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Two-parameter representations of preferences under uncertainty, such as mean-variance

preferences (Tobin 1958, Markowitz 1959), are naturally appealing. Most importantly, they

correspond directly to the natural interpretation of choice under uncertainty as a trade-off be-

tween risk and expected return. Such preferences also yield relatively tractable comparative-

static analysis and form the basis of the highly successful capital asset pricing model (CAPM)

(Sharpe 1964, Lintner 1965).

Quiggin and Chambers (2004) derive conditions under which preferences can be charac-

terized in terms of a preference function with two arguments, the mean and an index of risk

that is sublinear (positively linearly homogeneous and subadditive) in deviations from that

mean. The best-known example of such a risk index is the standard deviation, which gives

rise to mean-variance preferences. However, more general risk indexes, incorporating, for

example, skewness and higher moments may also be represented in this form. Thus, because

investors seem to display a preference for skewness, this extended class of models potentially

solves an important problem that is frequently associated with mean-variance preferences.

The central idea of Quiggin and Chambers (2004) is to replace concepts of constant

absolute and relative risk aversion, defined over the stochastic return space, with the less

demanding requirement that rankings of equal-mean random variables are unaffected by

radial expansions and by translations in the direction of the constant act. The concepts

of constant absolute risk aversion and constant relative risk aversion correspond exactly to

the imposition of translation homotheticity and radial homotheticity, respectively, upon the

preference functional over stochastic outcomes. Quiggin and Chambers (2004) generalize

by imposing these properties only over equal-mean returns. They refer to such preferences

as invariant, and show that they can be characterized by preferences over the mean and a

risk index. However, because the probability measure determining the mean is exogenously

given in this framework, invariant preferences necessarily presume the existence of a known

(unique) probability measure.

In reality, however, there is considerable disagreement over the probabilities of relevant

events, and many decisionmakers may not possess well-defined probability distributions over

events. Evidence comes from both the market place, where, for example, experts can differ

widely in their assessment of the probabilities of common market events such as recessions,
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and from the laboratory, where empirical evidence rather routinely questions the existence of

probablistically sophisticated preferences. In particular, it appears doubtful that beliefs can

be represented by probabilities derived from historical relative frequencies, as is standard in

empirical applications of mean-variance theory. In the literature on choice under uncertainty,

situations of this kind are commonly analyzed in terms of ambiguity (Ellsberg 1961).

There have been very many contributions to this literature. Maccheroni, Marinacci and

Rustichini (2006) presented a model of variational preferences, in which preferences are

characterized by a utility function u on outcomes and an ambiguity index c on the set of

probabilities on the states of the world. Preferences of the kind described by Maccheroni,

Marinacci and Rustichini (2006) can satisfy the translation invariance property of Quiggin

and Chambers (2004). The relationship between the two models is explored further by Grant

and Polak (2007).

In this paper, we generalize the model of Quiggin and Chambers (2004) to allow for

ambiguity, and derive conditions, referred to as generalized invariance, under which a two-

argument representation of preferences may be obtained independent of the existence of

a unique probability measure. The first of these two arguments inherits the properties of

standard means, namely, that they are upper semi-continuous, translatable and positively

linearly homogeneous. But instead of being additive, these generalized means are superad-

ditive. Superadditivity allows for means that are computed (conservatively) with respect to

a set of prior probability measures rather than a singleton probability measure. The second

argument of the preference structure is a further generalization of the risk index derived

in Quiggin and Chambers (2004). It is sublinear in deviations from the generalized mean

discussed above.

The paper is organized as follows. After setting up the notation, we state axioms that

give rise to a generalized model of uncertainty with multiple priors. The axioms are weaker

than those of Gilboa and Schmeidler (1989). Next, we show that these preference give rise

to the generalized invariance property, and derive a representation theorem that yields a

two-parameter representation of preferences. Finally, we show how the two-parameter repre-

sentation can be used to provide tractable concepts of comparative aversion to uncertainty as

well as a very tractable analytic framework upon which to base comparative-static analysis,
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even in the absence of well-defined subjective probabilities.

1 Notation and background

The stochastic setting is modelled by a measurable space, Ω = (S,Σ) , where S represents

the set of states of Nature and Σ represents an algebra of measurable events. Probability

measures on Σ are denoted by π ∈ ∆ where ∆ is the probability simplex. Preferences are

defined over acts, represented by measurable mappings from S to a space X of consequences,

where X ⊆ RM . X is assumed to be an unbounded, closed, convex cone that contains the

origin, 0 ∈ RM .

A random variable, f̃ , can be thought of as the element of XS defined by

f̃ = [f (s) : s ∈ S] ,

where f : S → X is the measurable map defining the random variable. We adopt the

standard abuse of notation by which, for any x ∈ X, we also let x denote the constant act

such that

x (s) = x, ∀s ∈ S.

The set of all measurable mappings f : S → X is denoted F .

2 Axioms

We assume the existence of a preference ordering � on F with properties described by the

axioms given below. The asymmetric and symmetric components of the preference ordering

are denoted, respectively, � and ∼. The preference ordering � on F induces an ordering on

X, �X .(The subscript will be dropped except where ambiguity is likely.)

Denote

Π∗% =
{
π ∈ ∆ : π′f̃ % f̃ for all f̃ ∈ F

}
.

Π∗% is the set of priors for which the standard mean generated by the given prior for each

act is at least weakly preferred to the act itself. Hence, Π∗% corresponds intuitively to the
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set of priors (possibly empty) for which the decisionmaker is risk averse in its usual sense.

For f̃ ∈ F define:

µ
(
f̃ ; Π∗%

)
=
{
πo′f̃ : πo ∈ cl

(
Π∗%

)
, π′f̃ � πo′f̃ for all π ∈ Π∗%

}
if Π∗% is non-empty and x otherwise. Observe that µ

(
f̃ ; Π∗%

)
may not be a singleton, but

that if x, x′ ∈ µ
(
f̃ ; Π∗%

)
, then necessarily x ∼ x′. µ

(
f̃ ; Π∗%

)
is the least preferred mean

value of the act f̃ generated from Π∗%. Hence, it has a straightforward interpretation as a

generalized mean value. If Π∗% is nonempty, µ
(
f̃ ; Π∗%

)
� f̃ .

We impose the following properties on �:

Axiom 1 A.1 Weak order: If f̃ , g̃, h̃ ∈ F then

(a) either f̃ � g̃ or g̃ � f̃ (completeness)

(b) f̃ � g̃ and g̃ � h̃⇒ f̃ � h̃.

Axiom 2 A.2 Continuity: If f̃ , g̃, h̃ ∈ F , x ∈ X, the sets
{
α ∈ [0, 1] : αf̃ + (1− α)x � αg̃ + (1− α)x

}
and

{
α ∈ [0, 1] : h̃ � αg̃ + (1− α)x

}
are closed.

Axiom 3 A.3 Monotonicity: If f̃ , g̃ ∈ F and f (s) �X g (s) ,∀s ∈ S, then f̃ � g̃. If

f (s) �X g (s) ,∀s ∈ S, then f̃ � g̃.

Axiom 4 A.4 Uncertainty aversion: If f̃ , g̃ ∈ F and α ∈ (0, 1)

f̃ ∼ g̃ ⇒ αf̃ + (1− α) g̃ � f̃ .

Axiom 5 A.5 Non-degeneracy: f̃ � g̃ for some f̃ , g̃

Axiom 6 A.6 Equal-mean certainty independence: For x ∈ X, α ∈ (0, 1) and f̃ , g̃ ∈ F such

that µ
(
f̃ ; Π∗%

)
∼ µ

(
g̃; Π∗%

)
,

f̃ � g̃ ⇔ αf̃ + (1− α)x � αg̃ + (1− α)x.

A.1 to A.6 ensure that Π∗% is closed (A.2), convex (A.1 and A.4), and non-empty (oth-

erwise A.6 would give rise to a contradiction). In what follows, for the sake of a compact

notation, we shall write µ
(
f̃ ; Π∗%

)
as µ∗

(
f̃
)
.
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Except for A.6., which we have labelled equal-mean certainty independence, these prop-

erties are the same as in Gilboa and Schmeidler (1989) and Maccheroni, Marinacci and Rus-

tichini (2006). Gilboa and Schmeidler’s (1989) version of certainty independence requires for

x ∈ X, α ∈ (0, 1) , and f̃ , g̃ ∈ F

f̃ � g̃ ⇔ αf̃ + (1− α)x � αg̃ + (1− α)x

Thus, A.6 is strictly weaker than the corresponding axiom of Gilboa and Schmeidler (1989) by

virtue of the restriction to f̃ , g̃ ∈ F such that µ∗
(
f̃
)
∼ µ∗ (g̃) . While A.6 is strictly weaker

than the corresponding axiom of Gilboa and Schmeidler, it still has important consequences.

For example,

Lemma 7 If preferences satisfy A.1 and A.6, for x, y, z ∈ X, α ∈ (0, 1) ,

x ∼ y ⇔ αx+ (1− α) z ∼ αy + (1− α) z.

Lemma 7, which Gilboa and Schmeidler (1989) preferences also satisfy, has a number

of implications. First, by taking α = 1
2

it establishes that, for constant acts, preferences

satisfying our axioms also satisfy the Herstein and Milnor (1953) axioms for the existence of

an affine utility structure that maps X to the reals. Second, by taking z to be either x or

y, it implies that indifference surfaces are linear over constant acts. Moreover, because we

explicitly assume 0 ∈ X, Lemma 7 implies for x, y ∈ X, and β > 0 that

x ∼ y ⇔ βx ∼ βy.

Preferences over constant acts must be radially homothetic with linear indifference surfaces.

Maccheroni, Marinacci and Rustichini (2006) adopt an alternative weakening of the

Gilboa–Schmeidler certainty-independence axiom, namely that for all f̃ , g̃ ∈ F , x, y ∈ X

and α ∈ (0, 1]

αf̃ + (1− α)x � αg̃ + (1− α)x⇒ αf̃ + (1− α) y � αg̃ + (1− α) y

It can be shown (Maccheroni, Marinacci and Rustichini 2006)) that Gilboa and Schmeidler’s

(1989) certainty-independence axiom can be recast as follows for all x, y ∈ X, α, β ∈ (0, 1]

and f̃ , g̃ ∈ F :

αf̃ + (1− α)x � αg̃ + (1− α)x⇒ βf̃ + (1− β)x � βg̃ + (1− β)x.
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Hence, as Maccheroni, Marinacci, and Rustichini (2006) put it, the Gilboa and Schmeidler

(1989) independence axiom requires two forms of preference independence: independence

when mixing with constant acts, and independence with respect to the mixing parameter.1

Their reformulation retains independence when mixing with constant acts, but not inde-

pendence with respect to the mixing parameter. Our version of certainty independence

requires independence when mixing random acts possessing indifferent generalized means

with constant acts as well as independence with respect to the mixing parameter (again over

indifferent generalized means).

2.1 Utility space

Under the stated assumptions, the analysis may be undertaken in utility space. We have

Lemma 8 If preferences satisfy A.1–A.6, there exists a utility function u : X → R such

that: u (tx) = tu (x) , t > 0; u (x) ≥ u (y)⇔ x � y; and u (x+ y) = u (x) + u (y) .

Note that this is slightly stronger than the corresponding result in Gilboa and Schmei-

dler (1989) because our assumptions ensure that X contains the origin, so that with an

appropriate normalization, u is linear rather than merely affine.

Given a utility function u : X → R, representing �, there is an induced mapping from

F to U ⊆ RS, where

U =
{
ũ ∈ RS : ũ = u ◦ f̃ , f̃ ∈ F

}
.

In what follows, we use the shorthand notation

ũ
(
f̃
)
≡ u ◦ f̃

so that the realization of ũ
(
f̃
)

in state s is u
(
f̃ (s)

)
. Conversely, the original preference

relation over F induces a unique preference relationship over U , which with a minor abuse

of notation is again denoted �, satisfying, for f̃ , g̃ ∈ F

ũ
(
f̃
)
� ũ (g̃)⇔ f̃ � g̃.

1Ghirardato, Maccheroni, and Marinacci (2005) elaborate on the role that certainty independence plays

in the separation of beliefs and tastes for general preference structures.
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Thus, axiom A.2 has a natural interpretation in utility space. More generally, the proper-

ties A.1–A.6 are inherited by � over U. Given the existence of a well-defined utility function

and a generalized mean, the analysis of the properties of preferences may be undertaken in

utility space. Denote by 1̃ ∈ RS the unit vector with all entries equal to 1.

The generalized mean µ∗ : F → X, by Lemma 8, induces a corresponding generalized

mean on U in the obvious way.

µ∗
(
ũ
(
f̃
))

=
{
πo′ũ

(
f̃
)

: πo ∈ Π∗%, π
′ũ
(
f̃
)
� πo′ũ

(
f̃
)

for all π ∈ Π∗%

}
=

{
πo′ũ

(
f̃
)

: πo ∈ Π∗%, π
′ũ
(
f̃
)
≥ πo′ũ

(
f̃
)

for all π ∈ Π∗%

}
= min

{
π′ũ
(
f̃
)

: π ∈ Π∗%

}
.

Thus, µ∗
(
ũ
(
f̃
))

can be recognized as the (lower) support function for the closed, convex set

Π∗%. Hence, it is upper semi-continuous, positively linearly homogeneous, and superadditive

in ũ. It also satisfies µ∗ (ũ+ δ) = µ∗ (ũ) + δ.

3 Generalized invariance and multiple priors

In this section, we show that preferences satisfying Axioms A.1 to A.6 satisfy a generalized

version of the Quiggin and Chambers (2004) notion of invariance, which we refer to as

generalized invariant preferences. We characterize that notion geometrically in terms of the

preference maps showing that it is equivalent to imposing both constant risk aversion and

constant relative risk aversion across indifferent mean returns. This geometric discussion

emphasizes the role that restrictions on preference maps over stochastic outcomes play in

inducing small parameter representations of preferences. Define

V (ũ) = {ũ′ ∈ U : ũ′ � ũ} .

Lemma 9 Under Axioms A.1 to A.6. V (ũ) satisfies:

1. (a) Either ũ′ ∈ V (ũ) or ũ ∈ V (ũ′) , (b) ũ′ � ũ⇔ V (ũ′) ⊆ V (ũ) ;

2. V (ũ) is closed;

3. ũ′ ≥ ũ⇒ V (ũ′) ⊆ V (ũ) ;
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4. if ũ′ ∼ ũ, αũ′ + (1− α) ũ ∈ V (ũ) for α ∈ (0, 1);

5. V (ũ) has non-empty interior for some ũ;

6. µ∗ (ũ) ∈ V (ũ) for all ũ ∈ U ; and

7. for µ∗ (ũ) ∼ µ∗ (ũ′) , δ ∈ R, and α ∈ (0, 1) , ũ′ ∈ V (ũ) ⇔ αũ′ + (1− α) δ ∈

V (αũ+ (1− α) δ) .

Upon defining,

Mµ (α) ≡ {ũ ∈ F : µ∗ (ũ) ∼ α} ,

Kµ (ũ) ≡ V (ũ) ∩Mµ (µ∗ (ũ)) ,

Lemma 9 immediately gives

Proposition 10 Under Axioms A.1 to A.6, preferences satisfy:

i) generalized radial invariance

Kµ (tũ) = tKµ (ũ) , t > 0;

ii) generalized multiplicative spread invariance

Kµ (αũ+ (1− α)µ∗(ũ)) = Kµ (αũ) + (1− α)µ∗(ũ)1̃, α ∈ (0, 1) ; and

iii) generalized translation invariance

Kµ (ũ+ δ) = Kµ (ũ) + δ1̃, δ ∈ <.

Proposition 10 demonstrates that preferences satisfying Axioms A.1 to A.6 satisfy the

natural extension of Quiggin and Chambers (2004) concept of invariant preferences that

replaces a mean calculated with a singleton prior with µ∗. Thus, we shall refer to preferences

satisfying the conditions in Proposition 10 as being generalized invariant in what follows.

4 Representation theorem

We now show that generalized invariant preferences admit a simple two-parameter repre-

sentation. The primary argument in favor of two-parameter representations of preferences,
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such as the mean-variance framework, is the analytic tractability offered by a simple decom-

position of preferences into a pure wealth component (the mean) and a pure risk component

(the variance). A similar degree of tractability only became available in expected-utility

models when notions of constant absolute risk aversion and constant relative risk aversion

were developed.

Geometrically, both constant absolute risk aversion and constant relative risk aversion can

be visualized as imposing different types of homotheticity on preference maps over stochastic

outcomes. Hence, basic consumer and producer theory teach us that, even in the absence

of the strong separability assumptions implied by expected utility theory, these restrictions

offer a tremendous amount of analytic tractability (Chambers and Quiggin, 2000). When

imposed jointly, constant absolute risk aversion and constant relative risk aversion require

that preferences over stochastic outcomes assume the Gilboa–Schmeidler (1989) form with

a linear utility structure (Safra and Segal, 1998; Quiggin and Chambers, 1998).

Choose x, y ∈ X so that, for f̃ ∈ F and s ∈ S, x � f̃ (s) � y. By A.2, a standard

argument reveals there exists an α ∈ [0, 1] such that

αx+ (1− α) y ∼ f̃ .

Hence, for any act f̃ , there exists a certainty equivalent cf ∈ X yielding a certainty-equivalent

utility of u (cf ) .

We now characterize that certainty-equivalent utility. Define the benefit function (Luen-

berger, 1992)

B (ũ;V ) = max {β ∈ R : ũ− β ∈ V } ,

if there is some β ∈ R such that ũ−β ∈ V and∞ otherwise. B (ũ;V ) is a complete function

representation of preferences in the sense that

B
(
ũ;V

(
ũ0
))
≥ 0⇔ ũ ∈ V

(
ũ0
)
⇔ ũ � ũ0.

That ũ ∈ V (ũ0) ⇒ B (ũ;V (ũ0)) ≥ 0 follows by construction, while Lemma 9.3 implies

ũ � ũ−B (ũ;V (ũ0)) ∈ V (ũ0) if B (ũ;V (ũ0)) ≥ 0.2

2One can also show, for example, that B is concave and nondecreasing in ũ under our axioms.
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By construction V ′ ⊆ V implies B (ũ;V ) ≥ B (ũ;V ′) because ũ − B (ũ;V ′) ∈ V ′ ⊆ V .

The benefit function thus gives the certainty equivalent utility as a special case. To obtain

the certainty equivalent utility, set

e (ũ) ≡= −B (0;V (ũ)) .

By the fact that B (0;V (ũ)) is a complete function representation of preferences we obtain

ũ′ � ũ⇔ e (ũ′) ≥ e (ũ) ,

so that we can equivalently write

V (ũ) = {ũ′ : e (ũ′) ≥ e (ũ)} .

Finally, notice that Lemma 9.3 implies for ũ′ ≥ ũ that

e (ũ′) ≥ e (ũ) .

Applying Proposition 10 allows us to demonstrate that when restricted to comparisons

across indifferent mean sets, preferences consistent with our axioms are translatable and

radially homothetic:

Proposition 11 Under Axioms A.1 to A.6, whenever µ∗ (ũ) = µ∗ (ũ′) :

(i) e (ũ) ≥ e (ũ′)⇒ e (ũ+ δ) ≥ e (ũ′ + δ) , δ ∈ <;

ii) e (ũ) ≥ e (ũ′)⇒ e (tũ) ≥ e (tũ′) , t > 0; and

(iii) e (ũ) ≥ e (ũ′)⇒ e (αũ+ (1− α)µ∗(ũ)) ≥ e (αũ′ + (1− α)µ∗(ũ′)) .

To obtain a two-parameter representation of generalized invariant preferences, we first

define for given µ∗ a risk index as a function of the form:

ρ (ũ− µ∗ (ũ) ;P ∗) = sup
p
{p′ (ũ− µ∗ (ũ)) : p ∈ P ∗} ,

where P ∗ is a closed convex set containing the origin. ρ (ũ− µ∗ (ũ) ;P ∗), obviously, is the

support function for P ∗. By the properties of support functions it is lower semi-continuous

and sublinear (positively linearly homogeneous and subadditive) in ũ−µ∗ (ũ) and nonegative

(because P ∗ contains the origin). This definition leads to our main representation result.
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Theorem 12 Under Axioms A.1–5, preferences are generalized invariant if and only if there

exists a linear utility function u : X → R+, a risk index ρ, and a mapping φ : R+×R+ → R+

such that: (i) for ũ ∈ U , e (ũ) = φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)) ; (ii) φ is increasing in its

first argument and decreasing in its second, and (iii) ũ′ ≥ ũ ⇒ φ (µ∗ (ũ′) , ρ (ũ′;P ∗)) ≥

φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)).

A detailed proof of Theorem 12 is contained in an appendix. The argument follows

Quiggin and Chambers (2004), Results 4 and 5. However, the use of a generalized mean

creates some minor technical difficulties not encountered in Quiggin and Chambers (2004).

Namely, Kµ (ũ) is not necessarily convex. It is useful, therefore, to summarize the main steps

in the argument, and observe how the extension to generalized invariance is undertaken. It

is obvious that preferences of the form specified by (i) and (ii) satisfy generalized invariance.

For the converse, the argument goes as follows:

By Lemma 9.6, µ∗ (ũ) ∈ Kµ (ũ), and hence the translated set, K0 (ũ) = Kµ (ũ)−µ∗ (ũ) 1̃,

contains the origin. Thus, co {K0 (ũ)} , where co {A} is the convex hull of the set A, is a

closed convex set containing the origin which is fully characterized by its sublinear and lower

semi-continuous (in ũ′) gauge function:

d (ũ′, co {K0 (ũ)}) = inf {t > 0 : ũ′ ∈ tco {K0 (ũ)}} ,

if there is t such that ũ′ ∈ tco {K0 (ũ)} and ∞ otherwise. Defining

r(ũ− µ∗ (ũ) ; ũ0) = d (ũ− µ∗ (ũ) ,co {K0 (ũ)}) ,

then yields a sublinear, nonegative, and lower semi-continuous function of ũ − µ∗ (ũ). The

Hahn–Banach theorem thus implies that r(ũ− µ∗ (ũ) ; ũ0) can then always be written in the

form

r(ũ− µ∗ (ũ) ; ũ0) = sup
p

{
p′ (ũ− µ∗ (ũ)) : p ∈ P ∗

(
ũ0
)}
,

where P ∗ (ũ0) ⊆ RS is a closed convex set that contains the origin. As can be shown,

generalized invariance implies that r(ũ − µ∗ (ũ) ; ũ0) and P ∗ (ũ0) are both homogeneous of

degree minus one in ũ0 and invariant to translations of ũ0. Hence, with no true no loss of

generality, by imposing an appropriate normalization, such as the requirement that ||P ∗|| = 1
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(where || • || is the Euclidean volume), we may write

ρ (ũ− µ∗ (ũ) ;P ∗) = sup
p
{p′ (ũ− µ∗ (ũ)) : p ∈ P ∗} ,

as required.

5 Comparisons of uncertainty aversion and compara-

tive statics

Although Axioms 1–6 imply quite weak restrictions on preferences, much of the standard

comparative static analysis for mean-variance models remains applicable.

5.1 Measures of risk aversion

If for u ∈ R

max {β : 0− β ∈ V (u)} = −u,

then e (ũ) satisfies Aczél’s (1990) agreement property, e (u) = u, and

e (u) = φ (µ∗ (u) , ρ (u;P ∗))

= φ (µ∗ (u) , 0)

= φ (u, 0)

= u, u ∈ R.

Given a generalized invariant preference structure whose certainty equivalent satisfies the

agreement property and a probability measure π, one might define the uncertainty premium

(for that measure) as the difference between the mean for that probability measure and the

certainty equivalent

D (ũ; π) = π′ũ− φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)) .

If π ∈ Π∗�, then

π′ũ ≥ µ∗ (ũ)

= φ (µ∗ (ũ) , 0)

≥ φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)) ,
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and so D (ũ; π) ≥ 0. Observe that D (ũ; π) can be partitioned as follows

D (ũ; π) = (π′ũ− µ∗ (ũ)) +R (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗))

where

R (µ, ρ) = µ− φ (µ, ρ)

= φ (µ, 0)− φ (µ, ρ)

The components of the decomposition may be interpreted as follows: (π′ũ− µ∗ (ũ)) is

an ambiguity/pessimism premium relative to π ∈ ∆ that emerges from the individual’s

conservative evaluation of mean returns; and R (µ∗, ρ) measures the effect of shifting from a

riskless situation with mean µ∗ to a risky situation with mean µ∗ and risk index ρ. Hence,

one can think of it as the risk premium associated with the generalized mean, µ, and the

generalized invariant certainty equivalent. If π ∈ Π∗�, then both the ambiguity premium and

the risk premium are positive.

Suppose individuals A and B have generalized invariant preferences and share the same

u, Π∗�, and P ∗. Then differences in preferences are entirely determined by φ, which in the

decomposition given above, is taken to reflect risk attitudes. So in this case, comparing

uncertainty aversion reduces to comparing risk aversion in the sense described above. Define:

L (µ, ρ) = {(µ̂, ρ̂) ≥ (µ, ρ) : φ (µ̂, ρ̂) ≥ φ (µ, ρ)} ,

where the first inequality is taken in vector terms. L (µ, ρ) is the set of generalized means

and risk indexes which dominate (µ, ρ) and for which the increase in the generalized means

from µ at least compensates for the associated increase in risk exposure.

We say that A is more risk averse than B if LA (µ, ρ) ⊆ LB (µ, ρ) for all (µ, ρ) . That

is, A is more risk averse than B if any combination of an increase in mean µ and riskiness ρ

that is acceptable to A is also acceptable to B. Visually, A is more risk averse than B if for

all (µ, ρ) , A′s indifference curve passing through (µ, ρ) is more steeply sloped than B′s. In

the case where φ is smooth, it follows immediately that

LA (µ, ρ) ⊂ LB (µ, ρ) for all (µ, ρ)⇒ −φA2 (µ, ρ) /φA1 (µ, ρ) ≥ −φB2 (µ, ρ) /φB1 (µ, ρ) for all (µ, ρ) .

13



This definition of ‘more risk averse’ is consistent with the traditional definition that has

gained currency in the literature on mean-variance preferences. Suppose that preferences can

be expressed in the form v (µ, σ2) where, with a slight abuse of notation, µ is now understood

to be the mean for a fixed probability measure, σ is the associated standard deviation, and

v is smooth. Then, taking σ as ρ, according to our terminology, A is more risk averse than

B if for all (µ, σ)

−2vA2
(
µ, σ2

)
/vA1

(
µ, σ2

)
≥ −2vB2

(
µ, σ2

)
/vB1

(
µ, σ2

)
.

For mean-variance preferences, −2v2 (µ, σ2) /v1 (µ, σ2) coincides exactly with Epstein’s (1985)

approximation to the Arrow–Pratt risk-aversion measure for general preferences and admits

the interpretation of “...twice the risk premium per unit of variance for a small gamble”

(Epstein, 1985, p.949). Following this terminology, we shall refer to −φ2 (µ, ρ) /φ1 (µ, ρ) as

the generalized Arrow–Pratt risk aversion measure in what follows.

5.2 Choice problems and comparative statics

Choice problems for individuals with generalized invariant preferences can always be decom-

posed analytically. First isolate an ‘efficient frontier’ and then from that efficient frontier

pick an optimal risk exposure as characterized by ρ. Consider the general choice problem in

which C (θ) ⊆ U is a closed, convex choice set parametrized by θ ∈ Θ ⊂ RK . An individual

with generalized invariant preferences facing this choice set solves:

max
ũ
{φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)) : ũ ∈ C (θ)} .

Assume that a well defined solution exists to this problem.

Because φ is increasing in µ and decreasing in ρ, this optimization problem can be

rewritten as

max
µ∗
{φ (µ∗, ρ̂ (µ∗;P ∗;C (θ)))} ,

where

ρ̂ (µ∗;P ∗;C (θ)) = min
ũ
{ρ (ũ− µ∗;P ∗) : ũ ∈ C (θ) , µ∗ (ũ) = µ∗} .

Because ρ (ũ− µ∗;P ∗) is sublinear, µ∗ (ũ) is superlinear, and C (θ) is convex, this first-stage

programming problem can be handled by standard convex programming tools.

14



Denote the subdifferential of ρ (ũ− µ∗;P ∗) by ∂ρ (ũ− µ∗;P ∗) and that of µ∗ (ũ) by

∂µ∗ (ũ) , and note that the properties of support functions guarantee that, respectively,

∂ρ (ũ− µ∗;P ∗) ⊂ P ∗ and ∂µ∗ (ũ) ⊂ Π∗�. The convexity of ρ (a consequence of sublinearity)

and the concavity of µ∗ (a consequence of superlinearity) ensure that each possesses a well-

defined one-sided directional derivative so long as they are proper. Denote the one-sided di-

rectional derivative of ρ (ũ− µ∗ (ũ) ;P ∗) in the direction of ũ0 by d+ρ (ũ− µ∗ (ũ) ;P ∗; ũ0) and

that of µ∗ (ũ) by d+µ
∗ (ũ; ũ0) and note that they are, respectively, sublinear and superlinear

and satisfy d+ρ (ũ− µ∗ (ũ) ;P ∗; ũ0) ≥ p′ũ0 for all p ∈ ∂ρ (ũ− µ∗;P ∗) and d+µ
∗ (ũ; ũ0) ≤ π′ũ0

for all π ∈ ∂µ∗ (ũ) ⊂ Π∗�. Hence, d+µ
∗ (ũ; ũ0) has a natural interpretation as a generalized

mean computed with respect to a subset of Π∗�.

First-order necessary and sufficient conditions for a solution, therefore, require for any

small movement in a feasible direction ũ0 ( (ũ+ λũ0) ∈ C (θ)) that

d+ρ
(
ũ− µ∗;P ∗; ũ0

)
− ψd+µ

∗ (ũ; ũ0
)
≥ 0,

where ψ is a Lagrangean multiplier whose optimal value in the smooth case equals
[
∂ρ̂(µ∗;P ∗;C(θ))

∂µ∗

]
.

In what follows, we shall assume that C (θ) is regular in the sense that it admits a solution

to this problem.

Once this first-stage is solved, one can then use ρ̂ (µ∗;P ∗;C (θ)) to define efficient frontiers

of the choice set C (θ) as given by, for example,

{(µ∗, ρ) : ρ = ρ̂ (µ∗;P ∗;C (θ))} ,

which traces out the minimal risk, as measured by ρ (ũ− µ∗;P ∗) , consistent with the choice

set C (θ) and a generalized mean return of µ∗.

ρ̂ (µ∗;P ∗;C (θ)) is common across all individuals with generalized invariant preferences

who share a common u, Π∗�, and P ∗. Thus, for such individuals, where they locate on the

efficient frontier is determined by their risk preferences as characterized by L (µ, ρ) . With a

slight abuse of notation, denote

µ (θ) ∈ arg max
µ∗
{φ (µ∗, ρ̂ (µ∗;P ∗;C (θ)))} .

In the smooth case, the solution to this generalized choice problem is, therefore, characterized

15



by the first-order condition

−φ2 (µ, ρ)

φ1 (µ, ρ)
=

[
∂ρ̂ (µ∗;P ∗;C (θ))

∂µ∗

]−1

,

which involves equating the generalized Arrow–Pratt measure of risk aversion to the slope

of the efficient frontier.

On the basis of this formulation of the choice problem and our definition of ‘more risk

averse’, we are led to the general result:

Proposition 13 Suppose individuals A and B share the same u, Π∗�, P ∗, and C (θ) . If A

is more risk averse than B and µ̂
(
ρ; Π∗�;C (θ)

)
is increasing in ρ :

ρ̂B
(
µB (θ) ;P ∗;C (θ)

)
≥ ρ̂A

(
µA (θ) ;P ∗;C (θ)

)
,

µB (θ) ≥ µA (θ) .

Thus, our definition of ‘more-risk averse’ ensures that, for two individuals sharing the

same Π and P and a positive risk–return trade off, the more risk averse of the two will expose

himself or herself to more risk in return for a higher general mean return.

There are several other observations to be drawn from this discussion of the general choice

problem for an individual with generalized invariant preferences. First, and perhaps most

importantly, even in the absence of uniquely defined probability measures or a reliance upon

the standard deviation to measure risk, it is possible to construct simple two-parameter

decision models for generalized invariant preferences that assume a form almost identical

to those that have long been analyzed in mean-variance analysis. Hence, results obtained

in a mean-variance framework, which do not depend critically upon the presumption of

a single probability measure, will translate directly and easily to our framework. Thus,

both the intuition and the analysis of mean-variance analysis is more robust than perhaps

generally thought. Epstein (1985) has shown that a mean-variance preference functional

will characterize rational choice given the assumption of a fixed probability measure and

a seemingly innocuous assumption on systematic changes in risk aversion. Here we show

that generalized invariance allows one to extend the general intuition of the mean-variance

framework to decision frameworks where well-defined subjective probabilities may not exist

and where, even if they did, higher-order moments can influence choice.
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Second, by identifying an efficient frontier, that two-parameter choice problem can always

be collapsed into a single dimensional choice problem that only involves determining the

individual’s optimal exposure to ‘risk’ as defined above. Thus, comparative static analysis

for such general choice problems is a relatively simple matter of determining the result of

the interplay between risk attitudes, as characterized by φ, and changes in the efficient

frontier in response to changes in θ. In many interesting instances, therefore, comparative-

static analysis will reduce to determining the supermodularity or submodularity properties

of ρ̂ (µ∗;P ∗;C (θ)) in (µ∗, θ) . A case in point is the standard asset allocation problem.

Example 14 Consider the standard portfolio allocation problem. There are J risky assets

whose (gross) returns are given by R̃j, j = 1, ..., J and a riskless asset whose return is given

by (1 + r). Denote the net (excess) return on the jth risky asset by

Ñj = R̃j − (1 + r).

If initial wealth is w, then returns, in monetary units, from investing αj percent of initial

wealth to each of the J risky assets is

ũ = w(1 + r) + w
∑
j

αjÑj.

An individual with generalized invariant preferences, therefore, solves

max
α

{
φ

(
w(1 + r) + wµ∗

(∑
j

αjÑj

)
, wρ

(∑
j

αjÑj − µ∗
(∑

j

αjÑj

)
;P ∗

))}
,

where we have used the homogeneity and invariance properties of µ∗ and ρ. This asset allo-

cation problem can be conveniently rewritten as

max
α,µ0

{
φ

(
w(1 + r) + wµ0, wmin

{
ρ

(∑
j

αjÑj − µ0;P ∗

)
: µ0 = µ∗

(∑
j

αjÑj

)})}
.

Let

ρ∗
(
µ0
)

= min

{
ρ

(∑
j

αjÑj − µ0;P ∗

)
: µ0 = µ∗

(∑
j

αjÑj

)}
,

and notice that the homogeneity properties of ρ and µ∗ imply for µ0 > 0 that

ρ∗
(
µ0
)

= µ0 min
α
µo

{
ρ

(∑
j

αj
µ0
Ñj − 1;P ∗

)
: 1 = µ∗

(∑
j

αj
µ0
Ñj

)}
= µ0ρ∗ (1) .
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Thus, the asset allocation problem in the presence of a riskless asset can be reduced to

one of choosing the mix of holdings between the riskless asset and the holding, µ0, of a single

risky derivative asset constructed from the J marketed risky assets with generalized mean

return normalized to one and risk exposure given by ρ (1) . Hence, the individual investor

solves:

max
µ0

{
φ
(
w (1 + r) + wµ0, µ0ρ∗ (1)

)}
.

The efficient portfolio for the risky derivative asset with generalized mean normalized to

one is given by the solution to

min
α

{
ρ

(∑
j

αjÑj − 1;P ∗

)
: 1 = µ∗

(∑
j

αjÑj

)}
.

Necessary and sufficient conditions for an interior solution to the portfolio-choice problem

for the risky derivative asset include

d+ρ

(∑
j

αjÑj − 1;P ∗; Ñj

)
= ψd+µ

∗

(∑
j

αjÑj; Ñj

)
, j = 1, .., J

where ψ is a nonnegative Lagrangean multiplier whose optimal value equals ρ∗ (1). Thus, the

optimal portfolio satisfies

d+µ
∗

(∑
j

αjÑj; Ñj

)
=
d+ρ

(∑
j αjÑj − 1;P ∗; Ñj

)
d+ρ

(∑
j αjÑj − 1;P ∗; Ñk

)d+µ
∗

(∑
j

αjÑj; Ñk

)
for all k and j. In a natural generalization of the mean-variance portfolio problem, the gen-

eralized means of net returns for all the risky assets can be related to one another directly

through the generalized risk measure.

Hence, just as in mean-variance analysis, there is two-fund separation. The efficient

frontier for this two-fund portfolio problem is affine with intercept given by w (1 + r) which

corresponds to the mean return with zero risk and all wealth allocated to the riskless asset.

The slope of the efficient frontier is given by 1
ρ∗(1)

. Thus, it follows that in the smooth case, an

individual with generalized invariant preferences chooses his or her generalized mean return

so that

−φ2 (w(1 + r) + wµ0, wµ0ρ∗ (1))

φ1 (w(1 + r) + wµ0, wµ0ρ∗ (1))
=

1

ρ∗ (1)
.

More generally, an immediate corollary to Proposition 13 is that more risk averse individuals

will purchase less of the risky derivative asset than less risk averse individuals.
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5.3 Monotonicity

In practical applications, one must always be aware that arbitrary choices of φ (µ, ρ) can be

problematic and can yield the resulting generalized invariant model inconsistent with our

axioms and with Theorem 12. In particular, arbitrary two-parameter representations may

not display global monotonicity.

The well-known case of Tobin–Markowitz mean-variance preferences illustrates the prob-

lem. To place these preferences within the invariant framework, take Π∗� = {π} and define

〈x, y〉π as the expectations inner product for this measure π, with the corresponding norm

denoted by |x|π , and let x
y

represent elementwise division. Then we have, by the properties

of support functions, that, for the standard deviation:

P ∗σ =
{
p : p′y ≤

(
π′y2

) 1
2 for all y

}
= {p : p′y ≤ |y|π for all y}

=
{
p :
〈 p
π
, y
〉
π
≤ |y|π for all y

}
,

which using the Cauchy–Schwarz inequality for generalized norms gives:

P ∗σ =
{
p :
∣∣∣ p
π

∣∣∣
π
≤ 1
}
.

Now consider the standard Tobin–Markowitz setup:

φ (π′ũ, ρ (ũ− π′ũ;P ∗σ )) = π′ũ− γ [ρ (ũ− π′ũ;P ∗σ )]
2
,

where 2γ > 0 is the generalized Arrow–Pratt measure of risk aversion. Then for a small

but arbitrary perturbation of ũ to ũ + λũ0 with λ > 0 and ũ0 ∈ RS
+, monotonicity requires

nonnegativity of the directional derivative

π′ũ0 − 2γd+ρ
(
ũ− µ∗ (ũ) ;P ∗; ũ0 − π′ũ0

)
≥ 0,

or, more compactly, [
− 1

2γ

]
≥ d+ρ

(
ũ− µ∗ (ũ) ;P ∗; ũ0 − π′ũ0

)
. (1)

Hence, as the generalized Arrow–Pratt measure of risk aversion gets arbitrarily large, the

domain over which Tobin–Markowitz preferences fail monotonicity grows.
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Taking u0 (s) = 1 and u0 (k) = 0 for all k ∈ S, k 6= s expression (1) and the properties of

directional derivatives allows us to infer that[
− 1

2γ

]
≥ max

{
ps

(1− πs)
πs

: p ∈ ∂ρ (ũ− µ∗ (ũ) ;P ∗)

}
.

for arbitrary s ∈ S. Hence, a necessary and sufficient condition for monotonicity in the

neighborhood of ũ is:[
− 1

2γ

]
≥ max

{
ps

(1− πs)
πs

: p ∈ ∂ρ (ũ− µ∗ (ũ) ;P ∗) , s ∈ S
}
.

6 Concluding comments

The mean-standard deviation model of preferences has proved powerful in a range of contexts,

most notably in the analysis of asset pricing. However, it embodies restrictions that render it

implausible as a model of individual behavior. First, while the mean and standard deviation

are useful concepts in statistics, there is no particular reason why investor preferences over

distributions of returns should be expressed in terms of these two moments alone. Moreover,

there is substantial empirical evidence suggesting that neither the standard deviation nor

the variance successfully capture individual perceptions of risk. Second, like the expected

utility model, the mean-standard deviation model assumes that individuals have well defined

subjective probabilities over events, even though there is significant empirical and theoretical

evidence that this assumption is not valid in general.

In this paper, it has been shown that both of these assumptions may be relaxed without

a substantial loss of analytical power. The mean may be replaced by a generalized mean

allowing for a range of probabilities, while the standard deviation may be replaced by an

invariant risk index while still generating a tractable representation of asset demand and

sharp comparative static results. This paper also illustrates the powerful role that notions

familiar from standard consumer and producer theory, once provided with a behavioral

foundation, can play in developing tractable analytical models of preferences over uncertain

outcomes.
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8 Appendix

Proof of Lemma 7: For x, y, z ∈ X with x ∼ y, µ∗ (x) ∼ µ∗ (y) because for constant acts

x = µ∗ (x) . By A.6, therefore, for α ∈ (0, 1)

x � y ⇔ αx+ (1− α) z � αy + (1− α) z

Symmetrically,

y � x⇔ αy + (1− α)x � αx+ (1− α) z.

which establishes the result.

Proof of Lemma 8: Axioms A.1 and A.2 correspond to Axioms 1 and 2 of Herstein and

Milnor (1953), and Lemma 7 yields their Axiom 3 by taking α = 1
2
. Hence the existence of

an affine utility representation follows from Theorem 8 of Herstein and Milnor (1953). Since

X is an unbounded, closed, convex cone with 0 ∈ X, we can set u (0) = 0 and the result

follows.

Proof of Lemma 9:

1) a) Let ũ′ = u◦ f̃ ′ and ũ = u◦ f̃ for f̃ , f̃ ′ ∈ F . Then by A.1 and Lemma 8 either ũ � ũ′

or ũ′ � ũ and the conclusion follows from the definition of V. b) is trivial.

2) Closedness follows from Lemma 8 and A.2.

3) By Lemma 8, for x′, x ∈ X if u (x′) ≥ u (x) , then u (x′) � u (x) . Hence, by the first

part of A.3, for ũ′, ũ ∈ F , if ũ′ ≥ ũ, then ũ′ � ũ, so that ũ′ ∈ V (ũ) .

4) Choose f̃ , g̃ ∈ F , so that f̃ ∼ g̃. Then ũ
(
f̃
)
∼ ũ (g̃). By A.4 for α ∈ (0, 1) , αf̃ +

(1− α) g̃ � f̃ so that

ũ
(
αf̃ + (1− α) g̃

)
� ũ

(
f̃
)

and Lemma 8 then implies

aũ
(
f̃
)

+ (1− α) ũ (g̃) � ũ
(
f̃
)
.

5) Follows by Lemma 8 and A.5.

6) Follows from the definition of µ∗ and Lemma 8.

7) By A.6, for x ∈ X, α ∈ (0, 1) and f̃ , g̃ ∈ F such that µ∗
(
f̃
)
∼ µ∗ (g̃)

f̃ � g̃ ⇐⇒ αf̃ + (1− α)x � αg̃ + (1− α)x.
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By Lemma 8 µ∗
(
ũ
(
f̃
))

= u
(
µ∗
(
f̃
))

, and thus µ∗
(
f̃
)
∼ µ∗ (g̃) ⇒ µ∗

(
ũ
(
f̃
))
∼

µ∗ (ũ (g̃)) . Thus, for x ∈ X, α ∈ (0, 1) and f̃ , g̃ ∈ F such that µ∗
(
f̃
)
∼ µ∗ (g̃) , A.3,

A.6, and Lemma 8 require

ũ
(
f̃
)
� ũ (g̃)⇐⇒ αũ

(
f̃
)

+ (1− α)u (x) � αũ (g̃) + (1− α)u (x) .

Set ũ = ũ (g̃) , ũ′ = ũ
(
f̃
)
, and δ = u (x) to obtain the desired result.

Proof of Proposition 10 Note first that µ∗ (tũ) = tµ∗ (ũ) for t > 0 and µ∗ (ũ+ δ) =

µ∗ (ũ) + δ. Hence, by Lemma 8 µ∗ (tũ) ∼ tµ∗ (ũ) and µ∗ (ũ+ δ) ∼ µ∗ (ũ) + δ. Therefore to

establish that for t > 0

Kµ (tũ) = tKµ (ũ) ,

we only need establish that for µ∗ (ũ) ∼ µ (ũ′) , ũ′ ∈ V (ũ)⇔ tũ′ ∈ V (tũ) for t > 0. That it

follows for t < 1 is immediate from Lemma 9.7 by setting δ = 0. For t > 1, define ũ = tũ0

and ũ′ = tũ+ to obtain

tũ+′ ∈ V
(
tũ0
)
⇔ αtũ+ ∈ V

(
αtũ0

)
,

and then take α = 1
t
.

That

Kµ (αũ+ (1− α)µ∗(ũ)) = Kµ (αũ) + (1− α)µ∗(ũ)1̃,

follows from Kµ (tũ) = tKµ (ũ) for t > 0 and Lemma 9.7 by taking δ = µ∗(ũ). That

Kµ (ũ+ δ) = Kµ (ũ) + δ1̃, δ ∈ <,

follows from the first two parts of the Proposition.

Proof of Proposition 11 The conditions µ∗ (ũ) = µ∗ (ũ′) , e (ũ) ≥ e (ũ′) ensure Kµ (ũ) ⊆

Kµ (ũ′) and the result now follows from 10 and the definition of the certainty equivalent.

Proof of Theorem 12 With several changes, the proof strategy follows Quiggin and

Chambers (2004).

Sufficiency: Suppose µ∗(ũ) = µ∗(ũ′) = µ and e (ũ) ≥ e (ũ′) . Then, under the stated

hypothesis,

φ(µ(ũ), ρ(ũ;P ∗)) ≥ φ(µ(ũ′), ρ(ũ′;P ∗)),
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and hence, since µ∗(ũ) = µ∗(ũ′) = µ, ρ(ũ;P ∗) ≤ ρ(ũ′;P ∗). Hence, by the agreement property

of µ∗ and the translation invariance of ρ (ũ− µ∗ (ũ) ;P ∗)

φ(µ(ũ+ δ1̃), ρ(ũ+ δ1̃;P ∗)) = φ(µ(ũ) + δ, ρ(ũ;P ∗))

≥ φ(µ(ũ′) + δ, ρ(ũ′;P ∗))

= φ(µ(ũ′ + δ1̃), ρ(ũ′ + δ1̃;P ∗))

The argument for radial invariance is similar.

Necessity. The existence and properties of the utility function u and the mean µ∗, have

already been established. The proof of the proposition is in three parts.

First, given generalized invariance, we establish the existence of a risk index ρ with the

desired properties.

Second, we show that any two of the conditions µ(ũ) = µ(ũ′), ρ(ũ;P ∗) = ρ(ũ′;P ∗) and

e (ũ) = e (ũ′) implies the third and hence that preferences may be represented in the form

e (ũ) = φ(µ(ũ), ρ(ũ;P ∗))

Third, we show that φ has the desired properties

First part: Existence of a risk index We begin with a preliminary claim.

Claim 15 : If preferences are generalized invariant, for ũ 6= µ∗ (ũ), then, for any ũ0 there

is an index r (ũ− µ∗ (ũ) ,ũ0) that is nonnegative, lower semicontinuous and sublinear in

ũ− µ∗ (ũ) , and that satisfies

r
(
ũ− µ∗ (ũ) ,ũ0 + δ

)
= r

(
ũ− µ∗ (ũ) ,ũ0

)
,

for δ ∈ R,and

r
(
ũ− µ∗ (ũ) ,λũ0

)
= r

(
ũ− µ∗ (ũ)

λ
,ũ0

)
,

for λ > 0. Further, if e (ũ0) = e (ũ1) , µ∗ (ũ0) = µ∗ (ũ1) , then, for all ũ

r
(
ũ− µ∗ (ũ) ,λũ0

)
= r

(
ũ− µ∗ (ũ) ,λũ1

)
Proof of Claim 15: Consider the gauge function of the closed convex set A defined by

d (ũ,A) = inf {t > 0 : ũ ∈ tA} ,
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if there is a t such that ũ ∈ tA, and ∞ otherwise. d is positively linearly homogeneous

and subadditive (sublinear) in ũ (Aliprantis and Border [2, Lemma 5.36]). It is lower semi-

continuous in ũ if and only if A contains zero (Aliprantis and Border [2, Theorem 5.39]).

Moreover,

A = {ũ : d (ũ,A) ≤ 1} . (2)

Take

r
(
ũ− µ∗ (ũ) ,ũ0

)
= d

(
ũ− µ∗ (ũ) ,co

{
Kµ

(
ũ0
)
− µ∗

(
ũ0
)

1̃
})
.

By Lemma 9, Kµ (ũ0) − µ∗ (ũ0) 1̃ is a closed convex set that contains the origin. Moreover,

generalized translation invariance implies

Kµ

(
ũ0
)
− µ∗

(
ũ0
)

1̃ = Kµ

(
ũ0 − µ∗

(
ũ0
))
,

so that

r
(
ũ− µ∗ (ũ) ,ũ0

)
= d

(
ũ− µ∗ (ũ) ,co

{
Kµ

(
ũ0 − µ∗

(
ũ0
))})

,

is the gauge function for a closed convex set containing the origin. Hence, it is nonnegative,

and lower semicontinuous and sublinear in ũ− µ∗ (ũ) as required.

That r (ũ− µ∗ (ũ) ,ũ0 + δ) = r (ũ− µ∗ (ũ) ,ũ0) for δ ∈ R follows from the definition of

r (ũ− µ∗ (ũ) ,ũ0) and the agreement property of generalized means. For λ > 0,

r
(
ũ− µ∗ (ũ) ,λũ0

)
= d

(
ũ− µ∗ (ũ) ,co

{
Kµ

(
λũ0 − µ∗

(
λũ0
))})

= d
(
ũ− µ∗ (ũ) ,co

{
Kµ

(
λũ0 − λµ∗

(
ũ0
))})

= d
(
ũ− µ∗ (ũ) ,λco

{
Kµ

(
ũ0 − µ∗

(
ũ0
))})

=
1

λ
r
(
ũ− µ∗ (ũ) ,ũ0

)
,

where the second equality follows by the sublinearity of µ∗, the third equality by generalized

radial invariance.�

By the fact that: r (ũ− µ∗ (ũ) ,ũ0) is lower semicontinuous and sublinear in ũ − µ∗ (ũ),

it can always be written in the form (e.g., Aubin and Ekeland, Theorem 1.5.8, p. 30)

r
(
ũ− µ∗ (ũ) ,ũ0

)
= sup

p

{
p′ (ũ− µ∗ (ũ)) : p ∈ P

(
ũ0
)}
,
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where the fact that r (ũ− µ∗ (ũ) ,ũ0) is nonnegative implies P (ũ0) is a closed convex set that

contains the origin, and

P
(
ũ0
)

=
{
ũ− µ∗ (ũ) : p′ (ũ− µ∗ (ũ)) ≤ r

(
ũ− µ∗ (ũ) ,ũ0

)}
.

Hence, by Claim 15 and the properties of r (ũ− µ∗ (ũ) ,ũ0) for δ ∈ X

P
(
ũ0 + δ

)
= P

(
ũ0
)
,

and for λ > 0

P
(
λũ0
)

=
1

λ
P
(
ũ0
)
.

Thus, with virtually no true loss in generality, we may choose an arbitrary ũ0 and define

P ∗ = P
(
ũ0
)
.

The analysis above shows that ρ has the desired properties.

Second part: Representation by φ Suppose e (ũ) = e (ũ′) , then

e (ũ) ≥ e (ũ′) ,

and

e (ũ′) ≥ e (ũ) .

The first inequality can only be true if V (ũ) ⊆ V (ũ′) , and the second can only be true

if V (ũ′) ⊆ V (ũ) , whence V (ũ′) = V (ũ) . Also suppose that µ∗ (ũ) = µ∗ (ũ′) = µ, then

Kµ (ũ) = Kµ (ũ′) , and generalized translation invariance implies Kµ (ũ′ − µ) = Kµ (ũ− µ) .

Thus,

ũ− µ ∼ ũ′ − µ,

Generalized radial invariance implies

ũ− µ
r (ũ′ − µ,ũ0)

∼ ũ′ − µ
r (ũ′ − µ,ũ0)

∼ ũ0 − µ∗
(
ũ0
)
,

whence

r

(
ũ− µ

r (ũ′ − µ,ũ0)
, ũ0

)
= 1,
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and thus by sublinearity

r
(
ũ− µ, ũ0

)
= r

(
ũ′ − µ,ũ0

)
.

Suppose e (ũ) = e (ũ′) and r (ũ− µ∗ (ũ) , ũ0) = r
(
ũ′ − µ∗ (ũ)′ ,ũ0

)
, then it must be true

that
ũ− µ∗ (ũ)

r (ũ− µ∗ (ũ) ,ũ0)
∼ ũ′ − µ∗ (ũ′)

r (ũ− µ∗ (ũ) ,ũ0)
∼ ũ0 − µ∗

(
ũ0
)
,

and generalized radial invariance implies that

ũ− µ∗ (ũ) ∼ ũ′ − µ∗ (ũ′) ,

which can only be true when e (ũ) = e (ũ′) if µ∗ (ũ) = µ∗ (ũ′) .

Now suppose that r (ũ− µ∗ (ũ) , ũ0) = r (ũ′ − µ∗ (ũ′) ,ũ0) and µ∗ (ũ) = µ∗ (ũ′) . Because

r (ũ− µ∗ (ũ) , ũ0) = r (ũ′ − µ∗ (ũ′) ,ũ0) , it must true that

ũ− µ∗ (ũ)

r (ũ− µ∗ (ũ) ,ũ0)
∼ ũ′ − µ∗ (ũ′)

r (ũ− µ∗ (ũ) ,ũ0)
∼ ũ0 − µ∗

(
ũ0
)
,

and generalized radial invariance implies

ũ− µ∗ (ũ) ∼ ũ′ − µ∗ (ũ′) .

When µ∗ (ũ) = µ∗ (ũ′) , generalized translation invariance implies

ũ ∼ ũ′,

whence e (ũ) = e (ũ′) . Hence e may be written in the form

e (ũ) = φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗))

as claimed.

Third part: Properties of φ

It remains to be shown that φ is increasing in its first argument and decreasing in its

second. Suppose µ∗ (ũ) = µ∗ (ũ′) = µ, then e (ũ) ≥ e (ũ′) if and only if Kµ (ũ) ⊆ Kµ (ũ′). By

generalized translation invariance, then e (ũ) ≥ e (ũ′) only if ũ− µ ∈ Kµ (ũ′ − µ) , whence

r (ũ− µ,ũ′) ≤ 1. (3)
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By definition
ũ− µ

r (ũ− µ,ũ′)
� ũ′ − µ,

and generalized radial invariance implies that

ũ− µ
r (ũ− µ,ũ′) r (ũ′ − µ,ũ0)

� ũ′ − µ
r (ũ′ − µ,ũ0)

∈ Kµ

(
ũ0 − µ∗

(
ũ0
))
.

Thus, by the properties of gauge functions

r

(
ũ− µ

r (ũ− µ,ũ′) r (ũ′ − µ,ũ0)
, u0

)
≤ 1,

from which sublinearity yields

r
(
ũ− µ, u0

)
≤ r (ũ− µ,ũ′) r

(
ũ′ − µ,ũ0

)
,

which with (3) gives

r
(
ũ− µ, u0

)
≤ r

(
ũ′ − µ,ũ0

)
.

This establishes that if µ∗ (ũ) = µ∗ (ũ′) , then

[e (ũ)− e (ũ′)]
[
r
(
ũ− µ, u0

)
− r

(
ũ′ − µ,ũ0

)]
≤ 0.

For δ > 0, the agreement property of the generalized means and Lemma 9.3 imply that

e
(
ũ+ δ1̃

)
= φ

(
µ∗ (ũ) + δ, sup

p
{p′ (ũ− µ∗ (ũ)) :p ∈ P ∗}

)
≥ e (ũ)

= φ

(
µ∗ (ũ) , sup

p
{p′ (ũ− µ∗ (ũ)) :p ∈ P ∗}

)
,

which establishes that φ is nondecreasing in it first argument. Finally, Lemma 9.3 requires

that ũ′ ≥ ũ⇒ φ (µ∗ (ũ′) , ρ (ũ′ − µ∗ (ũ′) ;P ∗)) ≥ φ (µ∗ (ũ) , ρ (ũ− µ∗ (ũ) ;P ∗)) .

Proof of 13 Consider any (µ̂, ρ̂) ∈ LA
(
µB (θ) , ρB (θ)

)
, where ρB (θ) denotes the optimal

risk exposure forB. Thus, we consider any increase in risk and return, relative to the optimum

for B, that is acceptable to A. By the definition of greater risk aversion,

LA
(
µB (θ) , ρB (θ)

)
⊆ LB

(
µB (θ) , ρB (θ)

)
so (µ̂, ρ̂) ∈ LB

(
µB (θ) , ρB (θ)

)
and the optimality of

(
µB (θ) , ρB (θ)

)
for B implies that either

µ̂ = µB (θ) , ρ̂ = ρB (θ) or(µ̂, ρ̂) /∈ C (θ) .

Hence, ρA (θ) ≤ ρB (θ) , µA (θ) ≤ µB (θ) as required.
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