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Inductive reasoning about unawareness�

Abstract

We develop a model of games with awareness that allows for di�erential levels of awareness. We show
that, for the standard modal logical interpretations of belief and awareness, a player cannot believe there
exist propositions of which he is unaware. Nevertheless, we argue that a boundedly rational individual
may regard the possibility that there exist propositions of which she is unaware as being supported by
inductive reasoning, based on past experience and consideration of the limited awareness of others. In
this paper, we provide a formal representation of inductive reasoning in the context of a dynamic game
with awareness. We show that, given di�erential awareness over time and between players, individuals
can derive inductive support for propositions expressing their own unawareness.
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1 Introduction

A number of recent papers (Dekel, Lipman and Rustichini 1998; Feinberg 2005; Halpern and

Rego 2006a;b, 2007; Heifetz, Meier and Schipper 2006, 2008) have examined decision problems

and strategic interactions in which boundedly rational participants are not aware of all relevant

possibilities.1 The fact that individuals are boundedly rational does not preclude sophisticated

reasoning. In particular, it is reasonable to suppose that, in many situations, people are conscious

of the fact that there may exist possibilities of which they are not aware, and may act on this

understanding.

Although there is now a large literature on decision making under conditions of limited aware-

ness, there is no agreement on how, if at all, propositions like `there exist propositions of which

I am currently unaware' can be justi�ed and used as a basis for decisions. In particular, for any

given de�nitions of knowledge and awareness, it is natural to ask whether an individual can know

that there exist propositions of which he is unaware (Halpern and Rego 2006a).

In this paper, we show that, for the standard modal logical interpretations of knowledge and

awareness, the answer to this question must be negative. Nevertheless, we argue that a boundedly

rational individual may regard the possibility that there exist propositions of which she is unaware

as being supported by inductive reasoning, based on past experience and consideration of the

limited awareness of others. The aim of this paper is to give some substance to a notion of

inductive reasoning consistent with bounded rationality and limited awareness.

The paper is organized as follows:

Section 2 presents a semantic representation of di�erential awareness in terms of extensive

games, following the approach of Osborne and Rubinstein (1994). The crucial idea is that of a

model, recursively de�ned in terms of a game for which at each history, the players are imputed a

model representing their own awareness of the game. It is shown that this recursion is �nite, and

terminates in a representation, referred to as a game of common awareness, in which all players are

imputed full awareness of the game in question. We show that the standard concept of sequential

equilibrium may be extended to the case of games with di�erential awareness, and demonstrate

the existence of a sequential equilibrium for the class of games modelled here. These ideas are

illustrated with reference to an example �rst presented by Heifetz, Meier and Schipper (2006).

Section 3 presents a syntactic rendition of the same ideas, associating with each model a

propositional language rich enough to specify all histories and sets of histories that arise in the

game associated with the given model. Within any such model, it is possible to de�ne belief and

awareness operators using a standard modal-logical approach, in which a proposition is believed

1 A more extensive bibliography is maintained at http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm
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by a player if it is true in all histories considered possible by that player.2 We show that, the

model is one in which individuals can hold false beliefs and (correctly or otherwise) impute false

beliefs to others.

In Section 4 the language is extended to include existential propositions of the general form

`there exists a proposition q, such that ...'. This development enables us to consider the process

of reasoning about awareness and unawareness. We show that, in the framework developed in

Section 3, and with the standard modal logical de�nitions of belief and awareness de�ned there, an

individual cannot believe that there there exist propositions of which he is unaware. Nevertheless,

this proposition can be formulated in the richer language we consider. Moreover, in the context of

games of di�erential awareness, it will be true, in general, that there exist propositions of which

individuals are aware. The critical question, then, is how this fact may be incorporated in the

reasoning of a boundedly rational, but sophisticated, individual.

In Section 5, we o�er an answer to this question based on the concept of inductive support.

Inductive support may be derived from past experience or from observation of others. We say that

a proposition is supported by historical induction if it has been (believed) true in the past, and

never been (believed) false. In particular, since everyone has the experience of becoming aware

of propositions and possibilities they have not previously considered, the proposition that they

will continue to do so is supported by historical induction. Similarly, a proposition which holds

true for at least some individuals, and is not false for any individual is supported by induction

over individuals. In a game of di�erential awareness, individuals believe that others are unaware

of at least some propositions. Inductive reasoning suggests that the same will be true of all

individuals, including the person undertaking the induction. The main results of the paper are

formal statements of these arguments. We argue that decisionmakers may reasonably choose

strategies subject to heuristic constraints that rule out actions if the propostion that these actions

will have unforeseen consequences is supported by induction. We develop this point to derive a

no-trade result for the speculative trade example developed previously.

In Section 6, we examine the relationship of this paper with previous work, and discuss possible

applications to the precautionary principle often advocated as a basis for regulatory decisions

regarding environmental risks. Finally, we o�er some concluding comments.

2 The operator de�ned here is more usually referred to as describing knowledge rather than belief. This is
appropriate in a game of complete awareness, where there can be no false knowledge. However, situations of
di�erential awareness allow the possibility of false belief. There may be histories not considered by the individual
in question, in which the proposition in question is false.
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2 Games and strategies: the semantic representation

2.1 Extensive games and restrictions

We follow Osborne and Rubinstein (1994) and Halpern and Rego (2006b) in modeling an extensive

game.

De�nition 1 A �nite extensive game is � = (N;A;H; P; fc; fIi : i 2 Ng; fvi : i 2 Ng) where:

G1 (Player Set): N = fc; 1; :::; ng is a �nite set of players, where c denotes the chance player and
n � 1;

G2 (Actions):A is a �nite non-empty set of actions;

G3 (Histories): H is a �nite non-empty subset of hi [
S1
m=1A

m where hi is the null sequence
and is viewed as a sub-history of every history. Moreover, if h�1; �2; :::; �ki 2 H, then for

each l � k the sub-history h�1; :::; �li is also in H. We denote the sub-history relationship

h�1; :::; �li � h�1; �2; :::; �ki: For a sequence h = h�1; :::; �ki, and an action �, we use h � h�i
to denote the extended sequence h�1; :::; �k; �i. We then can de�ne the set of available actions
Ah = f� 2 A : h � h�i 2 Hg: We partition the set of histories H into the set of decision histories

D and the set of terminal histories Z, where h 2 Z if and only if Ah = ?

G4 (Player Function): P : H ! N assigns to each history a player making a decision after that

history;

G5 (Chance Assignment): fc associates with every history h such that P (h) = c de�nes a proba-

bility distribution over Ah;

G6 (Information Partitions): For each player i 2 N � fcg, Ii :H ! 2H is a partition of H, such

that

(a) h 2 Ii (h)
(b) If P (h) = i and ~h 2 Ii (h) ; then P (~h) = i and Ah = A~h
(c) If ~h =2 Ii (h), then for any ~h0 � ~h; h0 � h; ~h0 =2 Ii (h0)(Perfect recall)

G7 (Payo�s): For each player i 2 N � fcg, vi : Z ! R is the payo� function for player i;

representing expected-utility preferences for lotteries over Z

With boundedly rational players, it is necessary to consider the possibility that, at some given

history h; player i = P (h), who must choose an action, may not be aware of all possible histories

in the game. For example, player i may be unaware of possible future moves available to other

players, to the chance player, or to herself. Player i may even be unaware of the existence of some

other players. We formalize this notion as follows.

De�nition 2 A game ~� = ( ~N; ~A; ~H; ~P ; ~fc; feIi : i 2 ~Ng; f~vi : i 2 Ng) is a restriction of �,
denoted ~� v �, if

3



R1 ~N � N
R2 ~A � A
R3 ~H � H such that ~Z � Z
R4 ~P : ~H ! ~N is the restriction of P to ~H

R5 For any h 2 ~H such that P (h) = c, ~fc (�) � ~fc (�) for all � 2 ~Ah (� Ah) :
R6 For any h 2 ~H, eIi (h) = ~H \ Ii (h)
R7 ~vi is the restriction of vi to ~Z.

R1 and R2 are implied by the discussion above. R3 ensures that subhistories and the subhistory

ordering are preserved in the sense that, for any h; ~h 2 H, such that ~h �� h; h 2 ~H =) ~h 2 ~H

and ~h �~� h. Further no new terminal nodes are created in the restricted game allowing us to

obtain the payo� function from the restriction of vi to ~Z, which is imposed by R7. R4 states

that the identity of the player to move is unchanged. R5 ensures that, if an action by nature is

excluded from consideration at h, the probability associated with that action is distributed over

the remaining actions � 2 A0h. R6 ensures that restriction does not add information, or lose

information with respect to histories of which the player is aware

An alternative approach, adopted by Grant and Quiggin (2006) is to consider bounded ratio-

nality as a generating a `coarsening' of the game structure. That is, one or more histories in the

complete game are mapped to a single history in the coarsened game. Both approaches have some

appeal as representations of bounded rationality. However, the restriction approach, in which

histories of which players are unaware are deleted from their representation, is more tractable.

2.2 Strategies

As in Osborne and Rubinstein, a pure strategy for player i assigns to each h such that P (h) = i;

and the associated information set Ii (h), an element ai 2 Ah: A behavioral strategy �i for player
i is a collection of independent probability measures

�
�i
�
Ii (h)

�
: P (h) = i

�
where the support of

each �i
�
Ii (h)

�
is a subset of Ah. That is, there is an independent probability measure speci�ed

for each information set controlled by player i. A behavioral strategy pro�le � is a set of behavioral

strategies, one for each i.

A continuation behavioral strategy �ih for player i at h is the restriction of a behavioral strategy

to the set
�
h0 2 H : h0 � h, for some h0 2 Ii (h)

	
, that is, the set of histories in H that pass

through the information set Ii (h). A continuation behavioral strategy pro�le �h is a set of

continuation strategies at h, one for each i. The set of all continuation behavioral strategies for i

at h is denoted Bih and the set of all continuation behavioral strategy pro�les at h is Bh.

4



2.3 Models and games with di�erential awareness

In a game where some players have bounded rationality, other players will, in general, be aware of

this possibility. Hence, the standard assumption of common knowledge must be replaced with a

structure in which each player imputes to the others a level of awareness which may change over

a given history. We formulate this using the concept of a model.

De�nition 3 A game with di�erential awareness G is a �nite partially ordered collection of mod-
els, with unique maximal element M; where models are de�ned recursively as follows:

A model M = (�M ; �M ) consists of

1. a game �M = (NM ; AM ;HM ; PM ; f
c
M
; fIiM : i 2 NMg; fviM : i 2 NMg) ;

2. a perception mapping �M : HM � NM ! G which maps each history h 2 HM and player

j 2 NM in the given model M to another model ~M = �M (h; j) ; such that

P1 � ~M v �M

P2 For any h0 2 IiM (h) ; �M (h; i) =M

P3 If h0 2 IjM (h) ; then �M (h0; j) = �M (h; j)

P4 For any h0; h
00 2 HM ; if h0 � h

00
;then ��M (h0;j) v ��M(h00 ;j) for all j 2 NM

P5 For all ~h 2 H ~M , h
0 2 IjM (h) \H ~M if ~h � h0; then � ~M

�
~h; j
�
= �M

�
~h; j
�
:

The properties of the perception mapping �M (�; �) are as follows:
P1 states that the game in each model is a restriction of the game in the model from which

it is derived. This property implies that the recursive construction of the game with di�erential

awareness as a sequence of models must eventually terminate in a model of common awareness

(de�ned in more detail below).

P2 states that for the case j = i; player i imputes her own model to herself at h:

P3 states that the model is the same for all elements of an information set.

P4 states that awareness cannot decrease over time

P5 is consistent imputation. If, at h; the model M (for i) imputes to player j a model ~M; and

an information set Ij~M = IjM (h) \H ~M , then for any subhistory h
00 of a history h0in Ij~M

�
~h
�
; the

model imputed by ~M to j at h00 must be the same as the model imputed by M to j at h00. That

is, informally speaking, the model i thinks j held at h00 must be the same as the model i thinks j

thinks j held at h00.

With a slight abuse of notation, we de�ne the ordering v on G as the transitive closure of the
relation generated by the requirement M 0 vM if M 0 = �M (h; j), for some h 2 �M .
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Since the game with di�erential awareness G is a �nite set of models, any maximal chain in
G must have both a minimal element under v, described below as a game of common awareness,
and a maximal element under v, namely M = (�;�) :

The recursive construction of the game with di�erential awareness may be described as follows.

The maximal modelMmay be regarded as representing the perspective of an unboundedly rational

external observer.

For each history h 2 H, and player i, the observer imputes to player i a perceived model of the
game � (h; i) =M = (�M ; �M ). Since players are always assumed boundedly rational, we require

� (h; i) @M for all h; i: That is, the subjective model � (h; i) available to player h at history i is

always considered distinct from the maximal model M:

The modelM; in turn, consists of the game �M v � and a perception mapping �M representing

i's beliefs about the awareness of all the players of whom she is aware (including herself).3 For

each history h 2 HM , this mapping imputes to each player j 2 NM a perceived model.

The recursive nature of the de�nition re
ects the fact that players may impute limited aware-

ness of the game to other players. The interpretation is that, at history h, the model �M (h; j)

is the perception of the game with di�erential awareness held by the player j: The restriction

�M 0 v �M re
ects the fact that, in the structure considered here, players can only impute to

other players an awareness that is equal to, or a restriction of, their own.

For each model M , the game �M is maximal under v with respect to the set f�M 0 :M 0 vMg
that is, the set of games in models that may be imputed to some player under M: Thus, in

modelling the game, each player puts themselves in the position of a maximally aware external

observer.

We have:

Lemma 1 Let � (h; i) = M . For any ~h 2 IiM (h) and any h0 2 HM such that h0 � ~h; we have

�M (h
0; i) =M:

Proof. From P2, �M

�
~h; i
�
=M: From P1 and P5, �M (h

0; i) = �M

�
~h; i
�
=M

That is, within the model M , players do not consider the possibility that they may become

more aware in the future, even though, by P4, the model captures the fact that awareness, in

general, increases over time.

Lemma 2 Fix M , and let ~M = �M (h; j) for h 2 HM and j 2 NM : For all ~h 2 H ~M ; I
j
~M

�
~h
�
=

IjM
�
~h
�
\H ~M :

Proof. From P1, � ~M v �M : Hence, by R6, Ij~M
�
~h
�
= IjM

�
~h
�
\H ~M as required.

3 For M = � (h; i) ; even if �M and � are identical, and the perception mappings are the same, we maintain a
distinction between M andM because the associated languages will di�er with respect to existential propositions.
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Lemma 2 states that no information is gained in the shift from M to ~M = �M (h; j). Further-

more no information is lost, except insofar as this is implied by unawareness of some histories

In general, models involve di�erential awareness. That is, for at least some h inM; �M (h; j) @
M; so that the player who is to move at h is only aware of some restriction of M: However, the

special case of common awareness is of particular interest.

De�nition 4 M is a model of common awareness if, for all h 2 HM and j 2 NM ; �M (h; j) =M

This de�nition implies that, for a model of common awareness M , (M 0 vM) ) (M 0 =M) :

Hence, any model of common awareness is minimal under v : Conversely, if a modelM is minimal

under v; then there cannot exist any ~M @M and hence there cannot exist h 2 HM and j 2 NM ;
�M (h; j) 6=M , so that M is a model of common awareness. We record this is a lemma.

Lemma 3 M is a model of common awareness if and only if it is minimal under v :

Note that if M is a model of common awareness, the associated game �M is a standard

extensive game. The minimal element in G must be a model of common awareness.

2.4 Strategies and equilibrium in games with di�erential awareness

In a game with di�erential awareness G, a strategy pro�le may be de�ned recursively. In this case,
rather than beginning with a maximal element of G, as in the recursive de�nition of a model, we
start with the minimal (in terms of the ordering v) elements of G, that is, with models of common
awareness. For this case, the de�nition of a strategy pro�le coincides with that of the standard

de�nition, since the game is common knowledge.

Hence, we are led to the following recursive de�nition.

De�nition 5 Let G be a game with di�erential awareness. A strategy pro�le � = (�M :M 2 G)
for G assigns to each model M 2 G, a behavioral strategy pro�le �M for the the game �M with the

consistency property: if �M (h; i) = M̂ where P (h) = i then �iM
�
IiM (h)

�
= �i

M̂

�
Ii
M̂
(h)
�
.

The de�nition of a strategy pro�le for a game with di�erential awareness di�ers from the

standard de�nition because, in general, players are not fully aware of the game. Each player must

impute a model, and a strategy pro�le consistent with that model to other players they regard as

incompletely aware. In addition, as players become more aware during the play of the game, the

de�nition requires that their behavioral strategies in the more complete model must be the same

for those earlier histories in which their model of the game was less complete.

For a model of common awareness M , the set of strategy pro�les subject to the consistency

requirement de�ne a strategy pro�le for the associated standard game �M . Conversely any stan-

dard behavioral strategy pro�le for a standard game de�nes a behavioral strategy pro�le for the

associated model of common awareness.
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Now consider a modelM , in which, for each pair (h; i) with PM (h) = i either �M (h; i) =M or

�M (h; i) = M̂ @M is a game of common awareness. Then, whenever �M (h; i) =M , the strategy

pro�le de�nes a probability measure on AM
�
IiM (h)

�
. On the other hand, if �M (h; i) = M̂ @ M

is a model of common awareness, then the �M̂ is a strategy pro�le for the associated standard

game �M̂ and therefore de�nes a probability measure on AM̂

�
Ii
M̂
(h)
�

� AM
�
IiM (h)

�
, and

the consistency property entails �iM
�
IiM (h)

�
= �i

M̂

�
Ii
M̂
(h)
�
. That is, the randomization over

actions for player i at her information set at h must be consistent with the model M̂ that the

model M imputes to player i at history h.

Proceeding recursively, we can build up the overall strategy pro�le � = (�M :M 2 G). Since
every model can be reduced to model of common awareness with a �nite number of applications

of �, the assignment is well-de�ned.

2.4.1 Beliefs, assessments and sequential rationality

De�nition 6 Let G be a game with di�erential awareness. A belief system
� =

��
�iM
�
i2NM

:M 2 G
�
for G assigns to each model M 2 G, and each individual i in the

associated game �M , a function �
i
M that assigns to each history h in HM , a probability measure on

the set of histories in IiM (h) with the consistency properties: (i) for any h0 in HM , if h0 2 IiM (h)
then �iM (h

0) = �iM (h) and (ii) if �M (h; i) = M̂ then �iM (h) = �
i
M̂
(h).

The interpretation of the probability measure �iM (h) is that for each history h
0 2 IiM (h),

�iM (h) [h
0] is the probability that player i assigns to history h0, conditional on the information set

IiM (h) being reached. Thus consistency condition (i) ensures that conditional on information set
IiM (h) being reached, player i's beliefs are the same no matter which history in IiM (h) actually
obtained. Condition (ii) requires that the beliefs imputed to player i in modelM at her information

set at h must be consistent with the model that model M imputes to player i at history h.

De�nition 7 Let G be a game with di�erential awareness. An assessment for G is a pair (�;�)
where � is strategy pro�le for G and � is a belief system for G.

We shall refer to a behavioral strategy pro�le � for the game of awareness G as being completely
mixed as can be done consistently if it assigns in each model M 2 G, each history h in HM , and
for the individual i for which PM (h) = i and �M (h; i) = M̂ , positive probability to every action

in AM̂

�
Ii
M̂
(h)
�
. That is, every action, consistent with the model M̂ that model M imputes to

player i at history h, has assigned positive weight.

De�nition 8 Let G be a game with di�erential awareness. An assessment (�;�) is consistent if
there exists a sequence of ((�n;�n))

1
n=1 that converges pointwise to (�;�) and has the property

that each strategy pro�le �n is as completely mixed as can be done consistently and that each belief

system �n is derived from �n using Bayes' rule.
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It just remains for us to de�ne the concept of sequential rationality for an assessment in a

game with di�erential awareness. To do this, �x an assessment (�;�) for the game of awareness

G and de�ne the outcome O (�M ; �M jI) of (�M ; �M ) conditional on information set I, to be the
distribution over terminal histories of the game �M associated with the modelM in G determined
by �M and �M conditional on I being reached.

Let ĥ = h�1; �2; :::; �Ki 2 ZM denote a terminal history of �M , and let ĥ
k = h�1; �2; :::; �ki,

k = 1; : : : ;K denote its subhistories. Now �x a history h 2 HM . According to model M , the
individual PM (h) will be choosing the action in that information set, but she is imputed to

be in the model M̂ := � (h; PM (h)) where she would perceive herself to be in the information

setIPM (h)
M̂

(h). Hence we have:

O
�
�M̂ ; �M̂ jI

PM (h)

M̂
(h)
� h
ĥ
i

=

8>><>>:
0 if h0 � ĥ) h0 =2 IPM (h)

M̂
(h)

�
PM (h)

M̂
(h)

h
ĥL
iQK�1

k=L �
PM̂(h

k)
M̂

[�k+1] if ĥL 2 IPM (h)
M̂

(h)

.

Given the a�ne utility function v
PM (h)

M̂
, the continuation expected utility imputed by the

model M for the individual PM (h) who makes the choice of action at information set IPM (h)M (h)

is therefore given by

v
PM (h)

M̂

�
O
�
�M ; �M jI

PM (h)
�(h;PM (h))

(h)
��

=
X
ĥ2ZM

v
PM (h)

M̂

�
ĥ
�
�O

�
�M̂ ; �M̂ jI

PM (h)

M̂
(h)
� h
ĥ
i
.

In a standard game, an assessment is deemed sequentially rational if for every player i and

every history h for which P (h) = i the strategy of player i is a best response to the other players'

strategies given i's belief at the information set Ii (h). That is, there are no strictly pro�table
deviations. But as is also well-known, to show that there are no strictly pro�table deviations, it is

su�cient to show there are no strictly pro�table one-shot deviations, that is, it is enough to show

that, at each information set, the conditional expected payo� cannot be increased by deviating

from the current strategy just at that information set.

For ease of exposition we shall adapt the requirement for no strictly pro�table one-shot de-

viations to extend the concept of sequential rationality to games of awareness. To evaluate the

pro�tability of a one-shot deviation, we need to be able to evaluate the expected utility for a

decision maker at a particular information set who selects a particular action available to her in

that information set and then follows the actions prescribed by the strategy pro�le �, thereafter.

So in the model M at history h 2 HM , PM (h) is imputed to be in the model M̂ := � (h; PM (h)),

and so she has available any action � in AM̂

�
IPM (h)
M̂

(h)
�
. She needs to consider the continuation

9



of the game for each of the histories
n
h0 � h�i : h0 2 IPM (h)

M̂

o
she considers as possible continuation

histories stemming from her choice of action �. More precisely, for each given h0 2 IPM (h)
M̂

(h),

she needs to consider the `outcome':

O

�
�M̂ ; �M̂ jI

PM̂(h
0�h�i)

�M̂(h0�h�i;PM̂ (h0�h�i))
(h0 � h�i)

�
.

This is the induced distribution over terminal nodes for
�
�M̂ ; �M̂

�
(the assessment for the model

M̂) conditional on the information set IPM̂(h
0�h�i)

�M̂(h0�h�i;PM̂ (h0�h�i))
(h0 � h�i) having been reached. The

action choice at this information set is controlled by the individual PM̂ (h
0 � h�i) who in turn is

imputed (by the model M̂) to be in the model �M̂
�
h0 � h�i; PM̂ (h0 � h�i)

�
. According to the beliefs

�, the probability that individual PM (h) is at history h
0 in the model M̂ is given by �

PM (h)

M̂
(h) [h0].

Thus her continuation expected utility from choosing the action � may be expressed as:X
h02IPM (h)

M̂
(h)

�
PM (h)

M̂
(h0)

X
ĥ2ZM

vPM (h)
�
ĥ
�
�O

�
�M̂ ; �M̂ jI

PM̂(h
0�h�i)

�M̂(h0�h�i;PM̂ (h0�h�i))
(h0 � h�i)

�h
ĥ
i
,

where M̂ = �M (h; PM (h)).

Putting this all together we have:

De�nition 9 Let G be a game with di�erential awareness. An assessment (�;�) is sequen-
tially rational if for each M 2 G and each h 2 HM , and setting M̂ := �M (h; PM (h)),

v
PM (h)

M̂

�
O
�
�M̂ ; �M̂ jI

PM (h)

M̂
(h)
��

�
X

h02IPM (h)

M̂
(h)

�
PM (h)

M̂
(h0)

X
ĥ2ZM

vPM (h)
�
ĥ
�
�O

�
�M̂ ; �M̂ jI

PM̂(h
0�h�i)

�M̂(h0�h�i;PM̂ (h0�h�i))
(h0 � h�i)

�h
ĥ
i
,

for all � 2 AM̂
�
IPM (h)
M̂

(h)
�
.

For the case of a model with common awareness, where � (h; i) = M for all (h; i), this is

equivalent to the standard de�nition of a sequential equilibrium.

2.5 Equilibrium and existence

De�nition 10 Let G be a game with di�erential awareness. An assessment (�;�) is a sequen-
tial equilibrium if it is sequentially rational and consistent.

We now demonstrate the existence of a sequential equilibrium for games with di�erential

awareness.

Proposition 4 A sequential equilibrium exists for any game with di�erential awareness.

10



Proof. De�ne the order n of a game G as the maximum length of a chain in G. We can now
derive the result by induction, starting with the observation that any maximal chain in a game

with di�erential awareness G must have, as its minimal element under v, a model of common
awareness.

For the case n = 1, G is a model with common awareness. A model with common awareness
corresponds to a standard �nite game with perfect recall and therefore the standard existence

result applies.

For the general case, suppose the result is true for n = 1:::N; and let G be of order n = 1:::N+1
with maximal model M and associated game �. Since the maximal model M is not accessible

to any of the players, the recursive construction of models ensures that for each h, � (P (h) ; h) =

M @M where M de�nes a game of order n. For each M in the latter class, choose an imputed

strategy pro�le that is a sequential equilibrium for M .

Now consider the game �0 in which, for each h such that � (P (h) ; h) @M; the move by player
j = P (h) is replaced by a move by Nature such that fc (h) = �

j
�(h;j);h the equilibrium strategy for

j in the game associated with ~M = � (h; j) :This is a game of common awareness, and therefore

the standard existence result applies. Further, the equilibrium derived in this way is a sequential

equilibrium for M as de�ned above. �.

2.6 Example

To illustrate the recursive construction of models, we adapt the speculative trade example of

Heifetz, Meier and Schipper (2006). In this example, a buyer (player 1) and an owner (player

2) may contract the sale of the owner's �rm at a price of 1. The value of the �rm depends on

two contingencies; the possibility of a lawsuit which would reduce the value by L and a business

opportunity which would increase the value by G. If neither occurs, the value remains unchanged

at 1. We represent the maximal game � as follows. Nature has two initial moves determining

whether the lawsuit and business opportunity arise. Before learning about Nature's moves, the

buyer chooses whether to make an o�er of 1. If an o�er is made, the owner chooses whether to

accept it, also before learning about Nature's moves. At the terminal nodes, players receive their

net payo�s and Nature's moves are revealed.

We �rst describe the game in the maximal model. The initial history is hi : Nature's �rst move
is a choice from the set f�n; �0g ; (innovation or null action). Nature's second move is a choice
from the set f�l; �0g (lawsuit or null action). So there are now four histories h�n; �`i ; h�n; �0i ;
h�0; �`i ; h�0; �0i ; forming an information set which we shall denote I1: At I1; player 1 chooses
from the set f�1; �0g (o�er 100 or null action). If 1 chooses �0, the game terminates. If 1 chooses
�1 the information set becomes I2 = fh�n; �`; �1i ; h�n; �0; �1i ; h�0; �`; �1i ; h�0; �0; �1ig and 2
chooses from the set f�A; �Rg (accept or reject the o�er). The maximal game is illustrated in

11



�gure 1.

<INSERT FIGURE 1 around here>

As in Heifetz, Meier and Schipper (2006), we suppose that the buyer is unaware of the pos-

sibility of a lawsuit while the seller is unaware of the possibility of an innovation. Thus, at each

non-terminal history h, the maximal model imputes to the buyer a model � (h; 1) =M1 =
�
�1; �1

�
.

In �1 all histories containing the move �` are deleted. Similarly, at each non-terminal history h,

the maximal model imputes to the owner a model � (h; 2) =M2 =
�
�2; �2

�
in which all histories

containing the move �n are deleted. The games are illustrated in �gures 2 and 3.

<INSERT FIGURES 2 and 3 here>

Both parties impute to the other a restriction of their own model. The buyer is unaware of the

lawsuit, and assumes the owner to be unaware of the innovation (at all non-terminal histories),

while the converse is true for the owner. The two restricted models denoted M12 = �1 (h; 2) and

M21 = �2 (h; 1) are identical, and will be denoted M3. Complete (that is, terminal) histories in

�3 begin with two null moves �0 by Nature, followed by the decisions of the two players. For all

histories h; and for j = 1; 2; �3 (h; j) = M3: That is, M3 as illustrated in �gure 4 is a model of

common awareness.

<INSERT FIGURE 4 around here>

We have not yet described the imputed model at terminal nodes in games other than M3.

Since Nature's moves are revealed, the players must become aware of histories incorporating those

moves, and of their own past unawareness, as well as that of the other player. Hence, for any

terminal history h that begins with h�n; �li and any player j; the maximal model imputes full
awareness of the game. That is � (h; j) =M0; where �0 = �:

By contrast, for terminal histories h beginning with h�n; �0i ; the owner must become aware of
the innovation, but there is no reason for the buyer to become aware of the unrealized possibility

of the lawsuit. Thus, for such histories, we have � (h; 1) =M1; � (h; 2) =M: The converse applies

for terminal histories h beginning with h�0; �`i ; so that � (h; 1) = M; � (h; 2) = M2: Histories

beginning with h�0; �0i produce no change in awareness when Nature's move is revealed, that is,
� (h; 1) =M1; � (h; 2) =M2:

Similarly, in the buyer's model M1; for terminal histories h in which Nature's move reveals

the innovation, the owner becomes aware of this and �1 (h; 2) = M1: But if the innovation does

not take place, the owner remains unaware and �1 (h; 2) = M12 = M3: The converse applies for

the owner.

12



Heifetz, Meier and Schipper (2006) propose a dominance principle that is su�cient to ensure

that trade takes place in this model. In our model this corresponds to a sequential equilibrium�
�̂; �̂

�
, in which

�1M (I1) [�1] = �1M1

�
I11
�
[�1] = �

1
M2

�
I21
�
[�1] = �

1
M3 (h�0; �0i) [�1] = 1

�2M (I2) [�A] = �2M1

�
I12
�
[�A] = �

2
M2

�
I21
�
[�A] = �

2
M3 (h�0; �0i) [�A] = 1

and

�1M (I1) [h�n; �0i] + �1M (I1) [h�n; �`i] = �1M1

�
I11
�
[h�n; �0i] > 0

�1M (I1) [h�0; �0i] + �1M (I1) [h�0; �`i] = �1M1

�
I11
�
[h�0; �0i] > 0

�2M1

�
I12
�
[h�n; �0; �1i] = 0

�2M1

�
I11
�
[h�0; �0; �1i] = �2M3 (h�0; �0; �1i) [h�0; �0; �1i] = 1

�2M (I2) [h�n; �`; �1i] + �2M (I2) [h�0; �`; �1i] = �2M2

�
I22
�
[h�0; �`; �1i] > 0

�2M (I2) [h�n; �0; �1i] + �2M (I2) [h�0; �0; �1i] = �2M2

�
I22
�
[h�0; �0; �1i] > 0

�1M2

�
I21
�
[h�0; �`i] = 0

�1M2

�
I21
�
[h�0; �0i] = �1M3 (h�0; �0i) [h�0; �0i] = 1.

To check sequential rationality, notice that at I11 = I1 \HM1 (in M1) the action �0 (no o�er)

leads to a payo� of zero for the buyer in all histories. The action �1 yields a net payo� of G in the

history h�n; �0; �1; �Ai and a net payo� of zero in all other histories (those where the innovation
is not realized or the owner rejects the o�er).

For the owner at I22 = I2 \HM2 (in M2) the action �A yields a sure net payo� of 0, while �R

yields a net payo� of �L for the history h�0; �`; �1; �Ri and 0 for h�0; �0; �1; �Ri : Finally, in M3

all actions yield the payo� pair (0; 0).

3 Models, propositions and languages: the syntactic repre-

sentation

Fix a game with di�erential awareness G with associated maximal elementM = (�;�) :With each

model M = (�M ; �M )2 G, we associate a syntactic structure, de�ned as propositions in a formal
language.

For any M 2 G, we begin with a set of elementary propositions PM . PM is the closure, under

standard logical operators _;^ and :; of the set fph : h 2 HMg ; where the elementary proposition
ph may be stated as `the current history is h'. Thus, the syntactic structure PM is directly related

to the game structure �M :

For p 2 PM , truth is relativized to histories h: for h 2 HM , the statement `p is true at h (in
the model M)' is written h j=M p. The relation j=M can be derived, using the standard rules
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of logic, from the elementary requirements h j=M ph and ~h j=M :ph for ~h 6= h, for h; ~h 2 HM :
Conversely, truth is determined by a valuation function VM : PM �HM ! fTrue; Falseg; where
VM (p; h) = True if and only if h j=M p: It is easy to check that truth values satisfy the usual

logical properties.

3.1 Time, belief and awareness

We now extend PM to a richer language QM which incorporates modal operators describing time,

belief and awareness. More precisely, QM is the closure of PM under the operators w; b, a and u

to be de�ned below.

First, the language QM includes a temporal operator wh for which the valuation is derived

from j=M and the structure of the game �M . The temporal operator w
h (read as `was true at h')

is de�ned as follows.

De�nition 11 Fix a model M 2 G. For any p 2 PM ; h; h0 2 HM ; h0 j=M whp if h � h0 and

h j=M p:

Interest in temporal operators derives from the fact that, under the de�nitions of j=M and

VM ; a given proposition p may be true at one history, but false at some subsequent history.
4 ,5

Next, we consider beliefs. A proposition is believed true by an individual in a given model, if

it is true in all histories in the information set imputed to the individual in the model. Hence we

have:

De�nition 12 Fix a model M 2 G, j 2 NM and h 2 HM . Let ~M = �M (h; j) and recall

Ij~M (h) = I
j
M (h) \H ~M is the information set imputed to j at h.

Then, h j=M bjp; if ~h j= ~M p for all ~h 2 Ij~M (h) . (bjp is read as `in the model
~M = �M (h; j)

imputed to j in the model M at h; j believes p)

In the special case ~M = M; the operator bjp corresponds to the standard modal de�nition of

the knowledge operator as in Halpern (2003). If ~M @ M; however, h j=M bjp is consistent with

h j=M :p: That is, proposition p may be false at the history h but true for all histories in the
information set Ij~M (h), given the model

~M imputed to j at h.6 Hence the model is one in which

individuals can hold false beliefs and (correctly or otherwise) impute false beliefs to others.

4 As will be shown below, the fact that the same proposition may be evaluated di�erently at h and at h0 for
h � h0 is crucial in considering inductive reasoning, which derives support for a proposition from the fact that it
has held true in the past. Induction would be trivial if propositions were evaluated on complete (terminal) histories
and invariant for subhistories.

5 On the use of temporal logic in game theory, see Bonanno (2001).

6 Under R6 above, this can only be true if h =2 H ~M , that is, if the actual history is one not considered by j (in
the model imputed to j by �M ):
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We can now derive syntactic notions of awareness and unawareness. The standard de�nition

of awareness is that an individual is aware of a proposition if they know its truth value, or know

that they do not know its truth value. Since the belief operator b corresponds to the knowledge

operator, we propose:

De�nition 13 Fix a model M 2 G and choose h 2 HM ; p 2 QM , and j 2 NM : Then h j=M ajp

if h j=M bjp _ bj:p _ bj (:bjp ^ :bj:p)

That is, j is aware of q in the model M , if, given the perceived model ~M imputed to j in the

model M , one of the following holds: (i) j believes p, (ii) j believes :p or (iii) j believes that she
does not hold a belief about p. (Notice that bjp _ bj:p _ bj (:bjp ^ :bj:p) may be stated more
compactly as bjp _ bj (:bjp)). We denote unawareness as the negation of awareness, that is, ujp
is a synonym for :ajp:
The construction of the operators w; b; a and u incorporates an extension of j=M from PM

to QM : Correspondingly, we can extend the valuation operator VM to the domain QM �HM by

setting VM (p; h) = True if and only if h j=M p; as before.

As can be inferred from the results of Dekel, Lipman and Rustichini (1998), for a partitional

information structure (which we have assumed), aip is trivially true when �M (h; j) = ~M =M .

Proposition 5 Fix a model M 2 G and history h 2 HM . For any j 2 NM such that �M (h; j) =

M , and any p 2 QM ; h j=M ajp: Conversely if p 2 QM �Q ~M and �M (h; j) = ~M; h j=M ujp.

Proof. For any p 2 QM ; let =M (p) = fh0 2 HM : VM (p; h
0) = Trueg : If IjM (h) � =M (p) ;

then h j=M bjp and otherwise h j=M :bjp: Since the information structure is partitional, :bjp)
bj (:bjp) so h j=M ajp as required.

For the converse, observe that by construction of j= ~M , we have h j= ~M p _ h j= ~M :p if, and
only if, p 2 Q ~M : Hence, from De�nition 12, bjp ) p 2 Q ~M and therefore, from De�nition 13;

ajp) p 2 Q ~M ) p =2 QM �Q ~M .

In particular, consider Q, the language associated with the maximal model M: For any M v
M; PM � P; so that QM � Q and (since M vM)

Q =
[

MvM
QM

It follows that for any M; p 2 QM , h 2 H; and i such that � (i; h) = M; such that �M = � we

have h j=M aip: That is, if individual i has access to the game �, she is aware of any proposition

expressible in any restriction �M :

Also, by P4, h0 � h 2 H; � (h0; i) v � (h; i) : Hence, if h0 j=M aip; then also h j=M aip; so that

the interpretation of P.4 as stating that awareness increases over time is justi�ed. If there is a

strict inclusion � (h0; i) @ � (h; i) then there exists p 2 PM such that h0 j=M uip ^ h j=M aip: If,
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in addition, h j=M bip, then individual i; at h; believes that her previous model did not include,

even as a possibility, the proposition p which she now believes to be true.

4 Existential propositions and unawareness

In this section we consider a question raised by Halpern and Rego (2006a): Can an individual

know (or, in our terminology, believe) that there exists a proposition of which he is unaware?

We show that, with the speci�cations of believe and awareness presented above, the answer to

this question is negative. We therefore consider alternative ways of representing the individual's

understanding of his limited awareness, and introduce a consciousness operator. We assume that

individuals are su�ciently sophisticated that they may reason about propositions of the general

form `there exist propositions, having some implications, of which I am currently unaware'.

4.1 The existential quanti�er

Although the language QM is su�cient to describe the model M; it is inadequate to describe

propositions a reasonable individual might entertain about models M� such that M @ M� and,

in particular, about the maximal model M: To describe such propositions we need an extended

language Q̂M which allows for reasoning about sets of propositions, some of which may not be

included in QM :

In addition to the logical and model operators used in the construction of QM ; the language

Q̂M incorporates the existential quanti�er 9, used in conjunction with a formula for substitution.
We de�ne Q̂M as logical closure of the union of QM with the set of existential propositions of the

form

9q 2 QM̂ (� (q)) ;

where M̂ 2
n
M : ~M vM

o
[M and � (q) is a Boolean combination of the free proposition q and

propositions in QM :
7 That is, the existential quanti�er 9 may be applied either to models that

are imputed to some player j at a history h in the model M; or to the maximal model M taken

to represent unbounded rationality.

As an illustration, for given p 2 QM we can write,

9q 2 QM̂ ((q ) p) ^ : (p) q))

which we may interpret as saying that there is some (non-equivalent) proposition q that implies

p. For example, in a criminal investigation, the fact that a person is classed as a suspect typically

means that, if some additional evidence were obtained, that person's guilt could be inferred.

However, investigators will not, in general, know the exact nature of the evidence they are looking

7 We thank Joe Halpern for suggesting this formulation of the existential quanti�er.

16



for. The evidence could be either propositional (X was at the scene of the crime) or epistemological

(X knew that the gun was loaded).

4.2 Beliefs about existential propositions

We �rst consider how the relation j=M and the function VM may be extended to Q̂M : We begin

by considering VM ; and propose the mapping V̂M : Q̂M �HM ! fTrue; False; Undecidedg : We
begin by observing that, for any Q ~M ; the existential proposition 9q 2 Q ~M ; � (q) may be rewritten

as

q� �
_

q2Q ~M

� (q) . (1)

Since Q ~M contains only �nitely many semantically distinct elements, this proposition may be

regarded as a �nite disjunction and therefore as an element of Q ~M :

For the maximal language Q; we have Q = Q̂ since every proposition in Q̂ may be regarded

as a �nite disjunction of elements of Q:

For any M such that ~M v M (and therefore Q ~M � QM ) the valuation VM may be derived

directly. V̂M (q
�; h) = True if VM (� (q) ; h) = True for some q 2 Q ~M ; and V̂M (q

�; h) = False

otherwise. More generally, if VM (� (q) ; h) = True for some q 2 Q ~M\QM ; then VM (q�; h) = True:
However, if Q ~M * QM ; then, for q 2 Q ~M � QM , and any h 2 HM neither VM (� (q) ; h) = True

nor VM (� (q) ; h) = False. Hence, in this case, we set V̂M (q
�; h) = Undecided:8

Now we can extend the relation j=M to Q̂M to state that, for h 2 HM ; q 2 Q̂M ; h j=M q

if and only if VM (q
�; h) = True: Otherwise we may write h 2M q: Note that for q 2 QM ;

h 2M q , h j=M :q; but this is not true for q 2 Q̂M in general.

Given the extension of the relation j=M to Q̂M ; the de�nitions of the modal operators w; b; a; u
also extend to Q̂M : The belief operator is of particular interest. From the argument above, we

have:

Lemma 6 (i) If for some p 2 QM ; h j=M bi� (p) ; then

h j=M bi (9q 2 QM (� (q))) :

(ii) If, for all p 2 QM ; h j=M :bi� (p) ; then

h j=M bi: (9q 2 QM (� (q))) :

On the other hand, suppose that the existential proposition p 2 Q̂M is not logically equivalent

to any elementary proposition p 2 QM . This means that no possible knowledge regarding primitive
propositions, that is, regarding current and past histories, is su�cient to infer the truth or falsity

of q: In this case, we say :biq:

8 Note that we regard as undecided propositions that may be tautologically true such as q� _ :q� if the
components q� are themselves undecided.
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4.3 Beliefs and unawareness

We now present a key result, showing that an individual can never believe (in the modal-logical

sense formalized above) that there exists a proposition of which he is unaware.

Proposition 7 For any h 2 HM ; and any ~M ;

h 2M bi (9q 2 Q ~M (uiq)) :

Proof. If ~M � M then by Proposition 5, h j=M :uip for all p 2 Q ~M ; so, by 6(ii), h j=M
:bi (9q 2 QM 0 (uiq)) ; which implies h 2M bi (9q 2 Q ~M (uiq)) :

If M � ~M; then V ((9q 2 Q ~M (uiq)) ; h) = Undecided; so h 2M (9q 2 Q ~M (uiq)) and, once

again, h 2M bi (9q 2 Q ~M (uiq)) :

Proposition 7 is central to our analysis and to the concerns of Halpern and Rêgo (2006a).

Halpern and Rêgo (2006a) raise the question of whether there exists an extension of the logic

of awareness such that it would be possible to say, for example, that an agent knows that there

exists a fact of which he is unaware, but of which some other agent is aware. Proposition 7 shows

that the belief operator bi which generates the set of propositions QM is not powerful enough to

permit statements of the form `I belief that there exists some proposition q of which I am currently

unaware'. Since, as we have shown, the belief operator in a model with di�erential awareness is the

analog of the knowledge operator in a model of common awareness, this result provides a negative

answer to the question raised by Halpern and Rêgo.

We must therefore consider whether a boundedly rational, but nevertheless sophisticated,

individual might be able to reason about their own limited awareness, using methods outside the

scope of the modal-logical framework considered thus far. One such method is that of induction.

5 Inductive reasoning about unawareness

We now address the central question for any account of limited awareness: in what sense can

an individual derive support, from experience or observation, for the proposition that there exist

propositions of which she is unaware?

We begin by considering reasoning based on historical induction. Informally, the principle

of historical (or temporal) induction states that if a proposition has been found to be true in

many past instances, this fact provides support for belief that it will hold true in the future. For

example, the fact that the proposition `the sun will rise tomorrow' was true yesterday, the day

before and the day before that and so on, provides inductive support for the belief that the same

proposition is true today.9

9 Notice that in changing the history to which the proposition refers we may also change the subjective model
and the temporal reference of terms like `tomorrow morning'.
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Formally, we state

De�nition 14 (support by historical induction) Fix a model M , q 2 bQM , h 2 HM and i

such that � (h; i) =M

(i) for at least some h0 � h; h j=M biw
h0q; and

(ii) for no h
00 � h; h j=M bi

�
wh

00
:q
�
;

then h j=M tiq [read as `at h individual i regards q as supported by historical induction'].

That is, suppose at history h that individual i believes q to have been true for some past h0 and

does not believe q to have been false for any past h00, then i regards q as supported by historical

induction.

The de�nition adopted here allows for inductive reasoning on the basis of limited evidence,

provided there is no discon�rming evidence. Consistent with this relatively modest requirement

for evidential support, we do not require that a proposition that is supported by induction be

believed true, but merely that it be regarded as possible.10

Our account of historical inductive reasoning about unawareness has a structure similar to

that of more familiar examples of historical induction. Over time, individuals become aware of

propositions that, previously, they have not considered. Thus, at any history h, individuals know

that there exist propositions of which they were unaware at some previous h0. That is, they

know that the existential proposition `there exists a proposition of which I am unaware' was true

at h0. Indeed, they know that this existential proposition has been true at all past histories,

except perhaps recent histories in a period in which no new propositions have been discovered.

Hence, the proposition that the future, like the past, will be characterized by the discovery of new

propositions, is supported by induction.11

Suppose that for h0 � h, individual i becomes aware of previously unconsidered propositions
in the course of the partial history from h0 to h, so that Q�M (h0;i) � Q�M (h;i) = QM where the

inclusion � is strict. Then for propositions q 2 Q�M (h;i) � Q�M (h0;i) we have h j=M aiq and

h j=M wh
0
ui (q). Further, these evaluations hold for any ~h 2 IjM (h), so

h j=M bi

�
9q 2 QM

�
aiq ^ wh

0
ui (q)

��
: (2)

10 Halpern (2003) discusses reasoning based on judgements about possibility, which may be, but need not be,
supported by induction. As shown by Halpern, reasoning based on concepts of possibility may be extended to
ordinal rankings of relative likelihood, yielding some, but not all, of the power of a fully-developed probabilistic
model. For example, a proposition known true at many past histories might be regarded as more likely than one
known true at only a single history as required by De�nition 14. We will not explore these issues here.

11 A closely related argument is prominent in philosophical debates over `realism', namely, the view that the
success of science re
ects its correspondence to objective truth. Critics such as Laudan (1981) argue on the basis
of historical experience that, since successful theories have been proven false in the past, the success of a theory
cannot be regarded as evidence for its truth. Similarly, in our analysis, the fact that models used with some
success in decisionmaking have nonetheless been discovered to be incomplete in the past supports the view that the
model currently held by any given decisionmaker is also unlikely to be complete. However, we allow for increasing
awareness over time, and therefore for a model of the world that gradually converges towards the true model.
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That is, individual i believes at ~h that there exist propositions that she is aware of now, but was

unaware of in the past. Then is,

De�nition 15 Fix M , i and h 2 HM , and suppose � (h; i) = M . If (2) holds for some h0 � h,
individual i displays increasing awareness at h.

We have established that individual i at h cannot express and therefore cannot believe (in

the modal logical sense of bi) propositions of the form 9q 2 Q�M (h) : ui (q), or their negations.
Nevertheless, given past experience of discovery, it seems reasonable to suppose that the individ-

ual may judge such propositions to be an appropriate basis for actions and decisions. Given the

dynamic temporal structure of the model developed here, it is natural to consider whether histor-

ical/temporal induction can be used as a basis for such judgements. Our next result provides a

positive answer to this question.

Proposition 8 Fix M , i and h 2 HM , and suppose � (h; i) =M . If individual i displays increas-
ing awareness at h, then h j=M ti (9q 2 Q : uiq).

Proof. Denote by q̂ the existential proposition 9q 2 Q : ui (q) ; for which the induction will be

undertaken at h. For any h0 � h consider the proposition wh0 (9q 2 Q (ui (q))). Let M = � (h; i),

M 0 = � (h0; i). By P1, M 0 vM .
If M 0 =M , then previous results show h j=M (:biq̂ ^ :bi:q̂)
If M 0 @M , then 9~q 2 QM �QM 0 � Q�QM 0 and hence h j=M biw

h0ui (~q), so h j=M biw
h0 q̂:

Hence provided that for some past h0, M 0 @M , we have h j=M tiq̂ as required.

That is, given non-trivial increasing awareness, the individual believes at h that, for at least

some h0 � h, the proposition 9q 2 Q (uiq) was true. On the other hand, this proposition can
never be known false. Hence, by historical induction, the individual judges that her awareness is

incomplete.

5.1 Induction over individuals

We have shown that, given the interpretations of b, a and u adopted here, which is consistent with

the framework of Heifetz, Meier and Schipper (2006), an individual i cannot believe that she may

in the future become aware of propositions of which she is currently unaware. Similarly, individual

i cannot believe that some other individual j is aware of propositions of which i is unaware. By

contrast, individual i can believe that j is unaware of propositions of which i is aware.

This point may also be expressed in terms of false beliefs. The individual can believe that other

individuals have false beliefs. But, within their own model, they cannot believe that they have

false beliefs. In particular, i can impute to j a model in which j falsely believes that i is unaware

of propositions of which j is aware. There is an obvious asymmetry here, about which boundedly
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rational (but sophisticated) individuals may reason. Thus, i may reason about propositions such

as `j is aware of some p of which I am unaware' and `my model of j's awareness is incomplete'.

The general principle of induction considered in the philosophical literature states that obser-

vations of members of some set S, all of which satisfy some property �, provide inductive support

for the proposition `All members of set S satisfy property �'. For example, if a number of ravens

are observed to be black, and none are observed to be any other color we derive inductive support

for the proposition `All ravens are black'.12 In the application here, the sets to which induction is

to be applied will consist of the set of individuals NM , and the properties will involve awareness

of propositions.

To formalize this idea in our notation, �x a model M . Let a propositional variable q (j),

containing the operators aj and uj , range over elements of Q̂M such that q
�
~j
�
is the proposition

in which each instance of aj in q (j) is replaced by a~j and each instance of uj is replaced by u~j ,

for ~j 2 NM .

De�nition 16 Fix a model M , an individual i and history h 2 HM , such that � (h; i) =M , and
a propositional variable q (j) in which

(i) for at least some j 2 NM , h j=M biq (j)

(ii) for all j 2 NM , h 2M bi:q (j)
then, h j=M ii (^j2NM

q (j)) [read as `at h individual i regards q (j) as supported by induction

over the set of individuals NM '].

Notice that, if ii (^j2NM
q (j)), then for any particular j 2 NM , iiq (j). That is, if a proposition

is inductively supported for the set of individuals NM , it is supported for any member of that set.

Proposition 9 Let � (h; i) =M . If M is not a model of common awareness then

(i) h j=M ii (9p 2 Q; uip)
(ii)h j=M ii (9p 2 Q; j 2 NM ; uip ^ ajp) :

Proof. (i) De�ne q (j) � 9p 2 Q;ujp. SinceM is not a model of common awareness, 9~j 2 NM ;
such that �M

�
h; ~j
�
= ~M @M . Hence, for this ~j, 9p 2 QM , h j=M u~jp. So (bearing in mind that

�M
�
~j; �
�
is constant on the information set Ij (h)), we have h j=M biq (j). On the other hand,

for any j (including i), we have by 7 h 2M bj (9p 2 Q; ujp). Hence, h j=M ii (9p 2 Q; uip) as
required.

(ii) De�ne q (j) � (9p 2 Q; j 2 NM ; uip ^ ajp). As in (i), since M is not a model of common

awareness, 9~j 2 NM , such that �M
�
h; ~j
�
= ~M @ M , where we recall that M is the model held

by i. Hence, for this ~j, 9p 2 QM , h j=M u~jp ^ aip. On the other hand, for any j, k (including i),
we have, by Proposition 7, h 2M bi (9p 2 Q; ujp) and hence h 2M bi (9p 2 Q; ujp ^ akp) :

12 As the famous example of black swans shows, inductive reasoning is never conclusive.
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Part (i) of Proposition 9 is similar in its structure to Proposition 14. Given the belief on the

part of i that some individuals are unaware of some propositions, and the absence of belief that

any individual is fully aware of all propositions in Q, inductive reasoning supports the proposition

that all individuals, including i herself, are unaware of some propositions.

If the future and past selves are considered as other agents, there is a natural linkage between

this idea and that of historical induction. The models held by the individual in the past were

restrictions of their current model, and this proposition is known to the individual at h. Similarly,

other individuals as modelled at h must have models that are restrictions of M .

Part (ii) takes the analysis a step further. In the case of a two-player game it may be seen

as an application of symmetry between individuals. Suppose i believes that the game is one

of di�erential awareness, in which there exist propositions and associated possible moves in the

game, of which she is aware but j is not. If she is sophisticated enough to consider the implications

of her own limited awareness, it is natural to entertain the converse possibility, that there exist

propositions and associated possible moves in the game, of which j is aware but i herself is not.

In summary, although the question raised by Halpern and Rêgo (2006a) may be answered in

the negative as regards the standard knowledge and awareness operators, inductive reasoning and

symmetry arguments can provide a basis for a judgement that others may be aware of possibilities

we have not considered.

5.2 Heuristic constraints and equilibrium

We develop a basis for making decisions that depend upon judgements about propositions that

cannot be expressed explicitly in the language of the model of that player but are nonetheless

supported either on historical inductive grounds or by induction over individuals. We refer to

these to as heuristic constraints.

A heuristic constraint for a particular player associated with a model is a rule precluding the

adoption by that player of an action whenever a certain proposition that involves the player taking

that action is supported either on historical inductive grounds or by induction over individuals.

For example, in the speculative trade example of Heifetz, Meier and Schipper (2006), we can

construct a heuristic constraint based on the proposition, `my opponent is aware of something

that I am not, and whatever it is, may result in me incurring a loss from trading with him.' The

corresponding heuristic constraint is not to engage in trade if the aforementioned proposition is

supported either on historical inductive grounds or by induction over individuals.

Formally we de�ne a heuristic constraint as follows.

De�nition 17 Fix a modelM , a history h in HM . For the player i = PM (h), let q� 2 QM denote

the proposition `i takes action � at IiM (h) and let � (q�) 2 Q̂M denote a Boolean combination of

q� and propositions in Q̂M . The heuristic constraint which precludes the adoption by player i of
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the action � 2 (AM )h at information set IiM (h) when the proposition � (q�) is supported either
on historical inductive grounds or by induction over individuals is denoted by:

NOT iM (� : h j=M ti� (q�) _ ii� (q�)) .

Imposing heuristic constraints on a game with di�erential awareness means that for any model

in which heuristic constraints may apply, the game associated with that model is taken to be the

restriction of the original game associated with that model obtained by deleting all histories that

contain any actions that are precluded by the heuristic constraints. As the modi�ed game is a

restriction of the original game, this means that its set of terminal histories are a subset of those

from the original game. This in turn implies that at any information set in the original game for

which a heuristic constraint precludes the choice of at least one action, there is at least one other

available action that is not precluded by any of the heuristic constraints that may apply. Putting

this all together we de�ne games with di�erential awareness subject to heuristic constraints as

follows.

De�nition 18 Fix G, a game with di�erential awareness, and �x H a set of heuristic constraints

to which models in G may be subject. We denote by bG = (G;H), the game with di�erential

awareness subject to heuristic constraints, in which for each model M 2 G, is associated the game
�̂M v �M , in which history h00 2 HM is not in ĤM , if there exists a history ~h in HM , such that

for i = PM

�
~h
�

(i) the heuristic constraint NOT iM

�
� : ~h j=M ti� (q�) _ ii� (q�)

�
is in H;

(ii) ~h j=M ti� (q�) _ ii� (q�) �M (h; i);
(iii) h0 � h00, where h0 = ~h0 � h�i, for some ~h0 2 IiM

�
~h
�
; and,

(iv) there exists �̂ in (AM )~h such that no heuristic constraint satisfying (i)-(iii) holds for �̂.

Condition (i) states the presence of the heuristic constraint. Condition (ii) states that the

required conditions for inductive justi�cation of � (q�) hold at ~h and condition (iii) requires that

the history h00 passes through ~h0 � h�i, for some ~h0 2 IiM
�
~h
�
. Finally, condition (iv), the existence

requirement, ensures that the set of actions available at ~h is non-empty.

We revise the de�nition of a strategy pro�le, so that in the model M in which heuristic

constraints may apply, the strategy pro�le is de�ned for the game �̂M . Thus, our recursive

de�nition of a strategy pro�le is modi�ed as follows.

De�nition 19 Let bG be a game with di�erential awareness and with models subject to heuristic
constraints. A strategy pro�le �̂ =

�
�̂M :M 2 bG� for bG assigns to each model M 2 bG a

behavioral strategy pro�le �̂M for the the game �̂M v �M , with the consistency property:
if for some h 2 ĤM , where P (h) = i; if �M (h; i) = M̂; then �iM

�
IiM (h)

�
= �i

M̂

�
Ii
M̂
(h)
�
.
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The de�nitions of belief systems, assessments and sequential rationality from section 2.4.1 can

be modi�ed accordingly with each instance of the game �M for model M , being replaced by the

restricted game �̂M that excludes all histories that are precluded by the adoption of the heuristic

constraints. Thus we can extend the de�nition of a sequential equilibrium to apply to games

with di�erential awareness subject to heuristic constraints. And as an immediate corollary to

Proposition 4, we have:

Corollary 10 A sequential equilibrium exists for any game with di�erential awareness subject to

heuristic constraints.

5.3 Example Part 2:

We now return to the speculative trade example of Heifetz, Meier and Schipper (2006). By

Proposition 9, for each party i = 1; 2, the proposition 9q 2 Q (ujq ^ aiq) is true for j 6= i.

Moreover, in the given example, the proposition can be extended to

� (q�i) � 9q 2 Q
�
ujq ^ aiq ^

�
q ) qjloss

��
, (3)

where �j is the action necessary for j to take in order to transact with i and qjloss is the proposition

the transaction produces a loss for j.13

Now let party i consider the proposition 9q 2 Q (uiq ^ ajq), that is, that there exists a propo-
sition of which she is unaware, but the other party is aware. As shown above, inductive reasoning,

embodying the idea of symmetry, provides support by induction over the set of individuals for the

existential proposition 9q 2 Q
�
uiq ^ ajq ^

�
q ) qiloss

��
, so we have for both h1 = h�0; �0i and

h2 = h�0; �0; �1i,
hi j=Mi ii� (q�i) .

Hence the heuristic constraint

Hi = NOT
�
�i : h j=M ii� (q�i)

�
precludes the adoption of �i by party i. That is, the decision by i to participate in the transaction

is precluded by this heuristic principle. Hence, if either the buyer adopts the principle H1 or the

owner adopts the principle H2, the transaction will not take place.

Now compare the dominance principle proposed by Heifetz, Meier and Schipper (2006). Heifetz,

Meier and Schipper propose that if (i) in all histories h0 an agent considers possible at h, action

� leads to at least as good an outcome as �0, and (ii) in some possible history, action � leads to a

13 Recall in the speci�cation of the game that for party 1 the buyer, �1 corresponds to the action `make an o�er

of 1' (action �1 in �gures 1{4) and for party 2, the owner, �2 is the action `accept the o�er of 1' (action �A in
�gures 1{4).
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better outcome, then the agent should choose �. As shown above, this principle leads the players

to engage in trade, even though the trade is zero-sum.

In the given example, this principle does not appear compelling. Even though this condition is

satis�ed for the modal-logical interpretation of `considers possible' (namely h0 2 Ii (h)), observa-
tion of the limited awareness of other individuals, combined with principles of symmetry between

individuals, provides inductive support for the proposition in equation (3). Note that, evaluated

in the maximal model, (3) is in fact true for both individuals.

6 Related literature

Our construction of the game with di�erential awareness G is close to that of Halpern and Rego
(2006b, 2007) and Heifetz, Meier and Schipper (2006, 2009). Although we follow Halpern and

Rego (2006b) in using an Osborne{Rubinstein setup for the games �M , our recursive construction

of G is closer to the approach adopted by Heifetz, Meier and Schipper (2008).
The associated family of languages fQM :M 2 Gg is related to the corresponding set of games

f�M :M 2 Gg in a way that is broadly similar to the syntax of awareness developed by Halpern
and Rego (2008). Moreover, our awareness operator satis�es the properties postulated by Feinberg

(2005).

However, our construction of Q̂M represents an approach to reasoning about unawareness

quite di�erent from that proposed by Halpern and Rego (2007) and endorsed by Heifetz, Meier

and Schipper (2008). This di�erence in turn re
ects the fact, that these authors are primarily

concerned with the extension of Bayes{Nash solution concepts for games of common awareness to

the case of games of di�erential awareness. In this setting, it is natural to propose, as do Halpern

and Rego (2007), that awareness of one's own unawareness should be modelled by incorporating

`virtual moves' in the game tree to represent possibilities of which one is unaware. Thus, at each

history in the model, all players act as if they (though perhaps not all other players) are fully

aware of the game, as represented by the augmented structure incorporating virtual actions. In

their equilibrium choices, players make no distinction between the moves in the maximal game of

which they are aware and the additional virtual moves that have been added to take account of

their bounded awareness.

By contrast, we are concerned with the idea that consciousness of one's limited awareness may

reasonably be seen as a constraint on the adoption of Bayes{Nash reasoning and solution concepts.

That is, if an individual does not believe that they have considered all relevant possibilities, they

may be unwilling to commit to a path of action that would be optimal if their awareness were

complete. As we show in Grant and Quiggin (2008), unawareness does not preclude the possibility,

under appropriate `small world' conditions, that it may be appropriate to apply Bayes{Nash

reasoning to particular decision problems. However, as has been shown here, there is, in general,
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an important role for inductive modes of reasoning that cannot simply be reduced to Bayesian

decision theory.

7 The precautionary principle

The precautionary principle, presented as a guide to environmental policy decisions in the presence

of uncertainty, has been the subject of vigorous debate (Wingspread 1998). However, discussion of

the principle as a decision-theoretic rule has mostly relied on the (normally implicit) assumption

that decision makers are unboundedly rational and aware of all possible contingencies. In this

context, the precautionary principle has been criticized as involving inconsistency (Marchant and

Mossman 2005, Sunstein 2005) or excessive risk aversion (Miller and Conko 2005) and defended

as a way of capturing option value (Gollier, Jullien and Treich 2000). It is evident, however, that

in a fully speci�ed decision-theoretic model, with all contingencies taken into account, and an

appropriately speci�ed objective function, there should be no need for additional heuristic rules

such as those of the precautionary principle.

When the limited awareness of participants in decision processes is taken into account, however,

the precautionary principle seems more appealing. Given the bounded rationality of human agents,

it is impossible to enumerate all relevant possibilities. This point is sometimes expressed with

reference to `unknown unknowns', that is, relevant possibilities of which we are unaware.

The case for the precautionary principle arises when a decisionmaker, such as a regulator, is

faced with a choice between alternatives, one of which leads to consequences for which the relevant

elements of the state space are well understood and the other which leads to consequences that

depend to a signi�cant extent on `unknown unknowns'. If most surprises are unpleasant, a risk

analysis based only on known risks will underestimate the costs of choices of the second kind.

That is, standard risk analysis leads to a bias in favour of taking chances on poorly-understood

risks. The precautionary principle may be seen as a rule designed to o�set such biases.

In a multi-agent context, regulatory decisions typically involved assessment of proposed actions

seen as raising possible risks. In this context, the precautionary principle may be understood, as a

procedural constraint, putting the burden of proof on to proponents of decisions involving poorly-

understood risks. If the proponent can provide su�cient information to satisfy the regulator that

all relevant contingencies have been considered, standard principles of decision analysis may be

applied to justify a proposal. If not, the regulator may choose to apply the precautionary principle

and reject the project even in the absence of a negative bene�t{cost evaluation.

26



8 Concluding comments

We have shown that, under plausible conditions induction from past experience, or from observa-

tion of others, supports the belief that there exist possibilities of which we are unaware. Given

that belief, we may choose to replace or supplement Bayes{Nash reasoning with heuristic rules of

behavior. Once this possibility is admitted, it is evident that the decision as to whether to apply

Bayes{Nash reasoning or heuristic rules in a given instance must itself be governed by heuristic

considerations (since otherwise the entire process would collapse to a more complicated version

of Bayes{Nash). In this context, our approach may be interpreted as an attempt to address the

question of when it is (in)appropriate for boundedly rational individuals to adopt Bayes{Nash

reasoning (see also Grant and Quiggin 2008)

Where players consider that they are fully aware of all relevant moves, the model's predictions

correspond with those of the standard Bayes{Nash equilibrium, after taking account of the possible

unawareness of other players of moves available to them. On the other hand where players judge,

for example on the basis of induction from past experience, that there may exist actions they have

not considered, our model allows for a wide range of possible responses.
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Figure 1: The maximal game � which starts at the chance node in the center.
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Figure 2: �1; the Game the Buyer Perceives He is Playing, which starts at the chance node in the
middle.
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Figure 3: �2; the game the owner perceives she is playing, which starts at the chance node on the
left.
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Figure 4: �3, the game of common awareness for the two players, which starts at the chance node
on the left.
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