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Abstract

We analyse access price setting to a bottleneck facility where the fa-
cility owner also competes in the deregulated downstream market. We
consider a continuum of market structures from Cournot to Bertrand.
These market structures are fully characterised by a single parame-
ter representing the intensity of competition. We first show how the
efficient component pricing rule (ECPR) should be modified as the
downstream competitive intensity changes. We then analyse the opti-
mal access price where a total-surplus-maximizing regulator trades off

production efficiency and pro-competitive effects.

JEL Classification L51

Key-words: access regulation, entry, regulatory commitment, effi-

cient component pricing rule.

1 Introduction

The reforms of the 1990s saw the unbundling of vertically integrated indus-
tries such as energy, telecommunications and rail. This entailed the intro-
duction of competition where feasible, as in electricity generation, gas pro-
duction, internet service provision, and long-distance telecommunications.

In natural monopoly components of these industries, such as electricity and

*Menezes acknowledges the financial assistance from the Australian Research Council
(ARC Grant 0663768).



gas transmission and distribution, local loop in telecommunications and rail
tracks, the preferred approach was the adoption of an access pricing rule.
Accordingly, introducing competition in these segments has required regula-
tors to define the terms and conditions of access to these “essential” network
facilities and ensure that they are implemented. (See, for example, Joskow,
2007).

The need to inform regulatory decisions has led to a large literature
on access pricing. See, for example, Armstrong (2002) for a survey. The
standard stylized set-up involves two services. The first is the provision of
a natural monopoly network (upstream) service, which is subject to price
and entry regulation. The second (downstream) service is supplied by the
incumbent and opened to potential competitors who require access to the
network service. The literature has studied both regulated and deregulated
downstream markets. With the former, the incumbent is assumed to be
vertically integrated with its prices for both services regulated while the
entrant acts as a price taker. (See, for example, Laffont and Tirole (2000)
for the case of telecommunications and Armstrong (2002) for a review).

A particular focal point of the literature is the "Efficient Component
Pricing Rule" (ECPR), which was initially proposed by Baumol (1983) and
made popular by Baumol and Sidak (1994). Under the ECPR, the access
price charged by a monopolist provider of an essential service is set at the
monopolist’s opportunity cost of providing the access, including any foregone
revenue in the downstream market. Much of the literature on access pricing
is concerned with understanding when the ECPR would be socially optimal
and how the optimal access price would deviate from the ECPR. The seminal
paper of Armstrong, Doyle, and Vickers (1996) examines the notion of ECPR
and optimal access pricing under different assumptions including product
differentiation, bypass and substitution possibilities. They concluded that
if the break-even constraint for the incumbent does not bind, the optimal
access price coincides with the ECPR provided that the opportunity cost is
properly interpreted. When the break-even constraint binds in equilibrium,
the optimal access price includes another Ramsey term, similar to the pricing
rule in Laffont and Tirole (1994). Note that the optimality of the ECPR

in this paper hinges on the fact that the regulator sets both upstream and



downstream prices, and the assumption that the entrant cannot supply the
entire demand at any reasonable prices. The latter assumption implies that
the first best downstream pricing is equal to the incumbent’s marginal cost.

With deregulated downstream (retail) price, Laffont and Tirole (1994)
show that the ECPR holds as a first-best pricing rule only when a number
of stringent assumptions hold. In particular, ECPR is optimal if the down-
stream market is characterized by Bertrand competition, where all goods are
perfect substitutes. Economides and White (1995) conclude that the ECPR
will generally be suboptimal when the downstream market price is above
the relevant marginal cost. Economides and White examine the welfare ef-
fects of the ECPR under different market structures including monopoly,
asymmetric Bertrand, and Cournot and show that less competitive market
structures make the ECPR less desirable. With more market power, the
social planner is able to accommodate a less efficient entrant by setting the
access price below the level implied by the ECPR to improve welfare. With
price taking entrants, Armstrong and Vickers (1998) and Armstrong and
Sappington (2007) conclude that the optimal pricing can be above, below,
or equal to marginal cost and, in general, will be below the ECPR.

In this paper we generalize previous work by allowing for the possibility
of imperfectly competitive outcomes in downstream markets. In particular,
the incumbent does not always have the power to set the retail price and the
entrant can possess some market power. We do not, however, simply replace
the standard assumption of Bertrand competition with the alternative of a
Cournot duopoly. Rather, we consider a continuum of downstream market
structures with Cournot and Bertrand as polar cases, and the intervening
range representing different degrees of competitive intensity.

A natural way to model a continuum of downstream competitive in-
tensity is to use the notion of competition in supply schedules. (See, for
example, Grossman (1981), Robson (1981), Turnbull (1983), Klemperer and
Meyer (1989), Grant and Quiggin (1996), Vives (2011), and Menezes and
Quiggin (2011)). By considering families of more or less elastic supply sched-
ules, it is possible to generate spaces of oligopoly games of which Bertrand
and Cournot are polar cases. This approach allows us to parametrize the

nature of competition in the downstream market.



We first analyze the relevant notion of the ECPR contingent on the de-
gree of competitive intensity. The idea that the ECPR prices should be
calculated based on post entry prices is close to the notion of M-ECPR
proposed by Sidak and Spulber (1997). Our results complement those of
Armstrong, Doyle, and Vickers (1996). We also impose a break-even con-
straint for the vertically integrated firm but unlike Armstrong, Doyle, and
Vickers (1996), we assume that the regulator only regulates the access price,
not the retail price. The removal of retail price caps has been a feature of
nearly every regulatory regime in electricity, rail and telecommunications in
developed countries.

In this setting we compare the socially optimal access price with the
access price implied by the ECPR. With a regulated downstream price set
to replicate the outcome of Bertrand competition, the access price may be set
to maximize production efficiency. With a deregulated downstream price,
however, the access price also affects allocative efficiency through the retail
price. Thus, the optimal access price under downstream competition has to
take into consideration both productive efficiency and downstream market
power.

We show that, if the entrant is equally or more efficient, the regulator has
an incentive to set the access charge below the marginal cost of providing ac-
cess.! However, as the market becomes more competitive, the unconstrained
optimal access charge approaches the marginal cost of providing access, and
is equal to the marginal cost when the downstream market is perfectly com-
petitive. As in Economides and White (1995), the optimal access price is
less than the ECPR price when the market is not too competitive and is
equal to the ECPR price when the market is sufficiently competitive; these
statements will be made precise below.

If, however, the entrant is inefficient, the optimal access price could be
above or below cost whereas the ECPR always deters inefficient entry.? For

a less efficient entrant, in the limit, the optimal access price is always below

'We abstract from fixed costs for simplicity.
In our model, the ECPR always sets prices greater than or equal to marginal cost

since the incumbent firm can cease supplying the final product. We discuss this point

further in Section 5.



cost.

Our framework allows us to provide a precise characterization of the
optimality of the ECPR. In the absence of a break-even constraint and
provided that the entrant is equally or more efficient, the ECPR is optimal
in the limit as the downstream market approaches Bertrand competition.
Taking the break-even constraint into consideration, constrained optimal
access pricing coincides with the ECPR for a sufficiently competitive market
structure. For a less efficient entrant, if the cost difference is small and if
the market is not competitive, the regulator finds it welfare improving to
accommodate inefficient entry by charging an access price less than the
ECPR price. The trade-off between productive and allocative efficiency is in
general complicated, and the optimal access price is not monotonic in the

degree of competitive intensity in the final market.

2 The Setup

Consider a vertically integrated monopoly firm that produces a final good
using one unit of a bottleneck service at marginal (unit) cost A and one unit
of a firm specific input at cost ¢. The total marginal cost for the incumbent
is C1 = A+ c. A potential entrant needs access to the bottleneck facility
to produce the final good. The entrant’s marginal cost of producing the
final product is Cg = c4 + cg, where c4 denotes the regulated unit price
of access to be paid to the incumbent, and cg is the entrant’s specific cost
with the possibilities cg § c. The specific costs are observable to firms and
the regulator.

For simplicity only, the demand for the final goods is given by

P =a— @ where a > A+ max{c,cg}. (1)

The timing is as follows. At ¢t = 0 a total-surplus-maximising regulator
sets the access price c4. At period t = 1, knowing c4, two firms compete
in the final goods market. We allow firms to exit the final product mar-
ket. However, the incumbent has to supply all the access demanded at the

regulated price.



2.1 First-best outcome

The first best outcome would set p = A + min{c,cg}, so that Q = a —
A — min{c,cg}. First best output in the absence of entry (and globally if

cg > ¢)is Q° = a— A—c. Note that the monopoly output for the incumbent
%, and that the welfare gain from the first-best without entry, relative
(@)

8

is

to monopoly is

3 Competition in supply schedules

We begin by considering the general case of a deterministic game in supply
schedules. We show that, without loss of generality, we may confine attention
to the case of linear supply schedules. We focus on the symmetric case where
the strategy space for each firm consists of all linear supply schedules with

a given slope S.

Definition 1 A deterministic game in supply schedules with N players is
determined by a demand function D (P), (assumed linear for simplicity) a
set of convex cost functions c¢; (¢;) and a family of supply functions q; (P, 6;)
where q; is continuously differentiable, convex, and increasing in both arqu-

ments, and 0; € [0,1],Vi is the strategic variable for firm i.
With this definition, the strategy space is ¥ = [0, 1]" . We first observe

Lemma 1 Under the stated conditions, there exists an equilibrium strategy

vector ©* € ¥

Proof. The market clearing price P (©) is the solution to

D(P):Z%‘(P,@i)

and is decreasing in each of its arguments. The inverse demand facing firm
1 is
Di(6_4,P)=D(P) = q;(P,0;)
J#i

Hence, the best reply 6; (©_;) maximizes

IL; (05;0-:) = P(©) q; (P (©),0;) — ci (¢: (P (©),0:))



Since I1; (6 ;; ©_;) is a concave function, the best reply is unique, and hence,
by the maximum theorem (Berge ..), © : ¥ — %, where ©; (0) = 6; (0_;) is
a continuous self-mapping of a compact set on to itself. Hence, by Brouwer’s
fixed point theorem, © has a fixed point ©*, which is an equilibrium strategy
profile. m

We now construct a game in linear supply schedules that is equivalent, in
a neighborhood of equilibrium to a given game in arbitrary (differentiable,

convex) supply schedules. For any © and define 3, (0),~; () such that

Bi(©) = ¢ (P(®),0))

7 (©) +5,P(0) = 4 (P(©),6;)
Further, let P (I'; B) be the solution to

D (P) :Z(’YH‘@P)
We may then derive

Proposition 1 If ©* is an equilibrium for the deterministic game in supply
schedules given by D (P),c;(¢;), 1= 1..n, and q; (P,0;),i = 1..n, then I'* =
(71 (©%) ..oy (©%)) is an equilibrium for the deterministic game in supply
schedules given by D (P),¢; (¢;), i = 1...N, and ¢; (P,7;) = v; + B; <é)*> P

Proof. Let II; (;; T, B) = P (7;;T—i) (i + BiP (v;T—i, B)—ci (3 + B;P (v;; T, B)).
Then, in a neighborhood of ' (©*),

IT; (7; (©) 3T (07), B (07)) ~ II; (6" ;; ©7) (2)

—1

and -

In particular, if %1(;1: = 0, Vi, then %—13: = 0, Vi.It follows that if ©* is an
equilibrium strategy profile, so is I'*, as required. =

The proof of Proposition 1 is simple, but it encapsulates an important,
and often misunderstood, feature of Nash equilibrium in oligopoly games
(and, for that matter, games in general). The best reply for firm ¢ depends

only on the residual demand curve determined by the market structure and



the strategic choices of other firms, as perceived by 4. Provided that the
strategy space available to firm ¢ is sufficient to allow any non-negative
choice for ¢;, it does not matter how that strategy space is represented by
the firm. Firm ¢ may be regard itself as picking a quantity ¢}, the associated
price P* determined by the residual demand curve, or the strategic variable
07 for a family of supply curves, such that ¢; (P*,6;) = ¢}.

Hence, assuming all firms are symmetric, there is no loss of gener-
ality in assuming that the strategy space for each firm consists of all linear

supply schedules with a given slope 3.

4 Downstream market equilibrium

To simplify subsequent algebra, following Menezes and Quiggin (2011), we
specify the strategic choice for firm 7 as a choice of supply schedules, deter-
mined by the strategic variable o; = 7, + % + BC;, where v; = ¢; (0), as

follows:

qi:maX{ai—C;—i—ﬁ(P—C@'),O},’L':I,E, (3)

where the strategic variable «; is a scalar variable representing upward or
downward shifts in supply and 8 > 0 is an exogenous parameter reflecting
the intensity of competition.

The slope of the residual demand curve facing any given firm is deter-
mined by the slopes of the demand schedule and of the supply schedules of
other firms. The parameter § may, therefore, be interpreted as representing
the aggressiveness of competition in the market.?

With the normalization a; = v; + % + BC;, the first-best symmetric case
isgiven by P=C;=Cgp=A+cand aj = ag =a/2.

Replacing the supply schedule (3) into the inverse demand curve (1), we

obtain:

_a— (aj+ag) (Cr+Cg)
P= 1+28 * 2 ‘ )

3The parameter § is given exogenously in this paper. It can be thought for example

as being determined by some multi-stage game with the ealier stage outside of the model.



And we have

4 = max{ai— Ci +ﬁ(P—c,~),o}

2
_ G a— (o + op) (Cj—Ci)
= max{aZ—Q—l—ﬂ( 1128 )—i—ﬁ 5 ,O}.
So i
Q=(oq+aE)—4( IJ; ) +283 (a_l(O:;ﬂaE)>

for an interior solution.
The incumbent’s profits comes from sales in the final goods market and

sales in the intermediate good market:

mr=(P—-Cr)gr+ (ca— A)qg. (5)
Maximising yields the incumbent’s best reply function:

20 —2ap + (1+28)Cg + 26 (1 +28) (A —ca)
4(1+p5) )

(6)

a[(aE) =

For the potential entrant,

WE—(P—CE)<a—P—<0q—C;>—ﬂ(P—CI)). (7)

Maximising yields:

2a —2a5+ (14 28)Cy
4(1+5)

(8)

aE(Oq) =

Both best responses are downward sloping. If ¢4 = A, the two best
responses are symmetric. For c4 # A, the incumbent realizes profit or
loss in the input market and this affects its incentives in the final product
market. In particular, as § increases, the entrant produces more for any
given level of the incumbent’s output. However, for c4 > A, as 8 increases,
the incumbent may have incentive to decrease its output since selling the
input to the entrant may be more profitable.

Solving the two best responses gives the interior solution:

of - 20— Cr+2Cg (14 68)+48 (A —ca) (14 5) (9)
I = 46+ 6

. 2a—CE+2C1(1+5)—25(A—CA)
op = 4/B+6 9 (10)

9



with
(14+8)Q° —(A—ca)— (B+1)*(c—cp)

q = 55 13 ; (11)
. (1+8) (@ +2(A—ca)+(2+8)(c—cE))
9 = 28 +3 , (12)
a+(1+8)(C1+Cr)—B(A—ca)

and the interior price P* = 5513 .
Remark 1 The polar case = 0 represents Cournot competition. For 3 =

g = Yzen)(eep) g @QA(A—ca)—(emcp)) g

symmetric case with marginal cost pricing, ca4 = A,c = cg and, letting

_ at+Ci+C
0, P = =CCr

C = C7 = Cg denote the common marginal cost of production, we obtain

the standard Cournot solution, qf = qf = %,P = % =C+ agC.

As would be expected given symmetric Cournot duopoly in the downstream

market, marginal cost pricing in the access market yields an equilibrium
outcome where the price is above the socially optimal level and the output

correspondingly below the socially optimal level.

As B increases, downstream competition intensifies and total welfare
increases. In the limit, P approaches w, which yields P = C

in the symmetric case with marginal cost pricing. More generally, we have

Proposition 2 In an interior solution, for ca sufficiently close to A, as 3

increases, the total welfare increases.

Proof. For c4 close enough to A, both the aggregate market output and
the efficient firm’s output increases in 5. Thus welfare increases. See the

appendix for details. m

4.1 Corner solutions|[I think these are worth discussing - JQ)

We now discuss the corner solutions when the difference in marginal costs
between firms is so great that one of the firms exits the market. Note that
although Armstrong, Doyle, and Vickers (1996) and Armstrong and Vickers
(1998) use general cost functions, they do not discuss the possibility of corner
solutions. In particular, in both papers, the entrant cannot supply the entire

market demand at any reasonable prices. Our cost function is not a special

10



case of Armstrong, Doyle, and Vickers (1996) and Armstrong and Vickers
(1998). Some of our results are indeed driven by corner solutions.

For very low and very high ca4, only the low cost firm produces in the
market in equilibrium. The critical levels of ¢4 for the corner solution to
eventuate depends on (. For a large 3, that is, for nearly competitive
pricing, the difference in marginal costs required to have corner solutions in
equilibrium is small.

For c4 sufficiently large, c4 > A+ i (c=cp ), the cost disadvantage

(2+8)

2
for the entrant is so large that in equilibrium, only the incumbent produces
in the final product market. The equilibrium limit price in this case is
P = c4 + cg, which is the marginal cost for the high cost firm. This is the
same as the standard asymmetric Bertrand equilibrium.

On the other hand, for c4 sufficiently small, cx < A — (14 3)Q° +
(1+ B)? (¢ — cg), the cost advantage for the entrant is large such that in
equilibrium ¢qg > 0 and ¢q; = 0. The resulting equilibrium price is P =
A+c+ %. For ¢y = A, we again have the asymmetric Bertrand
equilibrium where the market price is pinned down by the marginal cost of
the inefficient firm. For ¢4 > A, the limit price is greater than A + ¢. Since
the incumbent is making a positive profit by selling access to the incumbent,
it is more profitable to exit the downstream market.

Conversely, when c4 < A, the limit price is less than A + ¢. To reduce
the losses associated with unprofitable sales of access to the entrant, the
incumbent remains active in the final product market even when the price
is less than the marginal cost of production. Note that in this case, the

incumbent is making a loss in both markets and would prefer to shut down.

5 The Efficient Component Pricing Rule

The ECPR requires that the incumbent is compensated for its opportunity

cost of providing access:
P—Cr=cy—Aorcy=A+(P-Cy).

Taking into consideration the post-entry maket price, in our framework, the
ECPR or the modified ECPR gives:

11



Proposition 3 For ¢ > cg, the ECPR gives cq > A for sufficiently small
B and c4 = A when B is large. In particular, for the interior solution, the

ECPR price is equal to:

CHOPR _ 4 4 Q" —(1 +25) (c—cr) (13)

For ¢ < cg, the ECPR always deters entry.

Proof. See the appendix. =m

The ECPR compensates the incumbent for the opportunity cost of pro-
viding access and thus deters inefficient entry. When the entrant is more
efficient, and the downstream market is imperfectly competitive, the incum-
bent’s opportunity cost of providing access includes foregone revenues and is
greater than A. As 8 increases, the forgone profit decreases and the ECPR
access price decreases. For sufficiently large 8, the inefficient incumbent ex-
its the market so that the opportunity cost of providing access is equal to
A. The ECPR never prescribes below-cost pricing since the incumbent can
choose to exit the final product market.

When the entrant is less efficient, the ECPR always gives a corner solu-
tion with qg = 0, gy > 0, and P = c4 + cg. The ECPR does not give us
information on how the access price should be set since providing access does
not incur any opportunity cost for the incumbent. In this case, any access
price that keeps the entrant out of the market is consistent with reasoning
behind the ECPR. From the welfare point of view, the regulator chooses the

smallest ca required to deter inefficient entry.

6 Optimal Access Pricing

We assume that the regulator maximizes the unweighted sum of consumer
surplus and the profits of the two firms, subject to the incumbent breaking

even:

maxCS +ny+mg s.t. mp > 0.
CA

The solution of this problem yields the various propositions below covering

different cases on the efficiency of the entrant.
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Proposition 4 For cg < ¢, ¢}y < A and the break even constraint binds.
The equality holds when B is sufficiently large. For cp = ¢, c¢f < A, and

cty = A only when 8 — oco.

Proof. For cp < c, the first best price is PI'? = A + cp. Achieving
such pricing requires cy4 < A. Thus, for interior solution, the break-even
constraint binds. For the corner solution gz > 0 and q; = 0, the break
even constraint gives ¢’y = A. When cg = ¢, the corner solution does not
eventuate, and ¢’ = A only in the limit when 3 — co. See the appendix for
the optimal ¢’ levels. m

When § is small enough, both firms produce in the final goods market.
The regulator prices access below cost, and adjusts this access charge to
ensure that the incumbent makes enough profit in the downstream market
to break even. For sufficiently large 5, only the efficient firm remain in
the market. Marginal cost pricing is the lowest access charge to satisfy the
break even constraint. The optimal access price increases as  increases and
eventually reaches A. If the regulator does not face a break-even constraint,
the unconstrained optimal access price also increases as [ increases and
eventually reaches A. As the market gets more competitive, there is less
need to use the access charge to promote competition.

From the above proposition, the following observation is immediate.

Corollary 1 Ifcg < ¢, and (8 is sufficiently large, the optimal access charge
is ECPR .

For sufficiently large 3, constrained maximization yields c4 = A and
the resulting market price is P = A+ ¢ with ¢4 = A+ (P — A — ¢), which
coincides with the ECPR access price. In the limit, the regulator does not
have to use access price to promote competition, so that as 3 — oo, ¢ — A.
This result generalizes the observation that the ECPR is optimal if the
market is perfectly competitive in the absence of the break even constraint.

The above propositions show that when the potential entrant is equally
or more efficient than the incumbent, the regulator does not have an incen-
tive to set access pricing above cost. However, when the potential entrant

is relatively inefficient, setting a low c4 encourages production from the

13



entrant leading to productive inefficiency. With an inefficient entrant, the

optimal access price could be above or below cost.

Proposition 5 If cg > ¢, the results can be summarized as follows:

1) For sufficiently large cost difference or sufficiently large 3, ¢ always

y Larg yLarge P, Cy Y

deters entry and thus confirms the ECPR price.

(ii) For small B and small cost difference, ¢y < A and c* < cHOPER.

i) For some intermediate 5 range, ¢, > A and ¢%, < cECPR if the cost

A A A

difference is small, and ¢’ = cECPR > A for large cost difference.

(i) For sufficiently large B, ¢ = PR < A. For B > Cgic, cy =
CECPR — 4

—(cg — o).

Proof. See the appendix for the complete characterization of optimal access
pricing. m

If the entrant is inefficient, the regulator faces a trade-off between pro-
ductive efficiency and allocative efficiency. Whether or not ¢% > A depends
on the magnitudes of 8 and cg. The optimal access charge is not monotonic
in either 8 or cg. Below cost pricing occurs when § is small and when the
difference between cg and c is small. In this case, promoting competition
by below cost pricing is more desirable since the market is not competitive.
With small cost difference, encouraging production by the inefficient entry
is not as costly either. Below cost pricing also occurs when the market is
very competitive. With such competitive intensity, the inefficient firm does
not produce and the regulator uses below-cost pricing to get the market
price close to A + ¢. For sufficiently large 3, the characterization of optimal
access pricing is the same as in the case examined by Armstrong (2002) with

Bertrand competition and an inefficient entrant.

7 Concluding comments

We have shown that when firms have market power in the downstream
product market, and the entrant is equally or more efficient, a social-welfare
maximising regulator prices access below its marginal cost. The reduced
access charge serves as an instrument to promote downstream competition.

Given the constraint that the incumbent should at least break even, the

14



optimal access charge is set below cost and the incumbent makes just enough
profit in the downstream market to cover its loss in the upstream market.
As competition in the downstream market intensifies, the constrained access
price approaches the ECPR. In the absence of the break even constraint, the
unconstrained optimal access charge converges to the marginal cost.

When the entrant is inefficient, the regulator faces a trade-off between
pro-competitive effects and productive efficiency. The optimal access price
can be above or below cost, depending on the extent of the difference in the
cost efficiency between the incumbent and the entrant and the intensity of
downstream competition. The optimal access price only deters inefficient
entry when the entrant is very inefficient and when the market is relatively
competitive. When the downstream market is not competitive enough, the
regulator finds it optimal to accommodate the inefficient entrant by setting
the access price below the ECPR.

Our results also imply that, in a dynamic setting, firms considering in-
vesting in a bottleneck facility may be deterred from doing so by the prospect
of mandated access and access pricing policies that yield prices below the
ECPR and are set as a result of static welfare maximisation exercise by
the regulator. That is, deregulation of the downstream market then needs
to be coupled with other policy instruments to ensure sufficient upstream

investment.
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8 Appendix

Proof. (Proposition 2): Partially differentiating Equation 12 gives 88% >0

Q°+(28%468+5)(c—ck)
2

ifcqy < A+

. Forcy > A+w, we have corner
Q°+(28%463+5)(c—cp)
5 >

solution with qg = 0 and P = c4 + cg. Given that

w for ¢ > cg, the efficient entrant’s output increases as (3 in-

creases. Similarly, partially differentiating Equation 11 gives %—qg > 0 for

ea < A4 LAENECcE)  Given that L=2EHDETD(ecr) - Q+2+B)(ccx)

for ¢ < cg, the incumbent’s output increases as 3 increases if the incumbent

is efficient. For the market aggregate output, % >0ifcqy <A+ ZQH“%.

This is satisfied for c4 = A, and does not hold for large c4. Given that

2QCZC_CE > QC+(2+§)(C_CE) for ¢ < cg, the aggregate output increases when

the incumbent is the efficient firm. For cg < ¢ and the entrant being the
efficient firm, g—g > 0 for c4 close enough to A. Furthermore, for cg < ¢, we
show below that the optimal ¢ < A. With the optimal access pricing, the
aggregate market output increases as § increases. ®

Proof. (Proposition 3): In an interior solution, the ECPR is given by

a+(1+8)(Cr+Cg) — B(A —ca)
25+ 3

ca=A+ - Cf.

Qc—(l—Fﬂ)(C—CE)
5 .

For ¢ > cg, we have an interior solution and this access price is relevant if 3

ca=A+ (14)

c

is sufficiently small, 5 < (CQi) — 1. The access price implied by the ECPR

—CE
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is always above A. For sufficiently large 8, we have a corner solution with

ge > 0 and g; = 0, in which case the ECPR is given by

A+c+ﬁ(2A+_1A)—A—c:cA—A,

or
cq = A.

For ¢ < ¢g, with cy = A+ w, we always have corner solution

with g > 0 and gz = 0. The equilibrium price is P = c4 + cg. The
minimum cy4 required is c4 = A + %)(C_CE) ]
Proof. (Proposition 4): Let c¢p [cg] denote the ca level at the constrained

optimum with 77 [cg] = 0.

0TS _ (pofep) — (At o) 201l (o)

9qy, [cE]
Oca '

e (15)

Oca

It is never optimal for the regulator to set c4 > A+% (Q°+ (c — cg) (24 B))
and force the equilibrium ¢; > 0 and g = 0.
Forany cy < A—(14 58)(Q° — (1 + ) (¢ — ¢g)) with gg > 0 and ¢q; = 0,

the ¢4 required for break—even is at least A. A < A—(1+8) (Q° — (1 + B)¢)
oTs

if 8> % — 1. For an interior solution, 9. = 0 gives
1) (2 — 2 1) Q°
poa BEDEBEDCen) +EBEE g
(28 +1)
Given this c4, the downstream price is
2(c— 1
Podte2leze)0+B) (17)

26+1

The break—even constraint is violated. For an interior solution in the
final good market, the optimal access charge is the constrained optimum,
Cp:

Cp [CE]
(482 +8B8+5) Q°+4(c—cg) (B+1)°
2 (4% +83+5)
(26 +3)\/ (48% + 86 +5) (Q9)* +4(c — cp)* (B + 1)°
2 (46% + 88 +5)

= A+

< A.
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Proof. (Proposition 5): Let € = ¢y —c¢ > 0. The optimal access pricing rule
A4 BEDGH2B)e—(1426)Q°

is summarized in the following table, where ca; =

(28+1)*
and &1 = A+ 3 (Q°—=(2+5)).
e< 2 ° e P Lol | o5 2
B < 2Qc—55—\/(2fec—7a)(2QC+a) NA, B <0 o>
2Q° —5e—+/(2Q°—7¢)(2Q°+¢) max {car, e [c + ]}
QQC*7€+4€(2Q°*€)(2Q0795) , car > A ca>A
<p< - <A
2Q°—7e+/(2Q°—¢) (2Q° —9e)
4e —
c c c CAI > A CA > A
<B< 2Q°—5e+ (2Q —7¢)(2Q¢%+¢)
2Q°— 5&+V«2Qc 75(2QC+5)
5 < Q 725 ca > A
@2 B < % i< A
B> % A—c¢

Table 1: Optimal access charge with cp = c+ €

For cg = c+e¢, it is never optimal for the regulator to set a c4 so low that
in equilibrium gr > 0 and ¢; = 0. Denote the critical c4 level above which
gr > 0and gg = 0 by ca, ca = A—i—%(QC—s(Q—{—B)). Note that ¢y > A
for 8 < % The downstream equilibrium is that for c4 < ¢4, gr > 0
and qg > 0. Otherwise, g; > 0 and gg = 0. For cs < ¢y, taking the FOC
of Equation 15 gives ¢y = A + e(B+1)(5+26)— (HM)Q . Let cay denote this

(26+1)°
optimal access charge for an interior downstream equilibrium. For ¢4 > ¢y,

the FOC gives ¢’y = A —¢c. car > ca if e > L?C For ¢ large enough, the
regulator has the incentive to push the solution into the corner solution such

that only the efficient incumbent produces. For ¢ < g, car < cq if

2Q° — 5e — 1/(2Q° — Te) (2Q° + ¢)

4e
—5 2Q° — 7¢) (2Q°
4e
Note that 29-=5¢= (24?:775)(262%5) <0ife < %.

car > Aife > %QC. Fore < %QC, car > Aif g > 2Q°Tet (2f€ £)(2Q 95).
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Finally, A —e > ca if 5 > %
c_ \/ﬁ
For ¢ < %QC and 8 < 2Q°Tet (£4€2Q )(9e—2Q ), car < A, P*[car] >

A+ ¢, and

cple+ €]

R L A M LR V(4587 +8845) (Q9) +4e2 (5 + 1)
_.I_

B 2 (4% +83+5)
<

For this parameter range, ¢, = max {car,cplc+¢]} <A =
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