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1 Introduction

Rice is a particularly important agricultural commodity in Bangladesh. Roughly 92 percent of

farming households cultivate rice to some degree or another, with nearly 78 percent of cultivable

area devoted to rice. As a result, rice comprises a significant source of caloric consumption for

a large proportion of the population, representing nearly 70 percent of per capita daily caloric

intake. Despite the very high importance of rice as a component to Bangladeshi livelihoods, rice

productivity growth has stagnated since the mid-1990s. Yet there remains significant potential to

increase overall rice production through the increased adoption of hybrid rice, many varieties of

which provide significant yield advantages over traditional and even modern high yielding varieties.

Increasing the cultivation of hybrids has the potential to have significant benefits for the livelihoods

of both rural farming households as well as urban consumers. For farming households, the higher

yields will provide an increased marketable surplus, which can raise farm incomes. For urban

consumers, the increased supply of rice arising from widespread adoption of hybrids can lower food

prices, especially for rice and its complementary goods, which are staple components of the diet of

most households in Bangladesh.

Despite these potential benefits, hybrid rice adoption remains relatively low. As of 2009-10, only

6 percent of total agricultural area was used to cultivate hybrid rice (Rashid et al., 2011). Among

other factors, information limitations, credit constraints, liquidity constraints, and supply side

constraints remain significant barriers to the widespread uptake of new agricultural technologies.

These constraints may be especially binding in subsistence or quasi-subsistence settings where input

decisions and output consequences have immediate impacts on livelihoods.

The present study examinines spatial dimensions of hybrid rice adoption. We utilize data drawn

from a nationally-representative household survey in Bangladesh to demonstrate that social inter-

actions within a spatial context (i.e., observations on hybrid rice adoption behavior from members

of defined neighborhood strucutures) are important determinants of hybrid rice adoption. Our

identification and estimation strategy attempts to overcome the “reflection problem” by employing

a generalized spatial two-stage least squares procedure that uses near-ideal instruments, allowing

us to more effectively identify causal influences arising from social interactions. We also control for
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the additional correlations of unobservable characteristics which may condition adoption behavior.

The resulting empirical framework allows us to more effectively decompose endogenous behavioral

factors arising from social networks and other correlated effects that arise from members of the

same neighborhood group being exposed to the same external influences.

2 Literature Review

There is a rich literature studying the process of technology adoption. Among the factors linked with

adoption include tenurial arrangements (Newbery, 1975), (Bardhan, 1979), farm size (Feder, 1980),

(Weil, 1970), education (Foster and Rosenzweig, 1996; Huffman, 2001), credit constraints (Weil,

1970; Lowdermilk, 1972; Lipton, 1976; Feder and Umali, 1993; Dercon and Krishnan, 1996), infor-

mation constraints (Schutjer and Van der Veen, 1977; Fischer and Lindner, 1980), risk (Sandmo,

1971; Srinivasan, 1972; Feder, 1980; Feder et al., 1985; Liu, 2013), and social networks and social

learning (Foster and Rosenzweig, 1995; Conley and Udry, 2010; Duflo et al., 2006). Over the past

few decades, there has been a great deal of emphasis on role of social effects in the adoption and

dissemination of agricultural technologies. Throughout the sociological or psychological literature,

there has long been a realization that social or peer influences have a powerful effect on behaviors

(e.g., Ostrom, 2000). The old adage ”birds of a feather flock together” highlights the extent to

which the belief that group members tend to behave similarly has permeated the folk conscious-

ness. While such realizations have persisted, there is not a clear consensus on the manner in which

group membership influences behavior.

Manski (1993) suggested three hypotheses to explain the effect of group membership on an

individual’s behavior: endogenous effects, contextual effects, and correlated effects. Endogenous

effects reflect the fact that individual behavior influences the average group behavior (or individual

group members’ behavior) while at the same time being influenced by group behavior (or by the

behavior of individual group members). Contextual (or exogenous) effects reflect the fact that an

individual’s behavior can be directly influenced by the exogenous characteristics of his or her group

(or by those of individual group members). Correlated effects reflect the fact that individuals

within a group behave in a similar fashion because they tend to have similar characteristics or
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otherwise face similar political, institutional, or environmental conditions. Within the context of

agricultural technology, endogenous effects would capture the fact that an individual’s adoption

of a particular technology is largely influenced by the adoption patterns of other farmers in his

or her social network (e.g., family, village, cooperative group, etc.), but the farmer’s practices

similarly affect the practices of all other members in his or her network. Underlying agricultural

or environmental conditions, such as soil characteristics, climate, or agricultural policies would

be examples of correlated effects, since these are often unobserved determinants of technological

choice, but would be correlated across members of a particular network. When it comes to the

adoption of new agriculutral technologies, the role of contextual effects is less clear. For example,

contextual effects might condition technology adoption if, for example, an individual’s adoption

were conditioned by the overall (or average) socioeconomic status of the network (e.g., aggregate

measures such as average income level). But it may be more appropriate to imagine that these

contextual effects do not have any direct effect on technology adoption, but only affect adoption

decisions indirectly, through their disaggregated effect on individual behavior, which then has direct

endogenous effects. Our identification strategy is based on this premise.

The disentangling of the different social influences is important because of the varied policy

implications of their respective existence. The existence of endogenous effects, for example, intro-

duces a social multiplier effect arising from feedback mechanisms. Policies that directly influence

one individual’s behavior, for example, indirectly affects the behavior of other members of his or her

social network, which in turn subsequently affect the individual, and can thus provide an avenue

whereby investments can more efficiently result in the desired behavioral changes or improvements

to social welfare. Contextual and correlated effects, on the other hand, do not have such multiplier

effects, since there are no feedback loops between the effect and behaviors that policymakers can

capitalize on.

It was long thought that the dissemination of agricultural technologies through extension ser-

vices was sufficient to guarantee widespread adoption among farmers. More recent evidence, how-

ever, shows that learning from one’s own experiences and learning from the experiences of others

represent significant channels through which technologies disseminate amongst farmers. Many
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farmers adopt technologies after leaning from their peers or after witnessing a successful experience

from a neighbor or friend. Also, it is the case that many farmers prefer to get advice from their

peers with regards to fertilizer, pesticides, herbicide application or type of varieties to grow. There

are several examples supporting the neighborhood influence in agricultural technology adoption.

For instance, Case (1992) shows that farmer’s adoption of sickle in Indonesia for rice farming is

dependent upon neighboring farmer’s success with that technology. Bandiera and Rasul (2006)

show that farmer’s adoption decisions of sunflower in Mozambique are correlated with the choices

of their network of family and friends, but they are uncorrelated with the decisions of those in

different religions. Similarly, Conley and Udry (2010) find in their study in Ghana that pineapple

farmers adjust their inputs to align with those of their information neighbors who were successful in

previous periods. Among others, the spread of new varieties across farmers represents an example

where the role of farmers-to-farmers interaction is particularly important. In most agricultural

projects new seed varieties are usually introduced to few farmers, usually the progressive farmers

who are willing to take the risk, with the expectation that other farmers will also adopt. Social

network through household and plot neighborhood, kinship, friendship or religion facilitate the

dissemination of varieties through farmers. For instance, adoption of a new high yielding variety to

replace a low yielding traditional one will happen when farmers are convinced about its good traits

and better characteristics. In order for this to happen, knowledge spillovers and learning exter-

nalities from peers facilitate the trust building about the new technology. Foster and Rosenzweig

(1995) show that farmers with experienced neighbors are significantly more profitable than those

with inexperienced neighbors. Holloway et al. (2002) find a positive and significant neighborhood

effect on high yielding variety adoption in Bangladesh. Using a spatial tobit estimator to control for

the censored nature of improved maize adoption, Langyintuo and Mekuria (2008) find evidence not

only that neighbors’ adoption influences farmers’ adoption, but also that membership in farmer as-

sociations and contact with extension officers positively affect adoption of these improved varieties.

Social interactions and social learning could therefore facilitate increased productivity growth by

fostering the spread of improved technologies within social networks.

Even though the role of social networks, social learning and knowledge spillovers for technol-
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ogy adoption is widely advocated in the literature, the econometric methodologies used for this

investigation are quite diverse. Based on a simple model in which the endogenous, contextual, and

correlated effects are represented as group means, Manski (1993) demonstrated the strong assump-

tions that must be made in order to sufficiently identify the social effects. Without such strong

assumptions, one cannot generally separate the endogenous effects from the contextual effects. So-

cial networks, social learning, neighborhood effects and knowledge spillovers entail consideration of

spatial effects, but most previous studies of technology adoption have failed to appropriately model

these effects in their econometric approach. Staal et al. (2002) noted that household level statistical

analyses of technology adoption have long failed to properly account for effects of spatial spillovers in

technology adoption by using rudimentary conventional proxies such as regional dummy variables,

distances to urban or market centers. When spatial effects–particularly spatial autocorrelation–

exist and they are not appropriately accounted for, or estimated with adequate regression methods,

estimates could be affected, either through bias or inconsistency. Manski (1993) considered endoge-

nous effects models that take the form of spatial correlation models, noting that a simple two-stage

estimation procedure could be used to estimate pure endogenous effects models. Such a two-stage

procedure involves first estimating the endogenous effect regression non-parametrically, and then

including this first-stage estimate as an additional regressor in a second-stage least squares regres-

sion. But such a pure effect model explicitly assumes the absence of spatial correlations among

unobservable factors, which almost certainly play a significant role in conditioning technology adop-

tion.

3 Background on Hybrid Rice and the Bangladesh Experience

Hybrid rice arises from crossing genetically distinct parental lines, one of which (the male) is sterile.

The result of the hybridization process is heterosis, or hybrid vigor, which is characterized by the

increase in yield, uniformity, or vigor of cultivated plants. Hybrids exhibit several characteristics

that differentiate them from other, self-pollinating varieties. These differences complicate farm-

ers’ decisionmaking calculus. First, hybrid rice often produces yields in excess of even modern

high-yielding inbred varieties, often 15-30 percent higher. In addition, because of hybrid vigor and
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uniformity, hybrids require a lower seeding rate than inbred varieties, usually in the neighborhood

of 67 less seed per acre. Heterosis declines dramatically and eventually disappears in subsequent

generations, due to the segregation of dominant and recessive alleles. Thus, the primary advantages

of hybrid plants–including increased yields–are largely restricted to first generation seeds. To con-

tinually realize the yield gains vis-á-vis varieties, farmers must purchase new first generation hybrid

seed on a seasonal basis. But first generation hybrid seeds are considerably more expensive than

seeds of inbred varieties, even modern high-yielding varieties. Farmers must therefore weigh the

benefits of increased yield and seed efficiency with the costs of higher seed prices and the inability

to save harvested grain to be re-used as seed in subsequent seasons.

While Bangladesh is one of the most densely populated countries in the world, the population

is largely rural. Agricultural production is the backbone of rural livelihoods for virtually all rural

households in Bangladesh. Nearly 44 percent of the labor force is employed in the agriculutural

sector, which contributes roughly 20 percent of gross domestic product. Far and away, the most

important agricultural commodity is rice. Roughly 92 percent of farming households cultivate rice

to some degree or another, with nearly 78 percent of total cultivable area devoted to rice. In

Bangladesh, rice is cultivated in three seasons: aus (April–July/August), aman (July–December)

and boro (December–May). Most land in Bangladesh is either single-cropped (during either aman

or boro) or double-cropped (during both boro and aman), with a small minority triple-cropped

(aman, boro, and aus). While traditionally the main rice growing season has been the aman (mon-

soon) season, this has changed in recent decades, largely due to liberalization and other supportive

policies that have increased the proliferation of small-scale irrigation equipment for use during the

predominantly dry boro season. From 1996 to 2005, boro rice area increased from 30 percent to 40

percent of total rice area, while its share of total rice production increased from 39 percent to 55

percent (Table 1). From 2005 to the present, while total boro production has increased, its share

of total has held steady at 55 percent.

Somewhat surprisingly, hybrids in Bangladesh are primarily cultivated during the boro season.

This is largely a historical coincidence (Spielman et al., 2012). Unlike the case in neighboring India,

the hybrid seed system in Bangladesh has in large part depended upon imported material from
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China. Hybrid rice first entered the Bangladesh market during boro 1999, when several private

sector companies imported roughly 2,000 metric tons of hybrid seed from China to supplement

shortfalls in domestic seed supply caused by floods in 1998 (Azad et al., 2008). Subsequently,

several private sector seed companies began importing hybrid parental lines for domestic seed

production, rather than simply importing the seeds directly. By 2007, nearly 10,000 metric tons of

hybrid seeds were used in Bangladesh, with only 77 percent of the total hybrid seeds used coming

as direct seed imports (Hossain, 2008). While adoption of hybrid rice was initially quite slow (due

to a number of factors, not the least of which is supply constraints), the pace of adoption increased

in the first decade of the millenium, reaching as high as 9 percent of total area (22 percent of total

boro area) in 2007 (Rashid et al., 2011).

4 Theory

There are several common ways for modeling the process of technology adoption. Foster and Rosen-

zweig (1995) specify a target input model and incorporate a Bayesian learning process to model

adoption of high-yielding varieties (HYVs) in India. In their model, the optimal input level is un-

known, and each application of the technology represents a trial which yields additional information

regarding the distribution of random productivity disturbances characterizing this optimal input

level. This approach contrasts with the approach taken by Besley and Case (1994), who instead

assume that the profitability of a particular technology is stochastic, and it is only through exper-

imenting that one uncovers the distribution of profits attainable by adoption. Conley and Udry

(2010) model an uncertain production technology subject to productivity shocks, with production

technology the object of learning. Farmers update their beliefs regarding production technology

only after observing neighbors’ past input usage, growing conditions, and realized output. To

demonstrate the importance of social influences on production decisions, consider a variant of the

learning model introduced in Conley and Udry (2010). We consider an agricultural season com-

prised of two time periods: farmers make input decisions in period t and realize output in period
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t+ 1. Realized output (per unit of land) can be written

yi,t+1 = f(xit; υt) + εi,t+1 (υt) (1)

where yi,t+1 is realized productivity in the future, xit is the quantity of input used (per unit of

land) in the current period, εi,t+1 is a mean-zero stochastic productivity shock that is independently

and identically distributed across farmers, and υt characterizes growing conditions. Note that we

have written equation (1) such that current growing conditions affect both the input response

(production) function as well as the exogenous, stochastic productivity shock. Farm profits can be

written

πi,t+1 = pt+1yi,t+1 − rtxt = pt+1 [f(xit; υt)]− rtxit (2)

where pt+1 are future output prices and rt is the current unit price of input x. Because future

output prices and productivity are stochastic, farmers do not know what either productivity or

farm profits will be in the future based simply on decisions they make in the present. Rather, we

assume that farmers have some understanding about the distribution of productivity given their

input use and current growing conditions. Expectations in period t regarding future profits can be

written

Eit [πi,t+1] = Eit (pt+1)Eit [f (xit; υt)]− rtxit (3)

The farmer’s profit maximization problem in period t is therefore

max
xit

Eit [πi,t+1] = Eit (pt+1)Eit [f (xit; υt)]− rtxit (4)

The expected profit maximizing level of inputs is therefore

x∗it = arg max
xit

{Eit (pt+1)Eit [f (xit; υt)]− rtxit} (5)

8



So, therefore, the expected profit under this optimal input level is at least as high as the expected

profits from any other possible input choice:

Eit(pt+1)Eit [f(x∗it; υt)]− rtx∗t ≥ Eit(pt+1)Eit [f(x̃it; υt)]− rtx̃t, ∀x̃it 6= x∗it (6)

The process of formulating and updating subjective expectations about productivity is an im-

portant and interesting process. We assume that current expectations are a function of both one’s

own experiences (i.e., realized profits) as well as the experiences of other farmers within one’s social

network. Expected productivity can be written

Eit [f (xit; υt)] ≡ Eit [f (xit; υt) |Yit(Xi), Yjt(Xj),Υt] ∀j ∈ J (7)

In this identity, Yit(Xi) = yit(xi,t−1), yi,t−1(xi,t−2), ..., yi,t−T+1(xi,t−T ) summarizes farmer i’s mem-

ory in period t of his own input decisions and observed next-period output (to the extent of his

memory, T ), Yjt(Xj) = yjt(xj,t−1), yj,t−1(xj,t−2), ..., yj,t−T+1(xj,t−T ) summarizes farmer i’s memory

in period t of the input decisions and observed next-period profits of neighbor j ∈ J , where J is the

set of all members in farmer i’s social network, and Υt = υt−1, υt−2, ..., υt−T reflects farmer i’s mem-

ory in period t of past growing conditions. At time t, therefore, farmer i observes the productivity

(and hence profit) of input choices xi,t−1 and xj,t−1. These observations have impacts on current

expectations. We assume that expected productivity is increasing in positive deviations in observed

past productivity from prior expectations, whether from farmer i himself or a member of his so-

cial network. Let Eit0 [f(xit; υt)|Yi,t−1(Xi), Yj,t−1(Xj),Υt−1] represent baseline prior expectations

in period t before observing yit(xi,t−1; υt−1) or yjt(xj,t−1; υt−1) ∀j ∈ J . Then let ∆Eit [f(xit; υt)] ≡

Eit [f(xit; υt)|Yit(Xi), Yjt(Xj),Υt]−Eit0 [f(xit; υt)|Yi,t−1(Xi), Yj,t−1(Xj),Υt−1] represent the updat-

ing of farmer i’s expectations based on observing outputs yit and yjt, ∀j ∈ J . For first-time

adoption, Yit(Xi) = 0, so Eit [f(xit; υt)] ≡ Eit [f(xit; υt)|Yjt(Xj),Υt], and ∆Eit [f(xit; υt)] will

have the same sign as πjt(xj,t−1; pt, rt−1, υt−1) − Eit0 [πjt(xj,t−1)] (Conley and Udry, 2010). But

this need not be the case for continued use of a particular technology. Since expectations are a

function of learning by doing and learning from others, it could be the case that farmer i’s own
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past experiences result in ∆Eit [f(xit; υt)] > 0, even under cases where πjt(xj,t−1, pt, rt−1; υt−1) <

Eit0 [πjt(xj,t−1)]. The converse is also possible. Additionally, we will assume that learning is local,

so that ∆Eit [f(xit; υt)] |Yit(Xi), Ylt(Xl),Υt = 0 for l /∈ J .

Combining equations (5) and (7), we can write a reduced form hybrid rice adoption decision

equation as

xit = g(Eit(pt+1), Yit(Xi), Yjt(Xj),Υt, rt;Zit) (8)

Each of the terms in this reduced form equation have been introduced before, with the exception

of Zit, which is a vector of household-specific characteristics. We introduce these terms to demon-

strate idiosyncratic differences that may lead to differences in hybrid adoption between otherwise

observationally equivalent farmers. For example, there may be household-specific demographic,

sociological, economic or ecological characteristics that may condition technological adoption deci-

sions. Feder (1980) for example has demonstrated that farm size, risk preferences, and access to

credit may be important determinants of agricultural input decisions. Given the presentation of

equation (8) as a reduced form demand equation, these variables may be viewed as idiosyncratic

demand shifters. This reduced form equation provides us with the basic empirical model for this

exercise.

5 Empirical Methods

Farmers’ adoption of a new technology is often modeled through a limited dependent variable

econometric model. The most common approach is to specify a binary dependent variable model,

such as a probit or a logit model (Feder et al., 1985). Such an approach allows the researcher to

identify those factors that affect adoption in a probabilistic setting: X increases the probability

that y will be adopted. If social interactions facilitate technology adoption, then an important

explanatory variable included on the right hand side of any regression equation would be spatially-

lagged dependent variables:
∑

j∈J ωijyj , where J captures i’s network, ωij represents the (i, j)

element of a properly specified spatial weights matrix, and yj is the observation of y for network
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member j ∈ J , j 6= i. In matrix terms, this is written as Wy, where W is some N × N spatial

weights matrix that defines the structure of the spatial setting (i.e., the “neighborhood” within

which members exert influence over one another) and y is an N -vector of observations on the

dependent variable. In this case, yi ∈ y, but since the diagonal elements of W are zero, ωiiyi=0, so

there are no “own influences”.

As Manski (1993) observed, behaviors among members of a group may be similar because such

group members have similar characteristics or because they are exposed to similar institutional or

contextual environments. If these individual characteristics or characteristics of the institutional

or contextual environments are not directly observed or controlled for, then the correlation among

these factors across individuals within a particular group may decrease the efficiency of estimates of

other observable effects. In other contexts, (e.g., when sample selection bias is a concern) the failure

to control for such correlations among unobservables has been shown to bias coefficient estimates.

With these modifications established, we can specify our econometric model based on equation

(8) as

Hi = α+ ρ
∑
j∈Ji

ω1
ijHj + z′iβ + εi

εi = λ
∑
j∈Ji

ω2
ijεj + ui

(9)

where Hk, k = i, j is a binary hybrid rice adoption measurement corresponding to farmer i and

network member j, zi is a vector of household characteristics, ui is an random error term, and ωm
ij

is the (i, j) element of the mth spatial weights matrix Wm. The ρ and λ terms are spatial correla-

tion coefficients (also commonly referred to as spatial autoregressive parameters) corresponding to

spatially lagged dependent variables and errors, respectively. The parameter space for these param-

eters is typically taken to be the interval (-1,1). This model is a variant of the standard Cliff-Ord

model (Cliff and Ord, 1981), with the addition of a spatial process amongst unobservables. In the

language of Anselin (1995), we refer to this model as a first-order spatial autoregressive model with

first-order spatial autoregressive disturbances, or SARAR(1,1) for short. Given the complexities of

the econometric modeling, we specify the binary dependent variable model as a linear probability
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model.

The first row of equation (9) implies that household i’s hybrid rice adoption is a function of

i’s neighbors’ adoption as well as i’s exogenous characteristics. Variables included in z would be

features of household demographic characteristics (e.g., household composition, characteristics of

the household head, etc.) and economic characteristics (e.g., income or expenditures, savings,

occupational characteristics, etc.). The second row of equation (9) captures spatial correlation in

unobservable factors, also referred to as spatially lagged errors or spatial autoregressive errors. Sev-

eral previous researchers have acknowledged the existence of such correlations affecting technology

adoption decisions (e.g., Bandiera and Rasul, 2006), but there have been relatively limited efforts

to address them (Conley and Udry, 2010 are a notable exception).

6 Identification Strategy

Our empirical exercise is faced with a nontrivial identification challenge related to the identifica-

tion of social learning effects. In a cross-sectional setting, we are unable to directly identify the

impacts of learning from others, since spatially-lagged adoption observations are correlated with

the unobserved error term ui in equation 9. In this regard, our identification problem is the general

identification problem in social interactions, what Manski (1993) referred to as the ‘reflection’ prob-

lem. In its general form, we are unable to infer causal relationships in hybrid rice adoption, merely

spatial correlations in adoption behavior. We cannot disentangle whether household i’s behavior

is directly influenced by the behavior of the members of i’s social network, whether behaviors are

simply correlated because of other unobservable factors, or whether we estimate correlations arising

from household i’s behavior influencing the behavior of the members of i’s social network. We are

unable to control for the timing of hybrid adoption (as Conley and Udry, 2010 are able to do in

their study of pineapple adoption in Ghana). Because of this limitation, we are unable to directly

attribute social influences in hybrid rice adoption from early adopters to later adopters without an

appropriate identification strategy.

Our identification of learning effects relies upon an approach initially introduced by Kelejian

and Prucha (1998) and later modified by Arraiz et al. (2010) and Kelejian and Prucha (2010) into
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a IV/GMM generalized spatial two-stage least squares. We can re-write equation (9) in matrix

notation (for a sample of size N) as

HN = ρNWNHN + ZNβN + εN

εN = λNWNεN + uN

(10)

which can be written as

HN = MNδN + εN

εN = λNWNεN + uN

with MN = [WNHN , ZN ] and δN = [ρN , β
′
N ]′. Kelejian and Prucha (2010) propose a two-step

procedure for efficiently estimating all of the model parameters, with sub-procedures in each step.

In the first step, the model is estimated by two-stage least squares (2SLS) using the instruments QN .

The autoregressive parameter λN is estimated based on the 2SLS residuals using the generalized

moment approach initially introduced in Kelejian and Prucha (1999). This estimate of λN is

consistent, but inefficient. In the second step, the original model is transformed via a spatial

Cochrane-Orcutt transformation accounting for the estimated λN , and this transformed model is

estimated by generalized spatial 2SLS (GS2SLS). The GS2SLS residuals are then used to obtain a

consistent and efficient estiamtor for λN .

Consider the endogenous regressor WNHN . Note that, so long as the eigenvalues of WN are

all less than one, E (HN) =
(
IN + ρNWN + λ2NW

2
N + ...

)
ZNβ. The ideal instrument for WNHN is

therefore E[MN ] = [ZN ,WNE (HN)]. Given that E (HN) is an infinite series, we can approximate for

the ideal instrument. LetQN be theN×p instrument matrix used to instrumentMN . We specifyQN

as a subset of the linearly independent columns of E(MN), such that QN =
[
ZN ,WNZN ,W

2
NZ

2
N

]
.

Then we can write PQ as the projection matrix PQN
= QN (Q′NQN)−1QN . The first step 2SLS

estimator for δ̃N is

δ̃N =
(
M̂ ′NMN

)−1
M̂ ′NHN (11)
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where M̂N = PQN
MN = ZN

ˆWNHN and ˆWNHN = PQN
WNHN . The 2SLS residuals ũN = HN −

MN δ̃N are used in an GMM estimator (Kelejian and Prucha, 1999) to consistently estimate the

spatial error coefficient, denoted λ̃. This estimate is then used to transform the original model.

It can easily be seen that εN = (IN − λNWN)−1uN , so we can write this model as

H∗N (λN) = M∗N (λN) δ + uN

where H∗N (λN) = HN −λNWNHN and M∗N (λN) = MN −λNWNMN ; these variables have undergone

a spatial Cochrane-Orcutt transformation, which can be achieved by simply pre-multiplying by

(IN − λNW ).

With consistent (but inefficient) estimates λ̃, we define our generalized spatial 2SLS (GS2SLS)

estimator for δ using this spatial Cochrane-Orcutt transformation:

δ̂N

(
λ̃N

)
=

[
M̂∗N

(
λ̃N

)′
M∗N

(
λ̃N

)]−1
M̂∗N

(
λ̃N

)′
H∗N

(
λ̃N

)
(12)

where M̂∗N

(
λ̃N

)
= MN − λ̃NWNMN , Ĥ∗N

(
λ̃N

)
= HN − λ̃NWNHN , and M̂∗N

(
λ̃N

)
= PQN

M∗N . The

re-computed GS2LS residuals are then used as the basis for an efficient GMM estimation of λN .

This identification strategy assumes that the only effect of spatially-lagged explanatory vari-

ables on hybrid rice adoption is through their effect on neighbors’ adoption decisions. In other

words, since WNZN and W 2
NZ

2
N are used as instruments in our estimation, we must assume that

corr (HN ,WNZN ) = 0, and that there are no contextual effects conditioning hybrid rice adoption.

While Manski (1993) suggested that individual behaviour could be swayed by the average charac-

teristics of members of his social network, it may be justifiable to assume that the average level

of education, for example, should not affect an individual’s adoption of hybrid rice except insofar

as higher average levels of education lead to higher average levels of hybrid rice adoption in the

network. So the causal chain runs from neighbors’ higher levels of education leading to neighbors’

higher rates of hybrid adoption, which in turn leads to increased adoption for the individual in

question. Thus, we feel the assumption is justified and omit any cross-regressive terms that would

capture these contextual effects.
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7 Data

The data used in this study come from the Bangladesh Integrated Household Survey (BIHS), a

nationally-representative household survey conducted by researchers from the International Food

Policy Research Institute (IFPRI) in October and November 2011 as part of the Bangladesh Policy

Research and Strategy Support Program (PRSSP). The survey represents the most comprehensive

nationally-representative survey ever conducted in Bangladesh (Ahmed, 2013). The survey utilizes

a multi-stratum sampling approach, with sub-national divisions representing a separate stratum.

The samples drawn from each division, therefore, are representative of rural areas in that division.

In the first stage of sampling, the total sample of 325 primary sampling units were allocated among

eight primary strata with probability proportional to size (where size is the number of households

in each stratum). In the second stage, 20 households were randomly selected from each primary

sampling unit. We restrict our sample to households with a nonzero area of cultivated land, yielding

a sample of 2612 households. The location of households included in our sample are shown in Figure

1. As can be seen from this figure, the households are widely distributed throughout Bangladesh.

Some caveats must be addressed regarding the use of these data to address a complicated issue

such as this. First, given the cross-sectional nature of our data, we are unable to control for a

household’s previous experiences with hybrid rice, nor are we directly able to observe causality in

terms of neighbors influence on technology adoption. Specifically, we do not know whether the

household has cultivated hybrid rice before or how any such experiences panned out in terms of

yield or profits. These omitted variables are subsumed into the idiosyncratic disturbance terms, and

given the correlation between farmer i’s experiences and farmer j’s hybrid rice adoption decisions

(which are observed and are controlled for in our econometric specification), there is the issue of

endogeneity which would result in biased estimates for the network effect. Unfortunately, we are

unlikely to find a suitable instrument for omitted own-experiences, since any variable that would

be correlated with own-experiences would also be correlated with current hybrid rice adoption, and

should therefore be included as an explanatory variable in the model.

Second, there are are challenges in identifying neworks. Any attempt at analyzing social in-

fluences in behavior must somehow define the social system, which is a nontrivial matter. The
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challenges associated with measuring and specifying social networks has become a topic of particu-

lar interest in recent years (see, e.g., Maertens and Barrett, 2012; Chandrasekhar and Lewis, 2011).

This is perhaps particularly tricky with survey data. Even though the BIHS is designed to be

nationally representative, it is still a sample and not the entire population. Thus specifying a social

system with the BIHS undoubtedly omits members that are potentially relevant in conditioning

behavior. We openly acknowledge this shortcoming, yet suggest that the representativeness of the

data at least allow us more flexibility in observing aggregate or average network effects, though

not direct individual effects. With that caveat, we proceed to specify our spatial/social system in

two different fashions. First, we use household GPS coordinates to construct a system in which

the strength of network relationships is inversely (squared) related to the actual physical distance

between households.1 Second, we define a system in which all households within a particular village

are considered network members. This latter system takes the form of a simple Boolean matrix,

allowing each member of i’s network to exert an equivalent influence on i’s behavior, regardless

of the actual distance between them. In what follows, these spatial/social systems are defined by

W1 and W2, respectively, where W1 and W2 are each N ×N symmetric weights matrices with 0s

on the diagonal, and where the off-diagonal elements define the strength of the social engagement

between the household represented by row i and the household represented by column j.

We are interested in studying the effects of spatial factors–including social interactions–on hybrid

rice adoption. Before proceeding with regression analysis, we undertake some simple exploratory

spatial data analysis to determine if there are significant spatial patterns of hybrid rice adoption.

Figure 2 illustrates the pattern of hybrid rice adoption at the district level in Bangladesh. From this

figure, there certainly appear to be spatial patterns of hybrid rice adoption, with high rates of adop-

tion occurring in the northwestern Rajshahi and Rangpur divisions and the southeast Chittagong

division, and low rates of adoption in the central division of Dhaka and the southern divisions of

Barisol and Khulna. Forgoing potentially unrealistic assumptions of global stationarity, we com-

pute local statistics to test for clustering or spatial correlation in hybrid rice adoption. These local

indicators of spatial association (Anselin, 1995) indicate significant spatial relationships in the rates

1So as to maintain an invertible weights matrix, we first define a threshold band within which these inverse distance
weights are applied.
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of hybrid rice adoption in several districts, including Nilphamari and Rangpur districts in Rangpur

division and Jaipurhut district in Rajshahi division.2

We can also test for unconditional spatial relationships at the household level. Given a binary

hybrid rice adoption term (H), we can use join count tests to test for spatial patterns of adoption

(H = 1) and non-adoption (H = 0) based on specification of our spatial system. Such tests have a

null hypothesis of no indicate significant spatial relationships between adoption and non-adoption.

Table 2 reports the results of join count tests based on the two specifications of the spatial/social

environment. We find very strong evidence of correlations of hybrid rice adoption behavior amongst

members of our defined spatial systems–both adoption and non-adoption.

To test for the conditional influence of social interactions, we introduce a series of explanatory

variables assumed to impact household hybrid rice adoption decisions. These household characteris-

tics include the age of the household head; agricultural land area; a binary variable capturing access

to credit (equal to 1 if the household has ever had a loan, 0 otherwise); a binary variable capturing

whether external parties are able to exert influence on agricultural decisions, including crop choice

and input use (equal to 1 if there is such an external influence, 0 otherwise); dependency ratio

(share of dependents to working age household members); number of migrants in the household; a

binary variable equal to 1 if the household head is literate, 0 otherwise; a binary variable equal to 1

if the primary occupation of the household head is farming, 0 otherwise; household assets (a plau-

sibly exogenous proxy for household wealth); two measures capturing interactions with agricultural

extension officers (includes both the number of times such officers contacted the household, as well

as vice versa); a binary variable indicating whether the household has experienced crop losses as a

result of flood, drought, storms, pests, diseases, or other reasons; and a binary variable capturing

whether the household receives a subsidy for rice production.3 Summary statistics for these data

along with summary statistics for hybrid rice adoption are presented in Table 3.

2This statistic is calculated as Ii = (xi−x̄)∑n
k=1

(xk−x̄)2/n

∑n
j=1 wij(xj − x̄), where xi is data for the observational unit

in question, x̄ is the average value of x for the spatial system under analysis.
3Controlling for the effects of external influences on crop choice and input decisions is designed to capture the effects

of tenurial arrangements, since these have been attributed with delayed adoption of new agricultural technologies
(Bardhan, 1979). Our measure of household assets is an index constructed using polychoric principal components
analysis (Kolenikov and Angeles, 2009). We do not control for female-headed households due to the extreme paucity
of such households in the sample.
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8 Results

Table 4 reports the results of estimating equation 9 by IV/GMM allowing for heteroskedasticity of an

unknown form. These results reveal some interesting insights, particularly regarding neighborhood

influence on hybrid rice adoption. The spatial lag parameter ρ is both positive and significant,

regardless of the weights matrix specification. This confirms assumptions that there is a great deal

of spatial correlation in hybrid rice adoption behavior. However, the magnitude of the influence

is much higher with the inverse distance weights matrix. Given the similarity in the estimated

coefficients for all of the other variables across the two specifications, we can be confident that the

two specifications of spatial correlation are not capturing different information in the variability of

hybrid rice adoption. Therefore, this appears to confirm Tobler’s first law of geography, that near

things are more related than distant things, or in our case, that closer network members have a

greater influence on behavior than more distant network members. Based on an inverse distance

weighting, ω1
ij = 1/f(dij), where dij is the distance between network members i and j, and f is some

function of the distances. In our specification ω1
ij = 1/d2ij . So the effects of two network members j

and k on farmer i’s adoption of hybrid rice is such that ω1
ijHj > ω1

ikHk for dij < dik. The Boolean

weights matrix equally weights network members, and therefore
∑

j∈J ω
2
ijHj is the total number of

hybrid rice farmers in i’s network, and our estimate of ρ2 captures the average effect of this sum.

Since our estimate of ρ1 using the inverse distance weights matrix captures the average effect of∑
j∈J ωijHj , our results suggest the number of nearby hybrid rice farmers in one’s network has a

larger effect on hybrid rice adoption than merely the total number of hybrid rice adopters in one’s

network. While our results suggest that equally weighting network members’ influence on behavior

can capture social influences, such equal weighting may not be optimal. Rather, by demonstrating

that closer network members exert a greater influence than more distant network members, these

results suggests heterogeneously weighting network relationships can be an important strategy for

improving future research on social networks. Distance weighting is an obvious strategy, but other

types of weighting schemes could be considered. Regardless, it is safe to conclude that there is

evidence of positive influence from neighbors in terms of adoption of hybrid rice, and this result is

robust across different specifications.
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Some other noteworthy findings arise from the results reported in Table 4. Farmer contact

with extension officers (including both visits to extension officers as well as from) does not have a

statistically significant effect on hybrid rice adoption. One interpretation of this result, given the

positive and significant effect of network effects, is that perhaps farmers rely more on the experiences

of their peers, and less on information provided them by extension officers. Even though the role of

the extension officer is to inform and educate farmers on ways to increase productivity, including the

use of modern varieties, learning from the experience of peers can still dominate farmers’ decision

to adopt the technology. Also worth mentioning is that interactions between farmers and extension

officers usually entail discussions on a whole range of agronomic practices, not just seeds. The

extent to which the extension officer’s emphasize rice varieties (hybrid in this case) in his portfolio

could be instrumental in farmers adoption decision. Additionally, this insignificant effect could

reflect the fact that farmers are already largely aware of the technology. Indeed, data collected as

part of the Cereal Systems Initiative for South Asia (CSISA) indicates that virtually all Bangladeshi

farmers in their sample were familiar with hybrid rice.

Access to credit and subsidies also appear as significant determinants of hybrid rice adoption

(the effect of rice subsidies is significant at the 11 percent level under the inverse distance weighting

specification). Because hybrid seeds are dramatically more expensive than seeds for even modern

high yielding rice varieties, credit and other cash constraints appear to be particularly problematic.

Loosening these constraints by increasing access to credit and providing policy mechanisms such

as subsidized seed prove beneficial in stimulating demand for these technologies.

9 Conclusion

In recent years there has been a growing in terest in studying the effects of social networks, in-

cluding the effects of social networks in facilitating the adoption of new agricultural technologies

in developing countries. But there are significant challenges in specifying and measuring social

networks and social interactions, and significant econometric challenges for identifying such effects

amid endogneous and spatially correlated effects that can confound interpretations.

In this paper we have demonstrated a method for measuring the effect of social networks on the
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adoption of hybrid rice using a unique, nationally-representative data set from Bangladesh. Our

methodology allows for correlations in hybrid rice adoption amongst members of a specified network

as well as correlations in unobservable factors that condition hybrid adoption. To overcome issues of

endogeneity, our identification strategy relies on allowing spatially lagged hybrid rice adoption to be

conditioned by a matrix of spatially lagged exogenous explanatory variables. Using a generalized

spatial two-stage least squares estimator, we have shown that neighbor effects are a significant

determinant of hybrid rice adoption in Bangladesh. Further, using two specifications of spatial

systems, we have shown that having a network including nearby hybrid rice adopters is more

influential than having a network of more distant hybrid rice adopters, and that merely have a

network with a large number of adopters may be relatively meaningless if they are far away.
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Table 1: Rice area, production, and varietal diversity in Bangladesh

Season
Share of No. of Rice

Share of area % Production % Varieties
1996 2005 1996 2005 1996 2005

Aus 24 10 16 6 440 295
Aman 46 50 45 49 519 535
Boro 30 40 39 55 143 261
All Seasons 100 100 100 100 100 100

Source: Hossain and Jaim (2012).
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Table 2: Join count test results under alternative specifications of weights matrix

Join Count Test Statistic p-value

H = 0, W = W1 10.751 0.000 ∗∗∗

H = 1, W = W1 17.924 0.000 ∗∗∗

H = 0, W = W2 3.410 0.000 ∗∗∗

H = 1, W = W2 40.607 0.000 ∗∗∗

Note: * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level
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Table 3: Summary statistics of variables included in empirical analysis

Variable Mean Std. Deviation Minimum Maximum

Hybrid Adoption (=1) 0.095 0.293 0.000 1.000
Household head age 45.513 13.397 18.000 95.000
Agricultural area 0.664 0.706 0.004 9.014
Access to credit 0.834 0.372 0.000 1.000
External decisionmakers 0.219 0.414 0.000 1.000
Dependency ratio 0.554 0.719 0.000 5.000
Migrants 0.036 0.206 0.000 4.000
Literacy of household head (=1) 0.463 0.499 0.000 1.000
Household head is a farmer (=1) 0.652 0.477 0.000 1.000
Household asset index 0.316 1.838 -3.024 11.054
Number of visits/contacts from extension officers 0.190 0.919 0.000 12.000
Number of visits/contacts to extension officer 0.106 0.706 0.000 20.000
Rice subsidy (=1) 0.107 0.309 0.000 1.000
Crop lossses in last 5 yrs 0.100 0.299 0.000 1.000
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Table 4: IV/GMM Spatial ARAR(1,1) regression results

Inverse Distance Weights Village Binary Weights
Estimate Std. Error Estimate Std. Error

Household head age -0.0002 0.0002 -0.0003 0.0003
Agricultural area 0.0287∗∗∗ 0.0082 0.0412∗∗∗ 0.0094
Credit access (=1) 0.0224∗∗ 0.0098 0.0220∗ 0.0126
External influence on input decisions (=1) 0.0054 0.0112 0.0000 0.0143
Dependency ratio -0.0076 0.0053 -0.0004 0.0066
Migrants -0.0219 0.0154 -0.0279 0.0188
Literacy of household head (=1) 0.0113 0.0098 -0.0016 0.0102
Household head is a farmer (=1) -0.0022 0.0090 0.0099 0.0113
Household asset index 0.0026 0.0022 0.0041 0.0032
Number of visits/contacts from extension officers 0.0011 0.0048 0.0080 0.0069
Number of visits/contacts to extension officer -0.0013 0.0066 0.0039 0.0072
Rice subsidy (=1) 0.0265 0.0169 0.0137 0.0211
Experience with crop loss (=1) 0.0079 0.0142 0.0163 0.0211
ρ (Lagged Hybrid Rice Adoption) 0.6499∗∗∗ 0.0968 0.0299∗∗∗ 0.0069
λ (Lagged Errors) -0.6672∗∗∗ 0.0736 0.1032∗∗∗ 0.0093

N = 2612 N = 2612
R2 = 0.188 0.221

Note: * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level
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Figure 1: Geographic location of households in sample
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Figure 2: Adoption of hybrid rice in Bangladesh (% of households)
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