|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Risk & Sustainable Management Group

Risk & Uncertainty Program Working Paper: 3/R04

Linear-Risk-Tolerant, Invariant Risk
Preferences

Robert G. Chambers

Professor and Adjunct Professor, respectively, University of Maryland and
University of Western Australia

and

John Quiggin

Australian Research Council Federation Fellow, University of Queensland

Research supported by an Australian Research Council Federation Fellowship

http://www.arc.gov.au/grant programs/discovery federation.htm

Schools of Economics and Political Science
University of Queensland
Brisbane, 4072

rsmg@ugq.edu.au
http://www.uqg.edu.au/economics/rsmg

THE UNIVERSITY
OF QUEENSLAND
e

AUSTRALIA




Linear-Risk-Tolerant, Invariant Risk Preferences

Robert G. Chambers! and John Quiggin?
Risk and Sustainable Management Group

Risk and Uncertainty Working Paper 6/R04

12 April 2004

IProfessor and Adjunct Professor, respectively, University of Maryland and University of West-

ern Australia
2 Australian Research Council Federation Fellow, University of Queensland



Linear-Risk-Tolerant, Invariant Risk Preferences

Quiggin and Chambers (2004) have introduced the notion of invariant preferences.
Briefly stated, preferences are invariant if the ranking of two state-contingent income vec-
tors with equal means is not affected by either a change in base wealth or a change in the
scaling of the vectors. These preferences generalize both the class of constant risk averse
preferences (Safra and Segal, 1998; Quiggin and Chambers, 1998; Chambers and Quiggin,
2002) and mean-standard deviation preferences. In particular, Quiggin and Chambers
(2004) show that preferences are invariant if and only if the certainty equivalent, e, as-

sumes the general form:

e(y) =0 (y),p(y—px(y)1)),

where y is a vector of state-contingent incomes, ¢ is a real-valued function increasing in
its first argument and decreasing in its second, 7 is a given probability vector, p. (y) is the
mean of the state-contingent income vector evaluated with respect to @, 1 is a vector of
ones, and p is a nonnegative, lower semi-continuous, positively linearly homogeneous, and
subadditive function. p, thus, generalizes the standard deviation, so that mean—standard
deviation preferences are invariant.

Quiggin and Chambers (2004) show that the only invariant expected-utility functionals
are those associated with a quadratic ex post utility function. This class of preferences has
some very unattractive properties when regarded as preferences over wealth, but they also
satisfy the conditions for two-fund portfolio separation and exhibit linear risk tolerance
over a restricted domain. Invariant preferences always satisfy a form of two-fund portfolio
separation in the presence of a riskless asset (Quiggin and Chambers 2004). This note iden-
tifies the class of preferences which simultaneously satisfy invariance, two-fund portfolio
separation, and linear risk tolerance to determine if there exist meaningful classes of pref-
erences, which inherit much of the quadratic family’s theoretical and empirical tractability,
but do not necessarily inherit its more unattractive properties when regarded as preferences
over wealth.

Our analysis relies on the dual treatment of risk-averse preferences developed by Cham-

bers and Quiggin (2002). In what follows, we first introduce some notation and basic



concepts. Then we briefly discuss the translation and expected-value functions and then
use these concepts to deduce necessary and sufficient conditions for individual preferences
to be both invariant and linear-risk-tolerant. Finally, we consider implications for asset

demand and asset pricing.

1 Notation and Basic Concepts

We consider preferences over random variables represented as mappings from a state space
) to a convex outcome space Y C R. ) is a finite set {1,...5}, and the space of random
variables is, thus, Y¥ C . The unit vector is denoted 1 = (1,1,...1), and P C §Ri
denotes the probability simplex. The vector 7 € P is taken to represent known (subjective
or objective) probabilities over the state space.

Preferences over state-contingent incomes are given by the certainty equivalent e (y),
which is continuous, nondecreasing, and quasi-concave in y. Quasi-concavity ensures that

the least-as-good sets of the preference mapping

Vie)={y:we(y)>e}

are convex, and that the individual is risk averse in the sense of Yaari (1969).

2 The Translation Function and the Expected-Value
Function
The translation function, B : % x Y — %, is defined:
B(e,y)=max{B €R:y — 1€V (e)}

if y — 0381 € V(e) for some 3, and —oo otherwise (Blackorby and Donaldson, 1980; Lu-
enberger, 1992). ! The properties of B (e,y) are well known (Blackorby and Donaldson,
1980; Luenberger, 1992; Chambers, Chung, and Fére, 1996; Chambers and Quiggin, 2002).

!The translation function is a special case of the benefit function defined by Luenberger (1992).



Most importantly for our purposes, it is nonincreasing in e and nondecreasing and concave
iny.
We refer to the concave conjugate of the translation function, B (e,y), as the expected-

value function E : P X & — R. It is defined by
E(me)=inf{my — B(e,y)} wmcP.
y

The expected-value function has an alternative interpretation as the expenditure function
for V (e) in the (normalized) state-claim prices 7 (Chambers, 2001; Chambers and Quiggin,
2002).

If V (e) is nonempty, B (e, y) is a continuous and nondecreasing proper concave function,
and thus E (,e) is a closed, proper concave? function nondecreasing on P (Theorem 12.2,
Rockafellar, 1970). It is also continuous and nondecreasing in e in the region where it is
finite. And because e (el) =¢, F (m.e) <e.

By basic results on conjugate duality (Theorem 12.2, Rockafellar, 1970), the translation
function can be reconstructed from the expected-value function by applying the following

conjugacy relationship

Ble,y) = inf {my — E(m.e)}.

3 Invariant Preferences

Quiggin and Chambers (2004) have shown that preferences are invariant if and only if

there exists functions ¢ : R x R, — R and p: R° — R,

e(y) =0 (y),p(y—px(y)1)),

where p. (y) = >, Tsys for some & €P, p is nonnegative, lower semi-continuous, posi-
tively linearly homogeneous, and subadditive, and ¢ is increasing in its first argument and

decreasing in its second and satisfies ¢(c,0) = c.

2A concave function, g (z), is proper if there is at least one x such that g (z) > —o0, and g (z) < oo for

all z. A concave function is closed if and only if it is upper semi-continuous (Rockafellar, 1970, p. 52).



It is convenient to develop several preliminary definitions. Define the partial translation

function for ¢ by
B? (e, p1,p) =sup{B: ¢ (n—B,p) > e}.

In words, B® (e, i, p) represents the number of units that g must be translated to ensure

that ¢ (u, p) is consistent with e. It follows immediately that for 6 € R
B (e,u+ 6,p) = B (e, p, p) + 6. (1)

The monotonicity properties of ¢ ensure that B¢ (e, u, p') < B® (e, i, p) for p' > p. More-
over, by the fact that ¢ (¢,0) = ¢

B¢(67070) = sup{ﬁqb(—ﬁ,())ze}
= sup{8: -0 =>e}

= —e.
For the invariant preference class, there is a natural relationship between B and B?:

Be,y) = sup{B:0(u; (y —81),p(y—ps (y)1)) > e}
= sup{B: 0 (p: (y) = B,p(y—psz (y)1)) > e}

= B?(e,p; (y),p(y—pa (y)1)).

Because p is nonnegative, positively linearly homogeneous, and subadditive it is the

gauge function for the convex set (Aliprantis and Border, Lemma 5.36)
C={y—ps (¥ 1:p(y—ps(y)1) <1}.
Assuming that C is nonempty, define its (lower) support functional R : % — R by
E(p.C)=inf{p(y—pa (y)1): y—pa (y)1 € C}.
With these definitions in hand we are able to state:

Lemma 1 Risk-averse preferences are invariant if and only if the expected-value function

can be written as

E (71', 6) = })I;E {pR (71' - %70) - B¢ (67 Ovp)} .



Proof By (1)

Using this fact gives

E(me) = ir;f{ﬂy—uﬁ (y)—B? (e.0,p(y—ps (y) 1)}
= ir;f{(7T —#)y—B?(e,0,p(y—ps (y) 1))}

= inf {(m—@&)y—B?(e,0,p): p(y — px (y) 1) = p}

y,p>0

>0

= })I>1£ {ix}}f{(ﬂ'—ﬁ')y P <%fy)1> = 1} — B¢ (e,O,p)}

= inf {pinf{(ﬂ-_ﬁ-)y P <y_'UJ7Ar (Y)l) = 1} — B? (e,O,p)}
= p p
)

= inf {pR (w —#,C) — B? (e,O,p)} .

>0

= inf {inf ((n = )y py—pe )1 =} ~ B (c.00p) )

The fifth equality follows by the positive linear homogeneity of p, and the seventh
follows by the fact that (w — @) L1 for all # € P.1A

It is worthwhile to remark on one particular aspect of this expected-value structure.
Note first that:

E(#.e) = inf{pR (& —#,C)— B’(e,0,p)}

>0

= —B°(e,0,0)

= €.

Hence, in the terminology of Chambers and Quiggin (2002), an individual with invariant
preferences is always risk-averse for the given probability vector  that defines us (y).
Visually, this implies that the least-as-good set for an individual with invariant preferences

must have 7 as a supporting hyperplane in the neighborhood of the ray pl, u € R.



Example 1 Consider

O (s (), p(Yy—pa (V) D)=p: (¥y) —g(p(y—pa (y)1))

with g increasing, g (0) = 0, and p given by the L, norm

py—px(y)1) = |ly—pz ()1,

for p > 1. We adopt the the usual convention that p = oo corresponds to the supremum
(Tchebycheff) norm. Thus, increases in p correspond to risk measures with a greater weight
on extreme values. For example, p = 1 yields the class of (sample) mean absolute deviation

measures. Then
B(e,y) = B° (e,p«fr ) [ly—pa (y) 1||p)
= p(y)—yg (Hy_,U«fr ) 1||p) — €,

and
R(p.C) = inf {p (y—ps () 1) : ly—pr ()1, < 1}

Since it 1s characterized by a single parameter, and the special case p = 2 corresponds
to preferences characterized by the (sample) mean and standard deviation, this class of

preferences 1s potentially suitable for empirical estimation. Finally,

Eme) = inf{(m—#)y =g (ly—ns01l,)} +e

— inf {pR (7 —#,C)+ g (p)} +e.

p>0

4 Linear Risk Tolerant and Invariant Preferences

Linear-risk-tolerant preferences are the class of preferences quasi-homothetic in state-

contingent incomes. They, therefore, possess expected value functions of the form
E(mw,e)=E°(m)+ E' (m)e,

where E° and E' are expected value functions. We now have the main result of this paper:



Proposition 2 Preferences are invariant and linear-risk-tolerant if and only if the expected-

value function can be written as
— (1 — p)\3 _ & _ R ; _ & _ R
E(me) = (1-e)inf {pR(m — #.0) = B*(0,0,p)} +einf {pR (w — %,0) = B* (1,0,p)} .

Proof For preferences to simultaneously exhibit linear risk tolerance and invariance, there

must exist functions E°, E', R, and B? satisfying

E°(m)+ E' () e = inf {pR (w — %,C) — B (e,O,p)} .

>0

Set e = 0 to obtain

E° (m) = inf {pR (w — #,C) — B? (0,0,p)} .

>0

Setting e = 1 and using the last expression yields

El (71') = inf {pR (71' - %70) - B¢ (17 Ovp)} - })I;E {pR (71' - ﬁ',C) - B¢ (07 Ovp)} .

>0

Therefore,

E(me)=(1—e)inf {pR (w — %,C)— B (0,0,p)}—ke/i)r;(f) {pR (w —#,C) — B? (1,0,p)} .

>0

This establishes necessity. Sufficiency follows by conjugate duality.ll

Preferences are invariant and linear-risk-tolerant if and only if the least-as-good set is
the sum of rescaled (with the rescaling determined by e) versions of two invariant least-as-
good sets. The first, which is dual to inf,.q {pR (w — #,C)— B? (0,0, p)} passes through
the origin and has 7 has a supporting hyperplane at that point. Hence, it is risk-averse

for . The second, which is dual to

inf {pR (w — %,C) — B (1,0,p)}

p>0
passes through the point 1 and has # has a supporting hyperplane at that point. This
observation offers a primal characterization of this class of preferences. The composition
rules reported in Chambers, Chung, and Fire (1996) can be used along with this obser-
vation to deduce the associated translation function, and a representation of the certainty
equivalent. However, because these preferences are consistent with quasi-homotheticity,

there generally will not exist a closed form solution for the certainty equivalent.
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5 Linear Risk Tolerance, Asset Demand and Asset
Pricing

Quiggin and Chambers (2004) examine asset demand with invariant preferences, and show
that for any given risk index p, and returns matrix Y including a riskless asset, there exists
a portfolio a™ ZjVZQ o = 1, such that, for all preferences of the form e(y) =¢(E(y).p(y)).
and all wealth levels W, an interior solution to the portfolio problem exists and is of the
form (aie! + (W — a;)a”) , where o is the amount allocated to the riskless asset. In the

presence of linear risk tolerance, we can impose the further restriction that
a1 = bo -+ b1W

for W > by.

In addition, we may derive implications for asset pricing. Suppose that all market
participants have invariant and linear-risk-tolerant preferences, with the same risk index
p. Then any market equilibrium must be associated with asset prices such that the return
vector y* = Yo for the optimal portfolio is proportional to the state-contingent vector
of aggregate returns for the market as a whole. Denote the return on the market portfolio

by 7., and the return on the riskless asset by rg. Hence the market risk premium is
Tm —To=kp(y7)

where k is a parameter reflecting risk aversion.
As shown in Quiggin and Chambers (2003), invariance implies that the risk premium
is of the form
p(y)= Sup {p(y-E(y)1):pe K}
with K* a closed convex set containing the origin.
Let
p’ =argmax{p(y'—-E'(y)1):p€ K},

be unique. Then, if the market portfolio yields y*, the change in risk associated with a

small holding of any asset yielding return y, with E(y) =1, is given by the directional



derivative
P y;y)=p"y,

and the return required to hold y is

r = ro+kp'y

= T0+ﬁ(rm_ro)v

where
Py
/8: r—
Py

Hence, much of the standard mean—standard deviation analysis can be extended to

general invariant preferences, without requiring the restrictive and unappealing assump-
tion that preferences are neutral with respect to skewness and higher moments of the
distribution of returns. However, because the Euclidean norm gives rise to an inner prod-
uct, norms based on the standard deviation allow for a natural definition of notions such
as covariance and correlation in terms of concepts of linear algebra. The corresponding
analysis in the general case is nonlinear and thus may be difficult to cast in terms familiar
from statistical analysis of the general linear model. However, it seems obvious that a
generalized analysis of nonlinear models would permit a similar identification. One role of
the specification of p could be to guide the direction that such nonlinear statistical analysis

takes.

6 Conclusion

We have characterized in dual terms the family of preferences consistent with both invariant
preferences and linear risk tolerance., and have given a parametric representation for a class

of preferences with these properties.
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