Maize Safety in Kenya: The Role of Traders

Romina Ordoñez1 \& Vivian Hoffmann2

1 Ph.D. Student at University of Maryland College Park. rordonez@arec.umd.edu
2 Assistant Professor at University of Maryland College Park. vhoffmann@arec.umd.edu

Copyright 2013 by Ordoñez \& Hoffmann. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Background

Aflatoxin and Maize in Kenya
- Maize is the primary staple crop in Kenya and much of sub-Saharan Africa.
- Maize is very susceptible to contamination with aflatoxin, an unobservable fungal byproduct.
- Health effects associated with aflatoxin include: cancer, depressed immune response, child growth faltering.
- Human exposure occurs through direct consumption of contaminated crops, and consumption of milk or meat products from animals raised on contaminated feed.
- Occasional outbreaks of aflatoxicosis receive media attention, but awareness of chronic effects is low.
- Recommended practices to avoid contamination: thorough drying and careful storage of grains.
- Consumers place a premium on self-produced maize (Hoffmann and Gatobu, 2013)
- Observable attributes (rotten, broken grains) have a negative effect on price, but unobservable attributes (aflatoxin contamination) do not (Hoffmann et al., 2012)

Research Questions

Broadly: How to improve food safety in developing countries?
- What is the role of market intermediaries in preserving or diminishing maize quality once it leaves the farm gate?
- Are there opportunities to reduce information asymmetries in this market by providing traders with maize quality information?

Methodology

371 traders were interviewed at 9 open-air cereal markets across Kenya and participated in maize auction (convenience sampling) during September-November 2011.

Maize auction:
- Second-price sealed-bid auction for six 90KG bags of aflatoxin free maize: 2 low MC (13.5%), 2 medium MC (14-15%) and 2 high (17-19%)
- Information on moisture content and aflatoxin contamination of maize auctioned was varied experimentally using labels to assess WTP (in each moisture pair, information was provided for only one bag; which bag was labeled varied randomly across customers)

Local Regulations and Maize Trade
- Maximum aflatoxin content allowed: 10ppb
- Expensive to test -> not enforced -> there is no market for uncontaminated maize
- Moisture content is correlated with aflatoxin and cheaper to test
- Maximum moisture content (MC) allowed: 13.5%
- Much cheaper to test
- Tested by formal buyers (large millers, national cereals board) at time of purchase
- No enforcement in informal maize markets
- Moisture meters are out of reach for most, but less accurate methods are used (e.g. biting grains)

Results

Traders’ practices & knowledge
- 73% of traders reported covering their maize during transport to protect it from rain.
- 69% of traders typically dry and sort the maize they purchase.
- 22% of traders add preservatives to their maize.
- 75% know what aflatoxin is.
- 16% know the moisture content regulation.

Informal traders are investing in the quality of their maize

Traders’ WTP for aflatoxin safe maize

- Providing information that maize was NOT contaminated with aflatoxin increased traders’ WTP by 6-7%

Conclusions and Policy Implications

- Most traders report investing in the quality of the maize they handle by drying it prior to re-sale.
- Information on moisture content significantly affects traders’ WTP: suggests observability of moisture content is limited
- Improving information on moisture content could strengthen the price-quality relationship, improve maize handling practices throughout the value chain and reduce the risk of fungal growth.
- The impact of providing information on aflatoxin contamination is over twice as large, and could have an even stronger effect on maize handling practices, but the current price of testing is likely a barrier.

This research was funded by UMD ADVANCE Program for Inclusive Excellence Interdisciplinary and Engaged Research Seed Grants 2011-2012