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I. Introduction 

     Non-point source sediment and nutrient runoff from upstream agricultural production is 

known to impair downstream ecosystem systems and ecosystem services (e.g. Diaz and 

Rosenberg 2008), which may worsen due to more intense rains with continued climate change 

(e.g. Groisman et al. 2005). Despite adoption of agricultural best management practices by some 

farmers, there is a need for greater adoption of conservation treatment. In 2011, USDA’s 

Conservation Effects Assessment Program (CEAP) identified that 16 % (2.8 million acres) and 

34% (5 million acres) of the cultivated cropland in Great Lakes Region have a high and moderate 

level of need for additional conservation treatment to reduce agricultural pollution loadings, 

respectively (CEAP 2011). The positive environmental impacts of conservation tillage systems 

are well documented, including reduction in soil erosion, increase in water retention, and 

reduction in water and nutrient runoff (e.g. Knowler and Bradshaw 2007; Gould et al. 1989). 

However, significant uncertainty still remains in about the effectiveness of policies that 

encourage adoption of conservation practices. Much of this uncertainty mainly results from 

critical gaps in understanding farmers’ spatially heterogenous behavioral responses to changes in 

policies and linkages between farmers’ individual decisions and landscape environmental 

impacts. 

Factors determining farmers’ adoption decisions of conservation tillage have been 

extensively studied. Larger farm size, younger age, higher income, better exposure to 

conservation information, and higher percentage of sloped cropland are found to increase the 

likelihood of adoption (Norris and Batie 1987; Gould et al. 1989; Featherstone and Goodwin 

1993). These studies provide useful insights regarding the importance of spatial information and 

operator characteristics in determining tillage choices; however, they derived from sample-based 
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surveys of farmers that are not spatially located, and therefore is not possible to link tillage 

decisions with sediment and nutrient runoffs. To reliably predict nutrient and sediment runoffs, 

the predictions of agricultural land management outcomes are needed for all land parcels across 

the entire watershed. In addition, the spatially contiguous field level analysis across the entire 

watershed is needed to evaluate the effectiveness of spatially targeted policies. Given the limited 

conservation budget and different environmental impacts across different fields due to their 

locations, extensive studies have shown that spatially targeted conservation strategy with the 

objective to maximize the net environmental benefits will enhance economic efficiency (e.g. Wu 

and Boggess 1999, Lewis et al. 2009).  

Recent models of conservation choices (e.g. Wu et al. 2004; Kurkalova et al. 2006) have 

incorporated the rich spatial heterogeneity of parcels. CEAP watershed studies also attempted to 

incorporate spatially located Natural Resource Inventory survey points with separate surveys of 

farmer characteristics; however, the number of survey points is sparsely distributed across 

multiple river basins in Great Lakes Region (CEAP 2011), which makes it difficult to reliably 

predict nutrient and sediment runoffs for the entire watershed. Econometrically, previous models 

such as Wu et al. (2004) typically separately model tillage practice decisions given the choice of 

crop. This convenient decomposition is correct if the error terms for tillage decisions and the 

error terms for crop choices are not correlated. However, in reality, these two decisions are 

jointly influenced by common factors unobserved to the researchers such as the family tradition, 

which leads to endogeneity bias if left uncontrolled.  

     The aim of this paper is to develop a spatially explicit model of farmers’ crop and tillage 

choices while accounting for the endogenous linkages between these two choices by treating 

crop choices as the multinomial endogenous treatment. We adapt the multinomial treatment 
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effects model and its simulated maximum likelihood estimation technique proposed by Deb and 

Trivedi (2006), and control for the common unobserved characteristics by introducing a latent 

factor structure into both the treatment (crop choice) and the outcome (tillage choice). We apply 

this model to a spatially contiguous agricultural field boundaries data in the Maumee River 

watershed, and we translate the field-level crop and tillage outcomes into nutrient runoffs, 

especially the dissolved reactive phosphorus (DRP) loadings, using a hydrological watershed 

model called Soil and Water Assessment Tool (SWAT). Doing so allows us to evaluate different 

policy scenarios not only in terms of their simulated impacts on farmers’ behavior and 

agricultural management outcomes, but more importantly in terms of their impacts on nutrient 

runoffs and downstream ecosystem conditions. 

The main result provides evidence that there are significant treatment effects between the 

tillage choices and crop choices, suggesting that there is endogeneity bias if these two decisions 

are separately modeled. Our analysis also reveal that spatial variations at the field level have a 

significant impact in determining the crop and tillage choices: for example, farmers are more 

likely to grow corn on a bigger field with better soil quality. In addition, we find that not every 

field has the same environmental impacts due to their different spatial locations, and we 

identified several “hot spot” – environmental sensitive areas by translating crop and tillage 

outcomes into DRP loadings using SWAT model. Due to computational complexity, we did not 

run a lot of policy scenarios such as first-best DRP loading taxes, voluntary payment schemes to 

encourage conservation tillage. However, our little exercise shows that incorporation is crucial to 

reduce the elevated DRP loadings from no-till, especially for agricultural fields more susceptible 

to nutrient runoffs. 
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Overall, this study makes at least two contributions to the literature on the spatial modeling 

of conservation practices. First, our analysis reveals that separate estimation of crop and tillage 

choices may suffer from endogeneity, which has to be addressed using methods like our 

multinomial treatment effects simulated likelihood model. In addition, our spatially contiguous 

agricultural field data allows for integration with watershed hydrological model and the benefit 

cost analysis of alternative policy mechanisms such as the spatially targeted policies.    

                   

II. Conceptual Framework 

In this modeling framework and following Wu et al. (2004), a farmer is assumed to choose a 

combination of crop and tillage practice decisions at the field level that yields the highest 

expected utility
1
. These two choices are made simultaneously; the choice of tillage practice may 

depend on the crop choice or vice versa. Assume the farmer can choose among K crops and M 

tillage systems, her utility              of choosing crop i and tillage system j can be represented 

as follows: 

                               , i=1, 2,…K and j= 1, 2,… M    (1) 

Where    is a vector of variables specific to the crop choice decision, including field-specific 

characteristics and expected crop prices, and      is a vector of variables that influence the 

farmer’s utility from adopting different tillage system, including the cost differential between 

different tillage system.              captures the deterministic portion of utility that can be 

explained by            , and is specified as                 
        

            is a random error 

                                                           
1
 We assume utility rather than profit maximization to account for other non-economic motives 

that farmers may have, including family succession and environmental stewardship (Konar et al. 

2012). 
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term that captures other factors that could influence crop and/or tillage choices but unobserved to 

researchers. A farm operator will choose crop i and tillage practice j, over other crop choices k or 

tillage practices m if utility is maximized: 

                                                   (2) 

The stochastic version of this model for estimation is that the probability of crop choice i and 

tillage practice j is shown as  

                                                        

         
        

               
        

          ) 

=prob (           
        

         
        

     )      (3) 

III. Econometrics 

To estimate equation (3) econometrically,     is typically assumed to follow extreme value 

I distribution, in which case the probability of choosing crop i and tillage practice j can be 

represented by a multinomial model (Maddala 1983): 

    
 

  
        

     

   
  
        

     
 

 
   

,  i=1, 2,…K and j= 1, 2,… M     (4) 

     Previous literature such as Wu et al. (2004) typically treated the joint probability of crop 

and tillage choices in equation (4) as a product as two separate components: the probability of 

choosing crop i, and the conditional probability of choosing tillage system j given the crop 

choice i
2
: 

                                                           
2
 Wu and Babcock (1998) also estimated a multinomial logit model of a nutrient management plan which is a 

combination of crop rotation, tillage system and soil testing.  
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= prob (tillage j| crop i) * prob (crop i)     (5) 

This convenient decomposition is correct only if the error terms    for crop choices and the error 

terms      for the conditional tillage choices are not correlated. However, in reality many 

common factors unobserved to the researchers tend to influence both the crop choices and the 

tillage choices, including field-level operator characteristics. For example, the farmer may 

choose a certain crop and tillage system because of family tradition, or may not have enough 

time to grow corn or conventional tillage due to a large size of the operation and/or the presence 

of large spring precipitation before planting. In these cases, the crop choice decisions and the 

tillage choice decisions are jointly determined and a separate estimation of these two decisions 

would suffer from the endogeneity bias.  

We solve this endogeneity bias by adapting Deb and Trivedi (2006)’s multinomial 

endogenous treatment effects model, in which the crop choices are defined as endogenous 

multinomial treatment, and the tillage choices are defined as the outcome variables. A latent 

factor structure is introduced to enter the treatment and outcome equations, which allows for 

idiosyncratic influences on crop choice to affect tillage outcomes. In this framework, the 

normalized distributed latent factors have a natural interpretation as proxies for unobserved 

covariates and the associated factor loadings can be interpreted the same as coefficients on 

observed covariates. This latent-factor framework is more generalized than the two-step method 
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proposed by Lee (1993) since it is more efficient and could easily be adapted to other statistical 

structures for treatment and outcome.  

For estimation purposes, the crop choices and the tillage outcomes are treated as separate 

components although they are estimated jointly. The probability of the multinomial crop choices 

can be represented by 

          
       

    
        

        
 

     
        

        
 

 
   

 

=    
        

        )     i =1,2,… K    (6) 

where g is an appropriate multinomial logit distribution,    is a binary dummy variable 

indicating the choice of crop i and    is a vector of latent factors that incorporates unobserved 

characteristics common to the farmer’s crop and tillage choices specific to crop choice i.  

The outcome is the tillage choices denoted as   . The expected outcome equation is 

formulated as  

         
              

                        (7) 

Where    denotes the treatment effects relative to the control, and when     the factor loading 

parameter, is positive when treatment and outcome are positively correlated through unobserved 

characteristics. Denote the probability distribution of tillage outcome as          
        .  

The joint distribution of treatment (crop choice) and outcome variables (tillage choice), 

conditional on the common latent factors, can be written as the product of the marginal density 

of crop choices and the conditional density of tillage choices given crop choices. 
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        )      (8) 

The problem in estimation arises because the latent factors    are unknown. We assume that 

the    are independently and identically distributed draws from the standard normal distribution 

so their joint distribution h can be integrated out of the joint density: 

            
    

                 
              

        
                  (9) 

The main computational problem, given suitable specifications for f, g, and h, is that the 

integral (9) does not have, in general, a closed-form solution. This difficulty is addressed by 

using simulation-based estimation: 

            
    

                  
              

        
           

 
 

 
          

        
        

        
                 (10) 

Where      is the sth draw of a pseudorandom number based on Halton sequences from the 

density h. The simulated log-likelihood function for the data is given by 

           
    

          
 

 
          

        
        

        
              (11) 

The simulated log-likelihood function relies on an aggregate of probabilities across all farmers in 

this application. Provided that S is sufficiently large, maximization of the simulated log 

likelihood (11) is equivalent to maximizing the log likelihood. 

Due to computational complexity, the framework illustrated above can only work with 

binary, continuous, or negative binomial outcomes. In our application on tillage outcomes, we 

have to model the tillage outcomes as binary (conventional tillage or conservation tillage) or as 

continuous variable by converting discrete tillage choice into continuous crop residue percentage 

variable. Detailed procedure on this transformation is introduced later in the following data 

section. The model is implemented using mtreatreg package in Stata. 
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IV. Data 

We apply this integrated model to the Maumee River Watershed, which is the largest in 

the Great Lakes Region and contributing by far the largest volume of sediment into Lake Erie 

(Zmijewski and Becker 2010). Eight percent of land in the Maumee River Watershed is in 

agricultural land use, from which the nutrient and sediment loadings are contributing to 

excessive, harmful algal blooms and other water quality problems in Lake Erie (Reutter et al. 

2011). A recent study reveals that of the entire Great Lakes Region, the Western Lake Erie 

drainage, including the Maumee River, has the largest amount of under-treated acres – 2.3 

million acres (48% cropped acres) with a high or moderate need for additional conservation 

treatment to reduce nitrogen loss in subsurface flows (CEAP 2011). This makes the Maumee 

River Watershed an ideal laboratory to study how farmers’ tillage choices under different policy 

scenarios are impacting the nutrient/sediment runoffs and water quality in Lake Erie. 

Figure 1: Study region and field boundaries data availability 

We obtain the Common Land Unit (CLU) field boundaries data for almost all counties in 

the Maumee River watershed from USDA – Farm Service Agency. These data is comprised of 
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186,453 agricultural fields that span a total of six million spatially contiguous acres located 

either within or adjacent to the Maumee River watershed in 28 counties in Ohio, Indiana, and 

Michigan. The CLU field boundaries data are overlaid with NASS Cropland Data Layer 2006 to 

2012 at 30m*30m or 56m*56m resolution to identify the field-level dominant land use and crop 

choice which has the largest area within a specific field. This yields field-level crop choices for 

each year from 2006 to 2012, the land use trajectories from 2006 to 2012, and the crop rotation 

patterns 2006-2012. We also obtain the tillage choices from overlaying the CLU data with the 

remote-sensed data on tillage in 2006, 2007, and 2008 from collaborators from the University of 

Toledo. In this paper, we mainly use crop choice and tillage choice in the year 2008, and the 

following table 1 summarizes the data. 

  Tillage System 

  

No-till Mulch/ reduced Conventional Total Acres 

Crop 

Choice 

Corn 18.1% 5.5% 76.5% 962603  

Soybean 53.6% 11.3% 35.1% 1803851 

Wheat 24.6% 70.7% 4.7% 457494  

Hay & Other 68.1% 21.6% 10.4% 258936 

  Total Acres 1429917 635737.2 1417230 3482885 

Table 1. Total acres by crop and tillage system 

After identifying the dominant tillage choice, ideally we could estimate a multinomial logit 

model of tillage outcomes. However, the framework illustrated in above sections can only handle 

binary or continuous outcome variables due to coding and computational complexity. As a result, 

two different tillage outcome variables are used in this paper, one is the binary variable 

indicating the farmer is choosing conventional till or conservation till, which includes no-till, 

mulch-till, and reduced-till. Another outcome variable is a continuous crop residue percentage 

variable. For example, if after overlaying the CLU data with remote-sensed tillage choice data, 
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we find that 60%, 25%, and 15% of the acreage for one particular field is in no-till, mulch-till, 

and conventional-till respectively, we create the crop residue variable by taking a weighted 

average approach, where the weights are the different percentage of acreage for different tillage 

system. The crop residue constructed for this field is 60% * 90 + 25% * 30 + 15% *10 = 54, 

assuming the crop residue for these three tillage systems are 90%, 30% and 10% respectively. 

The limitation of this approach is that it ignores the fact that on one particular field, it is most 

likely there is only one tillage system, and the existence of multiple tillage systems in one field 

may result from the inaccuracy and resolution of the remote-sensed data. 

 

Figure 2. Crop choice and tillage choice in the Maumee River watershed 

Our variable on crop prices come from two sources: the average futures prices for corn, 

soybean, and wheat were calculated as the average closing prices in February at the Chicago 

Board of Trade for December corn, November soybean and November wheat. In addition, we 

obtain average basis prices for these three crops in October for all 146 grain elevators, ethanol 
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plants, soybean crushing facilities, and other agricultural output terminals in our study region 

from a private company, GeoGrain. By summing these average future prices and basis prices, we 

obtain a proxy for cash forward prices in October from 2006 to 2012 for these 146 spatially 

located agricultural markets for December corn, November soybean and November wheat. We 

combine data used in Wu et al. (2004) and the Ohio production budget data developed by Ward 

(2013) to obtain site-specific production costs, by crop and tillage practices by state, crop and 

previous year crop, from which we constructed another key variable additional production costs 

for conventional till over conservation till. 

To capture the yield and environmental differences among different fields, physical 

variables reflecting land quality at individual fields are included as independent variables in the 

models. Parcel size captures the acres of agricultural fields, and slope is a continuous variable 

measured as a percentage. The differences in soil quality are captured by three technical 

variables: soil available water capacity (soil awc) is the availability water capacity of the soil 

layer measured in mmH2O/mm soil; soil organic carbon content (soil cbn) is defined percentage 

of soil weight; and soil loss potential is defined as the soil erodibility (K) factor used in USLE 

equation measured in (metric ton m
2
 hr)/(m

3
-metric ton cm). Dummies for previous crops such 

as previous crop is corn capture the potential effects of crop rotation.  

In addition, historical weather data at a 4km*4km grid level from 1980 to 2011 were 

obtained from Wolfram Schlenker’s website. We constructed several historical average variables 

based on temperature and precipitation: we assume farmers’ expectations of weather conditions 

were assumed to be constant and thus can be represented by mean daily maximum temperature 

1981 to 2011 and mean daily minimum temperature 1981 to 2011 of the nearest weather grid. 

The mean daily spring precipitation from 1981 to 2011 is the mean daily spring precipitation 
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from March to April, which is designed to capture the potential negative impacts of heavy spring 

rains on the reduction in crop planting windows, especially for corn. The standard deviation of 

spring precipitation on the other hand captures the long-run variability and seasonality of the 

precipitation. Another variable of interest is the degree days over 20
o
C, a non-linear 

transformation of the temperature variable suggested by agronomic experiments to be a better 

predictor of plant growth. Roughly this variable captures the heat stress or intensity of the high 

temperature on plant growth, for example, a day with a maximum temperature at 32
o
C 

contributes to 12 degree days over 20
o
C. Please see Schlenker et al. (2007) for details in the 

construction of the variable. In addition, we have regional dummies at the crop reporting district 

level to capture the idiosyncratic factors specific to one specific region or state. 

V. Results and Discussion 

Table 2 presents the results of our treatment effects crop choice model. Note that only the 

coefficients of the models are shown in Table 2 and the significant ones are highlighted in bold. 

These are just coefficients not marginal effects, so only the signs have economic meanings. Most 

of the coefficients are intuitive and the base outcome is hay. The positive and significant 

coefficients on crop prices reveal that the higher the expected crop prices this October, the higher 

the probability of choosing this particular crop. The negative and significant coefficients on 

previous crop dummies show signs of crop rotation: in other words, if the previous year’s crop is 

soybean, farmers are more likely to grow corn. These results reflect the fact that corn-soybean 

and corn-soybean-wheat rotation are the most popular cropping systems in our study region, 

while continuous corn and continuous soybean are not widely practiced.  

Regarding the differential impacts of land quality on crop choices, our analysis show that 

high-quality land indicated by higher values of soil awc are more likely to be planted to high  
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Table 2: Regression results of multinomial treatment – crop choices 

valued crops such as corn than to hay. Land with steeper slopes is more likely to be allocated to 

hay and wheat than to corn and soybeans because they are erosion-prone crops. Agricultural 

fields with a larger acreage are more likely to be planted in corn. Corn typically demands higher 

soil quality than other crops: land with higher soil awc and lower soil runoff potential are more 

likely to be planted in corn. Regarding the temperature and precipitation variables, our analysis 

reveals that heavy spring rains might shorten the window for planting and it would significantly 

lower the probability of growing corn. In addition, wheat is spatially concentrated in the 

  Corn Soybean Wheat 

Crop price 5.67E-04  4.32E-06  1.91E-04  

Previous crop is corn -8.6E-07 2.25E-07 2.62E-07 

previous crop is soybean 2.39E-08 -4.64E-08 4.18E-08 

previous crop is wheat 8.23E-08 8.55E-08 -2.01E-08 

previous crop is hay 5.97E-06 2.99E-07 -2.99E-07 

Parcel size 8.42E-07 1.44E-08 -2.04E-08 

slope -3.91E-07 -2.90E-09 3.33E-09 

soil water capacity 4.21E-08 -2.42E-08 -0.12E-08 

soil organic content -1.49E-08 -1.14E-07 4.67E-07 

soil loss potential -9.2E-06 -2.87E-06 2.19E-06 

mean max temp 1986-2005 2.28E-06 2.31E-06 -3.6E-07 

mean min temp 1986-2005 2.79E-06 2.60E-06 1.21E-05 

degrees days over 20 C -1.10E-05 3.58E-06 2.68E-06 

mean spring precipitation -1.26E-05  2.62E-07 1.05E-06 

std dev spring precipitation 9.56E-07 8.69E-06 -9.8E-08 

ag district - NE Indiana -1.02E-08 4.48E-08 -2.18E-08 

ag district - NW Ohio 4.53E-08 -7.39E-08 4.09E-08 

ag district - W Ohio 2.65E-07 -7.65E-07 3.16E-07 
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Northwest corner of Ohio, which comparably has a lower soil quality than some other 

agricultural districts such as Western Ohio. 

Table 3: Regression results of tillage outcomes 

Table 3 shows the regression results of binary tillage outcomes. The significant coefficients 

on these category variables    for crop parcels reveal that there are significant treatment effects 

between tillage and crop choices. For example, they suggest that agricultural fields planted in 

corn are less likely to choose conservation till than the reference crop group – hay. These 

significant treatment effects show that if left uncontrolled, the separate estimation suffers from 

  Tillage (binary) 

Additional costs of conventional-till over conservation-till  1.77 

slope 0.956 

soil water capacity -5.71 

soil organic content -0.086 

soil loss potential 0.718 

mean max temp 1986-2005 2.844 

mean min temp 1986-2005 0.078 

degrees days over 20 C 0.0012 

mean spring precipitation -0.7498 

std dev spring precipitation 0.0549 

ag district - NE Indiana 0.477 

ag district - NW Ohio 2.178 

ag district - W Ohio -0.935 

Intercept 72.17 

Category_corn parcels -0.53 

Category_soybean parcels 5.63 

Category_wheat parcels 0.049 

Idiosyncratic latent factors_corn 10.23 

Idiosyncratic latent factors_soybean  0.123 

Idiosyncratic latent factors_wheat -10.65 
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the endogeneity bias. The interpretations of other variables are relatively intuitive. One variable 

of particular interest is the additional production costs of conventional-till over conservation-till. 

Since the tillage decisions do not have an immediate impact on crop yield, these production cost 

differentials serve as the same as the expected crop prices in the crop choice model. Our analysis 

suggests that lower the costs of conservation-till compared to conventional-till, the farmers are 

more likely to adopt conservation-till. In addition, land with better soil quality is less likely to 

adopt the conservation tillage, maybe reflecting a lesser concern of the long-term soil health. The 

significant coefficients on idiosyncratic factors show that farmers who are more likely to grow 

corn relative to hay, on the basis of unobserved characteristics, are more likely to adopt the 

conservation-till. These significant coefficients are consistent with previous findings by Norris 

and Batie (1987) and Konar et al. (2012) that find individual operator characteristics are 

important determinants of farmers’ agricultural best management practices. 

Figure 3: Field-level total phosphorus and dissolved reactive phosphorus (DRP) loadings 
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 To analyze the environmental impacts of alternative nutrient management policies, we use 

a hydrological model – Soil and Water Assessment Tool (SWAT) – to translate farmers’ crop 

and tillage outcomes to environmental impacts such as DRP loadings. SWAT is a continuous 

watershed model that was developed by the U.S. Department of Agriculture’s (USDA) 

Agricultural Research Service (ARS) for assessing efficacy of agricultural and watershed 

management practices in reducing sediment and nutrient losses from croplands to receiving 

water bodies (Arnold et al. 1998). Being a direct outgrowth of various crop growth, hydrology 

and chemical transport models developed by ARS over the last 30 years, SWAT currently 

embodies a wide range of capabilities to quantify agricultural nonpoint source pollution under 

various cropland management practices. Figure 3 presents the per-acre total phosphorus and 

DRP loadings from SWAT based on the corresponding field-level crop and tillage choices. 

Based on these per-acre phosphorus loadings by crop and tillage systems in each of the 1200 

spatially delineated hydrological resource unit (HRU), we obtain the HRU-specific export 

coefficients in terms of phosphorus loadings that make the translation of agricultural land 

management outcomes into environmental quality variables much easier. 

 Our model could analyze the impacts of alternative policies such as emission taxes – a first 

best tax scheme based on field-specific phosphorus loadings assuming the tillage outcomes can 

be accurately inferred from remote-sensed data; or voluntary payments scheme to encourage 

adoption of conservation tillage; or fertilizer tax which has an indirect effect on cost-savings yet 

yield-reducing conservation-till given rises in production costs and potential yield reductions due 

to decreased fertilizer application. Due to time constraints and computational complexity, we 

were not able to analyze these policies. However, we did run a small exercise which analyzes the 

impacts of incorporation for small no-till fields on DRP loadings. Typically phosphorus fertilizer 
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application is broadcast, which leaves a uniform distribution of phosphorus on the soil surface, 

and is easy to apply. However, this application method can result in those nutrients stratifying 

and accumulating in the top 2 or 3 inches of the soil, prone to phosphorus runoff in events of 

heavy rains. Agronomists advocate incorporation instead, which incorporates the fertilizer into 

the soil through strip till or banding and thus alleviate the stratification problem and reduce the 

nutrient runoffs (Sharpley et al. 2006). Figure 4 shows the map of DRP loadings across the 

watershed if all the agricultural fields currently adopting no-till and with acreage of less than 20 

acres all switch from broadcast application to incorporation. Comparing Figure 3(b) and Figure 4 

reveals a noticeable reduction in the DRP loadings at least in the Blanchard River region (in the 

middle of the graph) just through incorporation. This is reasonable because we assume the 

changes only occur in small parcels which do not require long operation times. 

 

Figure 4: DRP loadings if all no till, <20 acre fields switch from broadcast to incorporation 
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VI. Conclusion and Next Steps 

The record-setting harmful algal bloom in Lake Erie in 2011 has renewed the interests 

among policy makers, researchers and the public in the linkages between non-point agricultural 

nutrient runoffs and downstream ecosystem conditions (Michalak et al. 2013). In this paper, with 

a focus on the largest watershed in the Great Lakes region, we developed a spatially-explicit 

model of farmers’ crop and tillage decisions and analyzed the impacts of nutrient management 

policies in phosphorus loadings. Using a multinomial treatment effects simulated maximum 

likelihood model, we controlled for the endogeneous linkages between crop choices and tillage 

choices which were not accounted for in previous separate estimation of these two decisions. Our 

spatially contiguous parcel data allows for integration with watershed hydrological model which 

facilitates the benefit-cost analysis of alternative policies such as spatial-targeting policy in terms 

of their impacts on nutrient loadings.  

Due to computational complexity imbedded in the simulated-maximum likelihood 

estimation, we were not able to analyze many relevant policy scenarios. The model is difficult to 

converge; as a result the results presented here are very preliminary. As the next steps, first we 

plan to investigate the possibility of estimating a simpler model of nutrient management plan, 

which treats crop choice and tillage choice as a bundle. Secondly, we plan to analyze the impacts 

of other nutrient management policies, such as first-best spatially targeted DRP emission taxes 

and voluntary payment schemes.  
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