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“Billions and Billions Served”

Heterogeneous Effects of Food Source on Child Dietary Quality

1. Introduction

Early decisions in human capital accumulation and skill formation have direct consequences on

the productivity of future investments (Cunha et al., 2006). Skills related to health capital, for

example, quickly accumulate early on in life and have persistent impacts throughout adolescence

and adulthood (McFadden, 2008). Therefore, it is of no surprise that the case for investing early in

children, specifically the disadvantaged, is strong (Heckman and Masterov, 2007), and policymakers

are particularly interested in programs that target such children. With nutrition in mind, two

longstanding Federal programs have gained increasing attention in the United States: the School

Breakfast Program (SBP) and the National School Lunch Program (NSLP).1

Offered in over 100,000 public and non-profit institutions, the SBP and NSLP serve millions

of students every school day.2 Together, these two Federally subsidized meal programs represent

a substantial and repeated exposure to nutrition skill formation, which has strong implications

for nutrition capital accumulation. For example, numerous experimental trials have demonstrated

that infants and young children have the capability to learn and apply nutrition skills, but the

ability to adopt new skills decreases as one matures into adulthood.3 Outside of school and home,

exposure to food-away-from-home (FAFH), such as fast-food and restaurant establishments, has

become much more prominent in the daily diet of American children (Poti and Popkin, 2011).

While the literature generally agrees that FAFH negatively impacts health, researchers are at odds

1Since its inception in 1946, the NSLP has served over 224 billion lunches in the U.S. (FNS-USDA, 2012a). In-
terestingly, it is estimated that McDonald’s has sold over 247 billion hamburgers since its re-opening under its
namesake in 1948.

2The NSLP is offered in 99% of all public schools and 94% of public and private schools combined (Ralston et
al., 2008). Nearly 32 million lunches were served daily in 2011, with roughly two-thirds at a free or reduced-
price (FNS-USDA, 2012a). The SBP served 12.1 million students in 2011, with 10.1 million receiving a free or
reduced-priced breakfast (FNS-USDA, 2012b).

3Benton (2004) and Birch (1999) provide thorough reviews of such studies.
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with respect to the impact of school food. The findings of this paper suggest that the conflicting

results may be due to a focus on the average effect of food source, which considers both low and

high dietary quality children to be homogeneous.

This study adds to the current literature by considering heterogeneous effects of food source

across all levels of underlying dietary quality, rather than focusing on average diet quality. I focus

on dietary quality because it correlates with body weight (Jennings et al., 2011) and academic

achievement (Florence, Asbridge and Veugelers, 2008) in children, is a predictor for many chronic

diseases in adulthood (Chiuve et al., 2013) and is at the forefront of Federal and State policies

aimed at reforming nutritional standards in schools.

Three food sources are considered: food from home (FFH), from away from home (FAFH) and

food from school (FFS). I define underlying dietary quality as a child’s “proneness” to consume

a healthful diet.4 For example, a child that is prone to a very low quality diet, possibly due to

parental or environmental factors, may exhibit large benefits from a school lunch and/or breakfast.

On the other hand, children prone to high quality diets that consume a meal from school may

experience a decrease in overall dietary quality. Therefore, examining the the average treatment

effect (ATE) of participating in school food programs may mask important heterogeneous effects.

This study expands on existing literature by estimating the quantile treatment effect (QTE) of

food source on the unconditional distribution of child dietary quality.

Several studies have investigated the mean effects of food source on various aspects of child

health. Many have found that FAFH increases calorie intake (Bowman et al., 2004; Powell and

Nguyen, 2013) and reduces diet quality among children (Mancino et al., 2010). When examining

the effect of participating in the SBP and the NSLP separately, several authors are in agreement

that the former is beneficial (Bhattacharya, Currie and Haider, 2006; Millmet and Tchernis, 2012;

Millimet, Tchernis and Husain, 2010; Schanzenbach, 2009) but the latter is not (Schanzenbach,

2009; Millimet et al., 2010). For example, Schanzenbach (2009) found that school lunches increased

4The term “proneness” was introduced by Doksum (1974). In the present study, proneness can be thought of as
the (fixed) degree to which one consumes a healthful diet. Perhaps a more relatable example from the economics
literature is ability, which is defined by how prone one is to more favorable labor market outcomes.
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average daily calorie intake by about 40 calories and that children who consume school lunches have

higher rates of obesity by 1 to 2%. Overall, while the consensus appears to be that child health

is negatively impacted by FAFH, researchers are at odds when considering the average impact of

a school breakfast or lunch. A potential driver behind this inconsistency is the fact that the ATE

necessarily implies the relationship to be homogeneous for all children.

Several approaches to identifying the effect of food source on dietary outcomes have been used.

A fixed effect, or first-differencing approach, is easily implemented by using two days of dietary

intake typically found in U.S. nationally representative data sets (e.g., Mancino et al., 2010; Powell

and Nguyen, 2013). When examining more long-term outcomes such as body weight, an individual

fixed effect approach becomes more problematic (e.g., Schanzenbach, 2009). A second approach is

to use instrumental variables (Hinrichs, 2010), which comes with limitations such as the exclusion

restriction and access to a credible instrument.5 Gundersen, Kreider and Pepper (2012) step back

from identification and place bounds on the effect of participating in the free and reduced price

lunch program. The bounding approach relies on the weaker monotone instrumental variable (MIV)

assumption.6 Bhattacharya, Currie and Haider (2006) used variation in the timing of the interview

(i.e., if school is in session or not) coupled with SBP availability via difference-in-differences. Finally,

Schanzenbach (2009) used regression discontinuity, which has assumptions similar in spirit to the

MIV assumption. A drawback of regression discontinuity is that the effects are estimated only for

those near the income eligibility cutoff, again, possibly masking any heterogeneous effects.

All of the aforementioned studies examined average effects. A major limitation of this approach

is that it considers the effect of food source to be homogeneous for all children. This paper uses

a quantile regression technique to determine the effect of food source on dietary quality across

the entire distribution. Where this study differs methodologically from those previously published

5See Millmet and Tchernis, (2012) for an application to the SBP using alternative assumptions to estimate treatment
effects without the exclusion restriction.

6The MIV assumption relaxes the exclusion restriction (see, Manski and Pepper, 2000). Gundersen et al. (2012)
assume participation in the free or reduced price programs is monotonically associated with income to overcome
selection into free or reduced-price programs. They find receipt of free or reduced-price lunches improves child
health outcomes.
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is the identification procedure for examining distributional effects. Identification is facilitated by

using within-person variation of dietary intake on two nonconsecutive days but maintains the

nonseparable property of the disturbance term, also called the rank variable (Powell, 2012a). In

other words, rank is determined by “total proneness,” which is function of both the fixed effect and

random error. This advancement allows the coefficient of interest to be interpreted as the effect

on the unconditional distribution. Contrast this with location-shift quantile estimators that model

the fixed effect as a separate additive term (Canay, 2011; Galvao Jr., 2011; Graham et al., 2009;

Lamarche, 2010; Ponomareva, 2011). By separating the total disturbance, the coefficient of interest

is now interpreted as the effect on the conditional distribution.

The paper proceeds as follows: The next section more formally defines dietary quality and

introduces a widely used measurement, the Healthy Eating Index-2005, which forms the basis of

the analysis. After a brief overview of the data, I use summary measures to motivate a more

detailed analysis. I then discuss the identification and estimation strategy, followed by the main

results. The final section discusses policy implications and conclusions.

2. Dietary Quality

The overall healthfulness of a child’s diet can be distinguished by two factors: energy balance and

dietary quality. Energy balance is relationship between calories consumed and calories expended,

which results in body weight management (Hall et al., 2012). Dietary quality, on the other hand,

represents the degree to which a child’s diet is meeting a set of criteria, for example, eating the

correct proportions of healthy foods while maintaining moderation in less-healthy foods. It is

important to note that energy balance and dietary quality are interconnected: experimental studies

have shown when children switch to higher-quality diets, as opposed to calorie-restriction diets,

sustained weight control is observed (Epstein et al. 2001, 2008).

I quantify dietary quality using the Healthy Eating Index (HEI). The HEI was developed in 1995

to measure compliance to the U.S. Government’s official recommendations for healthful eating, the
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Dietary Guidelines for Americans (DGA). Every five years, based on an expert advisory panel,

the DGA are revised by the U.S. Departments of Agriculture (USDA) and Health and Human

Services (HHS). As such, the HEI has been updated several times to reflect the most current state

of nutrition knowledge. This paper uses the HEI-2005 and will henceforth refer to the HEI-2005 as

simply HEI.7

The HEI is the sum of 12 components based on the consumption of various foods or nutrients.

Each component assigns a score ranging from 0 to 5 (total fruit, whole fruit, total vegetables,

dark green/orange vegetables and legumes, total grains, whole grains), 0 to 10 (milk, meats and

beans, oils, saturated fat, sodium) or 0 to 20 for the percentage of calories from solid fats, alcoholic

beverages, and added sugars (SoFAAS) creating a maximum score of 100. Appendix table A.1

provides exact details of the scoring (see also, Guenther et al., 2008a).

The HEI has been widely used and evaluated as a valid measure of diet quality (Guenther et

al., 2008b). In the medical literature, lower HEI-2005 scores are associated with higher risks of

coronary heart disease, stroke and diabetes (Chuive et al., 2012), cardiovascular disease (Nicklas

et al., 2012), breast cancer (Shahril, 2012), colorectal cancer (Reedy et al., 2008) and prostate

cancer (Bosire et al., 2013). Economists have used the HEI as an indicator of well-being to analyze

distributional trends (Beatty, Lin, and Smith, 2012) and to study the impacts of the Supplemental

Nutritional Assistance Program (Gregory et al., 2013). It is important to reiterate that the HEI

is a per-calorie measure of dietary quality and does not directly consider excessive calorie intake.

Although at first glance this distinction may seem limiting, it is important and necessary to analyze

the relative quality of foods consumed across various food sources.8

7Future work will use the HEI-2010. Note that the two have many similarities (see, National Cancer Institute,
2013).

8It is also worth noting that analyzing energy balance is problematic for several reasons: (a) quantifying energy
expenditure is difficult (Crouter, Clowers, and Bassett, 2005); (b) calorie needs vary substantially for boys and
girls of different ages, making distributional comparisons within the population difficult; (c) most importantly,
calorie consumption is not monotonic; one would need to make an assumption about the asymmetric relationship
between under- and over-calorie consumption.
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3. Data

I use data from three waves of the National Health and Nutrition Examination Survey (NHANES)

covering 2003-08. Each survey wave is an independently drawn sample, which is representative

of the U.S. with the USDA overseeing the food intake component. The NHANES provides rich

information on dietary intakes so that HEI scores can be calculated according to Guenther et al.

(2008a) (see also, the Appendix table A.1). Each wave was conducted from November in the odd

year to October in the even year. For the 2003-08 NHANES, respondents report 24-hour dietary

intakes on two nonconsecutive days. Day-one intakes are administered in-person during the medical

exam, and day-two intakes are conducted 3–10 days later in a follow-up telephone interview. All

interviews are conducted by trained dietary specialists with the aid of three-dimensional measuring

instruments.

A primary goal of this research is to understand how school food affects dietary quality. As such, I

focus on school-aged children (4–19) that report attending kindergarten through high school during

the school year and have complete dietary intakes on both days (n = 7, 009). Thus, children that

have dropped out of school or graduated are excluded. I also exclude those attending schools that

do not offer a lunch (n = 379), as done elsewhere in the literature (Gleason and Suitor, 2003;

Gunderson et al., 2012; Millmet et al., 2000; Schanzenbach, 2009). The final sample with complete

information consists of 6, 630 children.

Broadly defined, food from home (FFH) are items bought at the grocery store, food from school

(FFS) are meals received at school, and food away from home (FAFH) primarily consists of fast-food

and full-service restaurant items. Also included in FAFH are items bought in vending machines,

received as a gift, and street food. Thus, for example, a candy bar purchased from a vending machine

at school is considered FAFH, not FFS. Appendix A.2 contains complete details for mapping the

25 original food source codes into one of the three categories.
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4. Summary Measures

In specifying regression models, I will use home-prepared food (FFH) as the reference category.

This will give FFH a control group interpretation, which is reasonable since children in the U.S.

eat at home nearly every day (table 1). FFS and FAFH will be considered the policy variables of

interest (i.e., treatments). Food served in schools and at away-from-home venues are sources of

political debate and subject to policy interventions.9 Variation in FFS and FAFH is considerable

as evidenced by table 1. Roughly 40% of children ate at school on at least one day in 2003-08, and

over three-quarters of children reported FAFH consumption on day-one, day-two or both.

Table 1: Variation in consumption by food source

Percentage consuming on...
Food Source Neither day Day 1 or 2 Both days

Home 0.19 2.20 97.61
School 58.72 29.41 11.88
Away 21.65 43.09 35.27

Source: Children aged 4-19 reporting two days of intake in

the 2003-08 NHANES.

4.1. Mean Measures

Table 1 suggests using individual variation to estimate the impact food served in schools and

away from home on dietary quality. By including individual fixed effects and assuming conditional

exogeneity, unobservable characteristics associated with selection into the SBP and/or NSLP are

no longer confounding. This suggests a general OLS specification such as

HEIit = αi + d′itβ + εit(1)

9For example, the NSLP has undergone numerous regulatory changes with respect to minimal nutritional values
(see Ralston et al., 2008). The most recent change to nutritional standards for the SBP and NSLP begin to
take affect in the 2013 school year (FNS-USDA, 2012a and 2012b). In fast-food and restaurant establishments,
nutritional facts are now mandatory. Moreover, some states, such as New York, are currently seeking to further
regulate away-from-home venues.
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where HEIit is the natural log of HEI on day t for child i, αi are fixed effects (e.g., individual

and/or time), dit represents the policy variables of interest and εit is a disturbance term. The

underlying assumption is that changes in dit are uncorrelated with changes in εit, so that β is

consistently estimated. This assumption seems reasonable in the current context given that intake

records are spread 3-10 days apart.

Some care must be taken in defining the policy variable. One approach is to simply include a

dummy variable Dk
it that equals one if child i consumed any food from food source k on day t. There

are several limitations to this approach. For example, a child consuming two meals away from home

would be categorized in the same manner as a child consuming one FAFH meal. Moreover, the

nutrient density (i.e., nutrient per calorie) varies widely depending on where the food was sourced

(Lin and Guthrie, 2012) and should be considered when specifying the model.

I consider an alternative specification: the proportion of daily calorie intake from food source k,

which I will refer to as dkit. Under this specification, I am capturing the extent to which a child is

“exposed” to each food source. In other words, estimates using dkit have an elasticity interpretation:

the effect of substituting some share of calories from one food source to another. In short, dkit will

be my preferred definition but I report both for comparison.

Column (1) of table 2 reports results using equation (1) with individual fixed effects. Panels A

and B report results using the two alternative policy variable definitions Dk
it and dkit, respectively.

For example, under the dummy variable definition in panel A, children that consume FFS exhibit

a 3.1% increase in dietary quality as compared to a child that does not eat at school. Using the

alternative definition in panel B, the estimates can be used to calculate the elasticity. That is, for

a 10% increase in the share of calories from FFS, a child sees a 0.64% increase in dietary quality.10

To put coefficient estimates from panel B in perspective, it is useful to note that on days when

children eat a school meal, roughly one-third of their daily calorie intake comes from this food source.

This implies an average increase in dietary quality of 2.1% if a child were to shift these calories

from home to school. When children frequent food-away-from-home establishments, an average of

10For a given percentage increase p, the elasticity is calculated as p(eβ − 1).
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Table 2: Mean regressions with fixed effects

(1) (2) (3) (4)

Panel A
DFFS 0.031 0.030 0.008 0.007

(0.007) (0.007) (0.008) (0.008)

DFAFH −0.042 −0.033 −0.034 −0.028
(0.006) (0.006) (0.006) (0.006)

Panel B

dFFS 0.062 0.064 0.019 0.019
(0.019) (0.019) (0.021) (0.021)

dFAFH −0.098 −0.082 −0.080 −0.071
(0.012) (0.012) (0.012) (0.012)

Fixed Effects
Individual Yes Yes Yes Yes
Sequential day No Yes No Yes
Day of the week No No Yes Yes

Observations 13, 260 13, 260 13, 260 13, 260
No. of children 6, 630 6, 630 6, 630 6, 630
R-squared 0.011 0.018 0.023 0.027

Notes: Dependent variable is the natural log of HEI. Standard errors are in

parentheses and calculated via bootstrapping accounting for stratification

and clustering. Dk = 1 if food source k was consumed on day t.

dk = percentage of calories consumed from food source k on day t.

about 40% of daily caloric intake is consumed there. Thus, using estimates from panel B, one can

infer an average decrease in dietary quality by 3.15% when consuming FAFH. In comparing panel

A and B, estimates using definition Dk
it tend to be slightly larger.

Column (2) includes a dummy for the sequential day of intake record. This variable may be

necessary due to differences dietary recall on day-one (in-person interview) versus day-two (phone

call). The estimated coefficient on FFS changes very little, and the effect of FAFH is slightly less.

Since NHANES surveys individuals on all days of the week, column (3) of table 2 includes an

additional fixed effect for the day of the week. Perhaps unsurprisingly, estimates for FFS change

dramatically and are no longer significant, most likely because children do not typically attend
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schools on the weekend. Conversely, FAFH is more likely to be consumed on the weekend, although

estimates remain relatively constant.

Finally, column (4) reports coefficient estimates with individual, sequential day, and day of the

week fixed effects. This will be the preferred specification moving forward. In summary, there

appears to a positive but insignificant average impact of school food on dietary quality and a

robust, negative average impact on dietary quality with respect to FAFH.

4.2. Distributional Measures

To motivate a distributional analysis, I present some summary measures by selected quantiles. To

this end, in table 3 I compare two-day average HEI scores for those that never select into FFS or

FAFH (column 1 in table 1) and those that report consuming FFS or FAFH on at least one day of

intake (columns 2 and 3 in table 1).11

Table 3: Differences in the distribution of two-day average HEI-2005 scores
by food source

Quantile

Food Source 5 25 50 75 95 N

Food from school
At least one day 36.13 44.27 51.27 58.30 67.72 3,298
Neither day 33.45 42.80 50.25 57.27 68.07 3,332

Difference (%) 7.43 3.31 1.99 1.78 -0.52

Food away from home
At least one day 33.94 42.76 50.02 56.82 66.34 5,163
Neither day 35.19 46.26 53.47 60.78 71.15 1,467

Difference (%) -3.69 -8.20 -6.90 -6.97 -7.26

Note: A Kolmogorov-Smirnov type test of stochastic dominance (Barrett and

Donald, 2003) indicates first-order dominance of FFS (at least one day) over

FFS (neither day) at a 5% significance level. FAFH (neither day) first-order

dominates FAFH (at least one day) at a 1% significance level.

We can see that the effect of FFS drops precipitously across the distribution of HEI scores,

11Dividing the sample in this manner is similar to the definition of Dk
it used in panel A of table 2.
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implying that children below the median are responsible for a large share of the mean effect.

Interestingly, for children with the poorest dietary scores at the fifth percentile, FAFH has the

smallest impact. This result is most likely due to the presumption that home-prepared food is

more similar to FAFH for this group of children. Beyond the bottom quartile, the effect of FAFH

is relatively constant and thus more closely reflects the mean regressions.

Of course, results from table 3 are confounded by both observable and unobservable individual

characteristics. Moreover, given the results of table 2, we should also expect the day of the week to

play an important role in identifying a causal interpretation. In the next section, I use an estimator

developed by Powell (2012a) to estimate unconditional quantile effects controlling for individual

fixed characteristics.

5. Unconditional Quantile Estimation under Individual Heterogeneity

In this paper an important departure from the previous literature is how I estimate and identify the

impact of food source on dietary quality. Given the summary results of the previous section, it is

likely that the impact of food source is heterogenous across the distribution of diet quality. Much of

this heterogeneity is most likely due to both observable and unobservable individual characteristics.

Typically, panel data can be used to control for individual heterogeneity via fixed effects. With

mean regression, an additive term αi is included in the specification, and the estimated coefficient

on the treatment (policy) vector d can be interpreted as the impact on the unconditional mean.

With quantile estimation, an additive fixed effect alters the interpretation of the coefficient of

interest. The intuition behind this result is rather straightforward: the τ th quantile of yit|dit, αi

is in most cases not equal to the τ th quantile of yit|dit. For example, a high-quantile child in the

distribution of of yit|dit may become a low-quantile child after conditioning on fixed effects.

The estimator used in this study accounts for individual heterogeneity without specifying or even

estimating an individual “fixed-effect” parameter. Rather, unobservable individual heterogeneity

is incorporated into the model by using within-person variation for identification but maintains the
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nonseparable property of the total disturbance u∗it = f(αi, uit). This allows the parameter vector

β(τ) associated with d to be interpreted as the τ th quantile treatment effect on the unconditional

distribution of dietary quality. If we are interested in knowing how food source affects low dietary

quality children separately from high dietary quality children, this is precisely what we want to

estimate.

5.1. Specification

Consider a cross-sectional quantile regression (QR) specification

yi = d′iβ(u∗i ), u∗i ∼ U(0, 1)(2)

where for child i, yi is dietary quality, di is a vector of the proportion of calorie intake from each

food source and u∗i is “total proneness” to consume a healthy diet.12 Total proneness is a function

of his or her unobservable proneness αi (e.g., food preferences) and a disturbance term ui (e.g.,

day-to-day randomness of food intake). In other words, u∗i is a rank variable that incorporates

heterogeneity into the model by allowing dietary quality to vary across children that have the same

observed allocation of calories. It is necessary to assume the relationship between proneness and

the outcome to be (weakly) monotonic. That is, children with a higher u∗i are more prone to a

healthier diet for a given allocation of calories across the three food sources.

Clearly, no cross-sectional distinction can be made between αi and ui but it is informative to see

that the impact of covariates vary according to the nonseparable error term u∗i . Moreover, an esti-

mate of β using equation (2) assumes di is exogenous. If we believe individual-level characteristics

influence a child’s allocation of calories across food source, then u∗i |di � U(0, 1).

To this end, it is useful to write down the Structural Quantile Function (SQF) introduced by

12One may also desire to include a set of controls xi, such as gender, age and race/ethnicity. The addition of
“controls” alters the QTE interpretation of the estimates because some of u∗

i becomes observed through xi. Put
differently, if di = (xi, zi) in equation (2) where zi are the treatments of interest, xi would also be interpreted
as a treatment vector, a distinction that is not necessary in mean regressions. Specifically, estimates in this
specification would provide the QTE on the distribution of yi|di,xi rather than yi|di. See Powell (2013) for an
in-depth discussion and estimation strategy of QTE in the presence of covariates.
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Chernozhukov and Hansen (2005, 2008). The SQF of interest for identifying the unconditional

QTE can be written as

Sy(τ |d) = d′β(τ), τ ∈ (0, 1).(3)

Equation (3) defines the τ th quantile of the latent outcome yd = d′β(u∗) for a fixed allocation of

calories and a randomly selected u∗ ∼ U(0, 1). This framework becomes important for describing

the various “fixed-effect” quantile estimators and how they relate to the structural equation of

interest.

Now consider a panel of students that report dietary intakes on multiple days. In this case,

equation (2) can be rewritten as

yit = d′itβ(u∗it), u∗it ∼ U(0, 1)(4)

where u∗it = f(αi, uit). Again, αi is the student’s fixed level of proneness and uit is an individual

time-varying disturbance term. In this case, conditioning on individual fixed effects can overcome

endogeneity concerns if uit is uncorrelated with changes of dit. However, including an additive fixed

effect in quantile regression, as done in mean regressions, alters the interpretation of the coefficients.

For example, consider the two specifications

yit = αi + d′itβ(uit) and yit = αi(uit) + d′itβ(uit)(5)

of Koenker (2004) and Harding and Lamarche (2009), respectively. The underlying SQF for these

two location-shift type specifications found in (5) take the form

Syit(τ |dit, αi) = αi + d′itβ(τ), τ ∈ (0, 1)(6)

where τ now refers to the τ th quantile of uit, not u∗it. In other words, the quantiles are now defined
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relative to a the child’s fixed level of diet quality. While correct in specification, it is not the ideal

interpretation for our primary policy question: what is the effect of food source on low dietary

quality children separate from high dietary quality children.

In the estimation strategy laid out below, the policy variables d are allowed unspecified correlation

with individual fixed effects, αi = h(di1, . . . ,diT , εi). This arbitrary correlation mirrors mean fixed

effects, but αi is not estimated. The estimator therefore assumes that the unconditional distribution

of u∗it is uniform but relaxes the conditional distribution assumption by allowing u∗it|dit, αi � U(0, 1).

Specifically, I will estimate a specification that is related to the SQF taking the form

Syit(τ |dit, αi) = γht(τ) + d′itβ(τ), τ ∈ (0, 1)(7)

where τ now refers to u∗it, a child’s total proneness to consume a healthy diet, which is precisely what

we want to estimate. The parameter vector γht plays the primary role for identification (sample

moment 2 in the next section). The index h can refer to any set of exogenous characteristics that

saturate the sample space over time t, or simply time itself. For example, it is likely that a “high-

quality diet” on a weekday is much different than a “high-quality diet” on the weekend, if not for

the simple fact that children do not attend school on the weekend. Therefore, I construct fixed

effects based on the sequential survey day (t = 1, 2) and the day of the week in which the survey

took place (h = 1, . . . , 7).

6. Estimation

The SQF I will estimate is

SHEIit = γht(τ) + FFSitβ1(τ) + FAFHitβ2(τ), τ ∈ (0, 1).(8)
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The underlying model corresponding to (8) is

HEIit = γht(u
∗
it) + FFSitβ1(u

∗
it) + FAFHitβ2(u

∗
it)(9)

where HEIit refers to the natural log of HEI and γht contains the 14 fixed effects as defined by

the space ht = {h× t}. Estimating equation (9) is not straightforward; the function is highly non-

convex with many local optima, but it does have a well-pronounce global optimum. For brevity, I

list the moment conditions here because they give intuition how estimation proceeds. See Powell

(2012a) for full details of estimation.

Referring to equation (9), let d ≡ (γ1, . . . , γT ,x) where x = (FFS, FAFH) are the policy

variables of interest. To simplify notation of the moment conditions, I will refer to γht as simply γt

but note that the fixed effects still refer to the tth day of intake on the hth day of the week. The

sample moments are

gi(b) =
1

T

T∑
t=1

xit

[
1(yit ≤ d′itb)−

T∑
s=1

1(yis ≤ d′isb)

]
(SM.1)

ht(b) =
1

N

N∑
i=1

1(yit ≤ d′itb)− τ for all t.(SM.2)

The fixed effects force ht(b) = 0 for all t, thus confining all “guesses” of b to the parameter set B,

B ≡

{
b

∣∣∣∣∣ 1

N

N∑
i=1

1(yit ≤ d′itb) = τ for all t

}
.(10)

By letting b̃ be the the coefficient vector on xit we can write d′itb = γt + x′itb̃. Recalling that we

have allowed arbitrary correlation between the fixed effects and the policy variables, we can define

γt(τ, b̃) as the τ th quantile of the distribution yit − x′itb̃ for each fixed-effect value t. Therefore,
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γ̂t(τ, b̃) solves

1

N

N∑
i=1

1(yit − x′itb̃ ≤ γ̂t(τ, b̃)) = τ(11)

and it immediately follows that for any guess b̃, γ̂t(τ, b̃) is known.

Estimation proceeds in a Generalized Method of Moments (GMM) framework:

β̂(τ) = arg min
b∈B

(
N∑
i=1

wigi(b)

)′
Wn(b)

(
N∑
i=1

wigi(b)

)
(12)

where wi is the sample weight, which has been normalized to sum to 1. For surveys with stratifica-

tion and clustering, the weighting matrix Wn(b) is defined following Bhattacharya (2005, equation

6). With one or two treatment variables, grid searching is computationally achievable (Cher-

nozhukov and Hansen, 2008) but can still be quite burdensome in practice. If bootstrapping is

necessary for inference, the problem is exasperated.

Yu and Moheed (2001) show that parameters in a quantile regressions can be estimated via

Markov chain Monte Carlo (MCMC) algorithms. Chernozhukov and Hong (2003) generalized this

technique into a GMM framework, which is suitable in this instance due to the complex survey

design. Moreover, Chernozhukov and Hong (2003) show that inferences can be drawn from the

posterior distribution. This key development dramatically reduces computation. To appreciate

the degree to which MCMC speeds up computation, Chernozhukov and Hong (2003) note that

computation is achieved at the parametric rate 1/
√
B, where B is the number of draws. Grid-

searching algorithms on the other hand have a nonparametric rate (1/B)p/(d+2p), where d is the

parameter dimension and p is the smoothness order of the objective function.

In this paper, I use an adaptive MCMC algorithm. I follow the MCMC algorithm outlined in

(Baker, 2013) by incorporating code provided by Powell (2012b). Appendix A.3 provides details of

the algorithm. In short, estimators and 95-percent confidence intervals are taken from the mean

and quantiles of the posterior distribution.
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7. Results

Figures 1 and 2 plot coefficient estimates for food from school (FFS) and food away from home

(FAFH), respectively, using equation (9). As a reminder, the policy variables are defined as the

proportion of daily calorie intake from each food source. The results are interpreted as the marginal

impact of reallocating calories from FFH to either FFS or FAFH. For example, the coefficient

estimate for FFS at the fifth percentile of the HEI-2005 distribution is 0.189.13 Thus, a 30-percent

reallocation of calories from home to school, which is roughly the average proportion of caloric

intake when school food is consumed, results in a 6.24% increase dietary quality. School meals are

not of higher relative quality for all children; the coefficient estimate at the 90th percentile is -0.053,

implying a 1.55% reduction in dietary quality when shifting 30% of calories from home to school.

Figure 1: Marginal Impact of Food from School (FFS) on the Uncondi-
tional Distribution of HEI-2005 Scores
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13In appendix table A.2, I report coefficient estimates and 95-percent confidence intervals for every fifth quantile. I
also report results from a cross-sectional quantile regression as a basis of comparison (table A.3).
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Although I do not estimate the long-run impacts on dietary quality, numerous experimental trials

have shown that simple and repeated exposures to new and healthy foods have lasting impacts on

dietary choices (Benton, 2004). For children falling in the lowest quartile of the HEI distribution,

figure 1 implies a positive daily investment in nutrition skill formation, which could have long-run

implications on nutrition capital accumulation.

Figure 2 clearly shows the negative effects of FAFH on dietary quality. One important finding

from figure 2 is that home-prepared food is of no higher quality than FAFH for those falling in the

bottom 10% of the HEI distribution. Coupled with the findings in figure 1, results suggest that a

school meal is most likely the highest-quality meal these disadvantageed children receive.

Figure 2: Marginal Impact of Food Away from Home (FAFH) on the Un-
conditional Distribution of HEI-2005 Scores
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8. Discussion and Conclusion

Food preferences reflect a complex cognitive structure rooted in early childhood experiences, ex-

posures and environments. The formation of skills related to nutrition, such as ability to maintain

energy balance and reach satisfactory levels of dietary quality, are learned and applied at early

stages in life (Benton, 2004; Birch, 1999). The ability to adopt new skills, however, dissipates as

one reaches adulthood (Morales et al., 2002). This insight into nutrition skill formation largely mir-

rors the expanding body of literature that has emerged in the past decade promoting skill formation

and human capital development at early ages (Cunha et al., 2006).

The SBP and NSLP have undergone many reforms since the 1960’s (Ralston et al., 2008). Orig-

inally aimed at alleviating hunger and malnutrition, these programs now strive to reach a balance

between nutritional quality and caloric quantity. The most recent reform came from the Healthy,

Hunger-Free Kids Act of 2010. Officially in effect for the 2012 school year, schools now have to meet

new caloric and nutritional standards (USDA, 2012). Early evidence suggests higher standards for

school meals improves child health outcomes (Taber et al., 2013). Moreover, localized experiments

have shown that children are more likely to choose more nutritious meals after such a program is

introduced and tend to make progressively healthier food choices the longer the program is in place

(Grainger, Senauer and Runge, 2007).

Results of this study suggest there exists a large and meaningful impact of food served under

National School Lunch and Breakfast Programs for children that exhibit low underlying dietary

quality. These two Federal programs help children from disadvantaged environments to experience

much needed dietary exposure and variety. The daily exposure to a higher quality meal potentially

has a lasting and positive impact on nutrition capital accumulation. As policymakers and health

advocates look to policy-amendable arenas to improve the American diet, this study suggests the

NSLP and SBP are fertile grounds for intervention.

20



References

[1] Barrett, G.F. and S.G. Donald (2003). “Consistent Tests for Stochastic Dominance.” Econo-
metrica, 71(1): 71-104.

[2] Beatty, T.K.M., B-H Lin, and T.A. Smith, (2012). “Are Americans Eating Better? Distri-
butional Changes in U.S. Dietary Quality 1989–2008.” Selected paper for presentation at the
American Agricultural Economics Association annual meeting, Seattle, WA.

[3] Benton, D., (2004). “Role of Parents in the Determination of the Food Preferences of Children
and the Development of Obesity.” International Journal of Obesity 28(): 858-869.

[4] Bhattacharya, D., (2005). “Asymptotic Inference from Multi-Stage Samples.” Journal of
Econometrics 126(1): 145-171

[5] Bhattacharya, J., J. Currie, S. Haider, (2006). “Breakfast of Champions? The School Breakfast
Program and the Nutrition of Children and Families.” The Journal of Human Resources 41(3):
445–466.

[6] Birch, L.L., (1999). “Development of Food Preferences.” Annual Review of Nutrition 19: 41-62.

[7] Bosire, C., M.J. Stampfer, A.F. Subar, Y. Park, S.I. Kirkpatrick, S.E. Chiuve, A.R. Hollenbeck,
J. Reedy. (2013) “Index-based Dietary Patterns and the Risk of Prostate Cancer in the NIH-
AARP Diet and Health Study.” American Journal of Epidemiology 177(6):504-513.

[8] Bowman, S.A., S. Gortmaker, C. Ebbeling, M. Pereira, D. Ludwig, (2004). “Effects of Fast-
Food Consumption on Energy Intake and Diet Quality Among Children in a National House-
hold Survey.” Pediatrics, 113(1): 112–118.

[9] Canay, I.A., (2011). “A Simple Approach to Quantile Regression for Panel Data.” The Econo-
metrics Journal 14(3): 368–386.

[10] Center for Nutrition Policy and Promotion (CNPP), (2008a). “Diet Quality of Americans
in 1994-96 and 2001-02 as Measured by the Health Eating Index-2005.” U.S. Department of
Agriculture. CNPP-37.

[11] Center for Nutrition Policy and Promotion (CNPP), (2008b). “Diet Quality of Low-Income
and Higher Income Americans in 2003-04 as Measured by the Health Eating Index-2005.” U.S.
Department of Agriculture. CNPP-42.

[12] Chernozhukov, V. and H. Hong, (2003). “An MCMC Approach to Classical Estimation.”
Journal of Econometrics 115(2): 293–346.

[13] Chernozhukov, V. and C. Hansen, (2005). “An IV Model of Quantile Treatment Effects.”
Econometrica 73(1): 245-261.

[14] Chernozhukov, V. and C. Hansen, (2008). “Instrumental Variable Quantile Regression: A
robust Inference Approach.” Journal of Econometrics 142(1): 379-398.

21



[15] Chiuve, S.E., T.T. Fung, E.B. Rimm, F.B. Hu, M.L. McCullough, M. Wang, M.J. Stampfer,
W.C. Willett. (2012). “Alternative Dietary Indices Both Strongly Predict Risk of Chronic
Disease.” Journal of Nutrition 142(6):1009-1018.

[16] Crouter, S.E., K.G. Clowers, and D.R. Bassett Jr., (2005) “A Novel Method for using Ac-
celerometer Data to Predict Energy Expenditure.” Journal of Applied Physiology 100(4): 1324-
1331.

[17] Cunha, F., J.J. Heckman, L. Lochner, D.V. Masterov, (2006). “Interpreting the Evidence on
Life Cycle Skill Formation.” in Handbook on the Economics of Education vol. 1, eds. E.A.
Hanushek and F. Welch.

[18] Doksum, K., (1974). “Empirical Probability Plots and Statistical Inference for Nonlinear Mod-
els in the Two-Sample Case.” The Annals of Statistics 2(2): 267–277.

[19] Epstein, L.H., C.C. Gordy, H.A. Raynor, M. Beddome, C.K. Kilanowski, R. Paluch, (2001).
“Increasing Fruit and Vegetable Intake and Decreasing Fat and Sugar Intake in Families at
Risk for Childhood Obesity.” Obesity Research, 9(3): 171-178.

[20] Epstein, L.H., R.A. Paluch, M.D. Beecher, J.N. Roemmich, (2008). “Increasing Healthy Eating
vs. Reducing High Energy-dense Foods To Treat Pediatric Obesity.” Obesity, 61(2): 318-326

[21] Florence, M.D., M. Asbridge and P.J. Veugelers, (2008). “Diet Quality and Academic Perfor-
mance.” Journal of School Health 78(4): 209-215.

[22] Food Nutrition Service-U.S. Department of Agriculture (FNS-USDA). 2012a. “National
School Lunch Program Fact Sheet.” http://www.fns.usda.gov/cnd/lunch/aboutlunch/

nslpfactsheet.pdf

[23] Food Nutrition Service-U.S. Department of Agriculture (FNS-USDA). 2012b. “The School
Breakfast Program Fact Sheet.” http://www.fns.usda.gov/cnd/breakfast/AboutBFast/

SBPFactSheet.pdf

[24] Galvao Jr., A.F., (2011). “Quantile Regression for Dynamic Panel Data with Fixed Effects.”
Journal of Econometrics 164(1): 142–157.

[25] Grainger, C., B. Senauer and C.F. Runge (2007). “Nutritional Improvements and Student
Food Choices in a School Lunch Program.” Journal of Consumer Affairs 41(2): 265-284.

[26] Gregory, C., M. Ver Ploeg, M. Andrews, A. Coleman-Jensen, (2013). “Supplemental Nutrition
Assistance Program (SNAP) Participation Leads to Modest Changes in Diet Quality” ERR-
147, USDA, Economic Research Service.

[27] Gleason, P. and C. Suitor, (2003). “Eating at School: How the National School Lunch Program
affects Children’s Diets.” American Journal of Agricultural Economics 85(4): 1047-1061.

[28] Guenther P.M., Reedy J., Krebs-Smith S.M. (2008a). “Development of the Healthy Eating
Index-2005.” Journal of the American Dietetic Association 108:1896-1901

22



[29] Guenther P.M., Reedy J., Krebs-Smith S.M., Reeve B.B. (2008b). “Evaluation of the Healthy
Eating Index-2005.” Journal of the American Dietetic Association 108:1854-1864.

[30] Hall, K.D., S.B. Heymsfield, J.W. Kemnitz, S. Klein, D.A. Schoeller, J.R. Speakman. (2012).
“Energy Balance and its Components: Implications for Body Weight Regulation.” American
Journal of Clinical Nutrition, 95 (4), 989-994.

[31] Harding, M., and C. Lamarche, (2009). “A Quantile Regression Approach for Estimating Panel
Data Models using Instrumental Variables.” Economic Letters 104(3): 133–135.

[32] Heckman, J.J. and D.V. Masterov, (2007). “The Productivity Argument for Investing in Young
Children.” Review of Agricultural Economics 29(3): 446-493.

[33] Hinrichs, P., (2010). “The Effects of the National School Lunch Program on Education and
Health.” Journal of Policy Analysis and Management 29(3): 479-505.

[34] Hunter, M., (2013). “Adaptive Markov chain Monte Carlo Sampling and Estimation in Mata.”
The Stata Journal http://arrow.hunter.cuny.edu/research/papers/HunterEconWP440.

pdf

[35] Koenker, R., (2004). “Quantile Regression for Longitudinal Data.” Journal of Multivariate
Analysis 91(1):24–89.

[36] Koenker, R. and G. Bassett, (1978). “Regression Quantiles.” Econometrica 46(1):33–50.

[37] Jennings, A., A. Welch, E.M.F. van Sluijs, S.J. Griffin, and A.Cassidy, (2011) “Diet Quality
is Independently Associated with Weight Status in Children Aged 9-10 Years.” Journal of
Nutrition 141(3): 453-459.

[38] Lin, B-H and J. Guthrie, (2012). “Nutritional Quality of Food Prepared at Home and Away
From Home, 1977-2008.” EIB-105, USDA-Economic Research Service.

[39] Mancino, L., J. Todd., J. Gutherie, B-H Lin., (2010). “How Food Away From Home Affects
Children’s Diet Quality.” U.S. Department of Agriculture-Economic Research Service, ERR
104.

[40] Manski, C.F. and J.V. Pepper, (2000). “Monotone Instrumental Variables: With an Applica-
tion to the Returns to Schooling.” Econometrica 68(4): 997-1010

[41] McFadden, D., 2008. “Human Capital Accumulation and Depreciation.” Review of Agricultural
Economics 30(3): 379-385.

[42] Millimet, D.L., R. Tchernis, M Husain, (2010). “School Nutrition Programs and the Incidence
of Childhood Obesity.” The Journal of Human Resources 45(3): 640–654.

[43] Morales M., D.K. Demory-Luce, T.A. Nicklas, T. Baranowski, (2002) “Consistency in food
group consumption patterns from childhood to young adulthood: The Bogalusa Heart Study.”
Meeting of International Society of Behavioral Nutrition and Physical Activity, Seattle, WA.

23



[44] National Cancer Institute, (2013). “Comparing the HEI-2005 & HEI-2010” http://

riskfactor.cancer.gov/tools/hei/comparing.html

[45] Nicklas, T.A., C.E. O’Neil, V.L. Fulgoni III. (2012) “Diet Quality Is Inversely Related to
Cardiovascular Risk Factors in Adults.” Journal of Nutrition 142(12):2112-2118.

[46] Ponomareva, M., (2010). “Quantile Regression for Panel Data Models with Fixed Effects and
Small T: Identification and Estimation.” Working paper, Northwestern Economics Depart-
ment.

[47] Poti, J.M. and B.M. Popkin, (2011). “Trends in Energy Intake among US Children by Eating
Location and Food Source, 1977-2006.” Journal of the American Dietetic Association 111(8)
1156-1164.

[48] Powell, D., (2012a). “Unconditional Quantile regression for Panel Data with Exogenous or
Endogenous Regressors.” RAND Working Paper.

[49] Powell, D., (2012c). “Documentation for Unconditional Quantile Regression for Panel Data
with Exogenous or Endogenous Regressors code.” RAND Working Paper.

[50] Powell, D., (2013). “A New Framework for Estimation of Quantile Treatment Effects: Non-
separable Disturbance in the Presence of Covariates.” RAND Working Paper.

[51] Powell, L.M., T.N. Nguyen, (2013). “Fast-Food and Full-Service Restaurant ConsumptionA-
mong Children and Adolescents.” Journal of the American Medical Association - Pediatrics
167(1): 14-20.

[52] Ralston, K., C. Newman, A. Clauson, J. Guthrie, and J. Buzby, (2008). “The National School
Lunch Program: Background, Trends, and Issues.” ERR-61, USDA-Economic Research Ser-
vice.

[53] Reedy J., P.N. Mitrou, S.M. Krebs-Smith, E. Wirfält, A. Flood, V. Kipnis, M. Leitzmann,
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A. Appendix

A.1. HEI-2005 Standards for Scoring

Table A.1: Healthy Eating Index-2005 standards for scoring.

Score

Component 0 5 8 10 20

Total fruit 0 −−−−→ ≥ 0.8 cup eq/1000 kcal
Whole fruit 0 −−−−→ ≥ 0.4 cup eq/1000 kcal
Total vegetables 0 −−−−→ ≥ 1.1 cup eq/1000 kcal
Dark green/orange veg./legumes 0 −−−−→ ≥ 0.4 cup eq/1000 kcal
Total grains 0 −−−−→ ≥ 3.0 cup eq/1000 kcal
Whole grains 0 −−−−→ ≥ 1.5 cup eq/1000 kcal
Milk 0 −−−−−−−−−−−−−−−−−→ ≥ 1.3 cup eq/1000 kcal
Meats and beans 0 −−−−−−−−−−−−−−−−−→ ≥ 2.5 oz eq/1000 kcal
Oils 0 −−−−−−−−−−−−−−−−−→ ≥ 12 g/1000 kcal
Saturated fat ≥ 15 −−−−−−−−−→ 10 −−→ ≤ 7% of energy
Sodium ≥ 2.0 −−−−−−−−−→ 1.1−−→ ≤ 0.7 g/1000 kcal
Calories from SoFAASa ≥50 −−−−−−−−−−−−−−−−−−−−−−−−−−→ ≤ 20% of energy

Source: Recreated from Guenther et al. (2008a).
aSolid Fat, Alcohol, and Added Sugar

A.2. Food Source Coding

In the descriptions that follow, bracketed numbers refer to the code found in the NHANES doc-
umentation. Food at home (FAH): store [1], grown or caught by you or someone you know [19],
and fish caught by you or someone you know [20]; food from school (FFS): cafeteria at school [7];
food away from home (FAFH): restaurant with waiter/waitress [2], restaurant fast food/pizza [3],
bar/tavern/lounge [4], restaurant no additional information [5], cafeteria not at school [6], vending
machine [14], common coffee pot or snack tray [15], from someone else/gift [16], mail order purchase
[17], residential dining facility [18], sport, recreation, or entertainment facility [24], street vendor,
vending truck [25], and fundraiser sales [26].

Contrary to other studies (e.g., Lin and Guthrie, 2013; Mancino et al., 2010), food from child
care centers [8] is not included in FFS becuase this venue does not fall under the SBP or NSLP.
“Other” food sources were also coded: Community food programs (family/adult day care center
[9], soup kitchen/shelter/food pantry [10], Meals on Wheels [11], community food program - other
[12], community program no additional information [13]), a catch-all other category (other, specify
[91]) and unidentifiable responses (don’t know [99]) made up a small proportion of total calorie
intake. In preliminary analyses, I considered these items in a fourth “other” category and found
them to be of relatively equal quality to FAFH. Therefore, these foods are considered to be FAFH
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for this research. Please note however, that point estimates are robust to having a fourth category.
Computationally, moving from 3 to 4 categories is not trivial, as the curse of dimensionality becomes
a formidable problem for inference as discussed in the Estimation section.

A.3. Adaptive Markov chain Monte Carlo (MCMC) Algorithm

I heavily follow Hunter (2013, table 3). Specifically, I use a variant of the Metropolis-Hastings
algorithm with vanishing adaptation. I use t = 2500 draws and discard (burn) the first 500.
Starting values for the parameters are obtained from the standard quantile regression of Koenker
and Bassett (1978), which allows for a smaller burn-in window. The initial variance matrix is
taken to be the identity matrix. The proposal distribution is a multivariate Normal density with
a targeted acceptance rate of 0.4. Adaptation is achieved through a damping parameter δ which
controls how quickly the tuning mechanism ρt = 1

(1+t)δ
. Finally, the scaling parameter is λ = 2.832

d

where d is the number of parameters to be estimated; d = 2 in this case.

A.4. Results for Selected Quantiles

Table A.2: Fixed Effects Quantile Regression Results

FFS FAFH

Quantile Estimate 95% CI Estimate 95% CI

5 0.189 ( 0.111, 0.249) 0.017 (-0.022, 0.059)
10 0.141 ( 0.082, 0.191) -0.051 (-0.086, -0.016)
15 0.073 ( 0.027, 0.123) -0.075 (-0.097, -0.052)
20 0.073 ( 0.020, 0.125) -0.095 (-0.120, -0.069)
25 0.069 ( 0.027, 0.108) -0.106 (-0.128, -0.086)
30 0.041 (-0.002, 0.079) -0.118 (-0.139, -0.097)
35 0.025 (-0.005, 0.055) -0.114 (-0.133, -0.091)
40 0.015 (-0.020, 0.048) -0.129 (-0.148, -0.112)
45 -0.003 (-0.041, 0.026) -0.140 (-0.160, -0.122)
50 0.002 (-0.030, 0.032) -0.146 (-0.163, -0.129)
55 -0.005 (-0.030, 0.027) -0.151 (-0.167, -0.136)
60 -0.014 (-0.048, 0.018) -0.154 (-0.178, -0.135)
65 -0.007 (-0.036, 0.018) -0.160 (-0.183, -0.143)
70 -0.015 (-0.046, 0.013) -0.161 (-0.177, -0.146)
75 -0.014 (-0.037, 0.008) -0.164 (-0.185, -0.142)
80 -0.031 (-0.064, 0.005) -0.166 (-0.185, -0.151)
85 -0.036 (-0.066, -0.007) -0.163 (-0.186, -0.143)
90 -0.053 (-0.089, -0.024) -0.165 (-0.184, -0.146)
95 -0.053 (-0.086, -0.018) -0.170 (-0.193, -0.146)

Note: Dependent variable is log(HEI). Estimates from equation (9).
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As a basis of comparison, I also report estimates from a cross-sectional quantile regression with
fixed-effects for sequential day (αd) and day of the week (αw) in table A.3. Note that these
estimates do not control for the individual fixed effect (αi) and consider the sequential day and day
of the week to be treatments (see Powell, 2013). In general, estimates tend to be larger under this
specification than the fixed-effects quantile estimator of Powell (2012), although the two are not
directly comparable.

HEIi = αd(u∗i ) + αw(u∗i ) + FFSiβ1(u
∗
i ) + FAFHiβ2(u

∗
i )(13)

Table A.3: Cross-sectional Quantile Regression Results

FFS FAFH

Quantile Estimate 95% CI Estimate 95% CI

5 0.227 ( 0.151, 0.304) -0.064 (-0.119, -0.009)
10 0.150 ( 0.038, 0.262) -0.098 (-0.161, -0.036)
15 0.119 ( 0.018, 0.221) -0.115 (-0.168, -0.062)
20 0.082 ( 0.003, 0.161) -0.150 (-0.195, -0.105)
25 0.046 (-0.025, 0.117) -0.166 (-0.207, -0.125)
30 0.028 (-0.041, 0.096) -0.186 (-0.227, -0.145)
35 0.013 (-0.053, 0.078) -0.180 (-0.219, -0.141)
40 0.013 (-0.038, 0.064) -0.178 (-0.209, -0.146)
45 -0.002 (-0.066, 0.062) -0.181 (-0.222, -0.141)
50 -0.006 (-0.051, 0.040) -0.192 (-0.221, -0.163)
55 -0.006 (-0.048, 0.036) -0.204 (-0.231, -0.177)
60 -0.019 (-0.071, 0.034) -0.201 (-0.235, -0.166)
65 -0.019 (-0.078, 0.039) -0.198 (-0.237, -0.159)
70 -0.024 (-0.074, 0.026) -0.196 (-0.230, -0.162)
75 -0.040 (-0.092, 0.012) -0.198 (-0.234, -0.162)
80 -0.042 (-0.092, 0.008) -0.206 (-0.241, -0.171)
85 -0.052 (-0.103, -0.001) -0.207 (-0.240, -0.173)
90 -0.061 (-0.098, -0.024) -0.188 (-0.214, -0.162)
95 -0.063 (-0.112, -0.013) -0.191 (-0.227, -0.154)

Note: Dependent variable is log(HEI).
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