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Abstract

The robustness of the multiple imputation of missing data on parame-
ter coefficients and efficiency measures is evaluated using stochastic frontier
analysis in the panel Bayesian context. Second, the implications of multi-
ple imputations on stochastic frontier analysis technical efficiency measures
under alternative distributional assumptions − half-normal, truncation and
exponential is evaluated. Empirical estimates indicate difference in the
between-variance and within-variance of parameter coefficients estimated
from stochastic frontier analysis and generalized linear models. Within
stochastic frontier analysis, the between-variance and within-variance of
technical efficiency are different across the three alternative distributional
assumptions. Finally, results from this study indicate that even though
the between- and within variance of multiple imputed data is close to zero,
between- and within-variance of production function parameters, as well as,
the technical efficiency measures are different.

Research in progress. Do not quote without authors’ permission.

1 Introduction

Missing data are universally problematic in survey and longitudinal research. The

uninformed researcher may analyze these incomplete data inappropriately or not

at all. Missing data are problematic for a number of reasons. First, most statistical

procedures rely on complete-data methods of analysis (Allison, 2000). Specifically,
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computation programs require that all cases contain values for all variables used

in the analysis. Thus, most statistical software programs exclude from analysis

cases that have missing data on any of the variables (also known as listwise dele-

tion). This can lead to two potentially serious problems: compromised analytic

power and nonresponse bias. The analytical power may be significantly reduced

if the researcher excludes all cases missing data for one or more variables (Allison,

2000). Discarding cases with missing data can bias a study severely. Non-response

data is when respondents who do not answer a particular question, leading to a

systematic pattern or bias characterize the missing data (Tabachnick and Fidell,

1999). Nonresponders may decide to omit certain questions for very distinct rea-

sons that researchers may never know. Missing data problems are also prevalent

in economic studies using aggregated data (county, state and county).

There are several approaches to handling missing data. These include weight-

ing techniques, single imputation, and multiple imputation (MI). MI aims to cre-

ate plausible imputations for the missing values, to accurately reflect uncertainty,

and to preserve important data relationships and aspects of the data distributions

(Schafer, 1997). Most of the studies have imputed missing data by taking into

account the pattern of missingness (missing completely at random or missing at

random; monotone or non-monotone missing data), type of imputed variable (con-

tinuous or discrete) and methods [regression and propensity score (Rubin, 1987),

discriminant function and Markov chain Monte Carlo (Schafer, 1997)].

Current survey data analyses have been successfully using MI procedure to

address missing data issues as well drawing inferences on parameter coefficients.

However, the implications and inference on technical efficiency and productivity

measures are seldom evaluated. Even though, aggregate country data are always

faced with missing data. The missing data are more prominent with the inputs
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used in the production of outputs in the low and middle income group countries.

Further, data envelopment analysis and stochastic frontier analysis require non

zero inputs and outputs to estimate efficiency and productivity measures. So

many observations are dropped from the analysis and evaluated with short time

series.

In this paper, the importance of accounting for inefficiency on MI of missing

data is evaluated by comparing the stochastic frontier analysis (SFA) to general-

ized linear models (GLM) statistical procedures. Second, the importance of MI on

technical efficiency measures is evaluated using SFA. Specifically, the importance

of MI on SFA technical efficiency measures estimated under alternative distribu-

tional assumptions − half-normal, truncation and exponential is evaluated.

In Section 2, we present multiple imputation procedure and the three steps

involved to impute, analyze, and draw inferences from imputation of missing data.

The GLM and the SFA models with three alternative distributions models are also

presented. Section 3 will provide details of the data used in MI analysis. Appli-

cation of the three alternative SFA and technical efficiency measures is presented

in Section 4, and some conclusions are drawn in Section 5.

2 Multiple Imputation

Modeling the missingness as missing at random (MAR) for a univariate data series

can be represented by GLM in matrix notation as:

f (Yi|Xi, β) (1)
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where Yi represents data collected on individual units i (or subjects at the in-

dividual and countries at the aggregate level) conditional on Xi, β. Instead of

missing completely at random (MCAR), we assume missing at random (MAR).

This assumption of MAR will be used in the three-step approach of MI proposed

by Rubin (1976).

The MI procedure (Rubin, 1987) replaces each missing value with a set of

plausible values that represent the uncertainty about the correct values to impute.

The multiple imputed data sets are then analyzed by using standard statistical or

econometric procedures for complete data and combining the results from these

analyses. No matter which complete-data analysis is used, the process of combin-

ing results from different data sets is essentially the same. The MI procedure does

not attempt to estimate each missing value through simulated values but rather

to represent a random sample of the missing values. In essence, MI procedure

requires the analyst specify an imputation model, imputes several data sets, an-

alyzes them separately, and then combines results. MI yields a single set of test

statistics, parameter estimates, and standard errors.

There are several advantages to the MI procedures due to the underlying as-

sumptions1. First, the MI procedure builds on the benefits of single imputation.

Secondly, MI allows use of complete data methods for data analysis and also

includes the data collector’s knowledge. Third, MI incorporates random error

because it requires random variation in the imputation process. Fourth, MI can

accommodate any model and any data and does not require specialized software.

1First, missing data should be missing at random (MAR). Second, the imputation model
must match the model used for analysis (Allison, 2000). Rubin (1987) termed this a "proper"
imputation model. Schafer (1999) explained that the imputation model must preserve all im-
portant associations among variables in the data set, including interactions if they will be part
of the final analysis. Further, the algorithm used to generate imputed values must be "correct",
i.e., it must accommodate the necessary variables and their associations.
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Fifth, MI simulates proper inferences from data; it also increases efficiency of the

estimates because MI minimizes standard errors (Rubin, 1987). Finally, MI allows

randomly drawn imputations under more than one model.

There are several disadvantages of the MI method. According to Rubin (1987)

the three disadvantages of MI compared with other imputation methods are -

more effort to create the multiple imputations, more time to run the analyses,

and more computer storage space for the imputation-created data sets. Rubin

(1987) also notes that MI was unacceptable because it uses simulation and adds

random noise to the data. A final disadvantage of MI is its not producing a

unique answer. Because randomness is preserved in the MI process, each data set

imputed will yield slightly different estimates and standard errors. Therefore, the

reproducibility of exact results may be problematic.

To overcome the disadvantages of MI, Rubin’s (1976, 1987 and 1996) three-step

approach of MI strategy is a useful method to analyze the uncertainty associated

with the correct value to compute for missing values. The first step involves

creating plausible values for missing observations that reflect uncertainty about

the nonresponse model. These values will be used to impute the missing values

multiple times to create number of completed datasets. Second step involves

the use of these datasets to be analyzed using GLM and SFA that accounts for

inefficiency. Finally in the third step the results are combined to evaluate the

uncertainty regarding the MI on the production function parameter coefficients

and technical efficiency measures of a production function.
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2.1 First Step of Multiple Imputation

Suppose the complete data, Y can be decomposed into two components − observed

complete component,Yobs and missing component,Ymis. Depending upon the miss-

ing patterns for continuous data, missing data is generated by randomly drawing

from its distribution of the observed complete component,Yobs assuming multivari-

ate normal distribution with mean vector and covariance matrix. Missing data

are filled in m times to generate m complete data sets assuming expectation-

maximization (EM) algorithm. For parametric models the EM algorithm is a

two-step iterative process that finds the maximum likelihood estimates. In the

expectation step of the EM procedure, the conditional expectation of the log like-

lihood given observed complete data and the mean and covariance are computed.

The second step of the EM procedure involves computing the log likelihood that

maximizes for the mean vector and covariance matrix of the parameters coeffi-

cients (see Schafer, 1997 for a detailed description and applications of the EM

algorithm). For multivariate data with G groups with distinct missing patterns,

the log likelihood being maximized can be expressed as

log L (θ|Yobs) =
G
∑

g=1

log L (θ|Yobs)

= −ng

2
log

∣

∣

∣

∑

g

∣

∣

∣ − 1

2

∑

tg
(yt,g − µg)

′ ∑−1
g (yt,g − µg)

(2)

where ng is the number of observations in the group, yt,g is a vector of observed

values corresponding to observed variables, µg is the mean vector and
∑

g is the

corresponding covariance matrix.

To validate or draw inferences from m multiple imputed complete data sets,

m different sets of point estimates, Q̂m and variance estimates, Ŵm can be com-

puted. The combined point estimate from multiple imputation is the average of

6



m complete data sets and defined as:

Q̄ =
1

m

M
∑

m=1

Q̂m (3)

Similarly, the combined within-imputation variance estimate, W̄ is the average

of m complete data sets and defined

W̄ =
1

m

M
∑

m=1

Ŵm (4)

and the combined between-imputation variance estimate, B can be computed as

B =
1

m − 1

M
∑

m=1

(

Q̂m − Q̄
)2

(5)

The total variance estimate, T can be computed from the combined within

and between imputation variance as

T = W̄ +
(

1 +
1

m

)

B (6)

These within, between and total variance estimates would be used to evaluate

the multiple imputation of the data.

2.2 Second Step of Multiple Imputation

In the second stage we use two alternative methods to perform MI, namely, gen-

eralized linear models (GLM) and stochastic frontier analysis (SFA) statistical

techniques.
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2.2.1 General Linear Model Statistical Procedure

Modeling for output can be represented by general linear model in matrix notation

as:

Y =Xβ+Zγ+ε (7)

where Y represents endogenous (output quantity index) variable with t data points

and i cross section observations, X, the vector of explanatory (inputs quantity

indexes) variables; β is the unknown fixed-effects parameter vector, ε is the unob-

served vector of independent and identically distributed Gaussian random errors,

Z represents the random matrix, and γ represents the associated parameters.

Each model shares the exact same X but different composition of the Z matrix.

The composition and dimension of Z depends on the use of time series (TS),

panel random effects (PRE) or hierarchical linear model (HLM) statistical proce-

dure. For example, consider a three-way panel random effects model that includes

three different factors. The three factors are income groups, region and country,

and are treated as independent random variables. However, the three-way panel

model does not consider the common characteristics that each country shares

within a particular region. In contrast, three-way hierarchical linear model does

consider the commonalities that arise because of the nesting or hierarchical struc-

ture of country within a region and income groups. In a similar way, two-way

panel random effects differ from two-way hierarchical linear model with respect

to hierarchical structure of the two factors - country and region. If Z matrix is

set to zero, equation 1 boils down to a TS statistical procedure.

2.2.1.1 Time-series Statistical Procedure The time-series statistical pro-

cedure to examine the importance of inputs used in the production function in-
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cluding technology can be represented as:

yt = α + βxt + εt (8)

where yt represents a 1×T matrix; xt represents a K×T matrix of exogenous input

quantity and time trend variables with T representing the temporal (time series)

dimension; α is the intercept, β is the associated parameters of input quantity

variables; and ε represents a 1 × T matrix of pure random error.

2.2.2 Stochastic Frontier Analysis Statistical Procedure

In 1977, Aigner Lovell and Schmidt, Meeusen and van den Broeck, and Battese

and Corra simultaneously introduced the stochastic frontier model that decom-

poses the error term, ε into a symmetrical random error, v and a one-sided error

or inefficiency, u. The normal-half normal and an exponential distribution was as-

sumed by Aigner, Lovell and Schmidt (1977), while Meeusen and van den Broeck

(1977) assumed an exponential distribution of the inefficiency term.

In 1982, Jondrow, Materov, Lovell and Schmidt suggested a method to es-

timate firm specific inefficiency measures. The stochastic frontier model can be

used to represent a Cobb-Douglas production function as

yt = α + βxt + vt − ut ≡ α + βxt + εt (9)

where yt represents a 1×T matrix; xt represents a K×T matrix of exogenous input

quantity and time trend variables with T representing the temporal (time series)

dimension; α is the intercept, β is the associated parameters of input quantity

variables; and ε represents a 1 × T matrix of pure random error and decomposed
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into v represents the random error and v ∼ N (0, σ2
v), u represents the negatively

skewed one-sided inefficiency and can be represented with alternative distributions

including half normal, exponential, or truncated normal distribution. Details for

the distribution can be found in the set of 1977 articles.

2.2.2.1 Half-Normal Distribution of Stochastic Frontier Analysis For

the normal-half normal distribution assumed by Aigner, Lovell and Schmidt (1977),

the joint density of random error v ∼ N (0, σ2
v) and u ∼ N (0, σ2

u) can be written

as

f (u, v) =
2

2πσuσv

exp

{

− u2

2σu

− (ε + u)2

2σv

}

(10)

For convenient parameterization, substituting v = ε + u and integrating u out

to obtain the marginal density function of ε can be written as

f (ε) =

∞
∫

0

f (u, ε) du =
2

σ
φ

(

ε

σ

)

Φ

(

−ελ

σ

)

(11)

where φ is the standard normal density, Φ is the standard normal cumulative

distribution function (CDF), σ =
√

σ2
u + σ2

v and λ = σu/σv.

The likelihood function for the production function can be written as:

ln L (α, β, σ, λ) = constant − T ln σ +
T
∑

t=1

ln Φ

(

−εtλ

σ

)

− 1

2

(

εt

σ

)2

(12)

where εt = ln yt − α − βxt and others are defined above.

2.2.2.2 Exponential Distribution of Stochastic Frontier Analysis For

the exponential distribution assumed by Meeusen and van den Broeck (1977) and

Aigner, Lovell and Schmidt (1977), the joint density of random error v ∼ N (0, σ2
v)
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and u ∼ N (0, σ2
u) can be written as

f (u, v) =
1√

2πσuσv

exp

{

− u

σu

− v2

2σv

}

(13)

For convenient parameterization, substituting v = ε + u and integrating u out

to obtain the marginal density function of ε can be written as

f (ε) =

∞
∫

0

f (u, ε) du =
1

σu

Φ
(

− ε

σv

− σv

σu

)

exp

(

ε

σu

+
σ2

v

2σ2
u

)

(14)

and the likelihood function can be written as:

ln L (α, β, σ, λ) = constant−T ln σ+T

(

σ2
v

2σ2
u

)

+
T
∑

t=1

(

εt

σu

)

+
T
∑

t=1

{

ln Φ
(

ε

σv

− σv

σu

)}

(15)

2.2.2.3 Truncated Distribution of Stochastic Frontier Analysis For the

truncated distribution assumed by Aigner, Lovell and Schmidt (1977), the joint

density of random error v ∼ N (0, σ2
v) and u ∼ N (0, σ2

u) can be written as

f (u, v) =
1√

2πσuσvΦ (µ/σu)
exp

{

−(u − µ)2

2σu

− v2

2σv

}

(16)

For convenient parameterization, substituting v = ε + u and integrating u out

to obtain the marginal density function of ε can be written as

f (ε) =

∞
∫

0

f (u, ε) du =
1

σu

φ

(

ε + µ

σ

)

Φ

(

µ

σλ
− ελ

σ

)

{

Φ
(

µ

σu

)}

−1

(17)
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and the likelihood function can be written as:

ln L (α, β, σ, λ) = constant − T ln σ − T ln Φ
(

µ

σu

)

+
T
∑

t=1

ln Φ
(

µ

σλ
+ εtλ

σ

)

−
T
∑

t=1

(

εt+µ

σ

)2
(18)

2.3 Third Step of Multiple Imputation

In the third step of the MI procedure, the parameter coefficients and the technical

efficiency measures estimated by stochastic frontier analysis production function

in the second step from imputed complete data sets is analyzed to draw statistical

inferential. Specifically, the third step involves two sets of analysis to evaluate

the importance of MI. First, the production function parameter coefficients and

its covariance matrix estimated by GLM and SFA for each imputed data set is

used to draw statistical inferential about the parameter coefficients. Second, the

mean and standard errors of the production function technical efficiency measures

estimated by SFA under three alternative distributions for each of the imputed

data set is used to draw statistical inferences.

3 Data and Variables used in the Empirical Anal-

ysis

This study is based on Food and Agricultural Organization data available on-

line. The study includes 92 countries for the period 1961 to 2007. The set of

92 countries include 10 low income countries, 37 lower middle income countries,

20 upper middle income, 22 high income Organisation for Economic Co-operation

and Development countries (OECD) and 3 high income non-OECD countries. For

the output and the five inputs, a quantity index with 1961 as the base year was
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constructed.

Due to the problems of estimating multiple outputs in primal production func-

tions, an aggregate output variable published by FAO is used in the analysis. The

FAO output concept is the output from the agriculture sector net of quantities of

various commodities used as feed and seed, which is why feed and seed are not

included in the input series. Details on the construction of the aggregate output

variable are available on FAO webpage, www.fao.org.

This analysis considers only five input variables following earlier studies esti-

mating a production function. These variables include land, labor, capital, fertil-

izer and livestock. The land variable includes harvested acres of cereals, fibers,

fruits, nuts, oil crops, pulses, roots and tubers, rubber, spices, stimulants, sugar

crops, tobacco and vegetables unlike earlier studies that use land under cultiva-

tion. The capital variable covers the total number of agricultural tractors, and

number of harvesters and threshers used in agriculture. With respect to tractors,

no allowance was made to the quality (horsepower) of the tractors. The labor vari-

able refers to the economically active population in agriculture. An economically

active population is defined as all persons engaged or seeking employment in an

economic activity, whether as employers, own-account workers, salaried employ-

ees, or unpaid workers assisting in the operation of a family farm or business. The

economically active population in agriculture includes all economically active per-

sons engaged in agriculture, forestry, hunting, or fishing. This variable obviously

overstates the labor input used in agricultural production, but the extent of over-

statement depends on the level of development of the country. Following other

studies on inter-country comparisons of agricultural productivity, this analysis

uses the sum of nitrogen, potassium, and phosphate contained in the commercial

fertilizers consumed. This variable is expressed in thousands of metric tons.
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The livestock input variable used in the study is the sheep-equivalent of five

categories of animals. The categories considered are buffaloes, cattle, goats, pigs

and sheep. The number of these animals is converted into sheep equivalents using

conversion factors of 8.0 for buffalo and cattle and 1.00 for sheep, goats and pigs.

Chicken numbers are not included in the livestock figures. Table I presents the

summary statistics of the output and inputs variables by income group.

4 Empirical Application and Results

To evaluate the importance of missing information, the missing data patterns

by income groups for capital and fertilizer variables along with other inputs is

presented in table II. The ′X ′ mark indicates non-missing data and a dot ′.′ in-

dicates missing data. Within each income group, there are four categories based

on missing pattern with the exception of high income non-OECD countries. The

top four income groups had similar missing patterns with independently missing

capital and fertilizer, jointly missing capital-fertilizer, and complete capital and

fertilizer data. The missing observations range from 3.5 percent for high income

OECD countries to 8.5 percent for high income non-OECD countries. However,

the means of the inputs are not only different across the four missing pattern

categories but also by income groups.

To evaluate the importance of alternative distributional assumptions − half-

normal, truncation and exponential, the technical efficiency measures are esti-

mated without the missing data. Then these three datasets are then used for MI

of the missing capital and fertilizer data. Specifically, the importance of MI on

stochastic frontier analysis technical efficiency measures estimated under alterna-

tive distributional assumptions is evaluated. Second, we also wanted to compare
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the within and between variances of the production function parameter coeffi-

cients estimated for multiple imputed datasets under the alternative distributional

assumptions − half-normal, truncation and exponential.

Next, to evaluate the importance of missing information, the within, be-

tween and total variance measures of multiple imputed data for the two input

variables − capital and fertilizer by three alternative distributional assumptions

are presented in table III. The results for table III suggest very low or nearly in-

significant between-variance compared to within-variance of capital and fertilizer

variables across the income group countries and three alternative distributional

assumptions of SFA models. This would suggest a low or insignificant influence

on technical efficiency measures across the three SFA models.

To reflect the importance of accounting for inefficiency on the parameter co-

efficients of imputed missing data in the second step of multiple imputation,

equation (7) is estimated using GLM statistical procedure, and equation (8) is

estimated using SFA statistical procedures under three alternative distributional

assumptions − half-normal, truncation and exponential.

We specified a Cobb-Douglas functional form for half-normal, truncation and

exponential stochastic frontier production function models. The Cobb-Douglas

production function for a GLM was specified as:

Outputit = β0 + β1Capitalit + β2Landit + β3Laborit + β4Fertilizerit

+β5Livestockit + εit

(19)

and for SFA was specified as:

Outputit = β0 + β1Capitalit + β2Landit + β3Laborit + β4Fertilizerit

+β5Livestockit + vit − uit

(20)
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In the third step of the multiple imputation, the parameter coefficients and

the technical efficiency measures estimated by SFA and GLM production function

are analyzed to draw statistical inferential. Specifically, we use the parameter

estimates and associated covariance matrix computed by the GLM and SFA for

each imputed dataset to draw statistical inferential about the parameter coeffi-

cients or input elasticity of production function. The results for the exponential,

half-normal and truncation SFA models are presented in table IV, V and VI re-

spectively. The parameter coefficients estimated by the GLM statistical procedure

are also presented to evaluate the importance of accounting for inefficiency on the

parameter coefficients. Note that we do not present the results for the high in-

come (OECD), high income (nonOECD), and lower middle income countries due

to presence of close to zero values in the covariance matrix. Due to the presence

of zero in the covariance matrix, the between-variance and within-variance cannot

be estimated.

It is particularly interesting to note that between-variance and within-variances

of the production function’s input elasticity or parameter coefficients estimated

by SFA and GLM models are very small. In the case of low income countries, the

between-variance of the production function input elasticity estimated by expo-

nential and truncated SFA models is higher than the between-variance produc-

tion function input elasticity estimated by GLM model, as evident by the ratio of

SFA/GLM (last 3 column). The difference in the between-variance of the produc-

tion function input elasticity estimated by SFA and GLMs model are much higher

compared to difference in the within-variance of the production function input

elasticity estimated by SFA and GLM models, which are less than 100. Further,

total variance (ratio of SFA/GLM) and within-variance of the production function

input elasticity are below 100 for the half-normal SFA model. In the half-normal
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SFA model, we also note that the difference in the between-variance between SFA

and GLM models production function input elasticity is much higher compared

to the within-variance difference between SFA and GLM models.

However, the opposite is true when one considers the case of upper middle in-

come countries. Specifically, for exponential and truncated models the difference

in the between-variance between SFA and GLM models production function input

elasticity is much lower compared to difference between within-variance SFA and

GLM models. However, in the case of half-normal SFA model, we observe that

the difference in the between-variance of production function input elasticity es-

timated by SFA and GLM models are much higher compared to within-variance,

as evident by less than 100 percent variation in between-variance category (table

V, column 9-second panel). These findings suggest the importance of correcting

for inefficiency when estimating output and technical efficiency, while imputing

for missing values.

Statistical inferential about efficiency measures estimated by the SFA statis-

tical procedures are drawn using the mean and standard errors of the technical

efficiency estimated from univariate statistics. Inference based on t-tests is also

derived for the difference in the technical efficiency measures estimated from com-

pleted data and multiple imputed datasets. The results for the exponential, half-

normal and truncation SFA models technical efficiency measures are presented in

table VII by income groups.

The difference in technical efficiency measures estimated by exponential (table

VII) SFA model for actual and imputed values (using multiple imputed datasets

values) is significant for the all income groups with the exception of low income

group countries. The highest difference in parameter estimates for actual and

imputed values in exponential SFA model is observed in the case of upper middle
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income groups countries, followed by lower middle income group countries, high

income (non-OECD), and high income (OECD) group countries. This could be

due to the distributional assumption of the inefficiency and the inability to ac-

count for inefficiency measures during MI of the missing data. In the case of half

normal (table VII) SFA model, we observe that the technical efficiency measures

for actual and imputed values (using multiple imputed dataset values) are slightly

lower than those obtained in the exponential SFA model. Table VII also presents

technical efficiency measures for actual and imputed values for truncated SFA

model. However, technical efficiency estimated by truncated SFA model for com-

pleted data is about half of those obtained in exponential and half normal SFA

models. Finally, the difference in parameter estimates for actual and imputed

values (using imputed data values) is significant in all but one case − lower middle

income group countries.

Further, the within, between and total variance measures of technical efficiency

measures from multiple imputed datasets are presented in table VIII. Results in

table VIII show that between-variance is very low for all three models of SFA and

zero for three income groups, namely, upper middle income, high income (OECD),

and high income (non-OECD) group countries. This suggests the efficiency mea-

sures from multiple imputation is very close to the actual efficiency measures. On

the other hand, within-variance is much higher compared to between-variance,

particularly in the case of low income group countries. Findings here suggest

the importance of missing values and the imputation of such missing values on

technical efficiency measures.
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5 Challenges and Conclusions

The contribution of the research presented in this paper is twofold. First, the

importance of accounting for inefficiency on the multiple imputation of missing

data is evaluated by comparing the stochastic frontier analysis to the generalized

linear models statistical procedures in the second step of the multiple imputation

process. In particular, we use and compare the alternative distributional assump-

tions of stochastic frontier analysis − half-normal, truncation and exponential.

Second, the importance of multiple imputations on stochastic frontier analysis

technical efficiency measures under alternative distributional assumptions − half-

normal, truncation and exponential is evaluated.

Empirical estimates indicate difference in the between-variance and within-

variance of production function input elasticity or parameter coefficients estimated

from SFA compared to the GLM statistical procedures. The between-variance

and within-variance of technical efficiency measures are also different across the

three alternative distributional assumptions of SFA statistical procedures. Fur-

ther, the technical efficiency measures are different with complete data and mul-

tiple imputed dataset. Finally, results from this study indicate that even though

the between-variance and within-variance of multiple imputed datasets is almost

zero, the between-variance and within-variance of production function parameters

as well as the technical efficiency measures is statistically different.

Future research could examine the implications of accounting for heteroskedas-

ticity not only in the multiple imputation of missing data but also in the SFA and

GLM statistical procedures in the second step of the MI procedure. Further,

research needs to be done with varying number of cross-sections and number of

years. Compared to aggregate production analysis, individual farm-level data re-
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sults may vary with regard to production of agricultural output and the impact

on technical efficiency measures.
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Table 1: Summary Statistics of Output and Input Variables of World Agriculture
Sector, 1961-2007

Income Group Variable Nonmissing Missing Mean Standard

Low

Output 470 0 72.087 27.86

Land 470 0 84.091 27.13
Labor 470 0 74.085 22.83

Capital 451 19 496.99 4256.71
Fertilizer 448 22 98.944 126.69

Livestock 470 0 86.262 19.09

Lower middle

Output 799 0 67.897 29.33
Land 799 0 90.733 37.43

Labor 799 0 82.667 22.37
Capital 769 30 84.945 713.6

Fertilizer 771 28 69.331 83.23

Livestock 799 0 84.89 30.24

Upper middle

Output 940 0 88.714 34.2
Land 940 0 102.37 37.18

Labor 940 0 109.04 67.39
Capital 922 18 194.69 570.52

Fertilizer 900 40 116.29 124.64

Livestock 940 0 100.16 40.33

High:OECD

Output 1034 0 89.082 18.34
Land 1034 0 106.7 23.02

Labor 1034 0 148.55 52.48
Capital 1006 28 79.838 44.73

Fertilizer 1012 22 121.63 63.26

Livestock 1034 0 106.33 27.52

High:nonOECD

Output 141 0 85.104 21.61
Land 141 0 143.38 64.66

Labor 141 0 185.42 117.6
Capital 129 12 63.382 60.15

Fertilizer 138 3 122.5 58.7
Livestock 141 0 100.24 40.93
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Table 2: Missing Data Patterns of the Variables, 1961-2007

Income Group
Missing Patterns Group Means

Land Labor Capital Livestock Fertilizer Percent Land Labor Capital Livestock Fertilizer

Low

X X X X X 92.55 77.51 68.39 32.13 82.62 46.32
X X X X . 3.4 93.71 88.7 445.2 97.49 .
X X . X X 2.77 120.87 111.29 . 105.95 179.51
X X . X . 1.28 117.99 116.32 . 113.71 .

Lower middle

X X X X X 94.24 83.72 78.25 26.85 77.69 39.12
X X X X . 2 92.38 100.98 173.71 110.34 .
X X . X X 2.25 103.18 103.51 . 103.62 106.85
X X . X . 1.5 107.45 99.58 . 109.28 .

Upper middle

X X X X X 94.68 94.42 99.48 71.88 93.43 72.18
X X X X . 3.4 90.54 100.11 119.01 93.95 .
X X . X X 1.06 97.38 95.87 . 98.67 109.07
X X . X . 0.85 112.88 97.79 . 98.07 .

High:OECD

X X X X X 96.52 104.84 142.78 54.72 103.31 110.9
X X X X . 0.77 95.62 82.42 126.92 100.64 .
X X . X X 1.35 96.62 83.49 . 94.12 104.81
X X . X . 1.35 96.96 80.89 . 94.45 .

High:nonOECD
X X X X X 91.49 134.775 161.81 45.018 91.63 110.35
X X . X X 6.38 103.14 88.59 . 101.49 138.48
X X . X . 2.13 98.479 87.74 . 100.85 .
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Table 3: Multiple Imputed Between, Within and Total Variances of Missing Cap-
ital and Fertilizer Variables

Group Variable Between Within Total

SFA Exponential Model

High:OECD
Capital 0.000038724 0.001864 0.001907

Fertilizer 0.000001349 0.000178 0.000179

High:nonOECD
Capital 0.000267 0.006535 0.006829

Fertilizer 0.000013687 0.001274 0.001289

Low
Capital 0.000521 0.01773 0.018303

Fertilizer 0.000098115 0.004406 0.004514

Lower middle
Capital 0.000058988 0.00284 0.002904

Fertilizer 0.000034226 0.00201 0.002048

Upper middle
Capital 0.000010762 0.00129 0.001302

Fertilizer 0.000076046 0.001161 0.001245

SFA Half-Normal Model

High:OECD
Capital 0.00003685 0.001865 0.001906

Fertilizer 0.000002488 0.000178 0.00018

High:nonOECD
Capital 0.000184 0.006587 0.006789

Fertilizer 0.000023941 0.001275 0.001302

Low
Capital 0.000804 0.017678 0.018563

Fertilizer 0.000080056 0.004409 0.004497

Lower middle
Capital 0.000095047 0.002836 0.00294

Fertilizer 0.000036653 0.002005 0.002046

Upper middle
Capital 0.000009803 0.00129 0.0013

Fertilizer 0.00003598 0.001169 0.001208

SFA Half-Normal Model

High:OECD
Capital 0.000057504 0.001859 0.001922

Fertilizer 0.000003493 0.000178 0.000182

High:nonOECD
Capital 0.000127 0.006571 0.00671

Fertilizer 0.000010054 0.001268 0.001279

Low
Capital 0.00174 0.017605 0.019519

Fertilizer 0.000203 0.004354 0.004578

Lower middle
Capital 0.000045849 0.002856 0.002906

Fertilizer 0.000023606 0.002005 0.002031

Upper middle
Capital 0.000018979 0.001293 0.001314

Fertilizer 0.000035114 0.001157 0.001196
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Table 4: Between, Within and Total Variances of Regression Parameters from SFA Exponential Model

Stochastic Frontier Analysis Generalized Linear Models Ratio of SFA/HLM

Variable Between Within Total Between Within Total Between Within Total

Low Income Group

Intercept 0.026083 0.023167 0.051858 0.000533 0.032497 0.033084 4894% 71% 157%
Land 0.000057 0.000539 0.000602 0.000016 0.000815 0.000832 369% 66% 72%

Labor 0.005604 0.002176 0.00834 0.000129 0.003128 0.00327 4344% 70% 255%
Capital 0 0.000003 0.000003 0.000003 0.000009 0.000012 12% 32% 27%

Livestock 0.000294 0.000694 0.001017 0.00002 0.00126 0.001283 1436% 55% 79%
Fertilizer 0.000003 0.000019 0.000022 0.000006 0.000027 0.000034 45% 70% 65%

trend 0.000001 0.000001 0.000002 0 0.000001 0.000002 1699% 59% 147%
Sigma_v 0.000306 0.000025 0.000361
Sigma_u 0.018199 0.22441 0.244429

Upper Middle Income Group

Intercept 0.000246 0.05086 0.051131 0.001431 0.025759 0.027333 17% 197% 187%
Land 0.000006 0.00104 0.001047 0.00001 0.000394 0.000405 66% 264% 259%

Labor 0.000008 0.002883 0.002891 0.000041 0.001205 0.00125 19% 239% 231%
Capital 0 0.000197 0.000198 0.000014 0.000117 0.000133 3% 168% 149%

Livestpck 0.000006 0.00254 0.002546 0.000036 0.001169 0.001209 15% 217% 211%
Fertilizer 0.000006 0.000285 0.000292 0.000092 0.000102 0.000204 7% 279% 143%

trend 0 0.000001 0.000002 0 0 0 109% 400% 379%
Sigma_v 0 0.000369 0.000369
Sigma_u 0.000001 0.00062 0.000621
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Table 5: Between, Within and Total Variances of Regression Parameters from SFA Half-Normal Model

Stochastic Frontier Analysis Generalized Linear Models Ratio of SFA/HLM

Variable Between Within Total Between Within Total Between Within Total

Low Income Group

Intercept 0.000674 0.026052 0.026793 0.000446 0.032539 0.03303 151% 80% 81%
Land 0.000017 0.000521 0.00054 0.000012 0.000815 0.000827 148% 64% 65%

Labor 0.000031 0.00236 0.002394 0.000044 0.003128 0.003177 70% 75% 75%
Capital 0 0.000003 0.000003 0.000001 0.000009 0.00001 27% 31% 31%

Livestpck 0.000024 0.000788 0.000814 0.000017 0.001262 0.001281 141% 62% 64%
Fertilizer 0.000001 0.000018 0.000018 0.000002 0.000027 0.000029 30% 66% 63%

trend 0 0.000001 0.000001 0 0.000001 0.000001 63% 63% 63%
Sigma_v 0.000004 0.000028 0.000032
Sigma_u 0.001564 0.250754 0.252475

Upper Middle Income Group

Intercept 0.000128 0.0509 0.051041 0.000696 0.025908 0.026674 18% 196% 191%
Land 0.000002 0.00104 0.001043 0.000004 0.000397 0.000401 59% 262% 260%

Labor 0.000012 0.002883 0.002896 0.000038 0.001216 0.001258 30% 237% 230%
Capital 0.000001 0.000198 0.000198 0.000023 0.000115 0.000141 3% 172% 140%

Livestpck 0.000002 0.002543 0.002545 0.000009 0.001176 0.001186 24% 216% 215%
Fertilizer 0.000006 0.000284 0.00029 0.000054 0.000103 0.000162 11% 276% 179%

trend 0 0.000002 0.000002 0 0 0 49% 399% 375%
Sigma_v 0 0.00037 0.00037
Sigma_u 0.000002 0.000619 0.00062
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Table 6: Between, Within and Total Variances of Regression Parameters from SFA Truncated Model

Stochastic Frontier Analysis Generalized Linear Models Ratio of SFA/HLM

Variable Between Within Total Between Within Total Between Within Total

Low Income Group

Intercept 0.026552 0.023543 0.052751 0.000449 0.032699 0.033193 5914% 72% 159%
Land 0.000038 0.000541 0.000584 0.000016 0.000816 0.000834 245% 66% 70%

Labor 0.005739 0.00224 0.008553 0.000076 0.003145 0.003229 7575% 71% 265%
Capital 0.000001 0.000003 0.000004 0.000003 0.000009 0.000012 25% 32% 30%

Livestpck 0.000382 0.000716 0.001136 0.000013 0.001264 0.001279 2922% 57% 89%
Fertilizer 0.000002 0.000019 0.000021 0.000009 0.000027 0.000037 22% 70% 58%

trend 0.000002 0.000001 0.000003 0 0.000001 0.000002 2162% 61% 166%
Sigma_v 0.000332 0.000025 0.000391
Sigma_u 0.016233 0.192854 0.21071

Upper Middle Income Group

Intercept 0.000121 0.050913 0.051046 0.000728 0.025836 0.026637 17% 197% 192%
Land 0.000001 0.00104 0.001042 0.000002 0.000396 0.000398 97% 263% 262%

Labor 0.000006 0.002882 0.002889 0.000029 0.001209 0.001241 22% 238% 233%
Capital 0.000001 0.000197 0.000198 0.000013 0.000117 0.000131 5% 168% 151%

Livestpck 0.000002 0.002542 0.002545 0.000012 0.001174 0.001187 19% 217% 214%
Fertilizer 0.000003 0.000286 0.000289 0.000048 0.000104 0.000157 5% 275% 184%

trend 0 0.000001 0.000002 0 0 0 104% 399% 389%
Sigma_v 0 0.000369 0.000369
Sigma_u 0.000001 0.000619 0.00062
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Table 7: Actual, Multiple Imputed and Difference in the Technical Efficiency Measures Estimated from Three SFA
Models

Income Group Variable
Exponential Half-Normal Truncated

Estimate StdErr tValue Estimate StdErr tValue Estimate StdErr tValue

Low Actual 0.9 0.00394 0.87877 0.00385 0.49189 0.00138
MI 0.8843 0.88642 0.89897 0.89897 0.8849 0.88697

Difference -0.018 0.04567 -0.39 0.01784 0.00132 13.47 0.39062 0.04496 8.69

Lower middle Actual 0.9096 0.00216 0.8884 0.00172 0.47907 0.00047
MI 0.4984 0.50265 0.48958 0.49358 0.49841 0.50257

Difference -0.412 0.04941 -8.34 -0.4 0.04747 -8.43 0.01855 0.04912 0.38

Upper middle Actual 0.9998 2.92E-09 0.99999 8.28E-12 0.54401 0.00341
MI 0.5419 0.54193 0.54192 0.54192 0.54192 0.54192

Difference -0.457 0.00337 -135.72 -0.4571 0.00336 -135.97 -0.0013 0.00026 -4.9

High:nonOECD Actual 0.9287 0.00437 0.85716 0.00805 0.54561 0.00685
MI 0.5675 0.56751 0.56838 0.56839 0.56834 0.56835

Difference -0.3666 0.00534 -68.63 -0.2941 0.00816 -36.03 0.01744 0.00357 4.89

High:OECD Actual 0.7438 0.00352 0.90766 0.00142 0.5456 0.00209
MI 0.5394 0.53942 0.5395 0.5395 0.53943 0.53943

Difference -0.2067 0.00151 -136.81 -0.3702 0.0014 -264.97 -0.0084 0.00045 -18.81
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Table 8: Between, Within and Total Variances of SFA Technical Efficiency Measures

SFA model Income Group Between Variance Within Variance Total Variance

Exponential

Low income 0.001888 0.783662 0.78574
Lower middle 0.002118 0.250327 0.252656
Upper middle 0 0.293691 0.293691

High:nonOECD 0.0000087 0.322055 0.322064
High:OECD 0 0.290971 0.290971

Half

Low income 0.0000012 0.808151 0.808152
Lower middle 0.001965 0.241455 0.243616
Upper middle 0 0.293678 0.293678

High:nonOECD 0.0000074 0.323062 0.32307
High:OECD 0 0.291059 0.291059

Truncated

Low income 0.001833 0.784702 0.786719
Lower middle 0.002081 0.250287 0.252576
Upper middle 0 0.293675 0.293675

High:nonOECD 0.0000069 0.323013 0.323021
High:OECD 0 0.29098 0.29098
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