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Abstract

Research and observations indicate climate change has and will have an impact on On-
tario field crop production. Little research has done to forecast how climate change
might influence the Canadian Federal-Provincial Crop Insurance program, including its
premium rates and reserve fund balances, in the future decades. This paper proposes
using a mixture of two normal yield probability distribution model to model crop yield
conditions under hypothetical climate change scenarios. Then superimposes Crop Insur-
ance premium rate and reserve fund balance calculations onto the yield model to forecast
their trends and fluctuation situations in the future decades. We find under the scenarios
where climate change alters the probability of a lower yield year occurring and where
climate change alters yield averages, both have more significant impacts on premium
rates and reserve fund balances, compared to the scenarios where climate change alters
yield variations. The results of this research will help Agricorp Ltd. identify the likely
frequency and magnitude of both insurance premium rate fluctuations and reserve fund
balance fluctuations under different climate change scenarios. Therefore the results can
be used to help Agricorp Ltd. identify and forecast both premium rate fluctuation risk
and reserve fund liquidity risk.

Keywords: Climate Change, Crop Yield Modeling, Crop Insurance Forecasting, Policy
Analysis, Risk Management.
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Introduction

The objective of this paper is to assess climate change’s potential impacts on the Canadian

Federal-Provincial Crop Insurance program. It includes several climate change scenarios

that have different levels of impact on crop yield, both positive and negative, and their

impacts on the Crop Insurance premium rates and reserve fund balance in the next 40

years.

Crop Insurance has a long history in Canada. In 1939, the Prairie Farm Assistance

Act was introduced by the Canadian Government. It provided assistance to grain pro-

ducers in the Prairies and the Peace River area against crop loss. In 1959, the Crop

Insurance Act was passed to replace the Prairie Farm Assistance Act, with a wider cov-

erage that includes all provinces. Crop Insurance has been helping farmers stabilizing

farm incomes against crop production related risks ever since. Crop Insurance in Canada

was designed in the tripartite responsibility format, where the insurance premium costs

and administrative costs are shared among the federal government, provincial govern-

ment and the producers. A CI program Reserve Fund is established at each province for

meeting indemnity payments. The CI program is expected to be self-sustaining, that is,

over time, farmers premiums and government contributions have to equal to the insur-

ance indemnities paid to farmers. The Crown Corporation in Ontario, Agricorp Ltd., is

responsible for delivering CI to producers, and maintaining the actuarially soundness of

the program.

In light of evidence suggesting climate change has and will have impacts on field crop

production, it is not clear how climate change will in turn affect the Crop Insurance

Program. In Ontario, the Crown Corporation responsible for Crop Insurance (Agricorp

Ltd.) would face two kinds of risks. First is the insurance premium rate fluctuation risk.

Agricorp has the responsibility to minimize the year-to-year fluctuations in premium rates

to provide stability for farmer customers and predictability for the budgeting process of

the federal-provincial governments who fund the program (Nayak and Turvey, 1999).

Second is the reserve fund liquidity risk. Agricorp is also responsible for maintaining

the actuarially soundness of the CI program. In other words, farmers premiums and
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government contributions collected have to equal to the insurance indemnities paid to

farmers. A reserve fund is established to meet indemnity payments and it is targeted at

14% of the insured liability of the same year.

From the risk management perspective for the CI program provider, Agricorp Ltd., the

first step is to identify the risks it is facing and determine the size of the risks. The results

of this research will help Agricorp Ltd. identify the frequency and magnitude of both

insurance premium rate fluctuation and reserve fund balance fluctuation under climate

change conditions. Therefore the results can be used to help Agricorp Ltd. identify and

measure both premium rate fluctuation risk and reserve fund liquidity risk.

This research utilizes the mixture of two normal probability distributions model to

model field crop production under current and future hypothetical climate change scenar-

ios. And superimpose Crop Insurance premium rate and reserve fund balance calculation

onto the yield model, to estimate the CI program premium rate and reserve fund balance

under current and future hypothetical climate change scenarios. Three major field staple

crops in Ontario are studied: grain corn, soybean and winter wheat.

Literature Review

In order to analyse climate change scenarios impacts on Crop Insurance program, crop

productions under both current and future climate change scenarios have to be modeled

first.

1. Climate change and its potential impacts on crop production

Ackerman and Stanton (2013) reviewed the recent climatology and crop science research

findings on climate changes impacts on field crop production. Implications from those re-

searches are: first, climate change will increase some extreme weather events occurrences

which will likely increase chances of extreme yield conditions. Second, climate change

not only has possibility to affect crop production in positive ways, but also can affect

crop production negatively. Third, C4 crops (e.g. corn) would show less yield increase
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under some favorable climate conditions compared to C3 crops (e.g. soybean and winter

wheat).

In the climatology sphere, there have been research that uses stochastic weather gener-

ators to obtain climate scenarios, then, use crop bio-physical models to simulate climate-

driven weather changes effects on crop yields (examples include Mearns et al., 1992, 1996,

1997; Peiris et al., 1996; Olesen and Bindi, 2002; and Wang, Wang and Liu, 2011). One

of the main findings of this line of research, is that changes in the weather variable affect

both the mean and variability of crop yields, with the magnitude of the effect depending

on the crop and location used in the study.

2. Crop yield modeling

In the agricultural economics sphere, there are also studies trying to model yield variabil-

ity in response to climate change (climate-driven weather changes). Those studies can

be split into two categories based on their general approaches.

One major approach uses a regression based crop production function that utilizes

historical data to identify the effects of weather variables on both the mean and vari-

ability of yield (examples include Adams et al., 2001; Isik and Devadoss, 2006; McCarl,

Villavicencio and Wu, 2008; Barnwal and Kotani, 2010). Tack, Harri and Coble (2012)

relaxes the restriction of linking mean and variation of weather inputs to the same mo-

ments of output (yield) by conditioning higher-order moments of the yield distribution

on weather and irrigation variables. However, one difficulty of such approach is that it is

hard to select a crop production function without creating omitted-variable bias.

The second approach involves parametric, semi-parametric and nonparametric yield

probability distribution modeling. The advantage of using such approach is that it pro-

duces yield distribution without relying on a fixed yield function (yield as a function of

crops climatic requirements for growth relative to the thermal and moisture conditions

under each climatic scenario). Because yield functions are usually tested by field exper-

iments at fixed locations, which may not be able to represent yield patterns at other

locations or represent crop production conditions at aggregated levels. Therefore, such
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approach could be used to study general pattern of crop production under climate change.

Tack, Harri and Coble (2012) argue for these types of probability distribution modeling

taken as a whole, the main impetus is to minimize the possibility of ex ante specification

errors while maintaining empirical tractability and the ability to capture stylized fea-

tures of the data. In fact, each of those modeling techniques correlate with some unique

contexts that it is most suitable for.

The nonparametric approach uses observed yield data to derive yield distribution.

Norwood, Roberts, and Lusk [NRL] (2004) commented the Goodwin and Ker (1998) ap-

proach of using kernel techniques to estimate county level crop yield in the US, provides

the best out-of-sample forecasting performance (in other words best approach of approxi-

mating current/historical actual yield probability distribution) compared with traditional

parametric methods.

Ker and Coble (2003) proposed a semi-parametric method to estimate corn yield

densities. Their simulation results indicated that the semi-parametric estimator with a

normal distribution is more efficient than the competing parametric models (Normal and

Beta) and the standard nonparametric kernel estimator.

Under the parametric approach, a specific parametric distribution is selected based

on the perceived yield probability distribution shape, usually from one of the well-known

statistical distributions, and parameters of the distribution are estimated using collected

yield data. Gallagher (1987) used gamma distribution frontier model to incorporate

negative skewness found in national level soybean yield probability distributions in the

US. Nelson and Preckel (1989) used the beta model where the two shape parameters

of the beta distribution were used to represent fertilizers application levels. Ramirez,

Moss and Boggess (1994) used inverse hyperbolic sine (HIS) model to incorporate the

possible non-normality yield probability distribution. Just and Weninger (1999) used

normal distribution to study farm-level crop yield at Kansas for corn, wheat, soybean,

alfalfa, and sorghum.

5



2.1 Skewness discussions

In pair with the efforts of minimizing the possibility of ex ante specification errors in yield

probability distribution modeling, there have been lots of discussions among agricultural

economists on the skewness of crop yield distribution. Day (1965) argued that crop yield

distributions are non-normal and positively skewed because excellent weather condition

must prevail throughout the entire growing season if high yields are to be obtained while

bad weather during any critical period can significantly reduce yields. However, positive

skewness was found only for cotton and no significant skewness or negative skewness was

found for corn and oats. Ramirez, Misra, and Field (2003) also found that Texas dryland

cotton data exhibit positive skewness. On the contrary, there are studies that discovered

negative skewness of crop distributions. Gallagher (1987) found negative skewness for

U.S. average soybean yields and he reasoned, Yield cannot exceed the biological potential

of the plant, yet it can approach zero under blight, early frost or extreme heat. He also

found that soybean yield variability has changed systematically over the past five decades

and the variance of U.S. soybean yields has been increasing. Other agricultural economics

studies in support of negative skewness include: Ramirez, Misra, and Field (2003) also

concluded that Corn Belt corn and soybean yields are negatively skewed. Nelson and

Preckel (1989) and Moss and Shonkwiler (1993) found evidence of negative skewness

for corn. Just and Weninger (1999) challenged the predominant view that crop yield

distributions are non-normal by arguing that rejection of normality may be the result

of inappropriate detrending and failure to properly model heteroskedasticity. And they

found previous studies using time-series data at aggregated levels cannot reflect farm-level

randomness. They failed to reject normality when using flexible polynomial trends for

mean yield and yield variance. Ramirez Misra and Field (2003) addressed the procedural

issues raised by Just and Weninger by using improved model specifications, estimation

and testing procedures. However they found Corn Belt corn and soybean yields are

negatively skewed, and Texas dry-land cotton yield is positive skewed (as mentioned

before). They argued because the type-two errors in the normality tests are unknown,

non-rejection does not prove yield normality.
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2.2 Beyond traditional parametric yield distribution modeling: a mixture of

normal probability distributions

Ker and Goodwin (2000) argued though the traditional parametric yield probability dis-

tribution models (such as gamma, beta and HIS distributions) can accommodate yield

distribution skewness observed in historical data, it doesnt mean they are the best ap-

proximations for yield distribution. Therefore, Ker and Goodwin (2000) suggested it is

possible for the unknown yield distribution to be bimodal and negatively skewed due to

the effects of catastrophic events such as drought, flood and freeze. Observed yields can be

seen as drawn from one of two distinct subpopulations: a catastrophic sub-population and

a non-catastrophic sub-population. That is, if a catastrophic event occurs in a particular

year, yields are drawn from the catastrophic sub-population; if no such an event occurs

in a year, yields are drawn from the non-catastrophic population. The distribution from

catastrophic years (secondary distribution) lies on the lower tail of the distribution from

non-catastrophic years (primary distribution) and has considerably less mass, which leads

to negative skewness of yields. The secondary distribution lies to the left of the primary

distribution because yields tend to be much lower in catastrophic years. It would also be

expected that the secondary distribution has less mass since catastrophic events occur

with much less frequency than their complement. Therefore, yield distribution could be

negatively skewed and bi-modal if the mass of catastrophic distribution is non-negligible

and the catastrophic distribution is relatively peaked.

Few empirical applications used a mixture of normal distributions to model yields.

However the mixture of normal probability distributions model have been around for a

long time, especially in statistical analysis, examples include: Everitt and Hand (1981),

Titterington, Smith and Makov (1985), and Mclachlan and Peel (2000). Wirjanto and

Xu (2009) applied the mixture of normals model in modeling returns on financial assets.

As Wirjanto and Xu (2009) addressed: the advantage of the mixture of normals model

is that it is flexible enough to accommodate various shapes of continuous distributions,

and it is able to capture leptokurtic, skewed and multimodal characteristics.

In fact, the mixture of two normal yield probability distribution model suggested by
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Ker and Goodwin (2000) can not only accommodate negative yield skewness, it is flexible

enough to also capture positive yield skewness and normal yield distribution that observed

by a few researchers mentioned above, and the possibility of positive yield skewness or

normal yield distribution happening in the future under climate change.

Data and Methods

County level annual crop yield data are obtained from the Ontario Ministry of Food,

Agriculture and Rural Affairs (OMAFRA) from 1949 to 2010. 49 counties data are avail-

able. However some counties have many missing values due to the fact corn, soybeans and

winter wheat are not cultivated a lot in the northern regions. And according to Statistics

Canada (2009), soybeans were restricted by climate primarily to southern Ontario before

mid-1970s.

According to Intergovernmental Panel of Climate Change (IPCC, 2008), World Mete-

orological Organization (WMO) and Environment Canada (2013), climate change refers

to a long term weather pattern and usually takes 30 years or longer for a particular region.

Therefore, we set our forecasting period to be 40 years. That is: from the year (2011) we

start to apply climate change scenarios, to the end of yield forecasting and CI program

evaluation in year 2050, we will have 40 years of data on crop yield, CI premium rates

and reserve fund balances.

The following subsections introduce the techniques used to model yield and construct

sample farms for CI premium rates and reserve fund balance estimation.

1. Yield model

Recall the purpose of this study, not only do we want to model yield under current

conditions, most importantly we want to show the potential impacts of climate change

on crop production. We propose to use parametric probability distribution model to

model yield. Because, first, probability distribution model looks pass the complicated

mechanisms of climate-driven weather variables effects on crop yield, but focusing on
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climate changes net effect on yield. Second, by altering the parameters of the parametric

model, we can mimic climate changes effect on yield.

More specifically, we propose to use the mixture of two normal probability distribu-

tions model as suggested by Ker and Goodwin (2000). Because it is flexible enough to

accommodate all types of yield distribution skewness found in previous literature. The

general functional form of the model is as the following:

P (y) = λ×N(µ1, σ
2
1) + (1 − λ) ×N(µ2, σ

2
2) (1)

Where, P(y) is the probability of yield. The first normal distribution with a lower

mean µ1 represents the yield probability distribution in a lower yield year; and the second

distribution with a higher mean µ2 represents a higher yield year.λ is the probability of

a lower yield year occurring. With this yield distribution model, we can alter the five

parameters to study multiple hypothetical climate change scenarios’ impacts on crop yield

distribution. For example, we can change λ value to represent climate changes impact

on the frequency of a lower yield year occurring; we can change µ1 and µ2 to represent

climate changes impact on average crop yield.

We also plotted the non-parametric density plots for each county using the historical

yield data. We de-trended the data and corrected for heteroskedasticity using the simple

technique suggested by Glejser (1969). Most of the plots show signs of negative skewness

and bi-modal (see figure 1 in Appendix for examples).

2. Model yield trend

We are not satisfied by the simple de-trending approach suggested by Glejser (1969), and

found there are several other detrending methods suggested in literature, including first-

and higher-ordered polynomials(Atwood, Shaik and Watts, 2003; Sherrick, et al., 2004;

Goodwin and Mahul, 2004; Oazki, et al., 2005) and autoregressive integrated moving

average models (Goodwin and Ker, 1998; Ker and Goodwin, 2000). However Chen and

Miranda (2006) summarized none of the above detrending approaches are perfect due to
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over-fitting problems.

In light of the common yield increasing trends in the crops we are studying which are

mainly because of technology and farming practice advancements. Unfavorable weather

conditions could undermine the performance of crop hybrids and farming efforts. So

we propose to use two linear trend lines to model yield trends under normal weather

and extreme weather conditions. Therefore the modified yield probability distribution

becomes:

P (y) = λ×N(A1 +B1 × t, σ2
1) + (1 − λ) ×N(A2 +B2 × t, σ2

2) (2)

All the symbols remain the same meaning as in equation 1, except the A1+B1* t and

A2+B2*t replace the two mean (µ1 and µ2) values for the two normal components. The

underline assumption is that there is generally a linear yield growth trend over time. A1,

A2 are the intercepts and B1, B2 are slopes. One better interpretation would be that A1,

A2 are the starting average yield values at the beginning of the sampling period (1949),

and B1, B2 are the net yield growth rates as the results of technology advancement,

weather, and farming practice changes. t takes value of 1 at year 1949, by end of the

sample period (2010) t is 52, at the beginning of the forecasting period (2011) t is 53, and

at the end of the forecasting period (2050) t will be 102. A1 and A2, B1 and B2 are not

necessarily equal. In fact, B1 could be lower than B2 as crop performance under stress is

not as good as under normal growth condition given the same hybrid variety and same

farming practices applied.

3. Estimate parameters in the yield model

To obtain the seven parameters in equation 2, annual crop yield data at each county

over the last 52 years are used as input data. Then the Expectation Maximization (EM)

algorithm technique is used to estimate those parameters. Because EM algorithm with

lower amount of input data could be very starting-value-sensitive, that could result in

generating local optimum rather than global optimum. Counties with many missing
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values could add on to the difficulty of obtaining the global optimum solutions. To solve

this problem, all the EM generated parameter results are compared against each other

for each crop species, and the counties with extreme parameter values are taken out.

The final usable number of counties for corn is 27, for soybean is 13, and for wheat is

22. The estimation results are summarized in Table 1-3 in the Appendix. Figure 2 in

the Appendix shows some sample plots of the two estimated yield trend-lines against the

original yield value scatter plots.

Once the parameters at county level are estimated, they are used to help determine

the possible range of each parameter at provincial level. We first tried to study the

general distribution pattern of each parameter (A1, A2,B1,B2, σ1,σ2, λ) by plotting those

usable parameters into histograms. Many of them showed the tendency of being uniformly

distributed (see Figure 3 in the Appendix for details). For the sake of simplicity, we made

the assumption that all of the seven parameters (estimated at county level) are uniformly

distributed within Ontario. The maximum and minimum values of each parameter can

be drawn from the final pool of usable parameters, and they are set ready for the next

step of sampling.

4. Sampling correlated farm samples

To study climate changes impacts on crop yield and the CI program at the provincial

level, ideally one would gather all the farms that enrolled in the CI program, study their

yields and CI premiums and reserve funds. Without farm level data, our approach is to

draw random samples from the pool of uniformly distrusted yield distribution parameters

(identified in the previous step) to represent the farms enrolled in CI program across

Ontario. Through consulting with OMAFRA employees, the current number of farms

enrolled in CI program for each crop species are identified as approximately: 9000 corn

farms, 11000 soybean farms, and 6000 winter wheat farms. These numbers are used as

our sample sizes, and again for the sake of simplicity we assume the farms are of the same

size for each crop species we study.

Given the fact these seven parameters in the yield distribution model should be some-
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what correlated depends on the location they might represent. Separated random samples

of these parameters will loss the correlation characteristics between parameters within

each sample farm. To fix this problem, we use Iman and Conover (1982) method to ob-

tain samples that have similar correlations between parameters as the correlations from

the pool of usable country level estimates (target correlations). For example for corn, we

first randomly select same number of samples from each uniformly distributed parameter

frame, in this case, would be 9000 samples representing 9000 farms. Then use Iman and

Conover (1982) method to impose correlations and create a 9000 × 7 matrix with its

correlation matrix equals the target correlations. Therefore, 9000 different yield prob-

ability distributions representing 9000 randomly selected farms in Ontario are created.

As t increases over the years, the yield probability distribution will change accordingly,

reflecting multiple factors (including weather, technology, farming practices, etc.) shift

crop production in the same way they’ve done in the past 52 years.

Even though the sample farms are uncorrelated with respect to the farming practices

they carry out, the crop productions are likely to be influenced in the similar ways by

the weather conditions within their region. In other words, if one farm experienced a

lower yield year due to unfavorable weather conditions, farms in the same region would

likely to experience a lower yield year as well. This intuition can be captured in the

following way. Imagine if there is only one farm, to determine whether it is going to have

a lower yield year or higher yield year: we first randomly select a value from a uniform

distribution with boundaries of 0 and 1, and then compare it against our lambda value. If

the random value is greater than lambda, the yield distribution would fall into the second

normal component (i.e. the farm will have a higher yield year), and vice versa. When

there is more than 1 farm, we assume the correlation between farms experiencing similar

weather impacts is 0.8. And still using Iman and Conover (1982) method, we obtain a

set of 9000 random values (for corn) between 0 and 1 (obtained again from the uniform

distribution) with correlation of 0.8, which will in turn determine for each sample farm

which normal component it falls into.
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CI Premium Rate and Reserve Fund Balance Estima-

tions

In order to understand how the Crop Insurance program performs, three important mea-

surement factors are estimated for the next 40 years: actuarially fair rate, the Agricorp

rate, and the reserve fund balance.

1. The actuarially fair rate

Under the ideal case, the CI program provider wants to keep the total premium collected

equals the indemnity paid over time, and the insurance premium rate under this case is

called actuarially fair rate. The actuarially fair rate is simply the ratio of the expected

loss (E(L)) to insured liability (Yg) of the same year.

R =
E(L)

Y g
(3)

The expected loss can be estimated if known the yield probability distribution in the

following way:

E(L) = Pro(y < Y g) × [Y g − E(y/y < Y g)] + Pro(y = 0) × Y g (4)

Under the mixture of two normal yield distribution model, the expected losses under

each distribution are calculated first, then times the weight of λ or (1−λ), and add them

together.

E(L) = E1(L) × λ+ E2(L) × (1 − λ) (5)

The yield guarantee, or liability for Agricorp, is first measured bushels. It is the product

of average farm yield (AFY) of the past 10 years times percentage coverage level.

Y g = AFY × CoverageLevel (6)

To calculate average farm yield (AFY), two treatments have to be made onto historical

13



yields before taking the 10 year average according to Agricorp (2010).

The first treatment is called the yield adjustment factor (yaf), which adjusts historical

yield to reflect technology and/or practice changes. It is a value to be multiplied to the

actual yield. The current value provided by Agricorp for corn it is 1.0215, meaning a

2% increase of yield per year among recent historical yields. Because this study looks

at a longer period of 40 years, we created a closer approach to adjust yield through the

following 2 steps:

yaft = 1 +
mean(λ×B1 + (1 − λ) ×B2)

mean(y(t−62):(t−53))
(7)

ayi = (yaf 11−i) × yt−63+i (8)

where, yaft is the yield adjustment factor in year t. t takes values from 63 to 102

representing the historical 10 years (under base climate conditions from 2001 to 2010)

and the future 40 years (from 2011 to 2050) for our forecasting period. ay is the adjusted

yields after the yield adjustment factor. i takes value from 1 to 10 representing the 10

historical years used to determine average farm yield.

The second treatment is called yield buffering which is applied after the yield adjust-

ment factor. Unusual high or low yields are buffered to reduce the extreme effects on the

AFY. If yield is above the upper threshold, which is 130% of AFY, it will be buffered

2/3 of the way down to the upper threshold. If yield is below the lower threshold, which

is 70% of AFY, it will be buffered up 2/3 of the way up to the lower threshold.

AFY = y × f − (y × f − ut) × 2
3

if y × f > ut

= y × f − (lt− y × f) × 2
3

if y × f < lt. (9)

ut is the upper threshold, it equals y × f × 1.3. lt is the lower threshold, it equals

y × f × 0.7. y is the actual historical yield, which is sampled directly from the yield

probability distribution. f is the yield adjustment factor.

The coverage level takes values of 75%, 80%, 85% and 90% according to Agricorp

(2010) for corn, soybean and winter wheat. For the sake of simplicity in our study, we

only conduct estimations under 75% and 90% coverage levels.
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2. The Agricorp rate and reserve fund balance

Agricorp Ltd., as the Crown Corporation in Ontario, is responsible for providing CI to

producers, and maintaining the actuarially soundness of the program.

It is only an idealistic assumption that CI provider, Agricorp, knows the exact yield

probability distribution from year to year. Therefore the exact actuarially fair rate cannot

be accomplished. CI provider uses a series of calculations to approximate the actuarially

fair rate, which here we refer to as Agricorp rate.

According to Agricorp publications, the insurance premium is calculated as the fol-

lowing:

PRt = (PRt−1 − FRt−1) × (1 +D) (10)

Where PRt is the Agricorp premium rate at year t, FRt is the reserve fund adjustment

factor identified at year t− 1, and D is the individual farm discount or surcharge. From

the formula can tell that the Agricorp rate charged to one farm at a certain year is

based on previous year’s premium rate and adjusted by reserve fund balance condition

and individual farm performance condition. The objective of this study is to identify

the general CI premium rate and reserve fund balance conditions at provincial level.

Averages will be taken from the individual rates calculated in the above. Therefore, the

individual discounts or surcharges will eventually be averaged out. So we take an easier

approximation by defining the Agricorp insurance premium rate as:

PRt = (PRt−1 − FRt−1) (11)

Assume at the beginning of the 40 year forecast period, CI provider has good knowl-

edge of the yield probability distribution and charges farmers at the actuarially fair rate.

Therefore, PR1 equals R1.

In order to have enough fund to pay for indemnity, the CI reserve fund balance is

targeted at 14% of insured liability of the same year, which is also 14% of the total
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yield guarantee. If the fund reserve of the year is greater than 14% of liability, then the

additional is divided by 25 and subtracted from the base premium rate for the coming

year. If the fund reserve is greater than 14% of liability of the year, the difference is

divided by 15 and added to the base premium for the coming year.

FRt = (Bt/Lt − 0.14)/15, if Bt/Lt < 0.14

= (Bt/Lt − 0.14)/25, if Bt/Lt > 0.14 (12)

Where B is reserve fund balance at the end of the year. The fund balance of this

year equals the fund balance of previous year plus this year’s program revenue. L is the

total liability of the year, which equals the sum of guaranteed yield (Yg) among all farms

enrolled in the program.

Bt = Bt−1 + (Et − Ct) (13)

Et =
I∑

i=1

(Y git × PRit) (14)

Ct =
∑I

i=1(Y git − yit), for yit < Y git (15)

Where Et is the insurance premiums gathered at the beginning of the year t from all

the farmers, and Ct is the total insurance claims farms made at the end of the year t. The

”i” represents the ith farm, and I is the total number of farms enrolled in the program.

The ”t” represents the number of years farmers have enrolled in the insurance program.

The difference between Et and Ct is the program revenue (in bushels) of the year. PR

is the premium rate Agricorp charges the farmer when enrolling in the program at the

beginning of the year.

The whole calculation process for estimating those three factors is repeated 10 times

and averages are taken among the 10 simulations in order to represent the general changes

over years in smoother ways.
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Climate Change Scenarios Simulation Results

The hypothetical climate change scenarios we studied can be organized into three cate-

gories according to how climate change may affect the yield distribution (i.e. affect the

value of the parameters): 1) climate change alters the probability of a lower yield year

occurring (λ changes). 2) Climate change alters the mean yields (B1 & B2 changes).

3) Climate change alters yield variations (σ1 & σ2 changes). And within each category,

different levels of impacts are studied, including both positive impacts and negative im-

pacts:

Climate
alters pa-
rameters

λ B1 & B2 σ1 & σ2

general
formula

λt = λt=0 × (1 +
k × t)

Bi,t = Bi,0×(1+
k × t)

SDi,t = SDi,0 ×
(1 + k × t)

variable
meanings

t represents the year, takes value from 1 to 40; k
is the annual rate of change; i takes value of either
1 or 2

levels of
change

k= 0.01, 0.05, -
0.01 or -0.05

k= 0.01, -0.01,
or -0.025

k= 0.01, 0.05, or
-0.01

For each climate scenario, the maximum and minimum insurance coverage levels (90%

and 75%) are applied separately to study premium rates and reserve balances under each

coverage level. There are 30 scenarios in total that we studied.

The premium rates Agricorp published are in dollar per acre format, which is the

rates in bushels per acre times the locked in crop price (for fixed rates) in dollars per

bushel and times farmer’s share of the premium responsibility. The bushels per acre

rates can be calculated by simply multiplying the rates in percentage forms (equation

3 and equation 10) by the average yield guarantee (in bushels per acre). According

to Agriculture and Agri-Food Canada (2010), farmers are responsible for 40% of the

premium, while the federal and provincial governments absorb 60%, splitting it 60/40. To

make it consistent with current Agricorp publications, the premium rates, both Agricorp

rates and actuarially fair rates, are converted into dollars per acre format using the current

fixed rate claim prices for each crop published by Agricorp (2013): corn ($5.36/bu),
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soybeans ($11.14/bu) and winter wheat ($7.05/bu).

We also include, in the results display, the average yield guarantee per acre, the

average expected yield loss per acre (when yield fall below the yield guarantee) (as in

equation 5) and the total insured liability in dollar values which can be calculated by the

following:

Li,t = Y gi,t × pi × Ai (16)

Where Li,t is the total insured liabilities in CND value among all farms for crop i in

year t, Y gi,t is the total insured liabilities among all farms in bushels for crop i in year t,

pi is the estimated average price of crop i (in CND per bushel), and Ai is the total insured

acreage of crop i in Ontario. Price values are the current (2013) fixed Crop Insurance

claim prices. Ai values are estimated using the average insured acreages between 2011

and 2012 crop years: corn (1.5 million acre), soybean (1.9 million acre), winter wheat

(0.65 million acre) (information obtained from OMAFRA staff)

For simple demonstration purpose, the below plots are examples of grain corn in

Ontario, assuming all participating farms choose 90% insurance coverage level, and under

all three climate change scenario categories, the six variables of interest mentioned above

in the next 40 years will be:

18



Scenario category 1: climate change alters the probability of a

lower yield year occurring

For corn at 90% coverage level when λ changes:
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Scenario category 2: climate change alters average yields

For corn at 90% coverage level when B1 & B2 change:
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Scenario category 3: climate change alters yield variations

For corn at 90% coverage level when σ1 & σ2 change:
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Result summary:

The result plots of all the crops under all the scenarios and insurance coverage levels can

be summarized as below:

1) Yield guarantee (Yg) & expected loss (E(L))

Changing pa-
rameter

λ B1 and B2 σ1 and σ2

Yg general
trends

always increase
(except for some
crops under 5%
λ increase sce-
narios)

follows the direc-
tion of B1&B2
changes

always increase

Yg under dif-
ferent levels
of parameter
change

positive λ
changes result in
negative rates of
Yg change

positive B1 & B2
changes result in
positive rates of
Yg

no significant de-
viations between
different levels of
sd changes

E(L) general
trends

increase (except
for some crops
under 5% λ de-
crease scenarios)

increase (except
for some crops
under 2.5% B1 &
B2 decrease sce-
narios)

always increase

E(L) under
different levels
of parameter
change

not follow the
change of λ
(because is also
determined by
yield distribu-
tion situation
and the starting
λ value

experience an
adjustment pe-
riod (usually
10-20 years),
but eventually
follow the same
patterns as
the B1 & B2
changes (posi-
tive B changes
result in positive
levels of E(L))

follow the same
patterns as the
SD1 & SD2
changes (posi-
tive SD changes
result in positive
levels of E(L))

Both yield guarantee and expected loss experience greater deviations between different

levels of parameter changes under 90% insurance coverage level compared to the 75%

coverage level, for both λ changes and B changes.

2) Actuarially fair rate in dollars per acre, as expected loss (E(L)) times fixed claim

price then times producers share of responsibility (40%). The actuarially fair rates under

all three scenario categories follow exactly the same trends of expected loss.
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3) Agricorp rate in dollars per acre, follows the general trends of the corresponding

actuarially fair rates for all the crops and all parameter change scenarios. But they always

have greater fluctuations than the corresponding actuarially fair rates over time, as Agri-

corp rates are approximations to actuarially fair rates when the crop yield distributions

are unknown.

Comparing with the Agricorp 2013 fixed claim premium rates, our estimated Agricorp

rates tends to be smaller than that of the rates posted on Agricorp website. For example,

under the 90% insurance coverage level our estimated Agricorp rate (under base condi-

tion) is around $10/bu in 2013 while the actual rate Agricorp charged is around $14/bu.

There are mainly two reasons contributed to the difference. First, our forecasting period

starts in 2011 with the base rate estimated from 2010 crop yield probability distribution

condition (equation 2), the actual Agricorp rates would have used different starting rates

at a different year. Second, the actual starting Agricorp rate is determined by the actual

indemnity payments and actual liabilities collected in the past, while the estimated Agri-

corp rates are derived from yield distribution probability models. Given these said, the

value of the mixture of two normal yield probability distribution model lies in the trend

forecasting and its flexibility of multiple scenario displaying, rather than point estimation.

Both actuarially fair rates and Agricorp rates experience greater changes over time

under 90% coverage level compared to those under 75% coverage level.

4) Reserve fund balance rates (reserve fund balance over total liability) have general

increasing trends. Because the way fund reserve adjustment is calculated (equation 11):

when reserve is greater than 14% of liability, premium rate is reduced by 1/25 of the

difference; but when reserve is less than 14% of liability, premium rate is increased more

at 1/15 of the difference. In other words, when reserve fund is low, Agricorp charges

producers more through premiums they pay, but when there is surplus in reserve fund,

producers only get a fraction of it as rebates. We also observe the balance rates under

90% coverage level experience greater fluctuations compared to those under 75% coverage

level over the years.

Both Agricorp rates and reserve fund balance over the years show signs of cyclical
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changing patterns. This pattern could be explained by working through the equations

that were used to calculate Agricorp rates (equation 10-13). They were designed to

adjust the Agricorp rates and reserve fund balances to stay with the reserve fund balance

target (at 14% of total liability). However laggings in information flow (using (t-1)th

years information to adjust t th years rate) cannot send those rates to their target values

(balance rates to be equal to 14% and Agricorp rates to be equal to actuarially fair rates),

but letting them fluctuates around the target values. (Appendix provides more detail on

this issue.)

5) Total insured liabilities in dollar value follows the exact same trends as yield guar-

antee. The gaps between different magnitudes of λ and B1 & B2 changes get wider as

time goes by, and the liability plots under 90% coverage level show wider gaps than under

75% coverage level.

Conclusions and Future Research

Using the mixture of two normal yield probability distribution model, we could not only

model historical crop yield patterns, but also apply climate change scenarios by altering

the parameters to forecast crop yield and Crop Insurance program performances in the

future. The three climate change scenario categories provide approximations of the yield

situations that facing Ontario crop producers, and CI program premium rate and reserve

fund balance fluctuation situations CI provider would likely to experience in the future

decades. The two climate change scenario categories, where climate change alters the

probability of lower year occurring and where climate change alters the average yield,

both have significant impacts on crop yield, CI premium rates and reserve fund balances.

However, the third scenario category, where climate change alters yield variation, it alone

wont have very significant impacts on CI rates and reserve fund balances compared to

the previous two scenario categories.

The advantages of the approaches introduced in this study are two-fold: first, the

mixture of two normal yield probability distribution model provides a flexible and trans-
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parent way to impose climate change scenarios onto the base yield model. Second, the

yield trends and CI program premium rates and reserve fund fluctuations over the future

decades can be forecasted.

However, we observe our estimated Agricorp rates (under our base condition) are

generally little smaller than what Agricorp actually charges in 2013. This is due to the

difference in the starting years used to determine Agricorp rate between our study and

Agricorps choice, plus some limitation in the goodness of fit of our estimated yield model

which can be traced back to the limit number of usable counties to draw input data from.

Although our approach may not be the best for point estimation for premium rates,

the yield trends and CI program and reserve fund balance fluctuation situation forecasts

would still provide CI program provider valuable information on the frequency and mag-

nitude of both insurance premium rate fluctuation and reserve fund balance fluctuation

under climate change conditions. Therefore the results can still be used to help Agricorp

Ltd. identify and forecast both premium rate fluctuation risk and reserve fund liquidity

risk.

There are several areas future research could be carried out. First is to include

the scenarios where both yield averages and standard deviations are altered simulta-

neously. Current research indicates climate change is likely to alter both mean yield

and yield variation, but the degree of change depends on location and crop species. If

information/predictions on the mean yield and yield variation relationship at aggregated

(provincial) level become available in the future, better approximations for yield proba-

bility distribution and CI program performances under climate change could be obtained.

Second is to be species-specific when applying climate change (yield distribution param-

eter changes) scenarios. Again this would depend on future climatology and crop science

research advancement to better predict different crop species performances at provincial

level. Then using the approaches introduced in this study, we can be more precise with

the yield and CI program trend forecasting. Third, the same approaches used in this

study could be adopted for trend forecasting purposes for other crop species and other

provinces, or even other countries.
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Appendices

Appendix 1. EM Algorithm Estimation Results

Table 1, EM algorithm estimation results for corn (27 usable counties)
county names alfa1 alfa2 beta1 beta2 sd1 sd2 lambda data length*
Brant 54.589 45.498 1.073 1.756 8.401 5.672 0.698 62
Bruce 47.484 47.841 1.163 1.635 8.002 4.952 0.763 62
Dufferin 53.904 44.467 0.395 1.290 6.405 11.490 0.290 62
Elgin 62.711 47.148 0.719 1.665 7.164 8.464 0.105 62
Essex 53.088 46.335 0.573 1.699 10.544 8.986 0.139 62
Grey 55.554 45.890 0.484 1.235 6.681 9.051 0.296 62
Haldimand-Norfolk 60.385 44.866 0.344 1.425 0.101 11.484 0.046 62
Halton 63.744 47.158 0.363 1.272 7.934 8.025 0.355 62
Hamilton 47.362 52.013 1.101 1.568 5.117 8.506 0.570 62
Huron 51.781 45.643 1.035 1.660 9.442 9.153 0.127 62
Kawartha.Lakes 48.502 41.544 0.813 1.505 8.670 8.838 0.641 62
Lambton 57.512 43.468 0.551 1.719 1.101 9.620 0.074 62
Lanark 43.765 36.559 0.813 1.625 14.292 9.900 0.361 62
Leeds Grenville 38.021 44.928 1.008 1.451 9.063 5.956 0.521 62
Lennox Addington 46.460 39.767 0.646 1.404 11.509 10.111 0.444 62
Middlesex 47.136 46.453 1.130 1.745 6.758 8.241 0.129 62
Niagara 48.013 42.279 0.911 1.640 8.926 5.785 0.716 62
Northumberland 50.146 41.484 0.917 1.521 8.973 6.047 0.510 62
Oxford 54.545 46.778 1.079 1.757 3.536 9.517 0.143 62
Peel 54.411 45.946 0.660 1.403 8.444 7.590 0.281 62
Perth 48.372 44.863 0.957 1.731 7.955 8.756 0.087 62
Peterborough 51.510 43.549 0.562 1.228 9.582 7.735 0.200 61
Prescott Russell 37.006 34.877 1.096 1.842 13.835 7.844 0.406 62
Simcoe 49.028 43.661 0.898 1.442 4.389 10.368 0.472 62
Waterloo 37.021 51.385 1.128 1.286 3.990 9.208 0.039 62
wellington 58.296 50.252 0.666 1.357 6.778 9.574 0.474 62
York 55.233 46.693 0.760 1.339 6.444 7.492 0.553 62
average 50.947 44.865 0.809 1.526 7.557 8.458 0.350 62
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Table 2, EM algorithm estimation results for soybean (13 usable counties)
county names alfa1 alfa2 beta1 beta2 sd1 sd2 lambda data length*
Bruce 17.304 14.015 0.297 0.882 1.532 4.292 0.326 34
Elgin 22.820 18.805 0.109 0.426 4.653 2.099 0.165 62
Essex 18.285 25.342 0.232 0.308 2.763 3.624 0.294 62
Haldimand-Norfolk 21.869 18.922 0.087 0.338 4.218 2.982 0.257 62
Hamilton 17.888 16.040 0.185 0.529 4.447 2.844 0.189 51
Huron 16.574 13.662 0.330 0.627 3.422 2.636 0.312 57
Lambton 20.209 20.597 0.163 0.401 3.982 2.285 0.196 62
Middlesex 21.661 18.627 0.123 0.446 3.767 2.740 0.199 62
Oxford 17.293 16.833 0.286 0.605 5.794 3.071 0.156 54
Peel 18.805 12.698 0.052 0.759 1.172 3.383 0.319 39
Perth 17.213 14.076 0.281 0.701 2.746 3.378 0.154 51
Waterloo 18.158 12.502 0.171 0.823 2.567 3.381 0.289 40
Wellington 19.995 15.529 0.102 0.600 1.179 3.374 0.222 48
average 19.083 16.742 0.186 0.573 3.249 3.084 0.237 53

Table 3, EM algorithm estimation results for winter wheat (22 usable counties)
county names alfa1 alfa2 beta1 beta2 sd1 sd2 lambda data length*
Brant 32.895 25.586 0.073 0.683 1.988 5.678 0.135 62
Bruce 36.945 24.108 0.137 0.877 0.303 4.626 0.097 62
Chatnam-Kent 33.206 30.404 0.299 0.884 1.286 5.599 0.057 62
Dufferin 30.982 26.592 0.191 0.717 5.689 4.424 0.208 62
Durham 35.448 27.283 0.241 0.686 2.881 4.430 0.206 62
Elgin 29.162 24.079 0.511 0.931 6.166 4.079 0.408 62
Essex 27.682 29.435 0.658 0.927 5.564 4.515 0.484 62
Haldimand-Norfolk 33.387 23.772 0.060 0.647 4.104 5.743 0.202 62
Halton 32.934 27.088 0.132 0.587 3.403 4.977 0.233 62
Hamilton 32.831 24.742 0.014 0.682 3.416 6.663 0.133 62
Lambton 34.971 24.480 0.030 0.909 0.024 5.857 0.028 62
Middlesex 33.309 24.437 0.191 0.937 2.140 5.521 0.107 62
Niagara 27.973 22.771 0.186 0.672 4.727 5.387 0.455 62
Northumberland 28.957 27.672 0.445 0.628 2.465 5.041 0.499 62
Peel 34.265 28.183 0.099 0.661 3.692 5.143 0.246 62
Perth 33.667 26.082 0.372 1.009 3.713 5.152 0.160 62
Peterborough 29.787 25.049 0.332 0.611 3.471 3.325 0.561 62
Prince.Edward 28.573 23.964 0.261 0.603 1.023 6.238 0.257 62
Simcoe 29.315 25.117 0.453 0.787 3.948 4.063 0.349 62
Waterloo 41.083 26.717 0.082 0.760 3.742 4.138 0.170 62
wellington 33.798 26.713 0.221 0.789 4.453 5.010 0.193 62
York 35.896 31.080 0.199 0.526 3.251 3.944 0.168 62
average 32.594 26.152 0.236 0.751 3.248 4.980 0.243 62
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Appendix 2.

Figure 1, Yield Probability Density Non-parametric Plots
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Appendix 3.

Figure 2, Yield Plots and Trendlines
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Appendix 4.

Figure 3, Yield Probability Distribution Parameter Estimates
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Appendix 5.

To explain the formation of the ”cyclical patterns” in Agricorp rates and reserve fund
balances over the years, we need to recall the series equations in premium calculation
introduced before (equation 10-13). To make the case less complicated, assume there is
only one farm, under no climate change condition:

PRt = PRt−1 − FRt−1

Bt = Bt−1 + (Et − Ct)

Et = (Y gt × PRt)

Recall that:
FRt = (Bt/Lt − 0.14)/15, if Bt/Lt < 0.14

= (Bt/Lt − 0.14)/25, if Bt/Lt > 0.14
FRt is the key to connect the above three equations together. However, the value of
FRt is case specific, but can work out two extreme conditions where:
FRt = (Bt/Lt − 0.14)/15, or = (Bt/Lt − 0.14)/25
Therefore, The reserve fund balance equation can be re-written as:

Bt = Bt−1 − (1/15) × [B1 +B2 + ...+Bt−1] + (0.14/15) × L× (t− 1) +R× L− Ct

or

Bt = Bt−1 − (1/25) × [B1 +B2 + ...+Bt−1] + (0.14/25) × L× (t− 1) +R× L− Ct

The reserve fund equations plots are:
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Where the green plots (fbalance1) are generated by the first equation and the yellow
plots (fbalance2) are generated by the second equation.
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