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Supply of Insurance for Specialty Crops and its Effect on Yield and Acreage
1
 

 

We exploit variation in the timing of specialty crop insurance supply to different crops and 
counties in California to assess its effect on output as decomposed into yield and harvested 
acreage. Four woody-perennial crops and one field-annual crop are used to represent this effect. 
We find that the supply of crop insurance has a significant positive effect on output for several 
perennial crops and the field crop, but it only has a significant positive effect on yield for certain 
perennial crops. These findings suggest that even for disparate crops the supply of insurance 
reduces production risks for the insured crops and causes harvested acreage to expand. The 
positive significant effect of insurance supply on yield for several of the woody-perennial crops 
suggests that, regardless of the effect on acreage, it accelerates growers’ adoption of improved 
tree/vine varieties and rootstocks, which are likely to be risk-increasing inputs due to the their 
relatively high cost of investment. 
 
Keywords: federal crop insurance program, specialty crops, yield, acreage, input-risk relationship 

 
 
 

Recent fiscal distress has prompted the United States government to propose a shift in paradigm 

that would make the federal crop insurance program (FCIP) the primary risk management tool 

for domestic agriculture. For the next farm bill both the Senate and House propose to reduce 

funding to commodity programs (Title I), while expanding funding to crop insurance (Title XI).2 

Both of the proposed bills eliminate the direct payment program, which would provide an annual 

saving to taxpayers of about $5 billion (Chite 2012). Both bills propose a requirement for the 

United States Department of Agriculture (USDA) to conduct more research on whole-farm 

revenue insurance to help obviate contractual complexities for diverse farms growing specialty 

crops. Both bills propose to introduce Agricultural Risk Coverage, a new crop revenue insurance 

                                                           
1 This material is based upon work supported by the U.S. Department of Agriculture’s National Institute of Food and Agriculture under Award 
No. 2012-70002-19388. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do 
not necessarily reflect the views of Oregon State University or the U.S. Department of Agriculture. The authors declare that they have no conflict 
of interests. 
2 These policy changes are consistent with Goodwin’s (1993) observation that the reason for expanding the FCIP is to “[…] create an insurance 
program that would replace [other] disaster relief measures while operating on an actuarially sound basis […]”. 
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program offered to Title I crops.3 Furthermore, both bills reauthorize funding from the 2008 

Farm Bill to develop and improve the FCIP for organic producers. Beginning in fiscal year 2013 

the FCIP is expected to cost taxpayers $9 billion annually and will be the primary subsidy 

program for domestic agriculture. 

 The importance of the FCIP to farm income protection and regional economies is evident 

given events like the 2012 mid-western drought.4 However, the recent farm bill discussion has 

raised questions about the fiscal prudence of the FCIP. This year federal investigators unraveled 

the largest crop insurance fraud to date. The fraud occurred in North Carolina where from 1996 

through 2007 tobacco producers paid an insurance adjuster to falsify claims regarding the scope 

of damage or the producer’s true output on a particular acreage, with the hidden tobacco output 

being sold to a co-conspiring broker. In addition to other charges, restitution exceeding 

$21,000,000 and $13,000,000 was imposed on the adjuster and the broker, respectively.5 

 Improved monitoring protocols are a primary means to encourage compliance and reduce 

fraud in the FCIP. An understanding of the relationship between the federal supply of crop 

insurance and output, as decomposed into yield and harvested acreage, provides insights about 

the unintended consequences of the FCIP. This information can be used to improve monitoring 

protocols and the actuarial soundness of the FCIP. Given the proposed increase in funding for the 

FCIP and the focus on expanding the types of specialty crop insurance policies, this article 

makes a critical contribution to the current policy debate. 

 This article uses crop insurance supply data (1981-2011) collected by the Risk 

Management Agency (RMA) and highly disaggregated agricultural production data (1980-2011) 

                                                           
3 “Title I crops” refers to crops such as wheat, corn, cotton, rice, feed grains, and oilseeds that have had access to support programs through 

Title I of the farm bill (e.g., direct payments, counter-cyclical payments, and non-recourse loans). 
4 According to Vince Smith at Montana State University, taxpayers will pay about $15 billion for the 2012 FCIP, including $7 billion in 

premium subsidies, $1.3 billion in overhead costs for insurers, and about $7 billion from underwriting losses. 
5 News releases for these court cases can be found at the Risk Management Agency website: rma.usda.gov/. 
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collected by California’s Agricultural Commissioners and reported by the USDA to estimate the 

supply of insurance to counties in California for five specialty crops (apples; wine grapes; 

prunes; English walnuts; and dry beans). We use the estimated supply relationships to model the 

effects of crop insurance supply on the yields and harvested acreage of the insurable crops. The 

yield and acreage response models are used to assess the unintended consequences of the FCIP 

on output. The results provide valuable insights for improving monitoring protocols and the 

actuarial soundness of the FCIP in relation to specialty crops. 

 This study builds upon previous analysis of the unintended consequences of the FCIP on 

production, which typically is described as examples of moral hazard and adverse selection 

(Knight and Coble 1997; Glauber 2004).6 Several studies analyze the effect of participation in 

crop insurance programs on the intensive-margin effect. Horowitz and Lichtenberg (1993) found 

that producers who purchased crop insurance increased fertilizer use by 19 percent and pesticide 

expenditure by 21 percent. They argue that these inputs are often strongly risk increasing and 

that yield insurance may increase input use. In contrast, Babcock and Hennessy (1996) argue that 

the effect of increased fertilizer use on the probability of low yields primarily determines 

whether insurance purchases will cause insured producers to alter their fertilizer expenditures. 

They conclude that increased fertilizer use sharply decreases the probability of low yields, 

suggesting that insurance purchases and fertilizer are substitutes. This result is consistent with 

Smith and Goodwin (1996), who argue that moral hazard probably decreases chemical input use 

for two reasons. First, inputs increase production costs and lower (increase) the expected profits 

(losses) when indemnity payments are made. Second, the critical yield that triggers an indemnity 

payment is determined by the producer’s yield history.  

                                                           
6 Arrow (1984) provides simple and compelling definitions of moral hazard as “hidden action” on the part of an insured agent, and of 

adverse selection as “hidden knowledge” possessed by the insured as to his probability of loss. 
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 Several studies investigate the effect of premium rate subsidies on the intensive- and 

extensive-margin effects7. Goodwin et al. (2004) find that a 30 percent decrease in premium 

costs were likely to decrease total input use (fertilizer and chemical expenditure), but were 

associated with an increase in barley acreage of about 1.1 percent and corn acreage by less than 

0.5 percent. Young et al. (2001) find that planted acreage for major field crops was only 0.4 

percent higher due to subsidized crop insurance. Several other studies find that the extensive-

margin effect of subsidized crop insurance for field crops is small, also at less than 2 percent 

(Walters et al. 2012; Miao et al. 2011; Classen et al. 2011; O’Donoghue et al. 2009; Lubowski et 

al. 2006).  

 Fewer studies address issues relating to specialty crop insurance, mainly due to data 

limitations. Most studies of specialty crop insurance markets focus on the factors affecting the 

demand for crop insurance (e.g., Miller et al. 2000; Richards 2000; Richards and Mischen 1998). 

On the other hand, one recent study estimated the effects of the supply of specialty crop 

insurance on the supply of and the demand for the insurable crops (Ligon 2011). He found a 

positive significant effect of crop insurance supply on the output of woody-perennial crops, but 

no significant effect for other crops. The author concludes that this finding is perhaps “a 

consequence of the much larger investments at risk” with woody-perennial crops. He also finds a 

significant negative effect of crop insurance supply on the prices of insurable crops.  

 Ligon’s (2011) study has two major shortcomings. First, it measures output as harvested 

acreage, production, or production value, depending upon the crop. As such, the author notes that 

their results do not provide any information about whether the positive effect of insurance supply 

on the output of woody-perennial crops is due to intensive- or extensive margin effects, or, both. 

                                                           
7 Following the Crop Insurance Reform Act of 1994 producers can receive a basic level of coverage, catastrophic risk protection (CAT), 

with fully subsidized premiums and only a small sign-up fee per crop per county. Premium subsidies were also provided in the 1999 and 2000 
crop years and in 2000 the Agricultural Risk Protection Act was passed, increasing subsidy levels for most buy-up levels (Glauber 2004).  
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Second, because crops are aggregated into categories he cannot distinguish whether the positive 

effect of insurance supply on the output of woody-perennial crops is due to increases in output 

across all crops in the category or substitution between them.  

 This article intends to provide a more thorough understanding of the unintended 

consequences of the FCIP on the output of specialty crops. To do so, we will address the output 

measurement and aggregation issues present in Ligon (2011). Specifically, we estimate the 

effects of crop insurance supply for highly disaggregated specialty crops on the yields and 

harvested acreage of the insurable crops. This information can be used to improve monitoring 

protocols and the actuarial soundness of the FCIP in relation to specialty crops.  

 

Empirical Models 

We use five crops (apple; wine grapes; prunes; English walnuts; and dry beans) to represent the 

diversity of specialty crops that the RMA chooses to insure.8 We feel that this is a reasonable 

representation of the alternatives encountered by the RMA given that this crop portfolio includes 

several fruits, a tree nut, and a field crop. Similarly, these crops provide an important distinction 

between woody-perennial crops (apple; wine grape; prune; and English walnut) and field-annual 

crops (dry bean). Furthermore, the RMA rarely introduces more than one new crop insurance 

policy in California in any given year (Ligon 2011), which provides some support for using crop-

specific models as we do. Crop insurance policies are supplied by the RMA on a county-by-

county and crop-by-crop basis. New programs are offered for different crops at different times 

(table 1). Taking walnut as an example, we see in table 1 that no counties were provided with  

 

                                                           
8 The RMA was created in 1996 to administer the Federal Crop Insurance Corporation and operate the FCIP. The FCIC was founded in 

1938 when it began supplying insurance to wheat, followed by other Title 1 crops. The RMA began to supply crop insurance to fruits, tree nuts, 
vegetables, nursery crops, and floriculture in 1981. These crops are typically referred to as “specialty” or “horticultural” crops.  
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federal crop insurance policies for walnut in California during 1981. By 1985 there were 10 

counties in California were walnuts were insurable and by 2002 that number stabilized at 26. The 

RMA has offered crop insurance differently for specialty and has developed a decision rule for 

determining whether to offer insurance to a particular specialty crop in a particular county 

(General Accounting Office 1999, Appendix III). There are three basic criteria which must all be 

satisfied for an insurance policy to be developed. First, the crop must be “economically 

significant"; second, there must be “producer interest"; and third, offering the policy must be 

“feasible". 

 The Federal Crop Insurance Corporation (FCIC) regards a particular crop economically 

significant in a particular area only if the total market value of the crop is at least one of the 

following: (1) $3 million in the agricultural statistics district where it will be covered (8 in  

California); (2) $9 million in the state where it will be covered; (3) $15 million in the RMA 

administrative region (10 nationally); or (4) $30 million nationally.  

 Producer interest in insurance is considered to be indicated by high levels of noninsured 

disaster payments as well as recommendations by RMA regional offices. For a pilot program to 

be initiated projected producer participation in the program must be at least 10 percent. Offering 

1981 1985 1990 1996 2002 2008 2012

Crops We Analyze

   Apple 0 0 3 11 14 25 25

   Grape 8 15 16 26 28 31 31

   Prune 0 0 10 15 14 14 14

   Walnut 0 10 15 25 26 26 26

   Dry Bean 0 16 15 17 18 18 17

Some Other Crops

   Almond 4 15 16 16 16 16 16

   Raisinᵃ 7 7 7 7 7 7 7

ᵃRaisins are grapes that are dried pre-harvest on the vine.

Table 1. Number of Counties in California Supplied with Insurance, Selected Years & Crops  

Note: This table is generated from the RMA's Summary of Business Reports: rma.usda.gov/data/sob/scc/index.html. The table includes 

years when new Farm Bills were introduced and 2012. In California there are 58 counties.



  8 
 

an insurance product may be infeasible if, for example, there are inadequate data to evaluate the 

actuarial soundness of the product; if mechanisms to market the product are lacking; or if the 

proposed product itself is too complicated (General Accounting Office 1999). Once the RMA 

has decided to try to develop a new insurance product, the process of development takes about 

five years to complete, including two years of feasibility studies and three years to carry out a 

pilot program. 

 To investigate the factors affecting the supply of specialty crop insurance we estimate 

supply relationships for a diverse portfolio of crops: apple; wine grape; prune; English walnut; 

and dry bean. We use Sijt to denote the supply of insurance to crop i in county j in year t. The 

vector of policy variables affecting the supply of crop insurance is represented by Pijt. It is 

comprised of two variables, the lagged supply of insurance to crop i in county j and another 

binary variable indicating whether the USDA’s Tree Assistance Program (TAP) is available in 

year t.9 The lagged supply of insurance is expected to reflect producer interest in crop insurance 

policies. The variable for the Tree Assistance Program is intended to capture the effect of 

policies that compete for funding with the FCIP.  

 A vector of regional own-crop values Vijt is used to capture the economic significance of 

the crop and the feasibility of providing it with insurance. Lagged own-crop values at the county, 

state and national levels are used as variables to represent the economic significance of the crop 

at different spatial scales. The variance of own-crop unit revenue prior to the supply of insurance 

(henceforth, “pre-supply”) is used to represent the feasibility of providing insurance. When pre-

supply unit revenue is more variable we expect that evaluating the actuarial soundness of the 

policy would be more difficult; there would be fewer mechanisms to market the product; and 

                                                           
9 TAP provides ad-hoc financial assistance to qualifying orchardists to replant or rehabilitate eligible trees, bushes, and vines damaged by natural 
disasters. TAP was authorized in the 2002 Farm Bill and was reauthorized in the 2008 Farm Bill. TAP is not offered to growers of trees used for 
pulp, timber, Christmas trees, and nursery tree stock. 
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insurance policies would need to be more complicated. Lastly, to represent the steady growth in 

federal crop insurance funding over time (Glauber 2004) we include a time trend represented by 

the vector Tt. The supply of insurance to crop i in county j in year t is represented by this 

equation 

(1)     Sijt = f(Pijt, Vijt, Tt), 

where i = apple, wine grape, prune, English walnut, and dry bean; j = 1,…J; and t = 

1980,…,2011. Note that the counties are different for each crop. 

 Producers in each county are assumed to make management decisions that affect the 

yield and harvested acreage of each commodity to maximize the expected crop-specific profit, 

conditional on agricultural policies, lagged production and prices, climate and land quality, and 

time. To assess how the supply of insurance for specialty crops affects the acreage and yield of 

the insurable crop we develop response equations for each crop. We use Yijt and Aijt to represent, 

respectively, the yield and acreage of crop i in county j in year t.  

 The vector of policy variables affecting yield and acreage Lijt is comprised of three 

variables: the predicted probability of supply for crop i in county j in year t; a binary variable 

indicating whether TAP is available in year t; and the Acreage Reduction Program (ARP) rate 

for wheat in year t.10 The predicted probability of supply from equation 1 will be used to assess 

the effect of the supply of specialty crop insurance on yield and harvested acreage of the 

insurable crops. Prior studies suggest that the supply of crop insurance will have a positive effect 

on acreage (Walters et al. 2012; Miao et al. 2011; Classen et al. 2011; O’Donoghue et al. 2009; 

Lubowski et al. 2006; Goodwin et al. 2004; Young et al. 2001).  

                                                           
10 The ARP was an annual land retirement program for wheat, feed grains, cotton, and rice in which producers participating in Title 1 programs 
reduced a crop-specific, nationally set portion of that crop acreage base in order to be eligible for Title 1 benefits. The ARP was not reauthorized 
in the 1996 Farm Bill or subsequently. 
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 The hypothesized effect on yield for the crops we investigate is less clear. Following 

previous work (Babcock and Hennessy 1996; Smith and Goodwin 1996; Horowitz and 

Lichtenberg 1993) we expect that the effect of the supply of crop insurance on yield is dependent 

on the input-risk relation, the relative importance of risk-increasing and risk-decreasing inputs in 

the production of that crop. For woody-perennial crops, producers’ yields and acreage may 

respond similarly to the supply of crop insurance and TAP because both policies tend to reduce 

production risk for these crops. Ligon (2011) showed that from 1980-2007 the market shares of 

California agricultural production declined for grains and increased for fruits and vegetables. 

This suggests that wheat and the crops we analyze are competing crops, and that the ARP rate for 

wheat may affect the yields and land allocation of both.  

 The crop-specific expected profit is also affected by a vector of lagged production and 

price variables Qijt, including own-crop unit revenue and harvested acreage; unit revenue and 

harvested acreage of a competing crop (wheat); and input price indices for fertilizer and labor. 

The variables for unit revenue capture the effects of relative output prices on yield and acreage. 

The variables for harvested acreage allow for adjustment costs and partial adjustment (Goodwin 

et al. 2004). Such lagged effects may represent costly adjustment and may also reflect the 

importance of output storage and crop rotational patterns (for dry beans and wheat) on yield and 

acreage decisions. The input price indices control for the differing input intensities of each crop. 

 We account for the effect of cross-sectional variation in climate and land quality on 

output with a vector Rj in the yield and acreage response equations. Growing season maximum 

temperature (April through September) and its squared value are included in Rj for the acreage 

response equations. For the yield response equations, Rj also includes minimum temperatures 

and precipitation during the growing season and their squared values. The land quality variables 
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are identical in the yield and acreage response equations and include the average land capability 

class, soil permeability and land slope. An interaction term between soil permeability and land 

slope is also included. These climate and soil variables control for the optimal growing 

conditions of each crop. Lastly, we include a time trend vector Tt, as in equation 1, to reflect the 

improvement in crop varieties over time. The yield and acreage of crop i in county j in year t are, 

respectively, represented by the following equations: 

(2)     Yijt = g(Lijt, Qijt, Rj, Tt), 

(3)     Aijt = g(Lijt, Qijt, Rj, Tt), 

where i = apple, wine grape, prune, English walnut, and dry bean; j = 1,…J; and t = 

1980,…,2011. Note that the counties are different for each crop. Equations 1, 2 and 3 are 

estimated using crop insurance supply data (1981-2011) collected by the RMA and highly 

disaggregated agricultural production data (1980-2011) collected by California’s Agricultural 

Commissioners and reported by the USDA, among other data sources. 

 

Econometric Estimation 

We estimate the supply of insurance to counties in California for five specialty crops (apples; 

wine grapes; prunes; English walnuts; and dry beans). We use the estimated supply relationships 

to model the effects of crop insurance supply on the yields and harvested acreage of the insurable 

crops. The dependent variable of equation 1 is binary and it indicates whether crop i had federal 

insurance policies available in county j and year t (henceforth, “county-year”). The variable 

indicates whether crop i in county j in year t was insurable. As indicated in table 2, just because a 

crop is insurable does not mean that its total acreage is insured. We use a logit regression to  
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estimate equation 1. The logit regressions relate the probabilities of supplying insurance to crop i  

in county j in year t to the independent variables. To remove indeterminacy in the models 

represented by equation 1, the benchmark alternative (Sijt=0) represents the pre-supply years t for 

crop i in county j.  

 We acknowledge that, for example, 2-stage probit, heckman, and endogenous switching 

regressions could also be used to estimate supply relationships as in equation 1 that could be 

linked to models for continuous variables to estimate the effect of crop insurance supply on the 

yield and acreage of the insurable crops (Miranda and Rabe-Hesketh 2006). In the future we will 

use to use an endogenous switching regression model for the purposes of this article.11 

 The dependent variables of equations 2 and 3 measure harvested yield and acreage for 

crop i in county j in year t, which are continuous variables without truncation or censoring issues. 

As such, we use OLS regressions to estimate equations 2 and 3 and remind the reader that in the 

future we will use endogenous switching regressions to simultaneously fit the binary and 

continuous parts of the models. Before we estimate equations 2 and 3 we use the logit 

regressions to estimate equation 1 and obtain the linear predictor ���. We use the linear prediction 

                                                           
11 In an endogenous switching regression model, a switching equation sorts individuals over two different states (with one regime 

observed).The full information maximum likelihood method (FIML) simultaneously fits binary and continuous parts of the model to yield 
consistent standard errors (Lokshin and Sajaia 2004). 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean

Crops We Analyze

   Apple 66 62 15 56 48 — 36 37 39 35 39 35 43.1

   Grape 97 98 97 98 74 — 75 74 97 98 90 94 90.4

   Prune 87 87 78 88 89 — 96 95 93 91 93 88 89.2

   Walnut 43 40 49 37 43 — 35 43 55 54 56 60 46.5

   Dry Bean 17 46 31 27 49 — 48 44 50 43 39 39 38.9

Some Other Crops —

   Almond 61 58 74 65 77 — 77 78 77 79 83 84 73.3

   Raisinᵇ 76 77 62 80 85 — 69 94 94 — — — 80.8
ᵃThis table is generated from the RMA's State Profiles: rma.usda.gov/pubs/state-profiles.html

ᵇData not available for 2006 and for raisins from 2010-2012. 

Table 2. Percentage of Acreage Insured in California, Selected Years & Cropsᵃ  
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 to calculate the predicted probability of insurance supply for crop i in county j in year t. This 

requires a linear transformation of the linear predictor to obtain this equation 

(4)     ��(�	
�)  = 
���
�

��	���
�
	
 . 

The predicted probabilities of insurance supply for crop i in county j in year t from equation 4 are 

the main policy variables of interest in Lijt used in the second stage models of yield and acreage 

response. 

 

Data 

We pool time-series and cross-sectional data to construct our research database. The time-series 

data comes from two sources.12 The first source is crop insurance supply data (1981-2011) 

collected by the Risk Management Agency (RMA). The insurance data includes detailed crop-

specific information at the county-level such as the number of policies sold, insured acreage, 

total liability, total premiums, total indemnities and the total premium subsidy. However, several 

of these variables are dependent on the type of insurance policy (e.g., Actual Production History 

and Actual Revenue History), coverage level and price election, for which we do not currently 

have data. So these variables were not integrated into the research database. Instead we use these 

data to generate a binary variable that is equal to one, zero else, if some insurance policy is 

offered to crop i in county j in year t. This is the dependent variable in equation 1(table 3), which 

is used to create a lagged independent variable in the same equation. The data shows that 

whenever an insurance policy is offered a positive number of insurance policies were sold, so we 

can refer to the RMA as “offering” and “supplying” insurance to crop i in county j in year t 

interchangeably. We exclude insurance data from the research database if the data for that crop 

                                                           
12 These are the only two data sources used in Ligon (2011). 
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exhibited any of the following features: (1) it is not a specialty crop; (2) it is never supplied with 

insurance; (3) it has insufficient variation in the supply of insurance (see almonds and raisins in 

table 1); or (4) if there are ambiguous crop categories. For example, at points in time various 

citrus crops were supplied with insurance for “citrus”; “citrus” or “special citrus”, and finally by 

a wide variety of policies for more specific citrus crops. This ambiguity presents identification 

issues for determining which crops are supplied with insurance across time.  

 The second source is highly disaggregated agricultural production data (1980-2011) 

collected by California’s Agricultural Commissioners and reported by the USDA.13 The 

production data includes prices, yields, and harvested acreage at the county-level. The yield and 

acreage data are used for the dependent variables in equations 2 and 3 (table 3). These data are 

also used to generate the independent variables of county and state own-crop output value; own-

crop unit revenue and harvested acreage; unit revenue and harvested acreage for wheat; and the 

variance of own-crop unit revenue. The variance of own-crop unit revenue is equal to the 

variance of unit revenue (price times yield) across time and is calculated using the data from pre-

supply years only (if Sijt=0). Several features of the production data caused us to restrict the 

research database further.  

 We exclude data from the research database if the data for that crop exhibited any of the 

following features: (1) there is data for insurance but not production; (2) a county was never 

supplied with insurance; or (3) there is insufficient data for pre-supply years to calculate the 

variance of own-crop unit revenue. Lastly, data for several crops were dropped from the research 

database because there were few observations. These procedures resulted in the insurance and 

                                                           
13 California’s Agricultural Commissioners are elected officials and according to Chris Mertz, the Director of the National Agricultural 

Statistic Services’ Pacific Northwest Field Office, other states do not have agricultural commissioners. Hence, analogous data is not available for 
other states.  
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production data used for the five crops analyzed in this article.

 

 Variables that complement the insurance and production data are obtained from other 

sources. The TAP variable is a binary variable equal to one if TAP is offered in year t, zero else. 

TAP was first offered in 2002 and has been offered in all subsequent years (see footnote 8). The 

ARP rate for wheat was taken from Greene (1990) and Anderson and Magleby (1997). We 

obtain own-crop output values in the United States for several crops from the USDA’s Crop 

Values Annual Summary. However to develop this variable for wine grape, we used national 

output levels from the USDA’s Agricultural Statistics and wine grape prices in California from 

the Agricultural Prices Summary. For prune and walnut we do not have output values for the 

United States because more than 99 percent of national output for these crops is produced in 

Table 3. Descriptive Information for Dependent Variables

Variablei,j,t  (units) Obsv. Mean Std. Dev. Min. Max.

Supply of Federal Crop Insurancei,j,t  (0/1)

   Apple 492 0.45 0.50 0 1

   Grapeᵃ 556 0.60 0.49 0 1

   Pruneᵇ 405 0.73 0.45 0 1

   Walnutᶜ 796 0.68 0.47 0 1

   Dry Beanᵈ 544 0.65 0.48 0 1

Harvested Landi,j,t  (acres)

   Apple 492 1,515.06   1,693.77     35.00     7,747.00    

   Grape 556 8,653.38   12,959.47   50.00     58,100.00   

   Prune 405 5,958.26   5,484.28     8.00       27,326.00   

   Walnut 796 7,226.24   8,996.12     140.00   55,400.00   

   Dry Bean 544 7,068.04   8,216.99     200.00   50,200.00   

Harvest Yieldi,j,t  (tons/acre)

   Apple 492 11.84 4.89 0.20 28.70

   Grape 556 3.88 1.56 0.80 10.40

   Prune 405 2.15 0.82 0.00 5.10

   Walnut 796 1.24 0.78 0.10 17.40

   Dry Bean 544 1.13 0.47 0.20 6.50
Note: Statistics are at the county-level.
ᵃRefers to grapes used to produce wine.

ᵇPrunes are plums that are dried post-harvest; producers typically prefer to market them as "dried plums".
ᶜRefers to English Walnuts.

ᵈIncludes the following types of dry edible beans: large lima, baby lima, green lima, unspecified lima, blackeye, red kidney, garbanzo, pink, 

small white, fava, small red, pinto, and unspecified others. One type is excluded due to insufficent data, small white flat. We exclude all 

beans denoted as "fresh", "fresh for market", "snap", and "seed".
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California (California Department of Food and Agriculture 2010). Input price indices for 

fertilizer and labor are obtained from the USDA’s Agricultural Prices Summary. All prices are 

adjusted (1990-1992=1) by the index of prices paid by farmers for all inputs including interest, 

taxes, and wages, which is also obtained from the Agricultural Prices Summary.  

 Long term data (1971-2000) for maximum and minimum temperature (°F) and 

precipitation (inches) during the growing season (April through September) from weather 

stations across the study region were obtained from the Western Regional Climate Center. 

Climate in a particular county is measured as the average across all weather stations in the 

county. The growing season measures we use are the average values across the months in the 

growing season. The land quality variables are obtained from the Natural Resource Conservation 

Service’s1997 Natural Resources Inventory. Land capability class is designated by the numbers 

1 through 8, but because our variable is a county level average, our measure of land capability 

class is a continuous variable between 1 and 8, inclusive. The land slope variable is measured in 

degrees and bounded between 0 and 90, inclusive. 

 

Estimation Results 

Federal Supply of Insurance to Specialty Crops 

Estimated marginal effects for the binomial logit models of the federal supply of insurance to 

specialty crops are presented in table 4. By comparing the observed supply of crop insurance in 

table 3 to the predicted probability of supply in table 4 we find that we over-predict the 

probability of supply for all crops, except apple. This may be a result of using the lagged 

insurance supply variable as an independent variable in the estimation (Brandow 1958). 
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Nonetheless, our crop insurance supply models explain most of the variation in supply and 

correctly predict supply at least 92 percent for all crops. 

 

We find the expected effect that the lagged dependent variable has a positive significant effect on 

supply for all crops. The marginal effects suggest that if crop i in county j is supplied with 

insurance in the prior year, it increase the probability that supply will occur in the following 

period by 42 to 76 percent, depending on the crop. The estimated marginal effect for TAP is 

negative for all (woody-perennial) crops, but is only significant in the grape and prune equations. 

These estimated effects support our expectation that other disaster relief policies for specialty 

crops compete for funding with crop insurance programs. The marginal effects suggest that 

supply of TAP reduced the probability of supplying insurance for grape and prune by 25 and 68 

percent, respectively.  

Apple Grape Prune Walnut Dry Bean

Variablei,j,t  (units)       dy/dx       dy/dx       dy/dx       dy/dx       dy/dx

Policy Variables

[0.700]*** [0.723]*** [0.422]*** [0.601]*** [0.758]***

(9.48) (13.80) (3.50) (8.85) (19.44)

[−0.272] [−0.245]* [−0.682]*** [−0.122]

(−1.34) (−1.84) (−2.94) (−0.93)

Crop Value Variables

2.93E−5*** 3.52E−6*** 3.00E−6** 5.57E−6*** 8.57E−6***

(3.68) (4.12) (2.16) (3.45) (2.64)

2.22E−6 5.97E−8 −8.49E−7*** −1.10E−6*** 4.58E−6*

(1.34) (0.19) (−2.79) (−5.58) (1.71)

−3.64E−7 −4.46E−8 −9.55E−7***

(−1.51) (−0.18) (−2.95)

2.18E−5 4.00E−6 6.20E−5 1.02E−4 −0.001**

(0.88) (0.12) (1.52) (0.84) (−2.37)

Other Variables

0.080*** 0.022* 0.014*** 0.022*** 0.022*

(4.93) (1.74) (2.85) (3.62) (1.95)

Probability of supply 37% 83% 96% 93% 80%

Estimation statistics

   Observations 473 537 392 771 525

   McFadden R² 0.73 0.69 0.76 0.75 0.60

   Correct Prediction 93% 93% 95% 95% 92%
Note: T he benchmark alternative for each dependent variable is pre-supply years t  for crop i  in county j .
Note: In brackets are the percent change in the probability of insurance supply as the discrete variable changes from 0 to 1.

Note: All models estimated with robust  standard errors. In parenthesis are z-stat ist ics. *, **, and *** denote significance at  the 10%, 5%, and 1% levels, respectively.

Table 4. Elasticities, Probabilities, and Estimation Statistics for Binomial Logit Models of Federal Crop Insurance Supply

—

Trendt  (year)

— —

Own-Crop Insurance Supplyi,j,t-1  (0/1)

County Own-Crop Valuei,j,t-1  ($)

California Own-Crop Valuei,t-1  ($)

U.S. Own-Crop Valuei,t-1  ($)

Variance of Own-Crop Unit Revenueij

TAPt  (0/1)
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 As expected own-crop output value in the county has a positive effect on supply for all 

crops. The marginal effect for own crop output value in California is significant and negative for 

prune and walnut, while it is significant and positive for dry bean. Because prune and walnut are 

only produced in California (>99 percent of national output) the marginal effects suggest that 

when there output value is more dispersed there is a lower probability that a given county will be 

supplied with insurance. On the other hand, the marginal effect for dry bean suggests that 

because its production is dispersed nationally, higher output values in California will tend to 

increase the supply of insurance to counties within the state. Similarly, we find a negative 

significant effect of the output value for dry bean in the United States on the probability of 

insurance supply. Again, suggesting that when output values are more dispersed there is a lower 

probability that a particular county will be supplied with crop insurance. For dry bean, we find 

that the variance of unit revenue has a negative significant effect on insurance supply. We used 

this variable to represent the feasibility of supplying crop insurance and so we find the expected 

effect. This result may be related to the fact that we aggregate several types of bean in this crop 

category. If the variance of dry bean unit revenue is more variable because producers often 

switch between the production of various types of bean in response to market conditions this 

would indeed complicate the supply of crop insurance.  

 Lastly, we find significant positive marginal effects for the time trend variable, 

suggesting that the steady growth in crop insurance funding over the last three decades has 

increased the probability of the supply of insurance for these crops. Specifically, the marginal 

effects suggest that the probability of insurance supply increases by 1 to 8 percent each year, 

depending on the crop. Complete coefficient estimation results for the binomial logit models of 

the federal supply of crop insurance are presented in table A.1in the appendix 
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Acreage Response 

The estimation results for the OLS models of acreage response are presented in table 5. The 

acreage response equations explain nearly all of the variation in acreage, with the R2 in each 

model ranging from 92 to 99 percent. We estimate a significant positive effect of the supply of 

insurance on the acreage of prune and dry bean, suggesting that the supply of crop insurance 

reduces production risks and encourages a positive acreage response for these crops. If crop 

insurance reduces production risks it is likely to cause producers to engage in riskier behavior 

such as expanding production onto marginal land. We find unexpected effects which suggest that 

TAP reduces acreage of prune and that the ARP rate for wheat reduces the acreage for apple.  

 We find significant positive effects for lagged own-crop unit revenue on acreage for all 

crops except prune, suggesting that the unit value of the crop is an important determinant of 

acreage response. We find a significant positive effect of lagged own-crop acreage on current 

own-crop acreage, suggesting that adjustment costs and partial adjustment are critical factors 

determining acreage response. We find a significant negative effect of lagged wheat acreage on 

the acreage of grape and prune, but a significant positive effect for walnut. This suggests that 

grape and prune compete with wheat for land, but walnut does not. 
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Yield Response 

The estimation results for the OLS models of Yield Response are presented in table 6. We find a 

significant positive effect of the supply of insurance on the yield of prune and grape. One reason 

why we find that the supply of crop insurance only has a significant positive effect on output 

(acreage or yield) for grape and prune may relate to the insurance participation rates for these 

crops. Table 2 shows that the percentage of insured acreage in California for the crops we 

investigate is greatest for grape and prune. We should expect that the crops that insure a greater 

Apple Grape Prune Walnut Dry Bean

Variablei,j,t  (units) Coef. Coef. Coef. Coef. Coef.

−79232.440** −123491.000 166150.200 −100694.400 −190138.200

(−2.17) (−0.83) (1.08) (−1.59) (−0.58)

Policy Variables

25.774 442.008 2251.551*** −244.688 4214.755***

(0.09) (0.93) (2.67) (−0.62) (2.78)

35.650 −60.200 −564.530** 134.212

(0.49) (−0.18) (−1.97) (0.93)

−3.0560* 0.379 3.777 3.289 −5.923

(−1.95) (0.06) (0.63) (0.89) (−0.41)

Production and Price Variables

0.0234*** 0.232*** 0.024 0.108** 1.836***

(3.55) (3.79) (0.58) (2.44) (3.82)

0.954*** 1.014*** 0.967*** 1.027*** 0.902***

(84.38) (120.30) (51.40) (116.25) (32.81)

0.0292 −0.053 −0.475 −0.094 −0.043

(0.20) (−0.71) (−0.88) (−0.41) (−0.40)

−0.001 −0.008* −0.005* 0.003** 0.001

(−1.38) (−1.69) (−1.76) (1.96) (0.16)

0.794** −0.224 0.979 0.838 7.736**

(2.10) (−0.20) (0.81) (1.10) (2.51)

−12.675** −11.147 26.286 −8.736 −39.535

(−2.42) (−0.52) (1.30) (−1.03) (−1.28)

Climate and Land Quality Variables

−66.337 416.906** 1889.504* 428.336 −811.149

(−0.48) (2.34) (2.07) (1.34) (−0.34)

0.429 −2.555** −11.3115* −2.668 4.848

(0.50) (−2.32) (−2.08) (−1.36) (0.34)

−4.650 −301.751* 143.111 41.464 −400.748

(−0.15) (−2.51) (1.21) (0.88) (−0.98)

97.623** −30.621 −713.621** −107.180 1290.339

(2.31) (−0.15) (−2.43) (−0.83) (1.60)

48.652* −106.208 −620.072** −75.437 547.837

(1.86) (−0.79) (−2.57) (−0.86) (0.99)

−27.297** 54.045 350.931** 39.471 −367.171

(−2.21) (0.85) (2.56) (0.93) (−1.27)

Other Variables

41.588** 54.509 −124.522 42.279 112.250

(2.36) (0.71) (−1.52) (1.38) (0.80)

   Observations 473 537 392 771 525

   R² 0.98 0.99 0.98 0.99 0.92
Note: All models estimated with robust  standard errors. In parenthesis are t-statist ics. *, **, and *** denote significance at  the 10%, 5%, and 1% levels, respectively.

—

Table 5. Estimation Results for OLS Models of Acreage Response

Wheat Harvesti,j,t-1  (acres)

Fertilizer Pricet-1  ($)

Labor Pricet-1  ($)

Predicted Probability of Supplyi,j,t  (0-1)

Own-Crop Unit Revenuei,j,t-1  ($/acre)

Own-Crop Harvesti,j,t-1  (acres)

Wheat Unit Revenuei,j,t-1  ($/acre)

Constant

Growing Season Max. Temp. Squaredj  (°F)

Permeability of Soilj                                                

× Slope of Landj

Trendt  (year)

Land Capability Classj  (1-8)

Permeability of Soilj

Slope of Landj  (degrees, 0-90)

TAPt  (0/1)

ARP Rate for Wheatt  (%)

Growing Season Max. Temp.j  (°F)
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proportion of acreage will be most responsive to the supply of crop insurance. We estimate that 

the TAP program also has a positive significant effect on yield for grape. This suggests that the 

ad-hoc financial assistance provided by TAP to replant or rehabilitate trees, bushes, and vines 

damaged by natural disasters has been a more important policy for wine grape producers than the 

other crops investigated here. We also estimate that the ARP rate for wheat has a positive effect 

on the yield for walnut and dry bean.  

 We find that lagged own-crop unit revenue has a positive effect on yields for all crops, 

suggesting that producers increase the intensity of input use to increase yields in response to high 

prices. We find mixed results for lagged own-crop acreage on yields. This is not unexpected 

because costly adjustment and partial adjustment can have mixed effects on yield. We also find 

mixed results among crops for wheat unit revenue and wheat acreage. This suggests that wheat 

may only compete for inputs with some of the crops we analyze.  
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Conclusion 

We exploit variation in the timing of specialty crop insurance supply to different crops and 

counties in California to assess its effect on output as decomposed into yield and harvested 

acreage. Four woody-perennial crops and one field-annual crop are used to represent this effect. 

We find that the supply of crop insurance has a significant positive effect on output for several 

Apple Grape Prune Walnut Dry Bean

Variablei,j,t  (units) Coef. Coef. Coef. Coef. Coef.

133.235 −315.246*** −76.026 76.414** −118.491***

(0.23) (−3.13) (−0.66) (2.02) (−2.89)

Policy Variables

−2.627 3.400*** 1.425* 0.303 −0.477

(−0.75) (4.43) (1.79) (1.55) (−1.39)

−0.443 0.505** 0.236 −0.041

(−0.46) (2.14) (1.26) (−0.54)

0.016 0.003 0.001 0.006** 0.008*

(0.49) (0.54) (0.21) (2.35) (1.84)

Production and Price Variables

6.80E−4*** 2.04E−4*** 1.85E−4*** 0.001*** 3.71E−4***

(5.33) (4.19) (3.58) (6.93) (2.63)

1.18E−4 1.99E−5*** −5.33E−5*** 6.23E−6* 3.32E−7

(0.87) (4.62) (−3.57) (1.79) (0.21)

0.003 −3.42E−4*** −3.19E−4 3.54E−4* 1.66E−4***

(1.13) (−3.16) (−0.69) (1.78) (7.86)

−1.65E−5 1.77E−5*** −8.37E−6** −2.01E−6** −5.77E−7

(−1.18) (3.51) (−2.63) (−2.50) (−0.58)

0.003 0.006*** 0.006*** −0.001* −2.75E-4

(0.47) (3.86) (5.69) (−1.85) (−0.71)

0.028 −0.059*** −0.035** 0.013* −0.007

(0.36) (−4.10) (−2.60) (1.73) (−1.43)

Climate and Land Quality Variables

16.179*** −1.314* 1.154 −0.234 0.704

(3.90) (−1.84) (0.77) (−0.38) (1.47)

−0.103*** 0.009* −0.007 0.001 −0.004

(−3.98) (1.94) (−0.76) (0.37) (−1.46)

−31.900*** 1.259** −5.238*** −0.217 −0.754***

(−7.97) (2.22) (−3.70) (−0.51) (−3.76)

0.312*** −0.014** 0.052*** 0.002 0.007***

(7.80) (−2.41) (3.72) (0.57) (3.73)

4.339*** −2.149*** −0.013 −0.132 −0.124

(3.99) (−10.53) (−0.08) (−1.18) (−1.52)

−0.528*** 0.210*** 0.017 0.014 0.010

(−4.38) (9.88) (1.14) (1.48) (1.14)

−0.050 −1.776*** 0.183 −0.196*** −0.142***

(−0.08) (−12.41) (0.92) (−5.59) (−3.54)

2.427*** 1.661*** −2.629*** −0.136* 0.275*

(3.59) (5.63) (−3.54) (−1.74) (1.78)

−0.987** 1.030*** −2.127*** 0.0558 0.164**

(−2.15) (4.97) (−3.95) (1.26) (2.06)

0.230 −0.368*** 1.325*** 0.009 −0.065

(1.22) (−4.19) (4.25) (0.40) (−1.26)

Other Variables

0.022 0.176*** 0.084 −0.031 0.056***

(0.08) (3.39) (1.54) (−1.30) (2.67)

   Observations 473 537 392 771 525

   R² 0.43 0.62 0.47 0.35 0.47
Note: All models estimated with robust standard errors. In parenthesis are t-stat ist ics. *, **, and *** denote significance at  the 10%, 5%, and 1% levels, respectively.

Trendt  (year)

Growing Season Max. Temp. Squaredj  (°F)

Land Capability Classj  (1-8)

Permeability of Soilj

Slope of Landj (degrees, 0-90)

Permeability of Soilj                                                

× Slope of Landj

Growing Season Min. Temp.j  (°F)

Growing Season Min. Temp. Squaredj  (°F)

Growing Season Precipitationj  (inches)

Growing Season Precipitation Squaredj (inches)

Wheat Harvesti,j,t-1  (acres)

Wheat Unit Revenuei,j,t-1  ($/acre)

Fertilizer Pricet-1  ($)

Labor Pricet-1  ($)

Growing Season Max. Temp.j  (°F)

Table 6. Estimation Results for OLS Models of Yield Response

—

Predicted Probability of Supplyi,j,t  (0-1)

Own-Crop Harvesti,j,t-1  (acres)

Own-Crop Unit Revenuei,j,t-1  ($/acre)

Constant

TAPt  (0/1)

ARP Rate for Wheatt  (%)
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perennial crops and the field crop, but it only has a significant positive effect on yield for certain 

perennial crops. These findings suggest that even for disparate crops the supply of insurance 

reduces production risks for the insured crops and causes harvested acreage to expand. The 

positive significant effect of insurance supply on yield for several of the woody-perennial crops 

suggests that, regardless of the effect on acreage, it accelerates growers’ adoption of improved 

tree/vine varieties and rootstocks, which are likely to be risk-increasing inputs due to the their 

relatively high cost of investment. The results suggest that woody-perennial crops deserve added 

attention when designing monitoring protocols so as to reduce the unintended acreage expansion 

and premature adoption of improved tree/vine varieties and root stocks that are likely to result 

from the supply of insurance to these crops. 
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Appendix 

Complete Coefficient Estimation Results 

 

Apple Grape Prune Walnut Dry Bean

Variablei,j,t (units) Coef. Coef. Coef. Coef. Coef.

−689.373*** −313.915* −786.213*** −659.401*** −278.183*

−4.76 −1.73 −4.98 −6.04 −1.95

Policy Variables

3.534*** 4.658*** 4.135*** 4.562*** 4.415***

6.74 10.22 5.10 8.85 11.22

−1.312 −1.536** −5.791*** −1.431

−1.20 −1.98 −3.27 −1.28

Crop Value Variables

1.26E−4*** 2.55E−5*** 8.28E−5*** 8.46E−5*** 5.49E−5***

4.08 2.79 3.24 5.17 2.81

9.56E−6 4.33E−7 −2.34E−5** −1.66E−5*** 2.93E−5*

1.28 0.20 −2.04 −5.46*** 1.68

−1.57E−6 −3.23E−7 −6.12E−6***

−1.61 −0.18 −2.96

9.40E−5 2.90E−5 0.002* 0.002 −8.69E−3**

0.89 0.12 1.84 0.82 −2.35

Other Variables

0.344*** 0.156* 0.400*** 0.332*** 0.139*

4.74 1.71 4.98 6.05 1.95

   Observations 473 537 392 771 525

   McFadden R² 0.73 0.69 0.76 0.75 0.60
Note: T he benchmark alternative for each dependent variable is pre-supply years t  for crop i  in county j .

Note: All models estimated with robust  standard errors. In parenthesis are z-stat ist ics. *, **, and *** denote significance at  the 10%, 5%, and 1% levels, respectively.

Variance of Own-Crop Unit Revenueij

TAPt  (0/1)

Trendt  (year)

Constant

Table A1. Estimation Results for Binomial Logit Models of Federal Crop Insurance Supply

—

Own-Crop Insurance Supplyi,j,t-1  (0/1)

County Own-Crop Valuei,j,t-1  ($)

California Own-Crop Valuei,t-1  ($)

U.S. Own-Crop Valuei,t-1  ($) — —


