledge these

contributions are new to the literature.

Crop Yield Models in the Literature

Most often the approach to estimating conditional yield densities is to: (i) estimate a trend

using the yield data; (ii) test the residuals from (i) for heteroscedasticity and adjust if

necessary; and (iii) estimate a parametric or nonparametric conditional yield density given

(i) and (ii). The choice of density estimation method has received by far the most attention

in the literature.

A wide variety of density estimation approaches have been proposed in the literature.
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(b) Corresponding conditional yield density estimates over time.

Figure 2: County-level corn yields in Harrison, Illinois with estimated two-component trend.
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Figure 3: County-level corn yields in Harrison, Illinois and estimated densities following the
traditional estimation procedure.
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In 1958, Botts and Boles first suggested the use of “normal curve theory” to determine

crop insurance premium rates. The seminal contribution of Day (1965) argued crop yield

densities displayed non-normal attributes such as significant skewness. In response, Gallagher

(1987) suggested the gamma distribution while Nelson and Preckel (1989) suggested the beta

distribution. Goodwin and Ker (1998) proposed nonparametric kernel density methods while

Just and Weninger (1999) argued deviations from normality were the result of inconsistencies

in methods and data. A semi-parametric approach was forwarded by Ker and Coble (2003).

Later parameteric specifications included the logistic (Atwood, Shaik and Watts, 2003) and

Weibull distributions (Sherrick et al., 2004). Inverse sine transformation methods were used

by Moss and Shonkwiler (1993), Ramirez (1997), Ramirez, Misra and Field (2003), Ramirez

and McDonald (2006). The model proposed here is similar in that it uses a mixture of two

Normals, which has been used to model yields elsewhere (Ker, 1996; Goodwin, Roberts and

Coble, 2000; and Woodard and Sherrick, 2011). More than two mixtures can used; however

two are sufficiently flexible to accommodate a variety of distributional structures that are

commonly associated with yield data such as symmetry or skewness (both negative and

positive), long-tailed and bimodal. Notably, estimated yield densities using a mixture of two

Normals are nearly identical to estimates from nonparametric kernel methods.

Trend estimation and heteroscedasticity correction have received far less attention in the

literature. Both deterministic and stochastic approaches have been considered in estimat-

ing the rate of technology change or trend commonly present in yield data. Deterministic

approaches have dominated the literature and include a simple linear trend, two-knot linear

spline (Skees and Reed, 1986), and polynomial trend (Just and Weninger, 1999). Stochastic

approaches include the Kalman filter (Kaylen and Koroma, 1991) and ARIMA(p, d, q) (Good-

win and Ker, 1998). More recently, Ozaki and Silva (2009) and Claassen and Just (2011)

incorporated spatial information into their temporal model. In contrast, we are proposing

a model that allows different rates of technological change in different yield subpopulations.

With the exception of Harri et al. (2011) and Just and Weninger (1999), heteroscedasticity
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has received surprisingly little attention in the literature considering the magnitude of its

effect on crop insurance rates. Interestingly, different rates of technological change are con-

sistent with the wide-spread prevalence of heteroscedasticity in crop yields: if regular year

yields increase at a higher rate than poor year yields, the dispersion of crop yields would

increase through time despite homoscedastic component variances.4

Empirical Approach

Two caveats about crop yield data are necessary. First, it is important to use the lowest

level of data aggregation possible because when yield data is aggregated it tends to loose

some of the nonnormal characteristics we described earlier (i.e. skewness, bimodality). Due

to the limited availability of farm-level yield data with a sufficiently long time series we use

county-level data.5 Second, realized yield data are a function of adopted technologies and

not necessarily the set of technologies available to producers. Therefore, our conclusions

concern the rate of adopted technological change rather than possible technological change.6

We estimate the model using county-level corn, soybean and wheat yield data. Corn and

soybean data are from Illinois, Indiana and Iowa for 1955 - 2011. All three of these states

are major producers of both corn and soybeans: in 2011 they accounted for 15.6%, 7.2% and

17.3% of national corn production and 13.7%, 7.8% and 15.4% of national soybean production

in the United States, respectively (NASS, 2013). These states were ranked second, fifth and

first in total bushels of both corn and soybeans produced in the United States, respectively.

For wheat, we use Kansas, Nebraska and Texas for 1968 - 2008. The time series is shorter

due to limited availability of county-level data for winter wheat. These three states were also

major producers, accounting for 24.2%, 4.3% and 8.6% of national wheat production in 2010,

4Or potentially vice versa with decreasing variance over time.
5Extrapolating conclusions from county-level yield data to the farm-level can lead to incorrect conclusions

and must be done with caution. See especially Just and Weninger (1999).
6For example poor year yields may not be increasing at the same rate as regular year yields because

producers increasingly choose racehorse seeds over workhorse seeds and seek downside protection through
financial mechanisms such as crop insurance. The county-level yields are the net aggregate of these choices
for the area and don’t necessarily speak directly to individual producer choices.
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respectively. These states were ranked first, sixth and second rank in national production

wheat. All 791 crop-combinations of data for the United States were collected from the U.S.

Department of Agriculture’s National Agricultural Statistics Service. Any county without a

full yield history was excluded.

As noted above, we consider a mixture of two normals where the mean of each normal

is not static but rather represents the temporal process of technological change in each

component or mixture. That is, we have

yt ∼ (1− λ)N(αP + βP t, σ
2
P ) + λN(αR + βRt, σ

2
R). (2)

The unknown parameters to be estimated are λ, αP , βP , σ
2
P , αR, βR, and σ2

R. Mixture models

are commonly estimated using the Expectations-Maximization (EM) algorthm because of

convergence issues with likelihood methods. We necessarily modified the traditional form of

the EM algorithm (Dempster, Laird and Rubin, 1977) to embed the temporal functions. This

requried replacing the weighted means estimate for updating the component means in the

traditional algorithm with a weighted least squares estimate. The diagonal of the weighting

matrix for the weighted least squares estimate is the weighting vector in the traditional EM

algorithm.

Mixture models are commonly estimated using the expectation-maximization (EM) al-

gorithm because of convergence issues with likelihood methods. In order to estimate the

component trend, we modified the traditional form of the EM algorithm of Dempster, Laird

and Rubin (1977) by embedding the trend functions in the component means. For esti-

mation, this required replacing the weighted means estimate (for updating the component

means in the traditional algorithm) with a weighted least squares estimate. The diagonal of

the weighting matrix for the weighted least squares estimate is the weighting vector in the

traditional EM algorithm.

Karlis and Xekalaki (2003), citing Bohning (1999) and McLachlan and Peel (2000), sum-
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marize the advantages and disadvantages of the EM algorithm. Among the notable advan-

tages, the EM algorithm “exhibits monotonic convergence’’ and ‘‘leads to estimates within

the admissible range if the initial values are within the admissible range’’ (p. 578). The

monotonic convergence implies parameter estimates improve (or do not regress) at each it-

eration. The main limitation of the algorithm is that it may converge on local maxima,

particularly when the log-likelihood function is relatively flat or has multiple peaks. The

problem of local maxima can be reduced by choosing multiple starting values. Starting val-

ues may be either chosen for the parameters or for the probability that a given realization

belongs to a given component. We attempted three different approaches and found identical

results in almost all cases.7 8

Estimation Results

Figure 4 presents the estimated temporal process for representative county-crop combina-

tions. For comparison, Figure 5 presents results selected to illustrate some of the more

extreme cases. Consider in particular, Cherokee soybean. The Cherokee soybean case illus-

trates the atypical case when β̂R < β̂P and the variance of yields appears to be decreasing.

Interestingly this case runs counter to the majority of empirical findings, which typically

suggest variance is either constant or increasing over time. The atypical cases provide some

interesting results; however the vast majority of counties are consistent. In the vast majority

of cases the rate of technological change is higher in regular year yields than in poor year

yields.

A more complete picture of the relationship between β̂R and β̂P is provided in Figure

6 which maps β̂R against β̂P for all counties of corn, soybean and wheat respectively. The

7First we assigned a given yield realization probability zero to the poor component if it was greater than
one standard deviation below the mean trend and one otherwise. Second we assigned a given yield realization
probability zero to the poor component if it was below the mean trend and one otherwise. Third we choose
starting values for the parameters λ, αP , βP , σ

2
P , αR, βR, and σ2

R.
8In cases where there where no significant poor yields in the first 5-10 years, the trend line for the poor

component crossed the trend line in the regular component—not surprising given least squares. In these
cases, we constrained the intercept from the poor component to be equal to the regular component to prevent
the trend lines from crossing.
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Figure 4: Representative two-component technological trend estimates.
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Figure 5: Atypical two-component technological trend estimates.
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solid line illustrates when the rates of technological change are equivalent in regular and poor

year yields. Notably, this solid line corresponds to the assumption of the current literature.

First off, it is readily apparent the rate of technological change in corn—regardless of regular

or poor year—has significantly outpaced soybean and wheat. For corn, β̂R is never below

one and the majority of β̂P exceed one. For soybean and wheat, in contrast, even β̂R rarely

exceeds one. It is also clear in these illustrations the rate of technological change in regular

year yields has outpaced the rate in poor year yields by a considerable margin in the vast

majority of cases for all three crops: the vast majority of points lie above the solid line. Only

a small number of cases have β̂R < β̂P and fall below the solid line: 5.3% of corn, 8.7% of

soybean and 6.2% of wheat counties. Overall in 88.5% of crop-county combinations the rate

of technological change is higher in regular year yields than in poor year yields. The dashed

line illustrates when βR is two times βP and in a number of cases the rate of technological

change in regular year yields has doubled the rate of change in poor years, particularly in

soybean and wheat where nominal yields are low. Table 1 reports summary statistics of the

ratio in the estimated rate of technological advancement in regular years over the rate of

technological advancement in poor years broken down by crop and regions. Not surprisingly,

the mean β̂R/β̂P ratio is above one, reinforcing the difference in the rates of technological

change.

Also reported in Table 1 is a more statistically rigorous analysis of the empirical question:

has technological advancement effected regular year yields and poor year yields at the same

rate? We evaluate this question with a likelihood ratio test under the following hypothesis:

H1
o :βP = βR

H1
a :βP 6= βR

The results of this likelihood ratio test provide further evidence of a different rate of tech-

nological advancement regular and poor year yields, which is prevalent in the vast majority
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Table 1: Hypothesis Test One Results.

Summary Statistics for Ratio of β̂R/β̂P Ratio Rejection Rate

Crop Minimum Mean Median Maximum Std. Dev. of β̂R = β̂P

Corn
Illinois 0.56 1.35 1.34 2.52 0.23 81.4%
Indiana 0.70 1.53 1.38 8.48 0.89 84.8%
Iowa 0.57 1.69 1.32 12.24 1.25 85.9%

Soybean
Illinois -34.20 1.12 1.38 4.68 3.68 83.5%
Indiana 0.92 1.39 1.34 3.03 0.36 80.5%
Iowa 0.82 1.79 1.51 4.60 0.86 82.7%

Winter Wheat
Kansas -642.27 -5.59 0.82 129.75 68.49 79.6%
Nebraska -26.79 1.57 1.51 15.11 5.64 56.0%
Texas -25.65 1.21 1.00 43.56 6.97 53.1%

Note: Rejection rate is the per cent of counties rejecting the null hypothesis evaluated at the 5% significance

level. The extreme values (for example a maximum ratio of 129.75 and a minimum ratio of -642.27 for

Kansas wheat) are extreme because β̂P → 0, which inflates the ratio. These values are extremely high when

they approach zero from the righthand side and extremely low when they approach zero from the lefthand

side. These values are apparent in Figures ?? to ?? near the vertical axis and there is nothing to indicate

they are problematic.
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of crop-county combinations. In the vast majority of cases the null hypothesis is rejected:

84.0% for corn, 82.3% for soybean and 64.0% for wheat.9 These results call to question

the approach used by Ker (1996), Goodwin, Roberts and Coble, (2000), and Woodard and

Sherrick, (2011) and more generally, the time-conditioning of yields exclusively at the mean

in crop yield models.

Hypothetically, technological change could also effect the crop yield distribution through

the probability of a regular year parameter. Ideally, technological change would result in

more resilient crops and production practices that would increase the probability of a regular

year. With this in mind, the second hypothesis test evaluates the empirical question: has the

probability of a regular year changed over time? To test this hypothesis we regress γ̂t (the

probability of membership) against t in order to examine if the time coefficient is significantly

different from zero using a t-test with robust standard errors. Table 2 presents a summary

of the t-test results. For the most part, the vast majority of county-crop combinations fail

to reject the null hypothesis: 12.0% for corn, 5.4% for soybean and 4.6% for wheat. The

most compelling results—which suggest the probability of for the three American states may

be decreasing—fail to reject in a very high proportion of the counties. Overall, the results

suggest very little evidence the temporal process of technological change has significantly

effected the probability of regular year.

Economic Implications for Crop Insurance

The purpose of this section is to provide an example of where the proposed empirical model

would have economic implications. To do so, we compare the crop insurance rates estimated

from mixture models with both differing rates of technological change, denoted two-trend

model, and a single rate of technological change, denoted simple-trend model. To compare

rates, the out-of-sample simulation compares two crop insurance rating processes using his-

torical data. The simulation involves two agents: (1) the Risk Management Agency (RMA)

9Interestingly, corn and soybean hybrid seeds have been developed, whereas they have not for wheat.
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Table 2: Hypothesis Test Two.

Number of Counties Rejecting Null

Crop-State Positive Negative Total

Corn
Illinois 0.0% 16.5% 16.5%
Indiana 0.0% 15.2% 15.2%
Iowa 0.0% 5.1% 5.1%

Soybean
Illinois 0.0% 4.1% 4.1%
Indiana 2.4% 2.4% 4.9%
Iowa 1.0% 6.1% 7.1%

Winter Wheat
Kansas 1.1% 0.0% 1.1%
Nebraska 6.0% 2.0% 8.0%
Texas 3.1% 3.1% 6.2%

Note: Statistical significance evaluated at the 5% significance level using least Squares t-test with robust

standard errors.
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which uses the base case insurance valuation technique (simple trend), and (2) a private

insurance company, which uses the proposed technique (two-trend). For the simulated game

we follow Harri et al. (2011) and Ker and Coble (2003). If the two-trend estimates return

statistically significant economic rents compared to the simple-trend estimates then we can

conclude the two-trend leads to more efficient premium rate estimates.10

Note the simulation compares the ability of the empirical model to fit at the lower-end of

the density tails and is not necessarily a reflection of the model to fit all of the data (whereas

the in-sample likelihood ratio test conducted earlier was). Further, we can expect the simple

trend method to have an a priori advantage in handling extremely low yield realizations

(to see this, notice in Figures 2 and 3 how the lower tail of the two-trend model for 2010

has virtually no mass less than 100 bu./ac., while the simple trend model has going back

to approximately 75 bu./ac.). This difference arises from the difference in heteroscedasticity

treatments: the simple trend method treats heteroscedasticity directly, while the two-trend

method has homoscedastic variances and accounts for heteroscedasticity indirectly through

what we suspect is the underlying cause of heteroscedasticty: different technological trends

in the component means. As a result, the two-trend method may consistently underprice the

probability of an extremely low yield realization. That being said, we expect this difference

in treatments to make only a marginal difference (the densities in this area are only 1 to 2%)

and if two-trend method performs better than the simple trend despite this disadvantage, it

provides further support to the case for a two-mean trend.

The design of the simulation imitates the decision rules of the Standard Reinsurance

Agreement. Under the Standard Reinsurance Agreement, private insurance companies may

effectively retain or cede insurance contracts of their choice ex ante.11 Let π̂prv be the

estimated premium rate of the private insurance company and π̂gov be the estimated premium

10The out-of-sample game is intuitively analogous to a game of chance: if I have superior knowledge of
the true data generating process and therefore the outcome probabilities (more efficient premium rates), I
should win more than my opponents over the long-run (economic rents).

11The SRA contains multiple funds and is more complicated but essentially a private insurance company
can significantly reduce their exposure to unwanted policies.
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rate of RMA. Define ωprv as a discrete decision matrix for the private insurance company,

where an element of ωprv is equal to 1 for a retained contract and 0 for a ceded contract.

The private insurance company will retain policies if and only if their rates are lower than

the government rates: π̂prv < π̂gov. Let the ith row of ωprv correspond to the ith year of the

out-of-sample simulation and the kth column correspond to the county, then both ω matrices

have dimensions IxK. The decision rule for any county k and iteration i is determined by

the estimated rates of the two agents:

ωprv =

{
0 if π̂prv > π̂gov

1 if π̂prv < π̂gov

We run the simulation for 20 years with corn and soybeans but only ten years for wheat

due to the limited length of the time series data available. Since Government-provisioned

crop insurance in Canada is offered mainly at the farm-level, county-level results would be

irrelevant and we exclude Ontario from the simulation. The ith iteration of the simulation

corresponds to the time-period of the out-of-sample simulation. For example, consider the

1955-2011 corn and soybean data set with 20 iteration simulation, which implies {it}T=2011
t=1992

where t ∈ N. Considering any nth iteration in, the information set used to calculate premiums

includes only yield values from yn−2. In other words, the data set for a year t and iteration

it uses years 1955 to t − 2.12 All procedures and rates are re-estimated at each year. Loss

ratios from the simulation for the two agents are calculated using actual yield realizations.

Table 3 summarizes the results of the out-of-sample simulation for all U.S. state-crop

combinations at the 75% and 90% coverage level. Overall the private company loss ratio

(using the two-trend method) is lower in 72.2% of state-crop combinations across both cov-

erage levels. Of these, four state-crop combinations are statistically significant at the 5%

significance level. Notably, all cases where the government (simple trend) loss ratio is lower

the p-value is always far less than 0.900, indicating these results are not statistically signif-

12A two-step ahead forecast is used because the maximum amount of data available for an insuer to
estimate the premium rate for year n is t− 2.
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icant.13 The two-trend method also appears to typically perform better at higher coverage

levels and when the per cent of policies paying out is higher. The purpose of the out-

of-sample simulation was to illustrate the economic applications of the proposed empirical

model. Using crop insurance premium rates as an example, the results of the out-of-sample

simulation indicate the proposed empirical model can lead to economically and statistically

significant improvements in crop insurance premium rates.

Conclusions

This manuscript presented a new approach to considering technological change in crop yields

that we would suggest is more consistent with how research in plant science is undertaken;

the development of new technologies is generally targeted at subpopulations of the yield

distribution rather than a uniform upward shift in the yield distribution. Examples include

the development of racehorse seeds and drought resistant seeds. We proposed a mixture

model that explicity accounts for distinct subpopulations in the yield distribution.

The proposed model is sufficiently flexible to accomodate a number of different distri-

butional shapes that the literature has suggested for modelling crop yields. The proposed

model also allows for differing rates of technological change in differing subpopulations of the

yield distribution which opens up a number of interesting hypotheses. Our results provide

compelling evidence to suggest technological advancement has increased greater in regular

versus poor years. A consequence of differing rates of technological change is heterosedastic-

ity which is prevalent in yield data. The test results also suggest the predominant approach

in the literature -- time-conditioning yields at the mean -- may not fully capture the effect

of technological change on yields. These test results are also supported by the results of

our simulated game of rating insurance contracts whereby economically and statistically sig-

nificant rents can be gained by using the two-trend normal mixture model to averse select

against the simple-trend normal mixture model. The results of hypothesis two are also in-

13p-value → 1 indicate a randomized allocation of contracts would always do better than the two-trend
approach.
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teresting and suggest that despite climate change concerns, we do not find evidence that the

probability of a regular or poor year is changing through time.

One caveat regarding the yield data is worth repeating; producers may choose only a

given set of technologies per growing season and as such the realized yield data is only repre-

sentative of technologies adopted and not the full set of technologies available to producers.

Given the development of racehorse seeds and the widespread availability of crop insurance,

it is highly unlikely that producers would adopt technologies that would perform adequately

in sub-optimal conditions at the expense of signficantly lower yields in optimal conditions.

As such, the realized yield data is only a function of adopted technologies and by default

so too are the results presented here.
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