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Abstract

This paper investigates the optimality of sharp incentives in contracts
where output prices are set at the time of contracting but are random in
nature. It shows that when prices are specified with error, schemes involv-
ing sharp incentives might result in substantial deviations from first-best
output levels. The randomness of prices creates arbitrage opportunities
that are exploited by agents producing phenomena such as ’cost-shifting’.
Both linear and piece-wise linear contracts are shown to be subject to
the possibility of arbitrage. The paper then demonstrates that incentive
schemes that are arbitrage-proof exhibit ‘diffuse’ incentives.
JEL Classification: D81, D86.
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1 Introduction

The optimal contract in a standard principal�agent model with a risk-averse

principal and a risk-neutral agent commonly involves a linear (or, more precisely

a¢ ne) contract, designed to provide the agent with sharp incentives to exert

optimal e¤ort. Typically, such contracts take the form of a payment y(w) =

A+
w, where A is a �xed fee (that could be negative), 
 a positive constant, and

w is an observed and measured outcome. If w is output and 
 is the marginal

value of output, assumed constant, then under contracts of this kind, the agent

keeps all the residual gains created by her e¤ort after paying a �xed fee.1

If the agent�s e¤ort is observable �or if it can be inferred from outcomes �

then the Pareto optimal level of output is achieved by paying the agent the full

value of his or her output. An example of this type of contract is a concession

contract where the operator pays the government a �xed fee and keeps all pro�ts

resulting from the concession. This type of contract provides the agent with

sharp incentives to provide the �rst-best level of e¤ort.

In practice, however, many di¤erent types of contracts, involving distinct

levels of incentives, coexist. For example, Walls (2003, p.32) reports on the

existence of contracts in the solid waste and recycling industries where incentives

vary from being very sharp (where �rms retain all of the revenues from sale of

materials) to nonexistent (where �rms retain none of the revenues from sale of

materials).

A variety of explanations has been o¤ered as to why contracts might not

have incentives as sharp as those exhibited by contracts where the agent retains

the residual gains created by her e¤orts. A central theme of the principal�agent

literature is that risk aversion on the part of agents, in combination with asym-

metric information, may generate a trade-o¤ between risk sharing and sharp

incentives.2 Alternatively, it may not be possible to measure outcomes pre-

1Note, however, that w may depend on random factors in addition to the agent�s level of
e¤ort.

2For example, although under certain circumstnaces it can be shown that the optimal
contract would set 
 = 1 for the case of a risk-neutral agent, risk aversion can lead the
optimal to be close to zero. For an excellent discussion of the trade-o¤ between incentives and
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cisely, or there might be more than one attribute associated with outcomes.

These characteristics might also result in the adoption of lower-powered incen-

tive contracts. Moreover, under some circumstances it might be approximately

optimal to have a step function incentive scheme where the agent is rewarded

(or penalized) by a �xed amount if performance exceeds (or falls under) a given

threshold.(Holmström 1979, Mirrlees 1999)

In this paper we o¤er a new explanation of the prevalence of lower-powered

contracts. We argue that, if prices are speci�ed with error, schemes involving

sharp incentives might result in substantial deviations from �rst-best output

levels. This is distinct, for example, from the incentive problem identi�ed by

the multi-tasking literature (Holmström and Milgrom 1991, Baker 1992), where

compensation on any subsets of tasks will result in a reallocation of activities

toward those that are directly compensated and away from the uncompensated

activities. The explanation that we o¤er for the ine¢ ciency of sharp contracts

is not related to the exclusion of some tasks from the incentive contract but

rather to strategic behavior by agents faced with variability in prices.

In particular, agents may be presented with arbitrage opportunities arising

from a distinction between the prices they face and the prices �xed in the incen-

tive contract. An example is provided by the phenomenon of �cream-skimming�,

which arises in a variety of public policy contexts where agents, such as hospi-

tals or employment agencies, are rewarded on the basis of measured outputs.

The typical case of cream-skimming arises where a �xed price is o¤ered for a

heterogeneous output.

For example, an employment agency may be rewarded by a payment propor-

tional to the number of clients placed in jobs. Although this implies a �xed price

for each client placed, the output is heterogeneous, because both clients and jobs

are heterogeneous. Arbitrage opportunities arise if the agency can generate a

supply of short-term jobs, at a unit cost lower than the incentive payment. One

such case was reported in Australia following a move to competitive tendering

of employment services (Webster and Harding 2000, p. 11). This and similar

risk, see Dixit (2002).
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problems led to a move towards lower-powered incentive contracts.

As a second example, consider an incentive mechanism set up by a university

that can accurately measure and value research performance, but is subject to

error in valuing teaching. If researchers can use the returns from the incentive

mechanism to pay others to perform part or all of their teaching obligations,

the scheme may have unexpected and perverse e¤ects.

The paper is organized as follows. Section 2 includes a brief survey of existing

empirical evidence, and of the literature on incentive schemes. In Section 3,

we present a simple model of principal�agent contracts in the presence of price

uncertainty. We derive our main result, giving conditions under which any linear

pricing rule will give rise to arbitrage opportunities with positive probability.

We then extend our analysis to show that similar problems arise with sharp

incentives as implemented by piecewise linear price contracts. In Section 4, we

consider lower-powered contracts and give conditions under which such contracts

are arbitrate-proof. in Section 5, we consider robust contracts based on di¤use

incentives. In Section 6, we discuss the implications of our results.

2 Background

There are well-known reasons why contracts might not have incentives as sharp

as those exhibited by contracts where the agent retains most of the residual

gains created by her e¤orts. For example, if the agent is risk averse, the need

to provide the agent with insurance leads to less sharp incentives. This is the

well-known trade-o¤ between risk and incentives.3 Alternatively, it may not

be possible to measure outcomes precisely or there might be more than one

attribute associated with outcomes. These might also result into lower-powered

incentive contracts.

The existence of sharp incentives implemented via linear contracts might

also be ine¤ective in the context of various actions or tasks (generally referred

in the literature as the multi-tasking case). If actions are substitutes, sharp

3See, for example, Milgrom and Roberts (1992), Chapter 7.
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incentives imply that exerting more e¤ort on one task increases the marginal

cost of the substitute task.4

Moreover, linear contracts that reward particular outcomes in the context

of jobs that involve various tasks might also lead to outcomes that are neither

wanted or anticipated. For example, basing teacher evaluations only on the

performance of students on standardized test will lead teachers to focus their

e¤ort on one measure of overall teaching performance, the results of the tests.

This might lead to ine¢ cient outcomes to the extent that less e¤ort will be put

into teaching general skills such as writing and problem solving.5

In the same vein, McKim and Hughart (2005) report on the results of a

survey of sta¤ incentive schemes used by micro�nance institutions. Most such

schemes consist of a weighted formula based upon three or more individual

performance indicators. Incentive payments are made each month and amount

to a quarter of a credit o¢ cer�s �xed salary. By and large, the survey �nds

that sta¤ incentives schemes are perceived as generating a positive e¤ect on the

�nancial performance of the institutions. However, a reported side e¤ect was

the shift in focus towards wealthier clients and clients in more urban areas. This

is a cause of concern as it defeats an important rationale for the provision of

micro�nancing. Another unwanted consequence was an erosion of the quality of

the loan portfolio as credit o¢ cers responded to the incentives facing them by

o¤ering larger loans, or by being less thorough in their evaluations of the loans.

There are other types of incentive contracts that are considered in the the-

oretical literature such as piece-wise linear contracts. Where there exist partic-

ular critical thresholds at which the principal is very risk averse, schemes that

associate very steep incentives with movements across these particular thresh-

olds may be useful. For example, Holmström (1979) and Mirrlees (1999) analyze

contracts where the compensation of the agent is determined by a step function,

conditional on achieving a certain threshold performance. In this case, if the

4See, for example, Holmström and Milgrom, 1991. For an excellent survey of issues in
incentive schemes design, see Burgess and Ratto (2003).

5For di¤erent examples see, among others, Kerr (1975) and Baker, Gibbons and Murphy
(1994).
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agent reduces his e¤ort even by a small amount, he faces a large penalty. Holm-

ström and Mirrlees show that this type of contract is optimal when the output

is very sensitive to the agent�s e¤ort in the neighborhood of the threshold. The

intuition is that this type of scheme is optimal when agents are su¢ ciently con-

cerned about the penalty they will su¤er for small reductions in e¤ort. As Dixit

(2002) points out, step function schemes are also vulnerable to manipulation or

gaming. In particular, there is a concern about timing issues.

Consider, for example, an environment where there are random �uctuations

and, if she reports outcomes annually, the agent secures a bonus in good years

but fails to do so in bad years. Now suppose the agent can choose when to report,

or can shift returns from one reporting period to another. Then the rational

response is to smooth reported performance, so that reported performance in

most periods just exceeds the threshold. For example, it has been claimed

that companies smooth their reported pro�ts to ensure that they narrowly beat

market expectations as often as possible.6

Below we show that both linear and nonlinear (or more speci�cally piece-wise

linear) incentives can generate arbitrage opportunities for the agent, which when

exercised can lead to undesirable outcomes for the principal. These arbitrage

opportunities do not depend on enlarging the strategy space, as in the example

in the previous paragraph. Instead, arbitrage arises from the randomness of the

prices speci�ed in the incentive contract.

3 Sharp Incentives and Arbitrage

An agent has available a production technology represented by an output cor-

respondence

Z (x) =
n
z 2 <M : x 2X can produce z

o
where X� <N+ is a compact set of inputs available to the agent and z 2 <M

is a vector of net outputs. We make the following assumptions about the set

Z (x) :

6See Courty and Marschke (2004) and, for a survey of empirical results on the e¤ectiveness
and use of incentive schemes, Prendergast (1999).
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Assumption A1: (i) For each x; Z (x) is compact, strictly convex and contains

0M

(ii) The technology is additive. That is, if z 2 Z (x) ; z02 Z (x0) and x+ x02X;

then z+ z02Z (x+ x0).

As in Chambers and Quiggin (2000), the outputs may be state-contingent,

and realized in period 1, while inputs are committed in period 0. In this case,

the dimension of the output space may be characterized as M = K � S; where

K is a set of commodities and S is a set of states of nature. We assume a full

set of state-contingent markets, so payments to the agent are received in period

0. In e¤ect, this is equivalent to assuming risk neutrality for the agent at the

given state-claim prices.

Note that the technology permits negative outputs. The interpretation is

that the contract may allow the principal to supply outputs of some goods or

services to the agent, rather than vice versa. Where this possibility is precluded,

it will be noted explicitly.

The agent�s objective function is

y (z)� g (x) (1)

where y (z) is a payment from the principal and g (x) represents disutility of

e¤ort, an increasing convex function. Let

x (z) = argmin fg (x) : z 2 Z (x)g (2)

be the input demand associated with output z:

The agent chooses her level of e¤ort to maximize her objective function (1)

taking into account how x a¤ects z and, as a result, the payment she receives

from the principal.

In the particular case where the agent faces a price schedule p 2 <M+ ; that

is, a linear contract y (z) = pz; we de�ne the agent�s supply response correspon-

dence as:

z (p) = argmax fpz� g (x) : z 2 Z (x)g : (3)
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The supply correspondence (3) identi�es, for any vector p, the agent�s max-

imimal choice(s) of net output.

The principal seeks to choose the reward function y (z) in order to maximize

W (z)� y (z) (4)

subject to the incentive-compatibility requirement

z 2 argmax fy (z)� g (x)g

and a participation constraint of the type y(z)�g(x) � u0:We assume thatW (z)

is continuous and concave so that a solution to the principal�s maximization

problem exists.

The �rst-best contract in this setting is obtained by setting

y (z) = p�z��y

where

p�m =Wm (z) ;

so that p�m is the price chosen by the principal for each net output m; which

in equilibrium is equal to the marginal utility of net output m; and �y is chosen

to satisfy the incentive compatibility constraint. That is, the optimal contract

involves the agent obtaining all the residual gains from her e¤orts after paying

a �xed fee to the principal. We denote by z� the �rst-best output that satis�es

y(z�) = p�z���y

4 The problemwith stochastic variation in prices

We argue that, in practice, while the principal may wish to set some price p̂;

the price actually faced by agents will be subject to some stochastic variation

around p̂. The next assumption speci�es a simple way to capture the stochastic

variation in prices.
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Assumption A2: In any actual implementation the price vector is of the form

p = p̂+ " where E ["] = 0 and " has positive density on some ball around

0 with diameter �:7

The principal�s feasible price-incentive problem under Assumption A2 is to

choose p̂ to maximize

E [W (z (p))� pz] = E [W (z (p̂+ "))� (p̂+ ") (z (p̂) + "))] : (5)

That is, for a given realization of ", and therefore of p = p̂+"; the agent chooses

z, given the relationship between z and x and the resulting disutility generated

from x, to maximize her utility. The principal will choose p, amongst the set

of incentive-compatible prices, to maximize his expected utility.

The following de�nition plays a crucial role in our main argument.

De�nition 1: For any p; we de�ne a zero-pro�t net output rearrangement for

p as an net output vector z such that z 2 Z
�
0N
�
; pz =0: We denote by

Ẑ (p) the set of zero-pro�t net output rearrangements for p:

The following result will be useful later.

Lemma 1 If z 2 z(p); and ẑ 2Ẑ (p) ; then z+ ẑ 2z(p):

Proof: Since z 2 Z (x (z)) and z 2 Z
�
0N
�
; additivity of Z implies z+ ẑ 2Z (x (z)) :

Now, since p (z+ ẑ) = pz; then z+ ẑ 2 z (p).

Lemma 1 establishes that for a given price schedule p , if we add a zero-

pro�t net output rearrangement to a vector z in the agent�s supply response

correspondence, the resulting net output vector is also in the agent�s supply

response correspondence.

Several features of De�nition 1 are of particular interest. First, by the addi-

tivity assumption, Ẑ (p) is a convex cone. Second, since 0M 2 Z
�
0N
�
, Ẑ (p) is

non-empty. Of course, we are interested to investigate the circumstances under

which Ẑ (p) is trivial or non-trivial, that is, when Ẑ (p) is or is not equal to

7Other details of the distribution are not crucial.
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�
0M
	
: Consider the case of a (possibly stochastic) production function tech-

nology

Z (x) = fz : z �f (x)g

for some f : X ! <M such that f
�
0N
�
= 0M : For technologies of this kind,

Z (x) =
�
z : z � 0M

	
and Ẑ (p) =

�
0M
	
for any p 2 <M++:

The stochastic production function or Leontief technology represents the

maximally in�exible form of a state-contingent technology (Chambers and Quig-

gin 2000). Conversely, the more �exible the technology, the larger the set of zero-

pro�t net output rearrangements available to the agent. In particular, consider

a fully allocable technology

Z (x) =

(
z :
X
m

gm (zm)� x
)

where gm : < ! <N is an input requirement technology.

Note that the speci�cation of gm allows for negative inputs and outputs.

With this technology, agents can purchase some outputs zm in the market and

shift the associated inputs to other activities. For suitable price vectors p; Ẑ (p)

will be non-empty.

Third, since prices are non-negative, any non-trivial element of Ẑ (p) must

include both negative and positive elements. As noted above, we allow net

output vectors to include negative elements, unless the contract structure which

governs the relationship between the agent and the principal explicitly precludes

this. More importantly, by virtue of Lemma 1, given a strictly positive initial

output vector z 2 z(p) and a feasible zero-pro�t net output rearrangement

ẑ 2 Ẑ (p) ; z + �ẑ 2 z (p) for any � > 0; and, for suitably small �; z + �ẑ will

be strictly positive.

Finally, we restrict attention to the case when the input vector x is un-

changed. The de�nition here could be generalized to cover the case when g (x)

is unchanged, and the results derived below would, in most cases, carry through.
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However, our primary concern is with the reward function y (z) and for this pur-

pose, an exclusive focus on changes in z is more appropriate.

We say that (p;x; z) an interior solution if x is an interior point of X: Our

main result is stated below.

Proposition 1 If Ẑ (p) 6=
�
0M
	
; (p;x; z) cannot be an interior solution for

the principal�s feasible price�incentive problem.

Proof: Let ẑ 6= 0M 2Ẑ (p) : There exist directions d such that (p+td) ẑ 6=0;

8k 6= 0. In fact, this is true of all directions except those in a single

hyperplane passing through p and orthogonal to ẑ: In any feasible imple-

mentation of p; therefore, there is positive probability that (p+ ") ẑ 6=0:

For any such "; the agent�s optimization problem allows for arbitrage. In

particular, If (p+ ") ẑ >0; then producing (x (z (p)) ; z (p) + tẑ) ; where t

is such that z (p) + tẑ is in the boundary of Z maximizes pro�ts , and

similarly if (p+ ") ẑ <0 with �tẑ: Note that by Lemma 1, z�tẑ 2 z (p)

as z 2 z (p) ; and ẑ 2Ẑ (p) :

4.1 Piece-wise linear contracts

The results derived above extend to piece-wise linear contracts. To examine

such contracts, we de�ne a multi-part pricing rule as consisting of a partition

of the output space <M into disjoint convex subsets Z1; Z2; :::; ZK and, for each

k = 1; :::;K; a pricing rule yk : Zk ! < implemented by a �xed payment yk0 and

a price vector pk such that

yk (z) = yk0 + p
kz: (6)

De�ne an interior solution for Zk as a pair (x; z) in the interior of X � Zk
such that z 2 argmax

�
yk0 + p

kz� g (x) : z 2 Z (x) \ Zk
	
: Then, following the

arguments given above, an interior solution for Zk exists only if Ẑ
�
pk
�
6=
�
0M
	
:

In particular, this analysis is applicable to the case when the principal re-

quires the agent to product non-negative outputs of each output i by setting

pi = 1 whenever zi = 0: Letting p1 be the price vector for the non-negative
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orthant, the selected output will be on the boundary of Z1 = <M+ whenever

Ẑ
�
p1
�
6= f0g :

5 A robust incentive model

This section considers a general class of incentive structures in which sharpness

is sacri�ced for robustness. These structures might be useful for designing con-

tracts when the principal does not have access to a technology to monitor output

in real time or when such access is costly. That is, when complex multi-part

tari¤s cannot be relied upon to eliminate arbitrage opportunities that might

arise from random output prices.

Here we de�ne an incentive structure as a pair (p;y0) associated with a

payment rule

y
�
z;p; y0

�
= pz+ y0:

For any compact convex set P̂ � <M+1; with typical element (p;y0)

ŷ
�
z;P̂
�
= min

(p;y0)2P̂
pz+ y0

we are able to �nd arbitrage-fee mechanisms. In particular, a su¢ cient condition

for the absence of arbitrage is that, for some y�0 ; (p
�; y�0) 2 P: To see this, notice

that for any feasible z :

ŷ
�
z;P̂
�
� p�z+y�0

� p�z�+y�0 :

Relevant examples include the case where P̂ is the convex hull of a �nite

set of points or when P̂ is a scalar multiple of the unit ball for some Lp norm.

Moreover, when M = 1; this class of incentive structures consists of concave

piecewise linear payment schedules. More generally, any concave piecewise linear

payment schedule can be expressed this way.

We note that the conservatism of P̂ with respect to any feasible output z

may be represented by the width

w
�
z;P̂
�
=

 
max

(p;y0)2P̂
pz+ y0

!
�
 

min
(p;y0)2P̂

pz+ y0

!
:
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Thus, the optimal solution is likely to be a trade-o¤ between precision �

incentives that match actual values and keep output close to optimal � and

arbitrage-avoidance, which requires setting more di¤use incentives. The optimal

price set will be more di¤use, the more �exible the technology and the greater

the possible error in prices. Our contribution is noting the role of �at technology

and the analogy with �nancial arbitrage.

6 Discussion

Our main result establishes that it might not be possible to have sharp incentives

as implemented by a linear contract. The reason lies in the prices that the agent

faces. If these prices are random �even where the random component consists of

white noise �then the agent can gain dramatically by a large deviation from �rst-

best level of e¤orts. Note that even a slight di¤erence between predicted and

realized prices can lead to a very ine¢ cient outcome under any linear contract.

Our analysis complements that of Holmström and Milgrom (1991) who show

that multi-tasking also leads to the non-optimality of linear contracts as the

compensation on any subset of tasks results in a shift of activities towards those

that are compensated and away from those that are not.

The recognition that incentives matter has lead to a revolution in the way

that �rms and governments deliver goods and services. At the same time, the

widespread use of incentive schemes can often lead to outcomes that are either

unexpected or undesirable. In this paper we examine a polar case where the

production technology is �at and where output prices are random. Under these

circumstances, incentive schemes can lead to extremely undesirable outcomes.

In particular, agents will choose their e¤ort to arbitrage away the pro�table

opportunities that arise from the di¤erences between contract and actual prices.

In the polar case that we examine, arbitrage leads to corner solutions, where the

agent will produce as much output as possible under the existing technology and

given the limited resources it has access to. It is not di¢ cult to see, however,

that the possibility of arbitrage distorting the agent�s incentives will exist even

13



under more general technologies.

Our analysis suggests that, in the presence of �exible technology and random

prices, an optimally designed contract might need to trade-o¤ sharpness or

precision and arbitrage-avoidance. More precisely, the optimal contract price

will be more di¤use, the �atter the technology and the greater the possible error

in prices.
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