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Abstract

We analyse access price setting to a bottleneck facility where the fa-

cility owner also competes in the deregulated downstream market. We

consider a continuum of market structures from Cournot to Bertrand.

These market structures are fully characterised by a single parame-

ter representing the intensity of competition. We first show how the

effi cient component pricing rule (ECPR) should be modified as the

downstream competitive intensity changes. We then analyse the opti-

mal access price where a total-surplus-maximizing regulator trades off

production effi ciency and pro-competitive effects.

JEL Classification L51

Key-words: access regulation, entry, regulatory commitment, effi -

cient component pricing rule.

1 Introduction

The reforms of the 1990s saw the unbundling of vertically integrated indus-

tries such as energy, telecommunications and rail. This entailed the intro-

duction of competition where feasible, as in electricity generation, gas pro-

duction, internet service provision, and long-distance telecommunications.

In natural monopoly components of these industries, such as electricity and

∗Menezes acknowledges the financial assistance from the Australian Research Council

(ARC Grant 0663768).
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gas transmission and distribution, local loop in telecommunications and rail

tracks, the preferred approach was the adoption of an access pricing rule.

Accordingly, introducing competition in these segments has required regula-

tors to define the terms and conditions of access to these “essential”network

facilities and ensure that they are implemented. (See, for example, Joskow,

2007).

The need to inform regulatory decisions has led to a large literature

on access pricing. See, for example, Armstrong (2002) for a survey. The

standard stylized set-up involves two services. The first is the provision of

a natural monopoly network (upstream) service, which is subject to price

and entry regulation. The second (downstream) service is supplied by the

incumbent and opened to potential competitors who require access to the

network service. The literature has studied both regulated and deregulated

downstream markets. With the former, the incumbent is assumed to be

vertically integrated with its prices for both services regulated while the

entrant acts as a price taker. (See, for example, Laffont and Tirole (2000)

for the case of telecommunications and Armstrong (2002) for a review).

A particular focal point of the literature is the "Effi cient Component

Pricing Rule" (ECPR), which was initially proposed by Baumol (1983) and

made popular by Baumol and Sidak (1994). Under the ECPR, the access

price charged by a monopolist provider of an essential service is set at the

monopolist’s opportunity cost of providing the access, including any foregone

revenue in the downstream market. Much of the literature on access pricing

is concerned with understanding when the ECPR would be socially optimal

and how the optimal access price would deviate from the ECPR. The seminal

paper of Armstrong, Doyle, and Vickers (1996) examines the notion of ECPR

and optimal access pricing under different assumptions including product

differentiation, bypass and substitution possibilities. They concluded that

if the break-even constraint for the incumbent does not bind, the optimal

access price coincides with the ECPR provided that the opportunity cost is

properly interpreted. When the break-even constraint binds in equilibrium,

the optimal access price includes another Ramsey term, similar to the pricing

rule in Laffont and Tirole (1994). Note that the optimality of the ECPR

in this paper hinges on the fact that the regulator sets both upstream and
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downstream prices, and the assumption that the entrant cannot supply the

entire demand at any reasonable prices. The latter assumption implies that

the first best downstream pricing is equal to the incumbent’s marginal cost.

With deregulated downstream (retail) price, Laffont and Tirole (1994)

show that the ECPR holds as a first-best pricing rule only when a number

of stringent assumptions hold. In particular, ECPR is optimal if the down-

stream market is characterized by Bertrand competition, where all goods are

perfect substitutes. Economides and White (1995) conclude that the ECPR

will generally be suboptimal when the downstream market price is above

the relevant marginal cost. Economides and White examine the welfare ef-

fects of the ECPR under different market structures including monopoly,

asymmetric Bertrand, and Cournot and show that less competitive market

structures make the ECPR less desirable. With more market power, the

social planner is able to accommodate a less effi cient entrant by setting the

access price below the level implied by the ECPR to improve welfare. With

price taking entrants, Armstrong and Vickers (1998) and Armstrong and

Sappington (2007) conclude that the optimal pricing can be above, below,

or equal to marginal cost and, in general, will be below the ECPR.

In this paper we generalize previous work by allowing for the possibility

of imperfectly competitive outcomes in downstream markets. In particular,

the incumbent does not always have the power to set the retail price and the

entrant can possess some market power. We do not, however, simply replace

the standard assumption of Bertrand competition with the alternative of a

Cournot duopoly. Rather, we consider a continuum of downstream market

structures with Cournot and Bertrand as polar cases, and the intervening

range representing different degrees of competitive intensity.

A natural way to model a continuum of downstream competitive in-

tensity is to use the notion of competition in supply schedules. (See, for

example, Grossman (1981), Robson (1981), Turnbull (1983), Klemperer and

Meyer (1989), Grant and Quiggin (1996), Vives (2011), and Menezes and

Quiggin (2011)). By considering families of more or less elastic supply sched-

ules, it is possible to generate spaces of oligopoly games of which Bertrand

and Cournot are polar cases. This approach allows us to parametrize the

nature of competition in the downstream market.
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We first analyze the relevant notion of the ECPR contingent on the de-

gree of competitive intensity. The idea that the ECPR prices should be

calculated based on post entry prices is close to the notion of M-ECPR

proposed by Sidak and Spulber (1997). Our results complement those of

Armstrong, Doyle, and Vickers (1996). We also impose a break-even con-

straint for the vertically integrated firm but unlike Armstrong, Doyle, and

Vickers (1996), we assume that the regulator only regulates the access price,

not the retail price. The removal of retail price caps has been a feature of

nearly every regulatory regime in electricity, rail and telecommunications in

developed countries.

In this setting we compare the socially optimal access price with the

access price implied by the ECPR. With a regulated downstream price set

to replicate the outcome of Bertrand competition, the access price may be set

to maximize production effi ciency. With a deregulated downstream price,

however, the access price also affects allocative effi ciency through the retail

price. Thus, the optimal access price under downstream competition has to

take into consideration both productive effi ciency and downstream market

power.

We show that, if the entrant is equally or more effi cient, the regulator has

an incentive to set the access charge below the marginal cost of providing ac-

cess.1 However, as the market becomes more competitive, the unconstrained

optimal access charge approaches the marginal cost of providing access, and

is equal to the marginal cost when the downstream market is perfectly com-

petitive. As in Economides and White (1995), the optimal access price is

less than the ECPR price when the market is not too competitive and is

equal to the ECPR price when the market is suffi ciently competitive; these

statements will be made precise below.

If, however, the entrant is ineffi cient, the optimal access price could be

above or below cost whereas the ECPR always deters ineffi cient entry.2 For

a less effi cient entrant, in the limit, the optimal access price is always below

1We abstract from fixed costs for simplicity.
2 In our model, the ECPR always sets prices greater than or equal to marginal cost

since the incumbent firm can cease supplying the final product. We discuss this point

further in Section 5.
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cost.

Our framework allows us to provide a precise characterization of the

optimality of the ECPR. In the absence of a break-even constraint and

provided that the entrant is equally or more effi cient, the ECPR is optimal

in the limit as the downstream market approaches Bertrand competition.

Taking the break-even constraint into consideration, constrained optimal

access pricing coincides with the ECPR for a suffi ciently competitive market

structure. For a less effi cient entrant, if the cost difference is small and if

the market is not competitive, the regulator finds it welfare improving to

accommodate ineffi cient entry by charging an access price less than the

ECPR price. The trade-off between productive and allocative effi ciency is in

general complicated, and the optimal access price is not monotonic in the

degree of competitive intensity in the final market.

2 The Setup

Consider a vertically integrated monopoly firm that produces a final good

using one unit of a bottleneck service at marginal (unit) cost A and one unit

of a firm specific input at cost c. The total marginal cost for the incumbent

is CI = A + c. A potential entrant needs access to the bottleneck facility

to produce the final good. The entrant’s marginal cost of producing the

final product is CE = cA + cE , where cA denotes the regulated unit price

of access to be paid to the incumbent, and cE is the entrant’s specific cost

with the possibilities cE S c. The specific costs are observable to firms and

the regulator.

For simplicity only, the demand for the final goods is given by

P = a−Q where a > A+ max {c, cE} . (1)

The timing is as follows. At t = 0 a total-surplus-maximising regulator

sets the access price cA. At period t = 1, knowing cA, two firms compete

in the final goods market. We allow firms to exit the final product mar-

ket. However, the incumbent has to supply all the access demanded at the

regulated price.
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2.1 First-best outcome

The first best outcome would set p = A + min {c, cE} , so that Q = a −
A −min {c, cE} . First best output in the absence of entry (and globally if
cE ≥ c) is Qc = a−A−c. Note that the monopoly output for the incumbent
is Qc

2 , and that the welfare gain from the first-best without entry, relative

to monopoly is (Qc)2

8 .

3 Competition in supply schedules

We begin by considering the general case of a deterministic game in supply

schedules. We show that, without loss of generality, we may confine attention

to the case of linear supply schedules. We focus on the symmetric case where

the strategy space for each firm consists of all linear supply schedules with

a given slope β.

Definition 1 A deterministic game in supply schedules with N players is

determined by a demand function D (P ) , (assumed linear for simplicity) a

set of convex cost functions ci (qi) and a family of supply functions qi (P, θi)

where qi is continuously differentiable, convex, and increasing in both argu-

ments, and θi ∈ [0, 1] , ∀i is the strategic variable for firm i.

With this definition, the strategy space is Σ = [0, 1]N . We first observe

Lemma 1 Under the stated conditions, there exists an equilibrium strategy

vector Θ∗ ∈ Σ

Proof. The market clearing price P (Θ) is the solution to

D (P ) =
∑

qi (P, θi)

and is decreasing in each of its arguments. The inverse demand facing firm

i is

Di (Θ−i, P ) = D (P )−
∑
j 6=i

qj (P, θj)

Hence, the best reply θ̂i (Θ−i) maximizes

Πi (θ i; Θ−i) = P (Θ) qi (P (Θ) , θi)− ci (qi (P (Θ) , θi))
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Since Πi (θ i; Θ−i) is a concave function, the best reply is unique, and hence,

by the maximum theorem (Berge ..), Θ̂ : Σ→ Σ, where Θ̂i (Θ) = θ̂i (Θ−i) is

a continuous self-mapping of a compact set on to itself. Hence, by Brouwer’s

fixed point theorem, Θ̂ has a fixed point Θ̂∗, which is an equilibrium strategy

profile.

We now construct a game in linear supply schedules that is equivalent, in

a neighborhood of equilibrium to a given game in arbitrary (differentiable,

convex) supply schedules. For any Θ and define βi (Θ) , γi (Θ) such that

βi (Θ) = q′i (P (Θ) , θi)

γi (Θ) + β̂iP (Θ) = qi (P (Θ) , θi)

Further, let P (Γ;B) be the solution to

D (P ) =
∑

(γi + βiP )

We may then derive

Proposition 1 If Θ∗ is an equilibrium for the deterministic game in supply

schedules given by D (P ) , ci (qi) , i = 1...n, and qi (P, θi) , i = 1..n, then Γ∗ =

(γ1 (Θ∗) ...γN (Θ∗)) is an equilibrium for the deterministic game in supply

schedules given by D (P ) , ci (qi) , i = 1...N, and q̃i (P, γi) = γi + βi

(
Θ̂∗
)
P

Proof. Let Π̃i (γi; Γ−i, B) = P (γi; Γ−i) (γi + βiP (γi; Γ−i, B))−ci (γ̂i + βiP (γi; Γ−i, B)) .

Then, in a neighborhood of Γ (Θ∗) ,

Π̃i (γi (Θ) ; Γ−i (Θ∗) , B (Θ∗)) ≈ Πi

(
θ∗ i; Θ∗−i

)
(2)

and
∂Π̃i

∂γi
γ′i (θ∗i ) ≈

∂Πi

∂θi

In particular, if ∂Πi
∂θi

= 0, ∀i, then ∂Π̃i
∂γi

= 0, ∀i.It follows that if Θ∗ is an

equilibrium strategy profile, so is Γ∗, as required.

The proof of Proposition 1 is simple, but it encapsulates an important,

and often misunderstood, feature of Nash equilibrium in oligopoly games

(and, for that matter, games in general). The best reply for firm i depends

only on the residual demand curve determined by the market structure and
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the strategic choices of other firms, as perceived by i. Provided that the

strategy space available to firm i is suffi cient to allow any non-negative

choice for qi, it does not matter how that strategy space is represented by

the firm. Firm i may be regard itself as picking a quantity q∗i , the associated

price P ∗ determined by the residual demand curve, or the strategic variable

θ∗i for a family of supply curves, such that qi (P ∗, θ∗i ) = q∗i .

Hence, assuming all firms are symmetric, there is no loss of gener-

ality in assuming that the strategy space for each firm consists of all linear

supply schedules with a given slope β.

4 Downstream market equilibrium

To simplify subsequent algebra, following Menezes and Quiggin (2011), we

specify the strategic choice for firm i as a choice of supply schedules, deter-

mined by the strategic variable αi = γi + Ci
2 + βCi, where γi = qi (0) , as

follows:

qi = max

{
αi −

Ci
2

+ β (P − Ci) , 0
}
, i = I, E, (3)

where the strategic variable αi is a scalar variable representing upward or

downward shifts in supply and β ≥ 0 is an exogenous parameter reflecting

the intensity of competition.

The slope of the residual demand curve facing any given firm is deter-

mined by the slopes of the demand schedule and of the supply schedules of

other firms. The parameter β may, therefore, be interpreted as representing

the aggressiveness of competition in the market.3

With the normalization αi = γi+
Ci
2 +βCi, the first-best symmetric case

is given by P = CI = CE = A+ c and αI = αE = a/2.

Replacing the supply schedule (3) into the inverse demand curve (1), we

obtain:

P =
a− (αI + αE)

1 + 2β
+

(CI + CE)

2
. (4)

3The parameter β is given exogenously in this paper. It can be thought for example

as being determined by some multi-stage game with the ealier stage outside of the model.
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And we have

qi = max

{
αi −

Ci
2

+ β (P − Ci) , 0
}

= max

{
αi −

Ci
2

+ β

(
a− (αI + αE)

1 + 2β

)
+ β

(Cj − Ci)
2

, 0

}
.

So

Q = (αI + αE)− (CI + CE)

2
+ 2β

(
a− (αI + αE)

1 + 2β

)
for an interior solution.

The incumbent’s profits comes from sales in the final goods market and

sales in the intermediate good market:

πI = (P − CI) qI + (cA −A) qE . (5)

Maximising yields the incumbent’s best reply function:

αI(αE) =
2a− 2αE + (1 + 2β)CE + 2β (1 + 2β) (A− cA)

4 (1 + β)
. (6)

For the potential entrant,

πE = (P − CE)

(
a− P −

(
αI −

CI
2

)
− β (P − CI)

)
. (7)

Maximising yields:

αE(αI) =
2a− 2αI + (1 + 2β)CI

4 (1 + β)
. (8)

Both best responses are downward sloping. If cA = A, the two best

responses are symmetric. For cA 6= A, the incumbent realizes profit or

loss in the input market and this affects its incentives in the final product

market. In particular, as β increases, the entrant produces more for any

given level of the incumbent’s output. However, for cA > A, as β increases,

the incumbent may have incentive to decrease its output since selling the

input to the entrant may be more profitable.

Solving the two best responses gives the interior solution:

α∗I =
2a− CI + 2CE (1 + β) + 4β (A− cA) (1 + β)

4β + 6
(9)

α∗E =
2a− CE + 2CI (1 + β)− 2β (A− cA)

4β + 6
, (10)
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with

q∗I =
(1 + β)Qc − (A− cA)− (β + 1)2 (c− cE)

2β + 3
, (11)

q∗E =
(1 + β) (Qc + 2 (A− cA) + (2 + β) (c− cE))

2β + 3
, (12)

and the interior price P ∗ = a+(1+β)(CI+CE)−β(A−cA)
2β+3 .

Remark 1 The polar case β = 0 represents Cournot competition. For β =

0, P = a+CI+CE
3 , q∗I = Qc−(A−cA)−(c−cE)

3 , q∗E = Qc+2((A−cA)−(c−cE))
3 . In the

symmetric case with marginal cost pricing, cA = A, c = cE and, letting

C = CI = CE denote the common marginal cost of production, we obtain

the standard Cournot solution, q∗I = q∗E = Qc

3 , P = a+CI+CE
3 = C + a−C

3 .

As would be expected given symmetric Cournot duopoly in the downstream

market, marginal cost pricing in the access market yields an equilibrium

outcome where the price is above the socially optimal level and the output

correspondingly below the socially optimal level.

As β increases, downstream competition intensifies and total welfare

increases. In the limit, P approaches (CI+CE)−(A−cA)
2 , which yields P = C

in the symmetric case with marginal cost pricing. More generally, we have

Proposition 2 In an interior solution, for cA suffi ciently close to A, as β

increases, the total welfare increases.

Proof. For cA close enough to A, both the aggregate market output and

the effi cient firm’s output increases in β. Thus welfare increases. See the

appendix for details.

4.1 Corner solutions[I think these are worth discussing - JQ)

We now discuss the corner solutions when the difference in marginal costs

between firms is so great that one of the firms exits the market. Note that

although Armstrong, Doyle, and Vickers (1996) and Armstrong and Vickers

(1998) use general cost functions, they do not discuss the possibility of corner

solutions. In particular, in both papers, the entrant cannot supply the entire

market demand at any reasonable prices. Our cost function is not a special

10



case of Armstrong, Doyle, and Vickers (1996) and Armstrong and Vickers

(1998). Some of our results are indeed driven by corner solutions.

For very low and very high cA, only the low cost firm produces in the

market in equilibrium. The critical levels of cA for the corner solution to

eventuate depends on β. For a large β, that is, for nearly competitive

pricing, the difference in marginal costs required to have corner solutions in

equilibrium is small.

For cA suffi ciently large, cA > A+ Qc+(2+β)(c−cE)
2 , the cost disadvantage

for the entrant is so large that in equilibrium, only the incumbent produces

in the final product market. The equilibrium limit price in this case is

P = cA + cE , which is the marginal cost for the high cost firm. This is the

same as the standard asymmetric Bertrand equilibrium.

On the other hand, for cA suffi ciently small, cA < A − (1 + β)Qc +

(1 + β)2 (c− cE), the cost advantage for the entrant is large such that in

equilibrium qE > 0 and qI = 0. The resulting equilibrium price is P =

A + c + β(cA−A)
β+1 . For cA = A, we again have the asymmetric Bertrand

equilibrium where the market price is pinned down by the marginal cost of

the ineffi cient firm. For cA > A, the limit price is greater than A+ c. Since

the incumbent is making a positive profit by selling access to the incumbent,

it is more profitable to exit the downstream market.

Conversely, when cA < A, the limit price is less than A + c. To reduce

the losses associated with unprofitable sales of access to the entrant, the

incumbent remains active in the final product market even when the price

is less than the marginal cost of production. Note that in this case, the

incumbent is making a loss in both markets and would prefer to shut down.

5 The Effi cient Component Pricing Rule

The ECPR requires that the incumbent is compensated for its opportunity

cost of providing access:

P − CI = cA −A or cA = A+ (P − CI) .

Taking into consideration the post-entry maket price, in our framework, the

ECPR or the modified ECPR gives:
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Proposition 3 For c > cE, the ECPR gives cA > A for suffi ciently small

β and cA = A when β is large. In particular, for the interior solution, the

ECPR price is equal to:

cECPRA = A+
Qc − (1 + β) (c− cE)

2
. (13)

For c < cE, the ECPR always deters entry.

Proof. See the appendix.

The ECPR compensates the incumbent for the opportunity cost of pro-

viding access and thus deters ineffi cient entry. When the entrant is more

effi cient, and the downstream market is imperfectly competitive, the incum-

bent’s opportunity cost of providing access includes foregone revenues and is

greater than A. As β increases, the forgone profit decreases and the ECPR

access price decreases. For suffi ciently large β, the ineffi cient incumbent ex-

its the market so that the opportunity cost of providing access is equal to

A. The ECPR never prescribes below-cost pricing since the incumbent can

choose to exit the final product market.

When the entrant is less effi cient, the ECPR always gives a corner solu-

tion with qE = 0, qI > 0, and P = cA + cE . The ECPR does not give us

information on how the access price should be set since providing access does

not incur any opportunity cost for the incumbent. In this case, any access

price that keeps the entrant out of the market is consistent with reasoning

behind the ECPR. From the welfare point of view, the regulator chooses the

smallest cA required to deter ineffi cient entry.

6 Optimal Access Pricing

We assume that the regulator maximizes the unweighted sum of consumer

surplus and the profits of the two firms, subject to the incumbent breaking

even:

max
cA

CS + πI + πE s.t. πI ≥ 0.

The solution of this problem yields the various propositions below covering

different cases on the effi ciency of the entrant.
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Proposition 4 For cE < c, c∗A ≤ A and the break even constraint binds.

The equality holds when β is suffi ciently large. For cE = c, c∗A < A, and

c∗A = A only when β →∞.

Proof. For cE < c, the first best price is PFB = A + cE . Achieving

such pricing requires cA < A. Thus, for interior solution, the break-even

constraint binds. For the corner solution qE > 0 and qI = 0, the break

even constraint gives c∗A = A. When cE = c, the corner solution does not

eventuate, and c∗A = A only in the limit when β →∞. See the appendix for
the optimal c∗A levels.

When β is small enough, both firms produce in the final goods market.

The regulator prices access below cost, and adjusts this access charge to

ensure that the incumbent makes enough profit in the downstream market

to break even. For suffi ciently large β, only the effi cient firm remain in

the market. Marginal cost pricing is the lowest access charge to satisfy the

break even constraint. The optimal access price increases as β increases and

eventually reaches A. If the regulator does not face a break-even constraint,

the unconstrained optimal access price also increases as β increases and

eventually reaches A. As the market gets more competitive, there is less

need to use the access charge to promote competition.

From the above proposition, the following observation is immediate.

Corollary 1 If cE ≤ c, and β is suffi ciently large, the optimal access charge
is ECPR .

For suffi ciently large β, constrained maximization yields cA = A and

the resulting market price is P = A + c with cA = A + (P −A− c), which
coincides with the ECPR access price. In the limit, the regulator does not

have to use access price to promote competition, so that as β →∞, c∗A → A.

This result generalizes the observation that the ECPR is optimal if the

market is perfectly competitive in the absence of the break even constraint.

The above propositions show that when the potential entrant is equally

or more effi cient than the incumbent, the regulator does not have an incen-

tive to set access pricing above cost. However, when the potential entrant

is relatively ineffi cient, setting a low cA encourages production from the
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entrant leading to productive ineffi ciency. With an ineffi cient entrant, the

optimal access price could be above or below cost.

Proposition 5 If cE > c, the results can be summarized as follows:

(i) For suffi ciently large cost difference or suffi ciently large β, c∗A always

deters entry and thus confirms the ECPR price.

(ii) For small β and small cost difference, c∗A < A and c∗A < cECPRA .

(iii) For some intermediate β range, c∗A > A and c∗A < cECPRA if the cost

difference is small, and c∗A = cECPRA > A for large cost difference.

(iv) For suffi ciently large β, c∗A = cECPRA < A. For β > Qc

cE−c , c
∗
A =

cECPRA = A− (cE − c).

Proof. See the appendix for the complete characterization of optimal access

pricing.

If the entrant is ineffi cient, the regulator faces a trade-off between pro-

ductive effi ciency and allocative effi ciency. Whether or not c∗A > A depends

on the magnitudes of β and cE . The optimal access charge is not monotonic

in either β or cE . Below cost pricing occurs when β is small and when the

difference between cE and c is small. In this case, promoting competition

by below cost pricing is more desirable since the market is not competitive.

With small cost difference, encouraging production by the ineffi cient entry

is not as costly either. Below cost pricing also occurs when the market is

very competitive. With such competitive intensity, the ineffi cient firm does

not produce and the regulator uses below-cost pricing to get the market

price close to A+ c. For suffi ciently large β, the characterization of optimal

access pricing is the same as in the case examined by Armstrong (2002) with

Bertrand competition and an ineffi cient entrant.

7 Concluding comments

We have shown that when firms have market power in the downstream

product market, and the entrant is equally or more effi cient, a social-welfare

maximising regulator prices access below its marginal cost. The reduced

access charge serves as an instrument to promote downstream competition.

Given the constraint that the incumbent should at least break even, the

14



optimal access charge is set below cost and the incumbent makes just enough

profit in the downstream market to cover its loss in the upstream market.

As competition in the downstream market intensifies, the constrained access

price approaches the ECPR. In the absence of the break even constraint, the

unconstrained optimal access charge converges to the marginal cost.

When the entrant is ineffi cient, the regulator faces a trade-off between

pro-competitive effects and productive effi ciency. The optimal access price

can be above or below cost, depending on the extent of the difference in the

cost effi ciency between the incumbent and the entrant and the intensity of

downstream competition. The optimal access price only deters ineffi cient

entry when the entrant is very ineffi cient and when the market is relatively

competitive. When the downstream market is not competitive enough, the

regulator finds it optimal to accommodate the ineffi cient entrant by setting

the access price below the ECPR.

Our results also imply that, in a dynamic setting, firms considering in-

vesting in a bottleneck facility may be deterred from doing so by the prospect

of mandated access and access pricing policies that yield prices below the

ECPR and are set as a result of static welfare maximisation exercise by

the regulator. That is, deregulation of the downstream market then needs

to be coupled with other policy instruments to ensure suffi cient upstream

investment.
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8 Appendix

Proof. (Proposition 2): Partially differentiating Equation 12 gives ∂q
∗
E

∂β ≥ 0

if cA ≤ A+
Qc+(2β2+6β+5)(c−cE)

2 . For cA ≥ A+Qc+(2+β)(c−cE)
2 , we have corner

solution with qE = 0 and P = cA + cE . Given that
Qc+(2β2+6β+5)(c−cE)

2 >
Qc+(2+β)(c−cE)

2 for c > cE , the effi cient entrant’s output increases as β in-

creases. Similarly, partially differentiating Equation 11 gives ∂q∗I
∂β ≥ 0 for

cA ≤ A+Qc−2(β+2)(β+1)(c−cE)
2 . Given that Q

c−2(β+2)(β+1)(c−cE)
2 > Qc+(2+β)(c−cE)

2

for c < cE , the incumbent’s output increases as β increases if the incumbent

is effi cient. For the market aggregate output, ∂Q∂β ≥ 0 if cA ≤ A+ 2Qc+c−cE
4 .

This is satisfied for cA = A, and does not hold for large cA. Given that
2Qc+c−cE

4 > Qc+(2+β)(c−cE)
2 for c < cE , the aggregate output increases when

the incumbent is the effi cient firm. For cE < c and the entrant being the

effi cient firm, ∂Q∂β ≥ 0 for cA close enough to A. Furthermore, for cE < c, we

show below that the optimal c∗A < A. With the optimal access pricing, the

aggregate market output increases as β increases.

Proof. (Proposition 3): In an interior solution, the ECPR is given by

cA = A+
a+ (1 + β) (CI + CE)− β (A− cA)

2β + 3
− CI .

Or

cA = A+
Qc − (1 + β) (c− cE)

2
. (14)

For c > cE , we have an interior solution and this access price is relevant if β

is suffi ciently small, β ≤ Qc

(c−cE) − 1. The access price implied by the ECPR
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is always above A. For suffi ciently large β, we have a corner solution with

qE > 0 and qI = 0, in which case the ECPR is given by

A+ c+
β (cA −A)

β + 1
−A− c = cA −A,

or

cA = A.

For c < cE , with cA = A + Qc−(1+β)(c−cE)
2 , we always have corner solution

with qI > 0 and qE = 0. The equilibrium price is P = cA + cE . The

minimum cA required is cA = A+ Qc+(2+β)(c−cE)
2 .

Proof. (Proposition 4): Let cB [cE ] denote the cA level at the constrained

optimum with πI [cB] = 0.

∂TS

∂cA
= (P ∗ [cE ]− (A+ c))

∂Q∗ [cE ]

∂cA
+ (c− cE)

∂q∗E [cE ]

∂cA
. (15)

It is never optimal for the regulator to set cA > A+ 1
2 (Qc + (c− cE) (2 + β))

and force the equilibrium qI > 0 and qE = 0.

For any cA < A−(1 + β) (Qc − (1 + β) (c− cE)) with qE > 0 and qI = 0,

the cA required for break—even is at least A. A < A−(1 + β) (Qc − (1 + β) ε)

if β > Qc

ε − 1. For an interior solution, ∂TS∂cA
= 0 gives

cA = A− (β + 1) (2β + 5) (c− cE) + (2β + 1)Qc

(2β + 1)2 < A. (16)

Given this cA, the downstream price is

P = A+ c− 2 (c− cE) (1 + β)

2β + 1
< A+ c (17)

The break—even constraint is violated. For an interior solution in the

final good market, the optimal access charge is the constrained optimum,

cB:

cB [cE ]

= A+

(
4β2 + 8β + 5

)
Qc + 4 (c− cE) (β + 1)2

2
(
4β2 + 8β + 5

)
−

(2β + 3)
√(

4β2 + 8β + 5
)

(Qc)2 + 4 (c− cE)2 (β + 1)3

2
(
4β2 + 8β + 5

)
< A.
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Proof. (Proposition 5): Let ε ≡ cE−c > 0. The optimal access pricing rule

is summarized in the following table, where cAI = A+ (β+1)(5+2β)ε−(1+2β)Qc

(2β+1)2

and c̃A = A+ 1
2 (Qc − ε (2 + β)).

ε ≤ 2Qc

9
2Qc

9 < ε < Qc

4
Qc

4 ≤ ε ≤
2Qc

7 ε > 2Qc

7

β ≤ 2Qc−5ε−
√

(2Qc−7ε)(2Qc+ε)

4ε NA, β < 0 c̃A > A

2Qc−5ε−
√

(2Qc−7ε)(2Qc+ε)

4ε

< β ≤ 2Qc−7ε+
√

(2Qc−ε)(2Qc−9ε)

4ε

max {cAI , cB [c+ ε]}
< A

cAI > A c̃A > A

2Qc−7ε+
√

(2Qc−ε)(2Qc−9ε)

4ε

< β ≤ 2Qc−5ε+
√

(2Qc−7ε)(2Qc+ε)

4ε

cAI > A c̃A > A

2Qc−5ε+
√

(2Qc−7ε)(2Qc+ε)

4ε

< β ≤ Qc−2ε
ε

c̃A > A

Qc−2ε
ε < β ≤ Qc

ε c̃A < A

β > Qc

ε A− ε

Table 1: Optimal access charge with cE = c+ ε

For cE = c+ε, it is never optimal for the regulator to set a cA so low that

in equilibrium qE > 0 and qI = 0. Denote the critical cA level above which

qI > 0 and qE = 0 by c̃A, c̃A ≡ A + 1
2 (Qc − ε (2 + β)). Note that c̃A ≥ A

for β < Qc−2ε
ε . The downstream equilibrium is that for cA ≤ c̃A, qI > 0

and qE > 0. Otherwise, qI > 0 and qE = 0. For cA ≤ c̃A, taking the FOC

of Equation 15 gives cA = A + ε(β+1)(5+2β)−(1+2β)Qc

(2β+1)2
. Let cAI denote this

optimal access charge for an interior downstream equilibrium. For cA > c̃A,

the FOC gives c∗A = A − ε. cAI ≥ c̃A if ε >
2Qc

7 . For ε large enough, the

regulator has the incentive to push the solution into the corner solution such

that only the effi cient incumbent produces. For ε ≤ 2Qc

7 , cAI ≤ c̃A if

2Qc − 5ε−
√

(2Qc − 7ε) (2Qc + ε)

4ε

≤ β ≤ 2Qc − 5ε+
√

(2Qc − 7ε) (2Qc + ε)

4ε
. (18)

Note that
2Qc−5ε−

√
(2Qc−7ε)(2Qc+ε)

4ε < 0 if ε < Qc

4 .

cAI ≥ A if ε ≥ 2
9Q

c. For ε < 2
9Q

c, cAI > A if β >
2Qc−7ε+

√
(2Qc−ε)(2Qc−9ε)

4ε .
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Finally, A− ε > c̃A if β >
Qc

ε .

For ε ≤ 2
9Q

c and β ≤ 2Qc−7ε+
√

(ε−2Qc)(9ε−2Qc)

4ε , cAI < A, P ∗ [cAI ] >

A+ c, and

cB [c+ ε]

= A+

(
4β2 + 8β + 5

)
Qc − 4ε (β + 1)2 − (2β + 3)

√(
4β2 + 8β + 5

)
(Qc)2 + 4ε2 (β + 1)3

2
(
4β2 + 8β + 5

)
< A.

For this parameter range, c∗A = max {cAI , cB [c+ ε]} < A.
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