

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

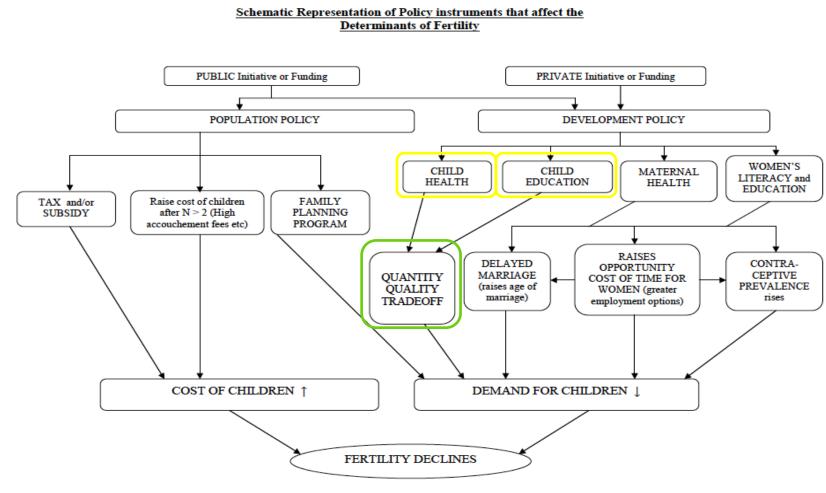
AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

2-Sided Altruism: Do Intergenerational Transfers Trigger Greater Childbearing In Developing Countries?

Shonel Sen Dual-Ph.D. Candidate & Research Assistant Agricultural, Environmental & Regional Economics and Demography Department of Agricultural Economics, Sociology and Education The Pennsylvania State University E-mail: <u>shonelsen@psu.edu</u>

Selected Poster prepared for presentation at the Agricultural & Applied Economics Association's 2013 AAEA & CAES Joint Annual Meeting, Washington DC, August 4-6, 2013.

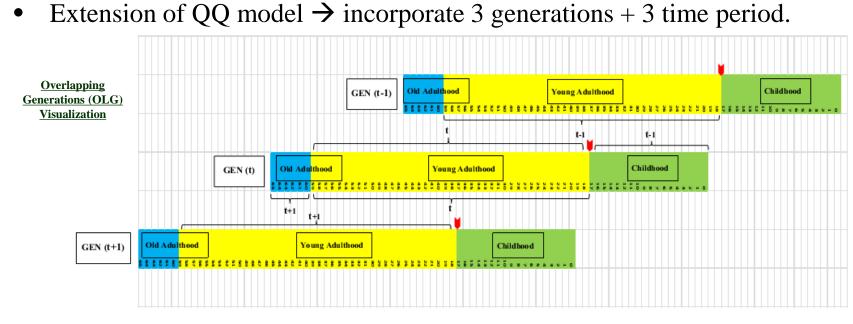

Copyright 2013 by [authors]. All rights reserved. Readers may make verbatim copies of this document for noncommercial purposes by any means, provided that this copyright notice appears on all such copies.

2-Sided Altruism: Do Intergenerational Transfers Trigger Greater Childbearing In Developing Countries?

Shonel Sen, Dual-Ph.D. Candidate in Applied Economics & Demography, Department of Agricultural, Environmental & Regional Economics, The Pennsylvania State University.

INTRODUCTION

- Current world population = 7 billion \rightarrow 2050 Projections = 9 billion
- $\Delta P = B D + NM$
- Population growth deceleration \rightarrow Fertility Management



• Previous Literature: Barro & Becker (1988, 1989); Kimball (1987); Abel (1987); Singh, Veigas & Ratnam (1986); Gertler & Molyneaux(1994) etc.

RESEARCH QUESTION

How can the Quantity-Quality model of fertility be used in presence of *child labor lack of old age security intergenerational transfers* to analyze the effects of **incentives for smaller family sizes**?

METHODOLOGY

- Demand for children made in presence of uncertainty
- Elderly may not have savings for old age security
- Parents choose *number of children (quantity)+education of child (quality)*
- Children may work + Young adults employed + Old adults retired

Dynamic Model Optimisation Exercise

	· · ·	Period (t-2)		· · · ·	Period (t-1)			Period (t)			Period (t+1			eriod (t+2)		
	Start of pd (t-2)	- en ou (r-2)	,	Start of pd (t-1)	ranou (r-r)		Start of pd (t)	Period (I)		Start of pd (t+1)		,	Start of pd (t+2)	- anou (t - 2)	,	Start o pd (t+3)
	хут	x+2yr	х+7ут	x+20yr	х+22ут	х +27ут	x+40yr	x+42yr	x+47yr	x+60yr	х+62уг	х+67ут	x+80yr	x+82yr	х+87ут	x+100
	1967			1987			2007			2027			2047			2067
Gen (t-3)	Y-Ad = 38	Y-Ad = 40	Y-Ad = 45	Y-Ad = 58	O-Ad = 60	Die = 65	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Gen (t-2)	Y-Ad = 18	Y-Ad = 20	Y-Ad = 25	Y-Ad = 38	Y-Ad = 40	Y-Ad = 45	Y-Ad = 58	O-Ad = 60	Die = 65	N/A	N/A	N/A	N/A	N/A	NA	N/A
Gen (t-1)	N/A	Born = 0	Child = 5	Y-Ad = 18	Y-Ad = 20	Y-Ad = 25	Y-Ad = 38	Y-Ad = 40	Y-Ad = 45	Y-Ad = 58	O-Ad = 60	Die = 65	N/A	N/A	NA	N/A
Gen (t)	N/A	N/A	N/A	N/A	Born = 0	Child =	Y-Ad = 18	Y-Ad = 20	Y-Ad = 25	Y-Ad = 38	Y-Ad = 40	Y-Ad = 45	Y-Ad = 58	O-Ad = 60	Die = 65	N/A
Gen (t+1)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Born = 0	Child = 5	Y-Ad = 18	Y-Ad = 20	Y-Ad = 25	Y-Ad = 38	Y-Ad = 40	Y-Ad = 45	Y-Ad 58
Gen (t+2)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Born = 0	Child = 5	Y-Ad = 18	Y-Ad = 20	Y-Ad = 25	Y-Ad 38
Gen (t+3)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Born = 0	Child = 5	Y-Ad 18
Gen (t+4)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A

Young Adult Consumption
Old Adult Consumption
Fertility
Child Labor
Child Expenses
Rate of Interest
Wages
Model Parame
ameters
mium rate for own old age consumption
e of human capital accumulation
gree of altruism towards children
gree of altruism towards elderly parents
sticity of number of children
sticity of consumption
Calibration Exercise

via back calculation <u>(plug t = 2007 values)</u>

THEORETICAL FRAMEWORK

• Additively separable <u>Buiter-Carmichael-Burbidge Utility function</u> • Discount Rates and Degrees of Altruism: $(\theta) (\phi) (\alpha) (\epsilon)$

> $\max_{C_{2t}, n_t, g_t, l_t, k_t} U_t = V_t(C_{2t}) + \theta V_t(C_{t+1}) + \phi V_{t-1}(C_{3t}) + \alpha(n_t)^{1-\varepsilon} V_{t+1}(C_{2t+1})$ $= \frac{1}{\sigma} (C_{2t})^{\sigma} + \theta \frac{1}{\sigma} (n_t g_{t+1})^{\sigma} + \phi \frac{1}{\sigma} (n_{t-1} g_t)^{\sigma} + \alpha (n_t)^{1-\varepsilon} \frac{1}{\sigma} (C_{2t+1})^{\sigma}$ subject to $C_{2t} + n_t\beta + g_t + n_tk_t = e + (1 + R_t)(1 - l_{t-1})^{\gamma}k_{t-1} + n_tw_t^c l_t$

 $n_t[C_{2t+1} + n_{t+1}\beta + g_{t+1} + n_{t+1}k_{t+1}] = n_t[e + (1 + R_{t+1})(1 - l_t)^{\gamma}k_t + n_{t+1}w_{t+1}^c l_{t+1}]$

Analytical Solutions can be solved from First order Conditions for the 7 unknowns: $(C_{2t}, n_t, g_t, l_t, k_t, \lambda_t, \lambda_{t+1})$

EMPIRICAL ANALYSIS

• Representing generation length =20 years \rightarrow (t-2)=1967; (t-1)=1987; (t)=2007. • Data: NSSO's 43rd to 64th Round (1986-2008), World Bank indicators. • Cumulative values are discounted by 2007 real interest rate (6.87%).

Der	ivation of Lagged Var	iables (from data)	
	C _{2t-1}		
	36073.946		
	g _{t-1}		
	832.7792		
	n _{t-1}		
	2.071		
	l _{t-2}	l _{t-1}	
	0.1406	0.1406	
	k _{t-2}	k _{t-1}	β
	878.6377	1144.133	11965.55
	R _{t-1}	R _t	R _{t+1}
	0.065601	0.068691	0.071926
	e	Wt	
	143457.1406	31355.30667	

ieteriz	erization Results			Household Decision Results						
	Notation	Values	_	Variables	Est	imated Va	lues	Observed Values		
1	θ	0.8772		Current Young Adult Consumption Expenditure		70337		70778.5		
	7	0.5	L	Contribution to Old Adult's Consumption Expenditure		2239.8		2279.6		
	a	0.4881	Ļ	Fraction of Time spent in Child Labor		0.2372	-	0.2094		
	ø	0.124		Cumulative Investment in Child Education		4783.3	_	4674.7		
	3	0.2419								
	σ	0.5		Fertility Choice $(n_t = TFR/2)$		1.3754		1.371		

Numerical Results (Avg No of children per parent = $1.37 \rightarrow TFR = 2.7 > 2.1$)

Estimation of Lagged

Variables from data

POLICY EXPERIMENTS

Different policy scenarios would result in different levels of choice.

FERTILITY REDUCTION SUBSIDY

- Current $n_0=1.37 \Rightarrow TFR=2.7$ Vs. Target $n_t=1.05 \Rightarrow TFR=2.1$
- Effect on Budget Constraint: $C_{2t} + n_t\beta + g_t + n_tk_t = e + (1+R_t)(1-l_{t-1})^{\gamma}k_{t-1} + n_tw_t^e l_t + s(n_0 n_t)$
- 2 stage game:- <u>Step 1</u>: Policy maker; <u>Step 2</u>: Household.
- Model yields monetary transfer of Rs. 39250 per person.
- Concerns: Timing of subsidy; Expensive payoff.

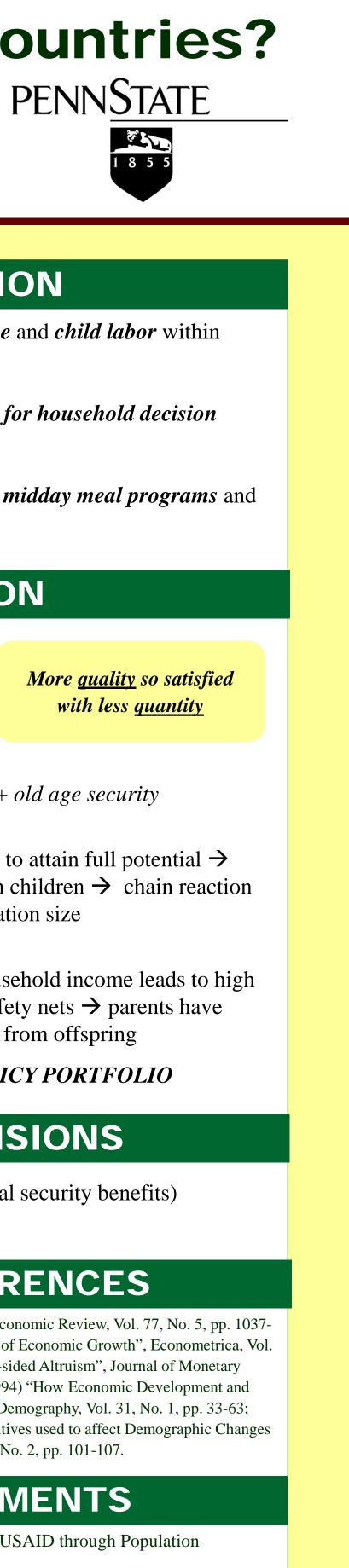
CONDITIONAL CASH TRANSFER TO REDUCE CHILD LABOR

- Aim: influx of money \rightarrow reduce child lab \rightarrow raise schooling $\rightarrow QQ$
- Effect on Budget Constraint: $C_{2t} + n_t\beta + g_t + n_tk_t = \epsilon + (1+R_t)(1-l_{t-1})^{\gamma}k_{t-1} + n_tw_t^{\epsilon}l_t + c(l_0 l_t)n_t$

	$C_{2t} +$
<u>Setting c = 5% (Brazil); 10%</u>	
(Mexico); 20% (Nicaragua) to	-
replicate successful	C_{2t}
<u>interventions</u>	

• Concerns: Timing of CCT

		U						
	CCT ca	alculation		Comparative Statics for Conditional Cash Transfers				
Variable	$\begin{array}{c} \mathbf{CCT_1} \\ (5\% \text{ of } w_t^c) \end{array}$	$\frac{\text{CCT}_2}{(10\% of w_t^c)}$	$\frac{\text{CCT}_3}{(20\% \text{ of } w_t^c)}$		Child Labor (lt)	Educational Investment (k _t)	Fertility Choice (n _t)	
с	1567.7653	3135.5306	6271.0613	BASELINE	0.2372	4783.3	1.3754	
β	11613.4319	11261.3118	10557.0716	$\frac{\text{CCT}_1(5\% \text{ of } w_t^c)}{\text{CCT}_2(10\% \text{ of } w_t^c)}$	0.1862	4847.9 4936.7	1.3203 1.2614	
$\overline{w_t^c}$	29787.5413	28219.7760	25084.2453	$\frac{\text{CCT}_{2}(10\% \text{ of } W_{t})}{\text{CCT}_{3}(20\% \text{ of } W_{t}^{c})}$	0.0930	5213.3	1.1313	
				* Note: C _{2t} and g _t rema	iin unaffected by	y the transfers.		


MIDDAY MEAL SCHEMES TO RAISE SCHOOL ATTENDANCE

- Aim: school lunch program \rightarrow raise enrollment + attendance $\rightarrow QQ$
- Effect on Budget Constraint: $C_{2t} + n_t \beta + g_t + n_t k_t = e + (1 + R_t)(1 l_{t-1})^{\gamma} k_{t-1} + n_t w_t^e l_t + n_t m_t^e$

State sponsored public schools provide daily balanced meal of rice, lentils ,vegetables, eggs and fruits (Rs. 5 per child per day)

• Concerns: Difficult to sustain

	aparative state	ics for Mid-day Meal Scl	leme		
	Child Labor	Educational Investment	Fertility Choice		
	(l _t)	(k _t)	(n _t)		
BASELINE	0.2372	4783.3	1.3754		
Mid-Day Meal m = 4306.9206 $\bar{\beta} = 7652.6320$		5308.2	1.2878 🗸		

 $-n_t\beta + g_t + n_tk_t - n_tl_0c = e + (1 + R_t)(1 - l_{t-1})^{\gamma}k_{t-1} + n_tw_t^c l_t - n_tl_tc$

 $+ n_t(\beta - l_0c) + g_t + n_tk_t = e + (1 + R_t)(1 - l_{t-1})^{\gamma}k_{t-1} + n_t(w_t^c - c)l_t$

 $C_{2t} + n_t \overline{\beta} + g_t + n_t k_t = e + (1 + R_t)(1 - l_{t-1})^{\gamma} k_{t-1} + n_t \overline{w_t^e} l_t$

 $C_{2t} + n_t(\beta - m) + g_t + n_t k_t = e + (1 + R_t)(1 - l_{t-1})^{\gamma} k_{t-1} + n_t w_t^e l_t$

 $C_{2t} + n_t \overline{\beta} + g_t + n_t k_t = e + (1 + R_t)(1 - l_{t-1})^{\gamma} k_{t-1} + n_t w_t^e l_t$

CONTRIBUTION

- ✓ Considers both factors of *old age dependence* and *child labor* within *fertility choice.*
- ✓ Extends the Quantity-Quality model to *solve for household decision* variables.
- ✓ Traces effects of *conditional cash transfers*, *midday meal programs* and fertility reduction subsidies.

CONCLUSION

Healthier well educated children are more valuable to parents

- Dynamic intergenerational model integrates Q-Q fertility tradeoff + child labor + old age security
- Raising investments in quality allows a child to attain full potential \rightarrow this individual then invests more in their own children \rightarrow chain reaction to replacement rate fertility and stable population size
- Reliance on children for contributions to household income leads to high fertility \rightarrow provision of appropriate social safety nets \rightarrow parents have fewer children as rely less on economic gifts from offspring
- Policy implication: Need *COMBINED POLICY PORTFOLIO*

FUTURE EXTENSIONS

- Test impact of other policy instruments (social security benefits)
- Sensitivity analysis for different parameters

SELECTED REFERENCES

Abel, A.B. (1987) "Operative Gift and Bequest Motives", American Economic Review, Vol. 77, No. 5, pp. 1037-1047; Barro, R.J. & Becker, G. S. (1989) "Fertility Choice in a Model of Economic Growth", Econometrica, Vol. 57, No. 2, pp. 481-501; Kimball, M. S. (1987) "Making Sense of Two-sided Altruism", Journal of Monetary Economics, Vol. 20, pp. 301-326; Gertler, P.J., & Molyneaux, J.W. (1994) "How Economic Development and Family Planning Programs combined to reduce Indonesian Fertility", Demography, Vol. 31, No. 1, pp. 33-63; Singh, K., Viegas, O., & Ratnam S.S. (1986) "Incentives and Disincentives used to affect Demographic Changes in Fertility Trends in Singapore", Singapore Medical Journal, Vol. 27, No. 2, pp. 101-107.

ACKNOWLEDGEMENTS

Participation at this conference was made possible in part by USAID through Population Reference Bureau's IDEA Project.